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Abstract 

Double stranded RNA (dsRNA) is the genetic material of important viruses and a key component of 

RNA interference-based immunity in eukaryotes. Previous studies have noted difficulties in 

determining the sequence of dsRNA molecules that have affected studies of immune function and 

estimates of viral diversity in nature. Dimethyl sulfoxide (DMSO) has been used to denature dsRNA 

prior to the reverse transcription stage to improve RT-PCR and Sanger sequencing. We systematically 

tested the utility of DMSO to improve sequencing yield of a dsRNA virus (Φ6) in a short-read next 

generation sequencing platform. DMSO treatment improved sequencing read recovery by over two 

orders of magnitude, even when RNA and cDNA concentrations were below the limit of detection. We 

also tested the effects of DMSO on a mock eukaryotic viral community and found that dsRNA virus 

reads increased with DMSO treatment. Furthermore, we provide evidence that DMSO treatment does 
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not adversely affect recovery of reads from a single-stranded RNA viral genome (Influenza 

A/California/07/2009). We suggest that up to 50% DMSO treatment be used prior to cDNA synthesis 

when samples of interest are composed of or may contain dsRNA.  

 

Data Summary 

Sequence data was deposited in the NCBI Short Read Archive (accession numbers: PRJNA527100, 

PRJNA527101, PRJNA527098). Data and code for analysis is available on GitHub 

(https://github.com/awilcox83/dsRNA-sequencing/, doi:10.5281/zenodo.1453423). Protocol for 

dsRNA sequencing is posted on protocols.io (doi:10.17504/protocols.io.ugnetve). 

 

Introduction 

Ribonucleic acid (RNA) is a ubiquitous biological molecule involved in transcription and translation, 

which also serves as the genetic material of a large number of important viruses. The double-stranded 

form of RNA (dsRNA) is believed to be less abundant in nature, but is a crucial component of a 

number of biological systems. It has a central role in the RNA interference system [1], which 

modulates innate immunity in plants and animals, and serves as a replicative intermediate of (+) 

ssRNA viruses, while also being present in dsDNA and (-) ssRNA infections [25].  Moreover, it also 

serves as the genetic material of a number of virus lineages (including the families Reoviridae, 

Cystoviridae, Picobirnaviridae) that infect humans, animals, plants, fungi, and bacteria; which play 

important medical, ecological, and scientific roles. A number of dsRNA viruses are of clinical and 

agricultural significance, such as Bluetongue virus, which causes high morbidity and mortality in 

ruminants [2], and rotavirus, which causes acute gastroenteritis in humans [3]. There are indications 

that the overall diversity of RNA viruses may be underestimated [4, 5] and difficulties sequencing 

dsRNA in particular have been noted in the literature [6,7]. As a consequence, dsRNA virus lineages 

may be underrepresented and dsRNAs involved in immunity may be underestimated. 

 

Theory and implementation 

The extent of microbial diversity has been revealed by powerful whole genome sequencing tools that 

are quickly becoming standard tools in biology. However, next-generation sequencing has known 

biases according to the nucleic acid composition [8]. A major limitation is that most sequencing 

platforms cannot sequence RNA directly, requiring that it is first reverse-transcribed into its 

complementary DNA (cDNA). cDNA synthesis is typically achieved by hybridising oligonucleotide 

DNA primers to the RNA and using a reverse transcriptase to synthesise the remainder of the 
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complementary DNA strand. This step poses a particular problem to dsRNA because the presence of a 

complementary strand blocks the ability of these primers to bind. The blocking has a direct effect on 

the amount of dsRNA converted to cDNA, resulting in many fewer sequencing reads being generated 

relative to the true amount of RNA present. Additionally, many dsRNA viruses have small genomes 

that limit the amount of RNA that can be extracted, further complicating the determination of dsRNA 

sequences. 

 

As early as 1968, dimethyl sulfoxide (DMSO) has been shown to have a denaturing effect on nucleic 

acids [9]. DMSO has been successfully used to improve the performance of RT-PCR [10] and Sanger 

Sequencing [11]. However, to our knowledge DMSO has not been used for next-generation 

sequencing approaches and many dsRNA sequencing studies omit DMSO treatment [6, 12, 13, 14]. 

Moreover, there is no standard protocol for DMSO treatment of samples and previous methods vary 

greatly in their conditions, particularly DMSO concentration, which has ranged from 15% [11] to 90% 

[15].  

 

This paper investigated four questions regarding the effect of DMSO treatment on next-generation 

sequencing: 1) Does DMSO treatment improve recovery of dsRNA reads and at what concentration? 

2) Does DMSO affect read coverage and accuracy of a viral genome? 3) Is the effect of DMSO 

independent of RNA concentration? 4) Does DMSO treatment negatively affect the recovery of single-

stranded RNA (ssRNA) genomes? Our results suggest that treatment with a high concentration of 

DMSO greatly increases the number of reads generated when sequencing dsRNA with no effect on 

read accuracy, without adversely affecting sequencing of ssRNA virus genomes on the Illumina short-

read sequencing platform. 

 

We carried out the methods in this paper on two different viruses: Pseudomonas phage Φ6, which has 

a dsRNA genome made up of three segments, and human influenza virus A H1N1, which contains 

eight ssRNA segments. We also used a mock eukaryotic viral community, manufactured by the 

National Institute for Biological Standards and Control (NIBSC, UK) as a reference material for 

multiplex viral detection (NIBSC reagent 11/242-001). This reagent was expected to contain 25 human 

pathogenic viruses and has been used to investigate viral detection methods on mixed and 

metagenomic samples [16]. 
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Sample Preparation 

Φ6 lysate was prepared by plating phage and its Pseudomonas syringae host using double agar 

overlay. Phages were harvested by selecting a plate with semi-confluent lysis, transferring the soft agar 

layer to 3ml LB (Lennox) media, and centrifuging to remove host cells and agar. An influenza virus 

lysate was generated from egg-passaged stock of influenza A/California/07/2009(H1NI) (generously 

provided by Ted M. Ross, University of Georgia), which was expanded by passage at a low 

multiplicity of infection in Madin-Darby canine kidney (MDCK) cells in culture. Viral lysates and the 

mock viral community (NIBSC reagent 11/242-001) were passed through a 0.22μm millipore 

polyethersulfone membrane filter (Millex) to remove debris and contaminants.  1ml of each filtrate 

was treated with 25μl DNAse I (Thermo Scientific) and 50μl RNAse A/T1 mix (Thermo Scientific) 

with 1X DNAse I Buffer (Thermo Scientific) at 37ºC for 1 hour 30 minutes to degrade extracapsular 

nucleic acids. Viral RNA was extracted using an RNeasy Mini Kit (Qiagen), passing a total of 900μl of 

nuclease-treated lysate through a column, and eluting into 100μl of elution buffer.   

 

DMSO Treatment, reverse transcription and sequencing 

Viral RNA samples were divided into 20μl aliquots. DMSO was added to concentrations (v/v) of 15%, 

50% and 90% for each sample, followed by 1 hour and 30 minutes of incubation at 65ºC. DMSO was 

removed using a RNeasy MinElute Cleanup Kit (Qiagen, Valencia CA), following the manufacturer’s 

instructions. An additional sample was treated by heat denaturation but not DMSO: the tube containing 

the RNA extraction was placed in boiling water for five minutes [27]. Following this, all samples were 

placed on ice until cDNA synthesis was carried out. Other than heat or DMSO treatment, all samples 

followed standard cDNA synthesis methods. 

 

First strand cDNA synthesis was carried out as described in the SuperScript III First Strand cDNA 

Synthesis kit (Fisher) instructions, by adding 5μl of each RNA sample (including a control that had not 

undergone DMSO treatment or column cleanup) to 1μl of random hexamer oligos, 1μl dNTPs and 3μl 

DEPC-treated water. Reactions were incubated at 65ºC for 5 minutes then placed on ice for 1 minute. 

1X reverse transcriptase buffer, 5mM McCl2, 0.01M DTT, 1μl RNAseOUT and 1μl Superscript III RT 

enzyme were added to each reaction for a total volume of 20μl. Reactions were incubated on a thermal 

cycler at 25ºC for 10 minutes, 50ºC for 50 minutes and 85ºC for 5 minutes. Second strand synthesis 

was carried out by adding 1μl dNTPs, 0.5μl DNA ligase, 2μl DNA polymerase I, 0.5μl RNAse H in 1X 

second strand synthesis buffer, and made up to a total volume of 40μl with nuclease free water. 
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Reactions were incubated at 16ºC for 5 hours and cDNA was purified with a Nucleospin Gel and PCR 

Clean-up kit (Macherey-Nagal, Düren Germany). 

  

Libraries were prepared for Illumina sequencing using the Nextera XT DNA Sample Preparation Kit 

(Illumina, San Diego CA), with a 1/5 “scaled” library preparation protocol after Baym et al. [17]. 

  

Bioinformatics 

Reads were trimmed for adapters and quality using Cutadapt [18] and Sickle [19]. Due to a short 

fragment size, reads overlapped and so paired-end libraries were merged into single-end libraries using 

PEAR [20]. For phi6 and influenza virus lysates, these libraries were mapped to the reference genomes 

using Bowtie2 [21], and bam-readcount [22] was used to determine the read depth at each position. 

Plots were generated using the ggplot2 package in R. 

 

For the mock viral community, a custom virus discovery pipeline was used to analyze sequencing 

reads [23]. Reads were translated and aligned to a viral proteome database (consisting of all annotated 

full or near full viral genomes) using BLASTx. The significant hits to the virus database were then 

aligned to a non-virus-non-redundant (NVNR) universal proteome database using BLASTx. Hits with 

more significant E-value to NVNR than to the virus database were removed. 

 

To test if DMSO treatment had any effect on sequencing fidelity we used two approaches to estimate 

sequencing error rates. First, we used freebayes [24] to generate a VCF file containing all differences 

from the reference genome with frequency of <5% and Phred quality score of at least 30. A custom 

Python script was used to count the number of these mutations and the total bases sequenced for each 

sample, and to calculate the true error rate. We tested for statistically significant differences in error 

rates among DMSO treatments using a proportion test. Because reference-based approaches to error 

estimation face limitations, we implemented a reference-free approach to error estimation [26]. We 

calculated the error rate for each of our DMSO treatments, as implemented in the R package 

ShadowRegression, and tested for differences using robust linear regressions.    

 

Results and Discussion 

 

Our findings show that DMSO treatment has a dramatic effect on dsRNA sequencing (Table 1). When 

we prepared viral lysates for sequencing without DMSO, we did not obtain sufficient reads to cover 
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the entire Φ6 genome. Treatment with 15% DMSO increased the number of mapping reads over 

sevenfold, whilst the 50% and 90% treatments increased the number of reads by over two orders of 

magnitude, allowing the full genome to be sequenced at high coverage (average read depth of 1727 for 

50% DMSO and 1493 for 90% DMSO).  

Table 1. The total number of reads generated during sequencing of influenza and Φ6 after treatment at varying DMSO 

concentrations, and the number of those reads that mapped to reference genomes. 

DMSO % Total reads Reads that map to phi6 Reads that map (%) 

0 1551220 1377 0.1% 

15 1314520 10358 0.8% 

50 1077133 263993 24.5% 

90 1393569 224562 16.1% 

 

These increases in genome coverage occurred despite very low starting nucleic acid concentrations. 

We used a Qubit RNA High Sensitivity Assay kit to quantify RNA immediately after extraction; in all 

cases RNA was undetectable and so assumed to be under the kit’s limit of detection of 5ng/μl. 

Additionally, we used a Qubit DNA High Sensitivity Assay kit to quantify the amount of cDNA 

synthesised. Despite this kit’s lower limit of detection of 200pg/μl, DNA was still not detected. Thus, 

for dsRNA the raw quantity of starting material may not be as important as the efficiency of cDNA 

synthesis, a fact that should accounted for when preparing quality control thresholds before next 

generation sequencing.  

 

Table 2. The average read depth for each influenza segment under varying concentrations of DMSO. 

DMSO % Total reads Reads that map to flu Reads that map (%) 

0 1614418 931915 57.7% 

15 1369886 353752 25.8% 

50 1510801 295244 19.5% 

90 1257059 446549 35.5% 

 

We next sought to determine whether DMSO treatment affected other types of RNA present in the 

sample, which would occur in metagenomes, clinical samples, or transcriptomes. DMSO treatment did 

not appear to affect the recovery of ssRNA-derived reads from the influenza virus genome. There was 

no discernible effect when the DMSO concentration was varied (Table 1). The number of reads 

mapping to the reference genome did decrease from the 0% DMSO treatment to the 15% DMSO 

treatment. However, this loss in mapping reads was most likely caused by the extra column cleanup 
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step required to remove the DMSO (note that the total reads also decreased). We note that this decrease 

in reads in the influenza virus sequencing was less than one order of magnitude and still resulted in 

extremely high read depth, with an average of over 1000x for every influenza segment after DMSO 

treatment (Table 2). This effect was obscured in Φ6 due to the large increase in mapping reads from 

DMSO treatment. 

 

Figure 1. DMSO treatment does not affect sequencing read coverage across the ssRNA influenza genome. Read depth 

at each position in the influenza genome under varying concentrations of DMSO. Note that 8000 is the maximum read 

depth supported by the SAM/BAM file format, so some peaks in the 0% DMSO plots have been truncated. 

 

In order to determine if the presence of DMSO affected any other properties of the RNA when used for 

downstream sequencing, we plotted the coverage at every nucleotide position for each DMSO 

concentration used. The plot for influenza (Figure 1) showed a distinct, repeating pattern for each 

segment, with DMSO concentration appearing to have no effect on relative coverage. This indicates 

that there is no bias in which reads are affected by the DMSO treatment, and that the reads generated 

are still representative. A similar pattern could be observed for the 50% and 90% DMSO treatments of 

Φ6 (Figure 2, the low number of reads made this pattern harder to discern in the 15% treatment). 
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Therefore, DMSO treatment did not adversely affect genome-wide coverage patterns of dsRNA or 

ssRNA viruses. 

 

Figure 2. DMSO treatment greatly increases sequence coverage of the dsRNA Φ6 genome. Read depth at each 

position in the Φ6 genome under varying concentrations of DMSO. There were insufficient reads to generate a plot for 

0% DMSO. Read depth at each position in the influenza genome under varying concentrations of DMSO. Note that 8000 is 

the maximum read depth supported by the SAM/BAM file format, so some peaks in the 0% DMSO plots have been 

truncated. 

 

To determine if this method worked with higher starting concentrations of RNA, we used an Amicon 

centrifugal filter unit to concentrate approximately 10ml of Φ6 lysate into 50μl. The concentrated 

lysate contained 37.6ng/μl RNA (measured by Qubit) and was prepared for sequencing using 90% 

DMSO (as above), as well as a control without DMSO (heat-treated for 90 minutes at 65ºC). While 
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only 0.08% of reads mapped to the reference genome 

in the non-DMSO treated control, there was an 

increase to 72.45% in the DMSO-treated sample, 

again demonstrating the importance of the DMSO 

treatment over raw RNA concentration (Figure 3). 

The concentrated sample had a much higher 

proportion of reads than the non-concentrated sample 

(16.1%, Table 1), most likely due to the concentration 

step increasing the ratio of viral RNA to extracapsular 

RNA. Therefore, DMSO treatment works at varying 

RNA concentrations and is likely to improve any 

dsRNA sequencing regardless of starting 

concentration. 

 

We also tested if DMSO treatment was more effective 

than simple heat denaturation. We extracted RNA from 

Φ6 and divided it into two aliquots. One of these was 

treated with 50% DMSO as described above, while the other was placed in boiling water for five 

minutes. After cDNA synthesis, library preparation and sequencing, we mapped the resulting reads to 

the Φ6 reference genome. In the heat-treated sample, 1.72% of reads successfully mapped to the 

reference, whilst in the DMSO treated sample this increased to 40.24%. While heat denaturation is 

clearly of some benefit (compared to 0.08% of reads mapped in the no-treatment control), these data 

demonstrate that DMSO treatment is the superior method and might be vital when working with low 

starting RNA concentrations. 

 

Because the fidelity of reverse transcriptase reactions relies on base-pairing, we examined if DMSO 

treatment had any effect on fidelity by searching for errors in the sequence data using two approaches. 

First, we extracted all bases that were different from the reference genome with Phred quality score of 

at least 30. This per-base quality score is equivalent to an expected error rate of 0.1%, meaning over 

the entire genome sequence the expectation would be 1/1,000 bases to be sequencing errors. Under the 

assumption that all differences from the reference were errors, these data were used to calculate the 

true error rate. This error rate was converted to a Phred score (Table 3). If DMSO increased the 

sequencing error rate, we would expect our calculated Phred score to decrease as DMSO concentration 
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Figure 3. DMSO treatment has a greater effect than 

RNA concentration on generating dsRNA reads 

using next generation sequencing. Percent of 

sequencing reads mapping to phi6 reference genome 

with no treatment (Phi6), nuclease treatment (Phi6_N), 

nuclease treatment and concentration (Phi6_NC), 
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is increased. There was a statistically significant difference in error rates for each DMSO treatment of 

Φ6 (X2 = 533.6, df = 2, p < 2.2e-16), however the error rate did not increase with increasing DMSO 

concentration (the untreated, control Φ6 sample did not have enough reads for comparison). Similarly, 

for influenza, the difference in error rates was statistically significant (X2 = 575.08, df = 3, p < 2.2e-

16), but numerically miniscule (Table 3). Moreover, the error rate decreased as the DMSO 

concentration increased. In all cases, the true error rate was lower than the expected error rate. 

Additionally, our calculated error rate is conservative, because of the assumption that all differences 

from the reference were erroneous. In actuality, some of these differences at low frequency could be 

true mutations in RNA virus populations (i.e. minor variants). 

Table 3. The error rate per nucleotide and quality score for each of the Φ6 and influenza samples treated with DMSO. 

Organism DMSO % Total errors Total bases sequenced Error rate (%) Phred quality score 

Φ6 15 176 857974 0.021 36.9 

Φ6 50 8940 23127006 0.039 34.1 

Φ6 90 5276 19996871 0.026 35.8 

Influenza 0 34527 68561988 0.050 33.0 

Influenza 15 13181 29087984 0.045 33.4 

Influenza 50 9549 23120765 0.041 33.8 

Influenza 90 16757 40369161 0.042 33.8 

 

 

Second, to estimate error rates in short reads without a reference genome, we also used the 

ShadowRegression R package [26], which compares reads against each other. Our data shows that 

DMSO has little effect on the error rate of the ssRNA influenza virus (Figure 4). Using a robust F-test, 

we found that the difference in influenza error rate between each DMSO-treated sample and the 

untreated sample was not statistically significant (15%: F = 1.4003, p=0.134; 50%: F = 2.246, 

p=0.2367; 90%: F = 0.2093, p=0.6473). Moreover, these error rates did not show a pattern with 

increasing DMSO concentration (Figure 4A, inset). However, in Φ6 we found that as the concentration 

of DMSO increased, the sequencing error rate actually decreased (Figure 4B, inset). This decrease 

compared to the 15% DMSO treatment was statistically significant (50%: F = 280.95, p < 2.2x10-16; 

90%: F = 37.391, p=1.092x10-9). Thus, using two statistical approaches, these data collectively 

indicate that DMSO did not have an adverse effect on read accuracy and in some instances may 

improve sequencing accuracy.  
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The mock viral community (NIBSC reagent 11/242-001) was made by mixing 25 eukaryotic viruses 

[16]. Of those with RNA genomes, the most abundant in the sample is thought to be the dsRNA 

rotavirus, based on real time PCR results [23], which we selected for comparison with the ssRNA virus 

human parechovirus 3. Using a virus discovery pipeline, we only detected 1 read from a dsRNA virus 

(rotavirus A) in the sample untreated with DMSO (Table 4). However, under the 15% treatment, this 

increased to over 203 rotavirus reads, as well as reads from dsRNA viruses not thought to have been in 

the reagent, including human picobirnavirus and some totiviruses. This result is notable because the 

mock viral community was made such that rotavirus A was the most abundant virus [23]. If the most 

abundant virus can be so underrepresented in a known sample, this suggests many metagenomic 

studies will miss almost all dsRNA viruses. Furthermore, we indeed find dsRNA viruses that had 

previously evaded detection in the mock viral community [16]. The 50% and 90% treatments 

contained significantly fewer dsRNA reads than the 15% treatment, but reads from all viruses were 

reduced in these samples. Although the number of reads detected in the DMSO treated samples were 
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Figure 4. DMSO treatment does not adversely affect sequencing error rates in influenza (A) or phi-6 (B). The R-

package ShadowRegression estimates reference-free error rates (inset) based on a transform of the slope of read counts 

and their “shadows” (main plot line graphs). 
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low compared with the untreated sample, dsRNA was practically undetectable in the latter. Therefore, 

despite some caveats we suggest that the power of this method for detecting dsRNA viruses in 

metagenomic samples is clear. 

 

Table 4. Total number of reads detected in the mock viral community (reagent 11/242-001) under each DMSO treatment 

for human parechovirus, rotavirus A, and other dsRNA viruses. 

DMSO % Parechovirus hits Rotavirus A hits Other dsRNA virus hits 

0 3263 1 0 

15 2089 203 27 

50 293 10 9 

90 785 11 4 

 

Conclusion 

Sequencing of dsRNA can frequently be problematic, with traditional cDNA synthesis being highly 

inefficient. We have demonstrated that a simple treatment with a cheap and common laboratory 

reagent can increase the number of sequencing reads from dsRNA organisms by over two orders of 

magnitude. Importantly, the positive effect of the DMSO treatment occurred independent of RNA 

concentration, even when RNA was undetectable. Furthermore, DMSO treatment was more important 

than RNA concentration in determining dsRNA read yield and it did not affect viral genome coverage. 

We suggest that samples to be sequenced that contain or are suspected to contain dsRNA are treated 

with at least 50% DMSO prior to cDNA synthesis. This treatment should also improve sequencing of 

dsRNA involved in innate immunity in plants and animals. We suspect this treatment can be 

successfully applied to other DNA sequencing technologies, because the DMSO treatment occurs at 

the cDNA synthesis step and has been shown to improve other procedures such as Sanger sequencing 

[11]. 

  

When preparing an environmental sample for sequencing, it is possible that there may be dsRNA 

viruses present that are undetectable when following standard protocols. Previous data have shown 

dsRNA viruses to be underrepresented in metagenomic samples [23]. Our data on the mock viral 

community (where the putatively most abundant virus was not detected without DMSO treatment) 

suggests dsRNA viruses will almost invariably go undetected in environmental samples. We have 

shown that not only will DMSO treatment increase representation of these organisms, the effect on 

ssRNA representation is minor. It may well be that dsRNA viruses are more numerous than thought, 

but remain undetected using traditional methods. 
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