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Figure 5: Capacity of smooth manifolds from warped ImageNet images. (a) Illustration of smooth,
densely sampled affine transformed images; 36 samples from a 2-d translation manifold (left) and 2-d shear
manifold (right). Each manifold sample is associated with a coordinate specifying the horizontal and vertical
translation or shear of a base-image, and corresponds to an image where the object is warped using the
appropriate affine transformation. (b-c) Classification capacity for 2-d smooth manifolds (full line: translation;
dashed line: shear) along the layers of AlexNet (b) and VGG-16 (c). Line and markers indicate mean value over 4
different choices of 64 objects; surrounding shaded areas indicate 95% confidence interval. The x-axis labels
provides abbreviation of the layer types. Marker shape represents layer type (circle- pixel layer, square-
convolution layer, right-triangle- max-pooling layer, hexagon- fully connected layer, down-triangle- local
normalization). Features in linear layers are extracted after a ReLU non-linearity. Color (blue- AlexNet, green-
VGG-16) changes from dark to light along the network. (d) Capacity increase from the input (pixel layer) to the
output (features layer) of AlexNet (blue markers) and VGG-16 (green markers) for 2-d translation smooth
manifolds. The capacity increase is specified as ratio of capacity at the last layer relative to the pixel layer (y-axis),
at different levels of stimuli variation measured using Supplementary Equation (3) at the pixel layer (x-axis).
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Figure 6: Manifold geometry. (a) Mean manifold dimension for point-cloud manifolds of AlexNet and
VGG-16 (top, full-line: full-class manifolds, dashed-line: top 10% manifolds) and smooth 2-d manifolds for the
same deep networks (bottom, full-line: translation manifolds, dashed-line: shear manifolds). AlexNet top 10%
manifolds results already appeared as “after training” results from Figure 3f. Values of point-cloud top 10%
manifolds are showed against a secondary y-axis (color-coded by the markers edge) to improve visibility.
(b) Mean manifold radius for point-cloud manifolds of AlexNet and VGG-16 (top, full-line: full-class manifolds,
dashed-line: top 10% manifolds) and smooth 2-d manifolds for the same deep networks (bottom, full-line:
translation manifolds, dashed-line: shear manifolds). AlexNet top 10% manifolds results already appeared as
“after training” results from Figure 3g.
Line and markers indicate mean value over different choices of objects; surrounding shaded areas indicate 95%
confidence interval. The x-axis labels provides abbreviation of the layer types. Marker shape represents layer type
(circle- pixel layer, square- convolution layer, right-triangle- max-pooling layer, hexagon- fully connected layer,
down-triangle- local normalization layer). Features in linear layers are extracted after a ReLU non-linearity. Color
(blue- AlexNet, green- VGG-16) changes from dark to light along the network.
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Figure 7: Correlations between manifolds. Changes of mean between-manifold correlations along the layers
of AlexNet. (a) Center correlations for top 10% point-cloud manifolds in fully-trained network (full line), randomly
initialized network (dashed line) or randomly shuffled object manifolds (dotted line). (b) Center correlations for
smooth 2-d shear manifolds in fully-trained network (full line) or randomly initialized network (dashed line).
Line and markers indicate mean value over different choices of objects; surrounding shaded areas indicate 95%
confidence interval. The x-axis labels provides abbreviation of the layer types. Marker shape represents layer type
(circle- pixel layer, square- convolution layer, right-triangle- max-pooling layer, hexagon- fully connected layer).
Features in linear layers are extracted after a ReLU non-linearity. Color changes from dark to light along the
network.
Center correlations are ρCC = 〈|~xµ · ~xν |/||~xµ|| · ||~xν ||〉µ6=ν where ~xµ is the center of object µ (Supplementary
Equation (1)).

and the final (fully-connected) layers, but not in intermediate layers. Those differences may reflect the fact that the
high variability of point-cloud manifolds needs to be reduced incrementally from layer to layer (both in terms of
radius and dimension), utilizing the increased complexity of downstream features, while the variability created by
local affine transformations is handled mostly by the local processing of the first convolutional layer (consistent with
[35] reporting invariance to such transformations in the receptive field of early layers). The layer-wise compression
of affine manifold plateaus in the subsequent convolutional layers, as the manifolds are already small enough. As
signals propagate beyond the convolutional layers, the fully-connected layers add further reduction in size in both
manifold types.

This geometric description allows us to further shed light on the structure of the smooth manifolds used here.
For radius up to 1, the dimension of the manifolds with intrinsic 2-d variations (e.g. created by vertical and
horizontal translation) is just the sum of the dimensions of the two corresponding 1-d manifolds with the same
maximal object displacement (Supplementary Figure 8a); only for larger radii, dimensions for 2-d manifolds are
super-additive. On the other hand, for all levels of stimulus variability the radius of 2-d manifolds is about the same
as the value of the corresponding 1-d manifolds (Supplementary Figure 8b). This highlights the non-linear structure
of those larger manifolds, where the effect of changing multiple manifold coordinates is no longer predicted from
the effect of changing each coordinate separately.

Network layers reduce correlations between object centers

Manifold geometry considered above characterizes the variability in object manifolds’ shape but not the possible
relations between them. Here we focus on the correlations between the centers of different manifolds (hereafter:
center correlations), which may create clusters of manifolds in the representation state space. Though clustering may
be beneficial for specific target classifications, our theory predicts that the overall effect of such manifold clustering on
random binary classification is detrimental. Hence, these correlations reduce classification capacity (Supplementary
Note 3.1). Thus, the amount of center correlations at each layer of a deep network is a computationally-relevant
feature of the underlying manifold representation.

Importantly, for both point-cloud and smooth manifolds we find that in an AlexNet network trained for object
classification, center correlations decrease along the deep hierarchy (full lines in Figure 7a-b; additional VGG-16,
ResNet-50 results in Supplementary Figure 9). This decrease is interpreted as incremental improvement of the
neural code for objects, and supports the improved capacity (Figures 4-5). In contrast, center correlations at the
same network architectures but prior to training (dashed lines in Figure 7a-b) do not decrease (except for the affine
manifolds in the first convolutional layer, Figure 7b). Thus this decorrelation of manifold centers is a result of
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Figure 8: Manifold property changes by network building blocks. Changes in the relative manifold
properties between the input and the output of different network building-blocks, shown as change in dimension
vs change in center correlations (top) and change in radius vs change in center correlations (bottom). Each panel
pools results from a specific building-block in AlexNet (blue markers) and VGG-16 (green markers) for both
point-cloud manifolds (full class, top 10%) and smooth manifolds (1-d and 2-d, translation and shear).
Marker shape represents layer type (square- convolution layer, right-triangle- max-pooling layer, hexagon- fully
connected layer). For layer sequences marker shape represents the last layer in the sequence. For isolated ReLU
marker shape represent previous layer type; pentagon- ReLU after fully-connected layer, up-triangle- ReLU after
convolution layer. Color changes from dark to light along the network.
(a) Changes in manifold properties for isolated ReLU operations.
(b) Changes in manifold properties for isolated Max-pooling operations.
(c) Changes in manifold properties for a common sequence of operations: one or more repetitions of convolution,
ReLU operations, with or without intermediate normalization operation, ending with a max-pooling operation.
(d) Changes in manifold properties for a common sequence of operations: fully-connected, ReLU operations.
The data analyzed here correspond to the first set of objects used in the analysis of the mean and confidence
interval presented in Figures 6, 7, and include additional intermediate values not presented in those plots, notably
the inputs of ReLU operations.

the network training. Interestingly, the center correlations of shuffled manifolds exhibit lower levels of correlations,
which remain constant across layers after an initial decrease at the first convolutional layer.

Another source of inter-manifold correlations are correlations between the axes of variation of different mani-
folds; those also decrease along the network hierarchies (Supplementary Figure 9) but their effect on classification
capacity is small (as verified by using surrogate data, Supplementary Figure 10).

Effect of network building-blocks on manifolds’ geometry

To better understand the enhanced capacity exhibited by DCNNs we study the roles of the different network
building-blocks. Based on our theory, any operation applied to a neural representation may change capacity by
either changing the manifolds’ dimensions, radii, or the inter-manifold correlations (where a reduction of these
measures is expected to increase capacity).

Figure 8a-b shows the effect of single operations used in AlexNet and VGG-16. We find that the ReLU
nonlinearity usually reduces center correlations and manifolds’ radii, but increases manifolds’ dimensions (Figure
8a). This is expected as the nonlinearity tends to generate a sparse, higher dimensional, representations [50, 51]. In
contrast, pooling decreases manifolds’ radii and dimensions but usually increase correlations (Figure 8b), presumably
due to the underlying spatial averaging. Such clear behavior is not evident when considering convolutional or fully-
connected operations in isolation (Supplementary Figure 11).
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Figure 9: Theoretical predictions.
(a) Comparison of numerically measured capacity (x-axis) with the theoretical prediction (y-axis) for AlexNet,
VGG-16 at different layers along the hierarchy (top 10% point-cloud manifolds).
(b) Comparison of numerically measured capacity (x-axis) with the theoretical prediction (y-axis) for AlexNet at
different layers along the hierarchy and different levels of manifold variability (smooth 2-d manifolds).
(c) Numerically measured capacity (y-axis) at different number of objects (x-axis) for point-cloud manifolds at
different layers (dashed line: top 10% manifolds; dotted line: top 5% manifolds).
(d) Numerically measured capacity (y-axis) at different number of objects (x-axis) for smooth 2-d shear manifolds.
Marker shape represents layer type (circle- pixel layer, square- convolution layer, right-triangle- max-pooling layer,
hexagon- fully connected layer, down-triangle- local normalization layer). Color (blue- AlexNet, green- VGG-16)
changes from dark to light along the network.

In contrast to single operations, we find that the networks’ computational building blocks perform consistent
transformation on manifold properties (Figure 8c-d). The initial building blocks consist of sequences of convolution,
ReLU operation followed by pooling, which consistently act to decrease correlations and tend to decrease both
manifolds’ radii and dimensions (Figure 8c). On the other hand, the final building-block, a fully-connected operation
followed by ReLU, decreases manifolds’ radii and dimensions, but may increase correlations (Figure 8d), similarly to
the max-pooling operation (Figure 8b). Furthermore, as composite building blocks show more consistent behavior
than individual operations, we understand why DCNNs with randomly initialized weights do not improve manifold
properties. Only by appropriately trained weights, the combination of operations with often opposing effects yields
a net improvement in manifold properties.

Comparison of theory with numerically measured capacity

The results presented so far were obtained using algorithms derived from a mean field theory which is exact in
the limit of large number of neurons and manifolds and additional simplifying statistical assumptions (Supplemen-
tary Note 3.1). To test the agreement between the theory and the capacity of finite-sized networks with realistic
data, we have numerically computed capacity at each layer of the network, using recently developed efficient algo-
rithms for manifold linear classification [41] (see Methods). Comparing the numerically measured values to theory
shows good agreement for both point-cloud manifolds (Figure 9a) and smooth manifolds (Figure 9b, Supplementary
Figure 12). This agreement is a remarkable validation of the applicability of mean field theory to representations
of realistic data sets generated by complex networks.

A fundamental prediction of the theory is that the maximal number of classifiable manifolds Pc is extensive,
namely grows in proportion to the number of neurons in the representation N , hence their ratio αc is unchanged.
We validated this prediction in realistic manifolds, by measuring numerically the capacity upon changing both
the number of neurons used for classification and the number of data manifolds. Capacity for both point-cloud
manifolds (Figure 9c) and smooth manifolds (Figure 9d) exhibits only a modest dependence on the number of
objects on which it is measured, and seems to saturate at a finite value of P ≈ 50. (additional results for 1-d and
2-d smooth manifolds with different variability levels are provided in Supplementary Figure 13).

Note that the mean field prediction of extensivity of classification holds for manifold ensembles whose individual
geometric measures such as manifold dimension and radius do not scale with the representation size but retain a
finite limit when N grows. Indeed, we found that the radii and dimensions of our data manifolds also show little
dependence on the number of neurons for values of N larger than several hundred (Supplementary Figure 14),
consistent with the exhibited extensive capacity. The saturation of αc and manifold geometry with respect to
N implies that they can be estimated on a sub-sampled set of neurons (or subset of random projections of the
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Figure 10: Manifold structure perturbations effect on capacity.
(a) Classification capacity following manifold scaling (x-axis indicate scaling factor, with 1 corresponds to no
scaling) for AlexNet at different layers along the hierarchy (top 10% point-cloud manifolds).
(b) Comparison of classification capacity (x-axis) with the prediction from balls with the same manifold properties
(y-axis) for AlexNet at different layers along the hierarchy (point-clouds of top 10% and full class manifolds). As
capacity of those manifolds spans two orders of magnitude it is normalized by capacity at the pixel layer. The full
cyan line indicate y = x while the dashed cyan line indicate y = 0.55x.
(c) Classification capacity following manifold scaling (x-axis indicate scaling factor, with 1 corresponds to no
scaling) for AlexNet at different layers along the hierarchy and different levels of manifold variability (smooth 1-d
translation manifolds).
(d) Comparison of numerically measured capacity (x-axis) with numerically measured capacity of balls with the
same manifold properties (y-axis) for AlexNet at different layers along the hierarchy and different levels of
manifold variability (smooth 1-d translation manifolds). The dashed cyan line indicate y = x.
Marker shape represents layer type (circle- pixel layer, square- convolution layer, right-triangle- max-pooling layer,
hexagon- fully connected layer, down-triangle- local normalization layer). Color changes from dark to light along
the network.

representation) at each layer (Methods), a fact that we utilized in calculating our results of Figures 3-8 and has
important practical implications for the applicability of these measures to large networks.

Effect of manifold perturbations on capacity

So far, we have shown that deep networks enhance manifold classification capacity, while reducing their dimen-
sions, radii and correlations. But can we show that manifold dimension and radius, rather than other salient shape
features, are indeed causally related to the increase in classification capacity? Here we utilize the full accessibility
of the representations in artificial neural networks to address these questions, by manipulating the geometry of the
manifold representations. First, we show that increasing the size of the manifolds without changing other geometric
features is sufficient to decrease capacity. We multiply all vectors belonging to a manifold relative to the manifold
center by a global scaling factor. Figure 10a,c displays the decrease of capacity with the scaling factor for both
point cloud and smooth manifolds at several representative layers in AlexNet.

To show that the changes in manifold dimensions and radii are sufficient to explain the observed changes in
capacity, we recalculated the capacity by replacing the manifolds at each layer with balls with the same radius and
dimension as the RM and DM , respectively. Figure 10b,d shows a remarkable agreement between the balls and
the original manifolds, proving that RM and DM are the dominant geometric measures underlying the improved
capacity. To quantitatively estimate the relative contributions of reductions in dimensions and radii to the enhanced
capacity, we compared the actual capacity in different layers with that of balls with the same dimension as the
manifold dimension in the respective layer but with radius fixed at its pixel layer value (as in Supplementary Figure
7). Figure 10b shows a substantial improvement in capacity ranging between 90% of the full capacity in early layers
to 55% in last layers. In contrast, the capacity of balls with the same radii as the manifolds but with dimension
fixed to their pixel layer value, exhibits only a small improvement, supporting our conclusion that the dominant
factor in improved manifold separability is the reduction in their dimensions.

Finally, to demonstrate the causal role of center correlations on capacity, we have manipulated the manifold
centers by randomizing them without changing the geometry of the manifolds, and compared the resultant capacity
(Supplementary Figure 10b). As anticipated, center randomization improves capacity, especially in the first layers
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where the actual capacity exhibit high center correlations.

Discussion

The goal of our study was to delineate the contributions of computational, geometric, and correlation-based
measures to the untangling of manifolds in deep networks, using a new theoretical framework. To do this, we
introduce classification capacity as a measure of the amount of decodable categorical information per neuron.
Combining tools from statistical physics and insights from high-dimensional geometry, we develop a mean field
estimate of capacity and relate it to geometric measures of object manifolds as well as their correlation structure.
Using these measures, we analyze how manifolds are reformatted as the signals propagate through the deep networks
to yield an improved invariant object recognition at the last stages.

We find that the classification capacity of the object manifolds increases across the layers of trained DCNNs.
At the pixel layer, the extent of intra-manifold variability is so large that the resultant manifold properties are
almost indistinguishable from random points. Subsequent processing by the trained networks results in a significant
increases in capacity along with an overall reduction in the mean manifold dimensions and radii . In contrast, net-
works with the same architectures but random weights do exhibit only slight improvement in capacity and manifold
geometry, indicating that training rather than mere architecture is responsible for the successful reformatting of
the manifolds.

For both point-cloud and smooth manifolds across multiple DCNNs architectures (AlexNet, VGG-16, and
ResNet-50), we find improved manifold classification capacity (Figures 4,5, Supplementary Figures 1,2,4) associated
with decreased manifold dimension and radius across the layers (Figure 6, Supplementary Figures 5,6). Our findings
suggest that different network hierarchies employ similar strategies to process stimulus variability, with image
warping handled by the initial convolution and last layers, and intermediate layers needed to gradually reduce the
dimension and radius of point-cloud manifolds. We find that lowering the dimensionality of each object manifold is
one of the primary reasons for the improved separation capabilities of the trained networks.

The networks also effectively reduce the inter-manifold correlations, and some of the improved capacity exhib-
ited by the DCNNs results from decreased manifold center correlations across the layers (Figure 7, Supplementary
Figure 9). As with the manifold geometrical measures, the improved decorrelation is specific to networks with
trained weights; for random weights, center correlations remain high across all layers. Other studies of object
representations in DCNNs and in the visual system [7, 3, 10] focused on the comparison between the correlational
structures of representations in different systems (e.g., different networks, or animals vs. humans). Here we find
that the deep networks exhibit an overall decrease of correlations between object manifolds and demonstrate its
computational significance. Decorrelation between neuronal responses to natural stimuli and the associated redun-
dancy reduction has been one of earliest principles proposed to explain principles of neural coding in early stages of
sensory processing [52, 53, 54, 55, 50]. Interestingly, here we find that decorrelation between object representations
is an important computational principle in higher processing stages.

In this work we have not addressed the question of extracting physical variables of stimuli, such as pose or
articulation. In principle, reformatting of object manifolds might also involve alignment of their axes of variation, so
that information about physical variables can be easily readout by projection on subspace orthogonal to directions
which contain object identity information [56]. Alternatively, separate channels may be specialized for such tasks.
Interestingly, in artificial networks, the axes-axes alignment across manifolds is reduced after the first layers (Sup-
plementary Figure 9), consistent with their training to perform only object recognition tasks. This is qualitatively
consistent with the study of information processing in deep networks [57] which proposes a systematic decrease
along the network hierarchy in information about the stimulus accompanied by increased representation of task
related variables. It would be interesting to examine systematically if high level neural representations in the brain
such as IT cortex show similar patterns or channel both type of information in separate dimensions [11, 58].

Our analysis of the effect of common computational building blocks in DCNNs (such as convolution, ReLU
nonlinearity, pooling and fully connected layers) shows that single stages do not explain the overall improvement in
manifold structure. Some individual stages transform manifold geometry differently dependent on their position in
the network (e.g. convolution, Supplementary Figure 11). Other stages exhibit trade-offs between different manifold
features; for instance, the ReLU nonlinearity tends to reduce radius and correlations but increase the dimensionality.
In contrast, composite building blocks, comprising a sequence of spatial integration, local nonlinearities and non-
local pooling yield a consistent reduction in manifold radius and dimension in addition to reduced correlations
across the different manifold types and network architectures.
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We find very similar behavior in manifolds propagated through another class of deep networks, residual net-
works, that are not only much deeper but also incorporate a special set of skip connections between consecutive
modules. Residual networks with different number of layers exhibit consistent behavior under our analysis (Supple-
mentary Figure 2). Focusing on ResNet-50 (Supplementary Figures 1,4,5,6,8,9), we find quite similar behavior to
the networks in Figures 3-7. Furthermore, on this architecture, each skip module exhibits consistent reductions in
manifold dimensions, radii and correlations (Supplementary Figure 11c), similar to the changes in the other network
architectures (Figures 8).

Consistent across all the networks we studied, the increase in capacity is modest for most of the initial layers
and improves considerably in the last stages (typically after the last convolution building block). This trend is even
more pronounced for residual networks (Supplementary Figures 1-4). This does not imply that previous stages are
not important. Instead, it reflects the fact that capacity intimately depends on the incremental improvement of a
number of factors including geometry and correlation structure.

Given the ubiquity of the changes in the manifold representations found here, we predict that similar patterns
will be observed for sensory hierarchies in the brain. One issue of concern is trial-to-trial variability in neuronal
responses. Our analysis assumes deterministic neural responses with sharp manifold boundaries, but it can be
extended to the case of stochastic representations where manifolds are not perfectly separable. Alternatively, one
can interpret the trial averaged neural responses as representing the spatial averaging of the responses of a group of
stochastic neurons, with similar signal properties but weak noise correlations. To properly assess the properties of
perceptual manifolds in the brain, responses of moderately large subsampled populations of neurons to numerous
objects with multiple sources of physical variability is required. Such datasets are becoming technically feasible
with advanced calcium imaging [27]. Recent work has also enabled quantitative comparisons to DCNNs from
electrophysiological recordings from V4 and IT cortex in macaques [59].

One extension of our framework would relate capacity to generalization, the ability to correctly classify test
points drawn from the manifolds but not part of the training set. While not addressed here, we expect that it
will depend on similar geometric manifold measures, namely stages with reduced RM and DM will exhibit better
generalization ability. Those geometric manifold measures can be related to optimal separating hyperplanes which
are known to provide improved generalization performance in support vector machines.

The statistical measures introduced in this work (capacity, geometric manifold properties and center correla-
tions) can also be used to guide the design and training of future deep networks. By extending concepts of efficient
coding and object representations to higher stages of sensory processing, our theory can help elucidate some of
the fundamental principles that underlie hierarchical sensory processing in the brain and in deep artificial neural
networks.

Methods

Summary of manifold classification capacity and anchor points Following the theory introduced in [36],
manifolds are described by D+ 1 coordinates, one which defines the location of the manifold center and the others
the axes of the manifold variability. The set of points that define the manifold within its subspace of variability
is formally designated as S which can represent a collection of finite number of data points or a smooth manifold
(e.g., a sphere or a curve). An ensemble of P manifolds is defined by assuming the center locations and the axes’
orientations are random (focusing first on the case where all manifolds have the same shape). Near capacity the
separating weight vector can be decomposed into at most P representative vectors, one from each manifold, such
that w =

∑P
µ=1 λµy

µx̃µ, where λµ ≥ 0 and x̃µ ∈ conv (Mµ) is a representative vector in the convex hull of Mµ,
the µ-th manifold. These vectors play a key role in the theory, as they comprehensively determine the separating
plane. We denote these representative points from each manifold as the manifold anchor points.

Classification capacity is defined as αc = Pc/N where Pc is the maximum number of manifolds that can be
linearly separated using random binary labels. In mean field theory, capacity is described in terms of a self-consistent
equations involving a single manifold embedded in an ensemble of many others. These equations takes the form of

α−1c = 〈F (~T )〉~T (1)

F (~T ) = min
~V

{∥∥∥~V − ~T
∥∥∥2 | min

~S

{
~V · ~S | ~S ∈ S

}
≥ 0

}
(2)

where 〈. . .〉~T is an average over random D+1 dimensional vector ~T whose components are i.i.d. normally distributed
Ti ∼ N (0, 1). The components of the vector ~V represent the signed fields induced by the separating vector w (near
capacity) on the axes of a single manifold, e.g. Mµ. The inequality constraints on ~V in equation (2) ensures that
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the projections of all the points on w are positive, so that all the points on the manifold are correctly classified. The
projected weight vector on a manifold, ~V is a sum of two contributions, one comes from the manifold’s own anchor
point λµyµx̃µ and another from the random projections of all other anchor points on the subspace of Mµ. In the
limit of large N and P , these projections are normally distributed, and are denoted by a D + 1 Gaussian vector
~T . In order to allow for maximal number of manifolds to be separated w has to be such that there is maximal
agreement between ~V and the contributions from the other manifolds ~T , hence the minimization with respect to∥∥∥~V − ~T

∥∥∥2 = ‖λµyµx̃µ‖2 in equation (2). Finally, due to a fixed square norm of the weight vector, chosen to be

N , the total contributions from all manifolds, which are on average P 〈F (~T )〉~T sums to N , yielding equation (1)
(details can be found in [36]). Note that in the mean field theory, the representation size N does not appear.

Geometric properties of manifolds For a given manifold, its anchor point x̃µ depends on the other manifolds
in the ensemble. In the mean field theory, summarized above, this dependence is captured statistically, by the
dependence of the anchor point projection on the manifold subspaces, denoted by S̃ on the random vector ~T ,
representing the random contributions to the separating plane from other manifolds. Thus, the Gaussian statistics
of ~T induces a statistical measure on the manifold’s anchor points (projected on the manifolds subspcaces) S̃(~T ).
Since the anchor points determine the separating hyperplane, their statistics, and in particular the induced effective
radius and dimension, plays an important role in the classification capacity.

The effective radius and dimension are specified in terms of δS̃ = (S̃ − S0)/ ‖S0‖, the projection of the anchor
point x̃ onto the D+1-dimensional subspace of each manifold, S̃ , relative to the manifold center, S0, capturing the
statistics of the variation of the points in the D dimensional subspace of manifold variability. Here, the variation
of these points is normalized by the manifold center norm; as the centers are random this is equivalent, up to a
constant, to normalizing by the average distance between the manifold centers. Then the manifold radius is the
total variance of the normalized anchor points,

R2
M =

〈∥∥∥δ̃S(~T )
∥∥∥2〉

~T

(3)

The effective dimension quantifies the spread of the anchor points along the different manifold axes and is defined
by the angular spread between ~δT = ~T − T0 (where T0 is ~T projected on the center S0) and the corresponding
anchor point δ̃S(~T ) in the manifold subspace:

DM =

〈(
~δT · δ̂S(~T )

)2〉
~T

(4)

where δ̂S is a unit vector in the direction of δ̃S. In the case where the manifold has an isotropic shape, DM =〈∥∥∥δ ~T∥∥∥2〉 = D (for detailed derivation see Section 4-D of [36]).

Importantly, the theory provides a precise connection between of manifold capacity and the effective manifold
dimensionality and radius, which can be concisely summarized as:

αc ≈ αBall (RM , DM ) (5)
where αBall(R,D) is the expression for the capacity of L2 balls with radius R and dimension D ([60] and Supple-
mentary Equation (4)). This relation holds for DM � 1 and is an excellent approximation for all cases considered
here. For a general manifold we interpret the radius as maximal variation per dimension (in units of the manifold’s
center norm) while the dimension as the number of effective axes of variation, with the manifold’s total extent given
by RM

√
DM .

Capacity of manifolds with low-rank centers correlation structure A theoretical analysis of classification
capacity for manifolds with correlated centers is possible using the same tools as [36] and is provided in Supple-
mentary Note 3.1. Denoting xµ the center of mass of manifold Mµ, assuming the P × P dimensional correlation
matrix between manifold centers Cµν = 〈xµxν〉 satisfies a low-rank off-diagonal structure

C = Λ + CK (6)
where Λ is diagonal and CK is of rank K, i.e. can be written as CK =

∑K
1 ck~uk~u

T
k . In this case {~uk}Kk=1 are common

components, shared across all manifolds, while Λµµ describe the µ-th manifold’s center norm in their null-space.
The theory then predicts that for K � P the capacity depends on the structure of the manifolds projected to the
null-space of the common components (see Supplementary Note 3.1). Thus calculation of capacity in the presence
of center correlations requires knowledge of their common components.
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Recovering low-rank centers correlations structure In order to take into account the correlations between
centers of manifolds that may exist in realistic data, before computing the effective radius and dimension we
first recover the common components of the centers by finding an orthonormal set U ∈ RN×K such that the
centers projected to its null-space have approximately diagonal correlation structure. Then the entire manifolds
are projected into the null-space of the common components. As the residual manifolds have uncorrelated centers,
classification capacity is predicted from the theory for uncorrelated manifolds (equation (1)).

The validity of this prediction is demonstrated numerically for smooth manifolds in Supplementary Figure 12.
Furthermore, the manifolds geometric properties RM , DM from equation (3) and equation (4) are calculated from
the residual manifolds using the procedure from [36]. Those are expected to approximate capacity using equation
(5) when the dimension is substantial; the validity of this approximation for smooth manifolds is demonstrated
numerically in Supplementary Figure 15. The full procedure is described in Supplementary Methods 2.1.

Inhomogeneous ensemble of manifolds The object manifolds considered above may each have a unique
shape and size. For a mixture of heterogeneous manifolds [36], classification capacity for the ensemble of object
manifolds is given by averaging the inverse of the object manifold capacity estimated from each manifold separately:
α−1 =

〈
α−1µ

〉
µ
. Reported capacity value αc are calculated by evaluating the mean field estimate from individual

manifolds and averaging their inverse over the entire set of P manifolds. Similarly, the displayed radius and
dimensions are averages over the manifolds (using a regular averaging). An example of distribution of geometric
metrics over the different manifolds is shown in Supplementary Figures 5,6.

Manifold properties for random manifolds A theoretical analysis of classification capacity and geometric
properties for a manifold composed of M random points provides a useful baseline for comparison when analysing
manifold properties for real-world data. As derived in Supplementary Note 3.2, for this case we expect dimension
to scale linearly with the number of random samples (per manifold) DM = π

2(π−1)M while the radius is expected to
be independent of it RM =

√
π − 1. Finally, capacity in this case is expected to be αc = 2

M , as predicted by other
methods [39, 37].

Measuring capacity numerically from samples Classification capacity can be measured numerically by di-
rectly performing linear classification of the manifolds. Consider a population of N neurons which represents P
objects through their population responses to samples of those objects. Assuming the objects are linearly separable
using the entire population of N neurons, we seek the typical sub-population size n where those P objects are no
longer separable. For a given sub-population size n we first project the N dimensional response to the lower dimen-
sion n using random projections; using sub-sampling rather than random projections provide very similar results
but breaks down for very sparse population responses (Supplementary Figure 16). Second, we estimate the fraction
of linearly separable dichotomies by randomly sampling binary labels for the object manifolds and checking if the
sub-population data is linearly separable using those labels. Testing for linearly separability of manifold can be done
using regular optimization procedures (i.e. using quadratic optimization), or using efficient algorithms developed
specifically for the task of manifold classification [41]. As n increase the fraction of separable dichotomies goes
from 0 to 1 and we numerically measure classification capacity as αc = P/nc where the fraction surpasses 50%; a
binary search for the exact value nc is used to find this transition. The full procedure is described in Supplementary
Methods 2.2.

When numerically measuring the capacity of balls with geometric properties derived from the data (as in Figure
10d) the centers of the balls (and thus their center correlation structure) is taken from the data, as well as the
direction of the manifold axes. The number of axes is set by rounding DM to the nearest integer and manifold radius
is RM in units of the corresponding center norm. Then a specialized method the for measuring linear separability
of balls is used [41].

Generating point-cloud and smooth manifolds The pixel-level representation of each point-cloud manifold
is generated using samples from a single class from ImageNet data-set [42]. We have chosen P = 50 classes (the
names and identifiers of the first set of classes used are provided in Supplementary Methods 2.3). For the generation
of confidence intervals 5 sets of P = 50 classes, sampled with different seeds, were used. The extent of point-clouds
can be varied by utilizing the scores assigned to each image by a network trained to classify this data-set, essentially
indicating how template-like an image is. Thus we consider here two types of manifolds: (1) “full class” manifolds,
where all exemplars from the given class are used, or (2) “top 10%” manifolds, where just the 10% of the exemplars
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with large confidence in class-membership, as measured by the score achieved in the softmax layer, at the node
corresponding to the ground-truth class of the exemplar image in ImageNet (a pretrained AlexNet model from
PyTorch implementation was used for the score throughout).

The pixel-level representation of each smooth manifold is generated from a single ImageNet image. Only images
with an object bounding-box annotation [42] were used; at the base image the object occupied the middle 75% of a
64×64 image. Manifolds samples are then generated by warping the base image using an affine transformation with
either 1 or 2 degrees of freedom. Here we have used 1-d manifolds with horizontal or vertical translation, horizontal
or vertical shear; and 2-d manifolds with horizontal and vertical translation or horizontal and vertical shear. The
amount of variation in the manifold is controlled for by limiting the maximal displacement of the object corners,
thus allowing for generating manifolds with different amount of variability. Manifolds with maximal displacement
of up to 16 pixels where used; the resultant amount of variability is quantified by the value of input variability,
the amount of variation around manifold center at the pixel layer, in units of the center norm (shown in Figure 5,
Supplementary Figures 4,8, measured using Supplementary Equation (3)). Here P = 128 base images were used
to generate 1-d manifolds and P = 64 to generate 2-d manifolds, both without using images of the same ImageNet
class. For the generation of confidence intervals 4 sets of P = 64 base images, sampled with different seeds, were
used. The number of samples for each of those manifolds is chosen such that capacity would approximately saturate,
thus allowing to extrapolate to the case of infinite number of samples (Supplementary Figure 3).

For both point-cloud and smooth manifolds, representations for all the layers along the different deep hierarchies
considered are generated from the pixel-level representation by propagating the images along the hierarchies. Both
PyTorch [61] and MatConvNet [62] implementations of the DCNNs were used. At each layer a fixed population of
N = 4096 neurons was randomly sampled once and used in the analysis, both when numerically calculating capacity
and when measuring capacity and manifold properties using the mean field theory. The first layer of each network
is defined as the pixel layer; the last is the feature layer (i.e. before a fully-connected operation and a soft-max
non-linearity). Throughout the analysis convolutional and fully-connected layers are analyzed after applying local
ReLU non-linearity (unless referring explicitly to the isolated operations as in Figure 8, Supplementary Figure 11).

Image contents Images in Figures 1,2,3,5 are not the actual ImageNet images used in our experiments. The
original images are replaced with images with similar content for display purposes.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on
reasonable request.

Code availability

The code used during the current study is publically available in github (see https://github.com/sompolinsky-
lab/dnn-object-manifolds).
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