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Abstract

In complex real-life motor skills such as unconstrained throwing, performance depends on how
accurate is on average the outcome of noisy, high-dimensional, and redundant actions. What
characteristics of the action distribution relate to performance and how different individuals
select specific action distributions are key questions in motor control. Previous computational
approaches have highlighted that variability along the directions of first order derivatives of the
action-to-outcome mapping affects performance the most, that different mean actions may be
associated to regions of the actions space with different sensitivity to noise, and that action
covariation in addition to noise magnitude matters. However, a method to relate individual
high-dimensional action distribution and performance is still missing. Here we introduce a de-
composition of performance into a small set of indicators that compactly and directly characterize
the key performance-related features of the distribution of high-dimensional redundant actions.
Central to the method is the observation that, if performance is quantified as a mean score, the
Hessian (second order derivatives) of the action-to-score mapping and its geometric relationship
with the action covariance determines the noise sensitivity of the action distribution. Thus, we
approximate mean score as the sum of the score of the mean action and a tolerance-variability
index which depends on both Hessian and covariance matrices. Such index can be expressed
as the product of three terms capturing overall noise magnitude, overall noise sensitivity, and
alignment of the most variable and most noise sensitive directions. We apply this method to the
analysis of unconstrained throwing actions by non-expert participants and show that our de-
composition allows to compactly characterize inter-individual differences in throwing strategies
with different but also with similar performance.
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Author summary

Why do people differ in their performance of complex motor skills? In many real-life motor
tasks achieving a goal requires selecting an appropriate high-dimensional action out of infinitely
many goal-equivalent actions. Because of sensorimotor noise, we are unable to execute the
exact same action twice and our performance depends on how accurate we are on average.
Thus, to understand why people perform differently we need to characterize how their action
distribution relates to their mean task score. While better performance is often associated
to smaller variability around a more accurate mean action, performance also depends on the
relationship between the directions of highest variability in action space and the directions in
which action variability affects the most the outcome of the action. However, characterizing
such geometric relationship when actions are high dimensional is challenging. In this work
we introduce a method that allows to characterize the key performance-related features of the
distribution of high-dimensional actions by a small set of indicators. We can then compare such
indicators in different people performing a complex task (such as unconstrained throwing) and
directly characterize the most skilled ones but also identify different strategies that distinguish
people with similar performance.

1 Introduction

In many goal-directed human behaviors, such as throwing a projectile towards the center of a
target, performance depends on how accurate the outcome of repeated actions is. In throwing
tasks, accuracy of a single throw may be quantified by a score, e.g. a scalar function that
penalizes/rewards motor outcomes depending on their distance from the desired target position
[14, 16, 11]. In this perspective, the goal of a thrower would be that of minimizing/maximizing
the mean score over repeated trials [7, 19, 6]. Because of bias and noise in the sensorimotor
transformations mapping goals into actions [10, 22], the score typically varies across trials and
hence the performance of a throwing strategy, defined as its mean score, will in general depend
on the distribution of motor actions [14, 21].

In many experimental as well as naturalistic scenarios, the relationship between motor actions
and their outcomes is redundant [1] and to different actions there might correspond the same
task outcome, hence the same score. As an example, consider the throwing task shown in Fig
1A where the outcome space is the two-dimensional space of all the possible landing positions
of the ball on a vertical board. The landing position of the ball ultimately only depends on the
position and velocity with which the ball is released (actions). The center of the target then, can
be hit with different combinations (or covariations) of such action variables: for instance one
can hit the target by releasing the ball from different positions modulating the velocity vector
accordingly, or from a fixed position but with different combinations of vertical and horizontal
velocities. These different but task-equivalent actions (they all result into the same landing
position) form a subset of the action space which is called solution manifold. Key questions in
human motor control are then whether different individuals select specific action distributions
to achieve a given performance level, what characteristics of the action distribution relate to
performance, and how action distributions change when performance improves with practice
[14, 26].
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In well-developed motor skills, outcomes are typically unbiased (zero mean error) and hence
outcome variability (or precision) is usually taken as a measure of performance. Indeed, when
learning a new motor skill involving redundant actions with different amounts of noise or noise
tolerance in different regions of the action space, participants improve performance by selecting
actions whose outcome is less affected by motor noise [27, 29]. In this perspective, the relation-
ship between action distribution and outcome variability in goal-directed behaviors has been
addressed by computational approaches that take into account the geometry mapping between
actions and outcomes near the solution manifold. First-order methods such as the Uncontrolled
Manifold (UCM) [23, 15] and the Goal-Equivalent Manifold (GEM)[4, 5] typically approximate
the (non-linear) solution manifold with a (locally) linear map, which relates (stochastic) per-
turbations of the mean action to the precision (variance or covariance) of task outcomes. More
specifically, the gradient (or Jacobian) of such mapping is employed to quantify action variability
along task-irrelevant directions (directions parallel to the solution manifold) and task-relevant
directions (directions orthogonal to the solution manifold). The UCM applied to reaching, point-
ing and throwing tasks has shown that covariation between redundant actions is an important
mechanism used by skilled performers to push “bad” motor variability along the solution man-
ifold, hence increasing the precision of their task outcomes. Differently from UCM, which only
quantifies motor strategies in terms of the “alignment” between action variability and task-
relevant/task-irrelevant directions, the GEM approach takes also into account the sensitivity of
the solution manifold to local perturbations. Then, different choices of mean actions may result
in different amounts of outcome variability because of the specific alignment and sensitivity to
the different mean actions, i.e. factors depending on the local geometry of the goal function,
rather than different amounts of action variability only.

The impact of the interplay between motor variability and task geometry on performance
in goal-directed behavior has been also investigated with an approach that needs no assump-
tion on the smoothness of the action-to-score mapping, and relies on the use of surrogate data
computations, rather than analytic descriptions, to explore its geometry [21, 26]. The Tolerance-
Noise-Covariation (TNC) method allows to quantify the difference in performance between two
series of trials as the sum of three contributions. The tolerance component is associated with
potential differences in the sensitivity of the local action-to-score mapping geometry associated
with different choices of the mean action. The noise component quantifies the impact of different
amount of action variability in the two series. Finally, the covariation component accounts for
the impact of different alignment of the action variability with the local geometry. A key aspect
of the TNC approach that makes it particularly suitable for the analysis of inter-individual dif-
ferences in goal-directed behaviors is its focus on the relationship between action distribution
and performance as mean score. While the UCM and GEM approaches focus on variability in
action space and outcome space, the TNC decomposition shows how the mean score depends
on the choice of the mean action in addition to variability. Furthermore, by identifying different
contributions to the mean score, the TNC approach allows to characterize individual perfor-
mances with a higher level of details: for instance, a participant could perform the task with
a higher variability than a peer, but achieve the same level of performance thanks to a better
alignment. However, because the computation of covariation cost depends on a numerical pro-
cedure that becomes cumbersome for high dimensional action spaces [26], the TNC has been
applied only to simple tasks, such as a planar virtual version of the skittles game in which one
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can control the angle and velocity of ball release [21].
In the present work, our goal was to characterize inter-individual differences in the relation-

ship between action-variability and performance in a complex, real-life motor skill. We asked
twenty non-expert participants to perform unconstrained overarm throws at four different tar-
gets placed on a vertical plane at 6 m distance, as depicted in Fig 1A. When we analyzed the
time-course of the whole-body kinematics during the throwing motion [18, 17], we found that
throwing styles, i.e. the average trajectory of each limb segment, differed considerably across
individuals. Similarly, we found important differences in individual performances, as shown in
Fig 1E. Here, we focused on inter-individual differences in terms of release parameters distri-
bution and throwing performance, as differences in throwing styles may translate into different
release strategies, which may or may not correspond to differences in the mean score. Fig 1C-E
illustrates an example of two throwers, P1 and P11, achieving similar performances but charac-
terized by different distributions of ball release position and velocity: the two throwers released
the ball with different average position and velocity; furthermore, P1 had a larger variability
in the ball release position with respect to P11, while the opposite held for the release velocity
distributions.

Because of the need to describe unconstrained throwing action with, at least, six ball release
parameters, we could not use the TNC method, since it requires a number of numerical opera-
tions that scale exponentially with the number of dimensions of the action space, to identify the
different contributions of the action distribution to performance. We thus introduced a novel
analytic method, based on second order derivatives of the action-to-score function, to identify
how different characteristics of the action distribution contribute to performance. Our approach
is based on the following assumptions: i) the action distribution is sufficienttly localized in a
region of the action space; ii) the score function, although non-linear, can be adequately ap-
proximated with a second-order Taylor-expansion, hence we make use of the Hessian matrix,
rather than the Jacobian, to estimate the local tolerance of the score as well as to estimate the
alignment of action covariance with the curvature of the action-to-score map. Similarly to the
TNC approach, our method allows to decompose the mean score of complex actions as the sum
of the score of the mean action and a term that considers both action variability and action-to-
score geometry. One advantage of our analytic approach with respect to TNC is that it can be
applied to tasks involving high-dimensional actions. In addition, differently from TNC, the con-
tributions to individual performances of motor variability, local geometry, and their alignment,
can be estimated independently.

2 Methods

2.1 Performance as expected value of non-linear and high-dimensional action

scores

Let us assume that, at every trial t, an individual generates an action at ∈ Rn with some random
noise such that the action distribution can be described by a probability density function (p.d.f.)
pA. Let us also assume that, at every trial, the action receives a score point πt = sa(at) through
an action score function sa : a ∈ Rn → R. The score function can be seen as a cost, a reward,
or a mixture of cost and reward functions, which punish and rewards motor actions according
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to some ‘optimality criteria’ such as task errors or metabolic cost of an action. For instance,
in Fig 1, the score function assigns a penalty score to an action, that is the squared distance
between the action outcome x(a) and the target position xT .

Since actions are stochastic, the action score π will also be stochastic. Here we are interested
in its expected value E[π] as a measure of individual (throwing) performance and how it is affected
by the skill-level and hence by the action distribution of an individual strategy.

More specifically, with reference to Fig 1A, we can say that an individual release strategy is
optimal or close to optimal when its expected action score is zero, or close to zero (E[π] ≈ 0), as
for thrower P18 and P4 in Fig 1E. To understand why the individual release strategies of these
two participants gets on average, less penalties, we have to evaluate the following integral:

E[π] =

∫

Rn

sa(a1, a2, . . . , an)pA(a1, a2, . . . an)da1da2 . . . dan. (1)

which is the expected action score of an individual action distribution or strategy pA. Evaluating
the above integral however, is not a simple task, especially when actions are high-dimensional
(n >> 1) and the score function sa is non-linear. However, in what follows, we show that (1) can
be approximated analytically for smooth score functions and knowing only the first and second
moment of the action distribution, i.e. the mean action and the action covariance.

The structure of an individual action strategy: principal components and noise η

Since in high dimensions it may be difficult and computationally expensive to infer the exact
p.d.f. pA of an individual action strategy, in the following we will assume that an individual
selects motor actions according to a p.d.f. with expected or mean action E[a] = ā ∈ Rn, and
covariance matrix Σa ∈ Pn (symmetric and positive deifinite). In other words, at every trial t,
an individual generates an action at according to the following stochastic model:

at = ā+ δa (2)

where δa ∈ Rn is the stochastic component of the individual strategy, which, at every trial,
‘perturbs’ the mean action ā. In summary, the mean action represents an individual preference
in choosing, on average, a given action: for example releasing a ball, on average, from a certain
position and with a given speed. Conversely, the covariance matrix Σa = E[δa

Tδa] represents
action covariation/correlation (action variability) across multiple trials.

The action covariance matrix Σa, symmetric and positive-definite, can be decomposed into
singular values and singular vectors:

Σa = UΣΛΣUΣT

=
[
uΣ
1 ,u

Σ
2 , ...,u

Σ
n

]
diag(λΣ

1 , λ
Σ
2 , . . . , λ

Σ
n )
[
uΣ
1 ,u

Σ
2 , ...,u

Σ
n

]T
. (3)

with λΣ
1 > λΣ

2 > · · · > λΣ
n . The larger a singular value λΣ

j , the more variable will be the action

strategy along its associated principal variability direction uΣ
j .

In the presence of motor redundancy, motor actions can be highly correlated across multiple
trials. In such cases, the covariance matrix becomes almost singular and only k < n singular
values are significantly different from zero. Then, the principal variability directions uΣ

i , i =
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1 . . . k span a k-dimensional subspace of the action space and the covariance can be approximated
with an n× n matrix of rank k:

Σa
k = UΣ

k Λ
Σ
kU

ΣT

k (4)

where UΣ
k is an n×k matrix and ΛΣ

k a k×k diagonal matrix having the k-largest singular values
on the diagonal. The columns of the matrix UΣ

k Λ
Σ
k , define the first k principal components of

the action variability.
In addition to the the principal components, and the principal variability directions, we will

characterize an individual action strategy in terms of its uncorrelated noise (or total variation),
which is defined as:

η = trace(Σa) =
n∑

j=1

σjj =
n∑

l=1

λΣ
l (5)

Quadratic approximation of the expected value of non-linear action scores

After choosing a model for the individual action strategy, in order to solve (1), we must find a
suitable model for the high-dimensional action score, i.e. a trade-off between the complexity of
the model and the accuracy with which we want to approximate the expected action score (1).

Compared to previous approaches, such as GEM and UCM, which have commonly assumed a
linear or ‘locally linear’ relationship between performance score and actions, and hence between
score variability and stochastic action perturbations, in this work we assume, that locally, i.e. in
a neighborhood of the average action ā, the score sa(at) of an action at, can be approximated
with the following second-order Taylor expansions:

sa(ā+ δa) ≈ sa(ā) + [∇as
s(ā)]T δa +

1

2
δa

TH(ā)δa (6)

where ∇as
a(ā) =

[
∂sa

∂a1
, ∂sa

∂a2
, . . . , ∂sa

∂an
,
]

is the gradient of the action score function evalu-

ated at the average action ā and:

Hij(ā) =
∂2sa

∂ai∂aj
(ā). (7)

is the n × n symmetric Hessian matrix of the action score evaluated at ā. Locally, i.e. around
the mean action, the gradient represents the direction in action space where the score increases
the most. It is constant and independent from the action only when the score is a linear function
of the perturbation. When the score is non-linear and ∇as

a(ā) = 0, then the average action
corresponds to local minima/maxima of the score function. The Hessian H(ā) instead, measures
the local curvature, hence deviations from linearity, of the score function in a neighborhood of
ā. Notice that the Hessian matrix penalizes stochastic perturbations quadratically, meaning
that ‘the larger’ the Hessian, or the local curvature of the score, the more action variability δa
affects the score. In other words the Hessian defines the local sensitivity or intolerance of the
score function to stochastic perturbations δa of the average action ā.

Inserting this quadratic approximation in the integral (1), we can write the expected action
score as the sum of three terms:

E[π] ≈ E[sa(ā)] + [∇as
s(ā)]T E[δa] + E[

1

2
δa

TH(ā)δa] (8)
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the first term E[sa(ā)] is simply the score of the average action sa(ā) given that the expected
value of a constant is the constant itself. The second term, [∇as

s(ā)]T E[δa], vanishes whenever
the quadratic approximation is evalutaed at the mean action ā, given that in such condition
E[δa] = 0. The last term corresponds to the expected value of a quadratic form, which is well
known to be equal to trace(12H(ā)Σa) [9]. This term is zero: i) when the score is a linear
function of the action, in which case the Hessian is zero, ii) when actions are not stochastic
Σ0 = 0, or when H and Σa are ‘orthogonal’. In all other cases this term will influence the
expected action score.

In summary, assuming a locally quadratic score function, the expected action score (1) can
be (locally) approximated as:

E[π] ≈ sa(ā) + trace(
1

2
HaΣa) = α(ā) + β(ā,Σa) (9)

where α(ā), is the score of the average action, and β(ā,Σa), the tolerance-variability index, is
an index which captures how local non-linearities of the action score (H(ā)) and variability in
the action strategy (Σa) affect (increase/decrease) performance, i.e. the average score E[π].

2.2 The β index and the interplay between score tolerance and action vari-

ability

Rewriting (9) as β(ā,Σa) ≈ E[π]−α(ā) shows that β represents (approximately) the error which
one would commit in estimating the expected action score E[π] with a locally-linear assumption
about the score function for which E[π] ≈ α(ā), i.e. the error in assuming that expected action
score is simply the score of the mean action and hence that non-linearities and action variability
play no role on the mean action score, hence on performance.

This section will focus on the β index and in particular on the interplay between score
sensitivity/tolerance to stochastic perturbations and action variability. To ease the notation,
we will write Ha simply as H, however it must be kept in mind that the Hessian matrix will in
general be a function of the mean action, and hence it may change across participants that have
different action strategies. Similarly, individual action variability will be indicated simply as Σ.

The local geometry of a score function and the tolerance τ

When locally, i.e. around the mean action ā, the score is a continuous and at least twice differ-
entiable function of the action variables, the Hessian is an n × n symmetric matrix (Schwarz’s
theorem) which can be written as:

H = UHΛHUHT

=
[
uh
1 ,u

h
2 , ...,u

h
n

]
diag(λH

1 , λH
2 , . . . , λH

n )
[
uh
1 ,u

h
2 , ...,u

h
n

]T
. (10)

The diagonal matrix ΛH = diag(λH
1 , λH

2 , . . . , λH
n ) contains the n singular values λh

1 , λ
h
2 , ..., λ

h
n

(with λh
1 ≥ λh

2 ≥, ..., λh
n) of the Hessian matrix. The orthonormal matrix UH contains the

associated singular vectors
[
uh
1 ,u

h
2 , ...,u

h
n

]
. Singular values and singular vectors tell us many

aspects about the local geometry/local curvature of the score function. For instance, when the
Hessian matrix is positive-definite, i.e the singular values λH

i are positive, than the mean action
is in, or ‘close to’, a (local/global) minimum of the score function (the score is locally convex).
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Conversely, negative eigenvalues are representative of concave regions of the score function, while
eigenvalues with mixed signs suggest that the average action is in/close-to a saddle point of the
score. In this work we will focus on score functions which are locally convex and for which
the Hessian matrix is semi positive-definite, i.e. all eigenvalues are greater or equal than zero,
although what follows can be generalized to more complex score functions having a landscape
with many minima, maxima and saddle points.

The eigenvalues λH
i express the sensitivity of the score to stochastic perturbations, the larger

λH
i , the more sensitive the score function is to perturbations δa which are directed along the

i-th singular vector uH
i . As a local, scalar measure, of ‘total curvature’ of the score, we define

the sensitivity of the score as the trace(H) =
∑n

i=1 hii, i.e. as the sum of the diagonal elements
of the Hessian matrix. The score tolerance then, is defined as the inverse of the score sensitivity:

τ =
1

trace(H)
. (11)

Score-relevant subspace and principal curvatures

In many motor tasks, as in our throwing scenario, actions are redundant, i.e. there are many
different actions that result in the same action outcome and hence in the same score.

For redundant tasks, the map f , between actions and outcomes, i.e. x = f(a), maps the
n-dimensional action space onto the m-dimensional task space (or outcome space), with m < n.
In such case, the solution manifold will be an n − m-dimensional surface embedded into the
n-dimensional action space, and the Hessian matrix, along the solution manifold will only have
m non-zero eigenvalues (see sec. 4.3), Therefore, the m principal curvature directions ui with
i = 1, 2, . . .m of the action score function span a lower-dimensional subspace (score/relevant
subspace) of the action space, and the Hessian matrix can be approximated with an n × n
matrix of m:

Hm = UH
mΛH

mUHT

m with 1 ≤ m < n (12)

where UH
m is an n×m matrix and ΛH

m is an m×m diagonal matrix having the m-largest singular
values on the diagonal.

2.3 Decomposition of the tolerance-variability index β and the alignment θ

With the above definitions of tolerance and noise, by normalizing both the Hessian and the
covariance matrix by their respective traces, we can rewrite β = trace(12HΣ), the tolerance-
variability index, as:

β = trace

(
1

2

H

trace(H)

Σ

trace(Σ)

)

trace(H)trace(Σ) = trace

(
1

2
H̄Σ̄

)
η

τ
=

θ

τ
η (13)

where the alignment θ:

θ = trace(
1

2
H̄Σ̄) (14)

is a scalar that measures the relative orientation between (normalized) principal curvatures
and (normalized) principal components. In other words, the more the directions of maximal
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variability uΣ
i are aligned with the directions of maximal sensitivity uH

i of the score, the larger
the effect of variability on the β and hence on the expected action score.

β in the presence of redundant actions and the score-relevant variability

For symmetric and positive-definite Hessian matrices, β can also be written as:

β = trace

(
1

2
H

1

2ΣH
1

2

)

(15)

with H
1

2 = UHΛH
1

2 UHT

. Let m be the number of score-relevant dimensions near the solution
manifold, than β can also be approximated as:

β ≈ trace

(
1

2

(

UH
mΛH

1

2

m UHT

m

)

Σ

(

UH
mΛH

1

2

m UHT

m

))

(16)

The internal product UHT

m ΣUH
m represents the score-relevant variability ΣH :

ΣH = UHT

m ΣUH
m = E

[(
UH
m δa

)T (
UH
m δa

)]

(17)

i.e., the fraction of action variability that is tangent to the score-relevant dimensions. Near
the solution manifold then, the β index is the trace of the score-relevant variability further
amplified/attenuated by the local sensitivity of the score function:

β ≈ trace




1

2
UH
m ΛH

1

2

m ΣHΛH
1

2

m
︸ ︷︷ ︸

B

UHT

m



 =
1

2
trace(B) (18)

given that the columns of UH
m are unitary vectors.

2.4 Application to throwing tasks

Task score vs action score

Throwing skills, as many other motor skills, are usually assessed by means of score functions
which essentially define the objective of the throwing task. For instance, for a javelin thrower,
the score may be a function of the longitudinal distance travelled by the javelin. The further the
javelin lands, the larger the score assigned to the throwing action. Conversely, for a dart thrower,
the goal is not to throw the dart as far as possible, but as accurate as possible, and hence, as
in Fig 1A, the score function could assign a penalty increasing with the distance between the
landing position of the projectile and the center of the target.

It should be noted that in our experimental protocol [18] participants did not receive any
explicit performance feedback (or score) at end of each throwing trial (but they could see the
arrival position of the ball on the target board) and therefore, in this work, in line with compu-
tational and experimental evidences [14, 24], we assume that participants optimize an accuracy
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score which penalizes the squared error between the outcome x of a release action and the target
position xT [24]:

π = sx(x,xT ) = (x− xT )
T (x− xT ) ≡ e2. (19)

Written in this form, the accuracy score, represents a task score sx : R2 → R+ which penalizes
the bi-dimensional action outcomes x with a scalar score π. To find the relationship between
release actions and quadratic (task) error, i.e. the action score function sa : a ∈ R6 → R+, we
need to express the task score (19) as a function of the release parameters.

Assuming a point-mass projectile and hence neglecting friction and Magnus’s forces, the
projectile trajectory f(a, t) can be predicted from the release parameters a =

[
p0,v0

]
as:

f(p0,v0, t) =







x(t) = x0 + vx0t

y(t) = y0 + vy0t

z(t) = z0 + vz0t−
1
2gt

2

(20)

with p0 = [x0, y0, z0]
T and v0 = [vx0, vy0, vz0].

For a target board oriented as in Fig 1A, i.e. with the normal pointing in the longitudinal
direction y, the time of impact Ti of the ball with board can be estimated as Ti =

yb−y0
vy0

, i.e. as

the ratio between the longitudinal distance of the projectile with the board at release (yb is the
coordinate of the board with respect to the world frame) and the velocity of the ball along such
direction (that is constant according to the model in (20)). Hence, at the time of impact, the
projectile will hit the board at:

xi = f(a, Ti) =







x0 + vx0
yb−y0
vy0

yb

z0 + vz0
yb−y0
vy0

− 1
2g
(
yb−y0
vy0

)2
(21)

Substituting the above system of equations into (19), let us writing the action score as:

e2 = sx(xi,xT ) = sx(f(a, Ti),xT ) = sa(a,xT ) (22)

i.e, as a scalar function a ∈ R6 → R+ of the throwing action a:

e2 = sa(a,xT ) =

(

x0 + vx0
yb − y0
vy0

− xT

)2

+

(

z0 + vz0
yb − y0
vy0

−
1

2
g

(
yb − y0
vy0

)2

− zT

)2

(23)

Given an individual release strategy with mean action ā0 and covariance Σa and aiming at
hitting a desired target xT , the mean squared error (E[e2] = E[π]) can be approximated with
(9):

E[π] = E[e2] ≈ α(ā) + β(ā,Σa) = α(ā) +
θ(ā,Σa)

τ(ā)
η(Σa) (24)

where α(ā) is just (23) evaluated at ā, i.e. the quadratic error of the outcome of the mean
action, and β can be decomposed into the three components η, τ , and θ by using the covariance
matrix of the action strategy Σa and the 6× 6 Hessian of (23) evaluated at ā.

In this work, the 6 × 6 Hessian matrix of (23) is calculated with the MATLAB Symbolic
Toolbox for each target condition and for each individual strategy.
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A simulated 2D example

Equation (24) tells us that the mean squared error of a release strategy, hence the performance
of a thrower, depends on three factors: the mean action ā, the action variability Σa and the
local curvature of the score H(ā), which increase/decrease the β score by amplifying/attenuating
stochastic action perturbations δa. Clearly, an optimal or close-to optimal release strategy, is the
one that on average gets zero or close-to zero penalty score, therefore, skilled throwers should
have α and β parameters close to zero. To give a visual representation of our approach Fig
2A shows a toy model of a dart throwing task. In this task, the action score (23) is assumed
to be dependent only on the longitudinal and vertical release velocity, while (19) penalizes,
quadratically, only the vertical errors with respect to target position. The score of an action
as well as the score of its task outcome, is represented with a gray-scale color code: light/dark
colors, represents actions which receives low/high penalty points, respectively. The yellow line
represents the solution manifold, i.e. the set of optimal actions which results into 0 penalty score.
The local tolerance of the score, onto and close-to the the solution manifold, is represented with
the red ellipses, whose major and minor axes are, the first and second principal curvatures of
the score, respectively. Hence, the longer the axis the more sensitive/less tolerant the score
is to perturbations directed along the axis direction. Notice that the ellipses are anisotropic,
with λH

1 >> λH
2 , suggesting that, near the solution manifold, there is only one direction in

action space which is relevant for the score, and its expected value. This direction however, is
not constant, but changes along the solution manifold, as shown by the different orientations
of the ellipses. Also notice that, the smaller the ratio vz0

vy0
, the smaller the curvature (smaller

ellipses), hence the larger the noise tolerance. In other words, the score is more tolerant when
the average longitudinal velocity of a release strategy is larger than the average vertical velocity.
Fig 2B shows three simulated individual strategies, each drawing actions according to a bi-
dimensional Gaussian distribution with mean action āi and covariance Σi, with i = g, b, p
(g = green, b = blue, p = purple). Each colored circle represents an action drawn from each of
the distribution and Fig 2B center and right show the ball trajectories of each action and the
score distribution of each strategy, respectively. Fig 2C shows the decomposition of the mean
score of each strategy according to the performance-analysis presented in previous section. Since
āg does not belong to the solution manifold, āg is not optimal and hence its score is not zero,
i.e. α 6= 0. This also results into ’biased’ throwing outcomes, whose average landing position
does not coincide with the desired target position as shown by the green distribution in Fig 2B
center. Notice, however, that while the g strategy has the worse α, it has the best (lowest) β
compared to b and m. The β score depends on the interplay between action variability and
local curvature and hence on the three parameters η, τ and θ shown in Fig 2C. Also notice
that, in this example, the three strategies have been chosen to have the same level of noise
ηb = trace(Σb) = ηg = trace(Σg) = ηp = trace(Σp), hence differences in β are only due to the
local tolerance τ and the alignment θ between principal curvatures and principal components.
The blue and purple strategies, have a similar alignment θ, given that, for both strategies,
the principal component (direction of greatest variability) is almost parallel to the direction of
maximal curvature. However, compared to the purple strategy, the blue strategy can afford
a much lower β because its mean action is located in a more tolerant region of the score, i.e.
τb >> τp. While the comparison between the blue and purple strategy emphasizes how the mean
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action can impact tolerance and hence the average score, the comparison between the green and
the blue strategy emphasizes the effect of the alignment: the green strategy has a smaller β,
despite τg < τb, because the direction of maximal action variability uΣ

1 is less aligned, compared
to the blue strategy, with the local direction of maximal curvature uH

1 .

2.5 Experimental protocol and data analysis

Individual release strategies were obtained from the experimental dataset acquired in our pre-
vious study [18], where twenty right-handed participants (10 females, 10 males; age: 28.2± 6.8
years) performed a series of overarm throws, starting from a fixed initial position. All partici-
pants signed an informed consent form in accordance with the Declaration of Helsinki. The data
collection was carried out in accordance with Italian laws and European Union regulations on
experiments involving human participants. The protocol was approved by the Ethical Review
Board of the Santa Lucia Foundation (Prot. CE/PROG.542). Participants were instructed to
hit one of four circular targets arranged on a vertical target board placed at 6 m from the initial
position (marked with a sign on the floor) and to start from a fixed posture (standing with the
arm along the body). The four targets were custom made and consisted in white circles of 40
cm diameter, arranged on a rectangular layout on the target board. The distances between the
centers were 70 cm vertically and 80 cm horizontally, similarly to Fig 1. Moreover, the targets
midpoints in the horizontal direction were shifted with respect to the projected initial position
of the participant: the left and right targets were centered respectively at 60 cm to the left and
20 cm to the right of the projected initial position of the throwers midline. An opto-electronic
system (OptiTrack, NaturalPoint, Inc., Corvallis, OR, United States) operating at 120 Hz was
used to capture whole-body kinematic information of the participants throwing actions and the
corresponding ball trajectories.

For each trial and participant, the release action a, was obtained by fitting each of the
three spatial component of the ball path with a 3rd-order polynomial function, and therefore
the release position p0 and velocity v0 were obtained from the zero and first order coefficients,
respectively. Then, this release action was used off-line in (21) and (19) to generate ‘ideal’ ball
paths and scores, respectively, which were not influenced by friction and/or spinning effect of
the ball. Trials in which the ball path did not intersect the target plane, or for which the ball
was partially tracked by the optical system were excluded from the analysis (6% of the total
number of throws). The error distribution, across trials, participants and target conditions,
between experimental and ideal performance (mean squared error) is shown in Fig 3 (mean ±
SD: 0.0012± 0.0912m2). The dataset is available in S2 Dataset.

In summary, for each participant and for each target xT , we estimated the mean-quadratic-
error E[π], the mean action ā, and the action covariance Σa, with their respective sample mean

and covariance: E[π] =
∑

i s
x(xi(ai),xT )

N
, ā =

∑
i ai

N
,and Σa =

∑
i(ai−ā)T (ai−ā)T

N−1 , where N is the
total number of successful actions, or trials, executed for target xT .

3 Results

As the Hessian-based performance analysis that we propose in this work is based on the as-
sumption that the individual action distribution is sufficiently localized around the mean action
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such that higher order terms of the Taylor expansion do not contribute to the action score
approximation in (23), we first assessed the validity of such assumption. In other words, we
tested whether the score-relevant variability was not too large compared to the local tolerance
and whether (24) can be considered as an acceptable model of the mean action score. Fig 4
shows the relationship (24) between the (sample) mean squared error and the sum α + β across
participants and targets. We notice that the sum α+β can explain quite accurately the individ-
ual performance across participants and conditions, except for P9, where the sum α + β tends
to overestimate the average score for T1,T2 and T3. It should be noted that this participant
had the largest number of unsuccessful actions (balls not hitting the score board) that where
removed from the estimation of its mean action and covariance. Hence the limited number of
samples may have ‘inflated’ its covariance matrix and hence invalidating the assumption of small
stochastic perturbations and non-linearities. Our analysis shows that P9 was in fact one of the
most variable (large η) and least tolerant (small τ) participants. To quantify the goodness of
our second-order approximation of the sample mean score by the sum α+ β, we computed the
fraction of variance accounted for (VAF) defined as:

VAF =

[

1−
var(E[π]i − αi − βi)

var(E[π]i)

]

100% (25)

which is the variance of the error between the individual performance (sample mean score) and
the second order approximation normalized by the variance of the population performance. We
found that the sum α+β could explain 99% of the variance for targets T2, T3, and T4 and 97%
for target T1, due to the larger error observed in P9.

3.1 Hessian-based decomposition of the mean score of individual strategies

Fig 5 shows the distributions of α, β, η, τ and θ across participants and relative to target
1. To visualize the inter-individual differences in terms of these five parameters, we split the
parameters into three subspaces: the α-β plane Fig 5A, the η-β plane Fig 5B and the τ -θ plane
Fig 5C.

The α−β plane and the trade-off between optimal mean action and optimal tolerance-

variability

The α−β plane (Fig 5A) shows the performance of each individual thrower and its decomposition
in terms of α and β. In this plane, (24) defines a family iso-performance (same mean score) lines.
The origin of the plane α = 0, β = 0, defines the optimal strategy, i.e. the one which achieves
on average zero penalties. The closer a participant is to this point, the better its performance,
as for P18 and P4. Participants with α ≈ 0 such as P18, P2, P1 have their mean action on
(or very close to) the solution manifold, i.e. the set of actions which results into zero penalties.
For these participants, deviations from the optimal performance E[π] = 0 are only due to the
tolerance-variability index β and hence to the geometric relationship between action variability
and score tolerance. In other words, compared to P18, P1 has a higher tolerance-variability
index (β) and hence on average collects more penalties. Conversely, while P5 and P15 have the
same β, hence the same contribution of tolerance-variability, P15 perform worse than P5 due to
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a higher α. In other words, the mean action of P15 is inaccurate (or not optimal), i.e. it does
not belong to the solution manifold, and hence it increases, by α, its mean score E[π].

Lastly notice that participants such as P1, P15 and P11 are examples of iso-performing
(same mean score) throwers that trade off smaller β for higher α and vice versa. Fig 6 shows the
action outcomes and their score distributions for four representative participants: P1, P11, P15
are iso-performing participants, P1 and P11 have α ≈ 0, their mean release action is optimal
and does not influences the mean score. Conversely, P15, has a smaller β, hence the tolerance-
variability score has less influence on the mean score, however this is compensated by a larger α,
hence a less optimal mean action and a large systematic error error between target position and
average outcome. P18, who is the best thrower, with both small α and small β, hence outcomes
which are unbiased with respect to the center of the target and precise, is shown for comparison.

Noise, tolerance and alignment in non-expert throwers

Fig 5B shows the distribution across participants of the total variation, or uncorrelated noise
η, and its relation with the tolerance-variability index β. According to equation (13), each
participant lies on a straight line, passing through the origin (η = 0, β = 0) and with slope equal
to the alignment-to-tolerance ratio θ

τ
. Notice that there are many differences across participants.

The best throwers such as P8, P4, P13 have relatively little action variability η, relatively little
alignment-to-tolerance ratio and hence relatively little β score. Conversely, less skilled throwers
such as P20, P3, and P19 populate regions with an intermediate level of noise but relatively
high β. These participants have a relatively high alignment-to-tolerance ratio meaning that,
they are releasing actions from a very sensitive region (low tolerance) of the score and/or that
principal component and principal curvatures are aligned as shown in the τ − θ plane Fig 5C.
Intermediate and iso-performing throwers can be found all over the β − η plane. Notice that
despite P11 is about three times more variable than P1, they have similar β. This is because
P11 releases actions from a very tolerant region and because it directs stochastic perturbations
along directions which do not affect the score (small θ). Lastly notice that participants that have
the same or similar slopes, such as P2, P12 and P1 or P18 and P14, have the same alignment-
to-tolerance ratio and therefore the differences in their β score is only due to stochastic action
variability η.

3.2 The local geometry of the action-score and the structure of individual

action strategies

When actions are high-dimensional, as in our scenario, it is difficult to visualize both the score
and the individual strategies in a single plot. Fig 7 shows the action score and individual release
strategies just in terms of the release velocities and for five exemplary participants. Notice
that participants have been sorted from top to bottom according to their local tolerance (see
Fig 5C), hence P10 is the least tolerant and P11 the most tolerant. The gray-scale colors are
the penalty associated to each release velocity according to (23). The domain of each velocity
variable corresponds to the population mean ± 3 standard deviations, while all the remaining
release parameters are considered constant and fixed to the subject-specific average action. The
plots have 10 different gray-scale levels: the white area defines actions which have a score smaller
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or equal to 0.04 m2, i.e. actions that land inside the target that has radius 0.2 m. Black-color
actions instead, receive a score that is higher or equal than 1 and hence are actions which land
at 1m from the center of the target. Notice that the score has different shapes (or geometry)
across the three velocity planes and across participants. The wider the white areas around the
mean release velocity (blue square), the more tolerant is the score to stochastic perturbations.
For instance, in the vx0 − vz0 plane, the score, locally looks like an ellipsoid, whose anisotropy
suggests that the vz0 direction is less tolerant/more sensitive to action variability. Also notice
that the ‘size’ of the ellipsoid is subject-specific (as it depends on the individual mean release
action) and hence, the large variability of P11, in the vx0 − vz0 is partially compensated by a
more tolerant (local) score.

Fig 7 also shows the individual release strategies in terms of mean release velocity (blue
square) and velocity variability (two-standard deviation covariance ellipses). Notice that dif-
ferent participants have different release strategies, both in terms of the mean release velocity
and in terms of the action variability. For instance, P1, on average, releases the ball with a
faster vertical (vz0) and slower longitudinal (vy0) velocity, compared to other participants, such
as P11, who instead, on average, throws with a fast longitudinal velocity and an approximately
zero vertical velocity. Also notice different patterns of covariance/correlation across individual
strategies, for instance, P10, who is the least variable participant (Fig 5B) shows no correlation
between vy0 and vz0, while P11, who is the most variable participant (Fig 5B), shows a negative
correlation: reducing the vertical release velocity proportionally to an increase in the longitudi-
nal release velocity. This allows P11 to be less aligned with the principal curvature directions
and hence to reduce the alignment-to-tolerance ratio. Notice that for P15, who has a non-zero
α, the mean release velocity is located closer to the edge of the white region and hence it is
distant from the solution manifold.

3.2.1 Score-relevant dimensions and score-relevant variability affecting the β index

The analysis of the structure of individual variability and its relation with the local geometry of
the score by ‘visual inspection’ of subspaces of the action space is not feasible when the score is
defined over a high-dimensional space of action variables. For high-dimensional and non-linear
problems it may not be easy to understand what are the subspaces (of the action space) that
are more relevant for the score and hence for performance. In our scenarios for instance, is the
score more sensitive to variability in the release velocities or in the release positions, or in a
combination of both?

In this section we show that, similar to the UCM and GEM method (that use Jacobian
matrices to split motor variability along task-relevant and task-irrelevant directions), we can use
the Hessian matrix to quantify score-relevant variability affecting the mean score.

Fig 8 shows the distributions, across participants and for each target, of the principal sen-
sitivities (singular values) of the Hessian matrix. Because in our scenario the outcome space
is bi-dimensional, the solution manifold is a four-dimensional surface embedded in the six-
dimensional action space (see sec. 4.3). Hence, the Hessian matrix will only have two non-zero
singular values, whose associated singular vectors defines a score-relevant plane. Away from
the solution manifold however, the Hessian matrix is also influenced by the non-linearities in-
troduced by the mapping f between actions and outcomes, hence, for participants that do not
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have optimal mean actions, the Hessian matrix can have additional singular values which are
different from zero. Fig 8 shows, however, that the contribution of the third and fourth singular
value is negligible compared to the first two.

Focusing on the first two singular values, we notice that the sensitivity is slightly anisotropic,
with the first principal curvature, on average, about 10% higher than the second. Furthermore,
the first sensitivity shows the largest variability across participants and target conditions.

The two principal curvature directions uH
1 , uH

2 define locally, i.e. around the mean action,
a sensitivity plane embedded in the six-dimensional action space of the release parameters. Fig
9 shows the distributions of the principal curvature direction components across participants
and for each target. We notice that, across targets, the first principal curvature direction uH1 is
dominated by the vertical components (both position and velocity) of the release parameters,
while, the lateral and longitudinal components contribute ’equally’ for Target 1 and Target 2,
while for Target 3 and Target 4, the longitudinal components are ‘more score relevant’ than the
lateral ones. This asymmetry is due to the fact that Target 1 and Target 2 had a larger lateral
displacement with respect to starting position of our throwers (see Experimental Protocol and
Fig 1A), and hence, the lateral release velocity becomes relevant to successfully hit these two
targets.

The second principal curvature direction is instead dominated by the lateral components (x0,
vx0) of the release parameters. Taken together, these results highlight that the squared error of
throwing outcomes is slightly more sensitive to throwing variability directed along the sagittal
plane than the frontal plane. This is not surprising given that the vertical trajectory of the ball,
is influenced, non-linearly, by the gravity field.

In terms of action variability, for all participants and for all target conditions three principal
components were able to explain 95% of the total variance, as shown in Fig 10. Notice that,
across participants and target conditions, the eigenvalue of the first principal component shows
large variability across participants. It should be noted that the number of principal compo-
nents is coordinate dependent and in our scenario the action vectors contains both position and
velocity variables which have different units. To assess the robustness of the estimation of the
dimensionality of the action variability, we performed a principal component analysis on the
correlation matrix rather than on the covariance matrix. The analysis of the eigenvalues of the
correlation matrix confirmed that across participants and target conditions there were no more
than three eigenvalues grater than one [13].

The bar plots in Fig 11A shows the individual principal curvatures and principal variability
directions for five representative participants. Notice that, as also shown in Fig 9, there is
little difference in terms of principal curvature directions (blue bars) across participants while
individual differences can be appreciated in terms of action variability, in particular the directions
along which variability is the highest across participants (black bars). Due to high dimensionality
of the problem, however, it is difficult to understand from these bar plots how each principal
component contributes to the score-relevant variability and hence to the β index. However,
because in our scenario the Hessian is locally dominated by two principal curvature directions,
we can plot on a plane both the score relevant dimensions and the score relevant variability, and
hence visualize the contribution of each principal component of a strategy.

Fig 11B shows the principal curvature plane in a neighborhood of the mean release action
(blue square) of each participant and the score-relevant perturbations of the mean release action
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(yellow squares). To represent the curvature plane and action score in Fig 11B, we plot the
first and second principal curvature directions uH

i along the horizontal and the vertical axes,
respectively. These two 6-dimensional axes are ‘centered’ on the mean action of each participant.
Each point p =

[
p1u

H
1 , p2u

H
2

]
on the plane represents a ‘tangential’ (to the curvature plane)

perturbation of the average action ā, and hence its score can be calculated with (23) using
a0 = ā0 + p. In this way it is possible to visualize the best (local) planar representation of the
score (gray-level). The greay-level code for the action score is the same as in previous figures,
and therefore actions inside the white disk land inside the 20 cm target radius and hence the
optimal action resulting in zero penalty scores lies at the center of the white disk. Notice that
the disk is smaller for less tolerant participants such as P10 and P1 compared to more tolerant
participants such as P18 and P11. Also notice that the principal curvature frame (blue lines)
for P15 has a large shift compared to the center of white, highlighting once again that mean
action of this participant is not optimal and therefore does not belong to the solution manifold
(the center of the white disk in this representation).

Fig 11C shows how the individual principal components of variability contributes to the
score-relevant variability and how the local sensitivity amplifies its detrimental effect for perfor-
mance. The black thin lines are the principal variability directions (eigenvectors of the action
covariance matrix) projected on the principal curvature plane, i.e. UH

2 UΣ
3 and therefore are

a visual representation of the ‘alignment’ between principal curvature and principal variability

direction. By rescaling each eigenvector by their respective eigenvalues, i.e. UH
2 UΣ

3 Λ
Σ

1

2

3 , the
black thick lines show the contribution of each principal component of variability to the score
relevant variability. Notice that, on the principal curvature plane, P10, which is one the most
aligned participant, has the largest projection of the principal variability directions, especially
the first, when compared to least aligned participants such as P18 and P11.

The score-relevant variability (17) and the B matrix in (18) are represented as a 2D ellipses
with unitary standard deviation parameter [30] . The gray ellipses show the effect of the toler-
ance, and hence how the local sensitivity amplifies the score-relevant variability (yellow ellipse)
of each participant. Notice that P10, P1 and P11 have a similar score-relevant variability (area
of the yellow ellipses), however, P10 has a larger (and darker) ellipse due to a larger sensitivity
of the score.

4 Discussion

We have developed a novel method to investigate how the distribution of actions in goal directed
behaviors relates to individual performance. The method allows to characterize how performance
depends on a few critical features of the action distribution, for tasks in which actions are
redundant (the same goal may be achieved by multiple actions), high-dimensional (each action
is described by a vector with many components) and noisy (actions vary due to stochastic
sensory and motor processes). Assuming that the distance of the outcome of an action from
the goal can be assessed by a score and that the score is a smooth function of the action,
we derived an approximate but analytical relationship between the mean score and the first
two moments of the actions distribution: the mean action ā and action covariance Σa across
multiple trials. We showed that performance, defined as the mean score, can be approximated
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as the sum of two components: the score of the mean action (α(ā)) and a tolerance-variability
index (β(ā,Σa)). The α parameter, when different from zero, measures deviations of the mean
action from the set of actions that accurately achieve the goal (solution manifold). The β index,
instead, measures how the mean score is affected by the actions variability (stochastic noise)
and by the geometry of the action-to-score function (determining the sensitivity to noise as a
result of the non-linearities around the mean action and their alignment with the directions
of largest variability). Such index results from the product of three terms: the total action
variability (η), computed as the sum of the variances of the individual components of the action
vector (i.e. the trace of the action covariance matrix); the tolerance of the action-to-score
function (τ), quantifying the overall sensitivity of the score to deviations from the mean action
due to the curvature of the action-to-score function (quantified in terms of the trace of the
Hessian); the alignment (θ), a scalar measure of the relative orientation between the directions
of curvature of the action-to-score mapping (indicated by the eigenvectors associated to the
non-zero eigenvalues of the Hessian matrix computed at the mean action) and the directions
of maximum variability of the actions (indicated by the eigenvectors associated to the largest
eigenvalues of the action covariance matrix). Thus, these five parameters provide a compact yet
informative characterization of the features of the action distributions that affect performance
in relation to a specific task, and allow to capture detailed facets of individual strategies in goal
directed behaviors.

We have applied this method to characterize individual performance and variability in un-
constrained overarm throwing actions of twenty non-trained participants. Across participants
there were remarkable inter-individual differences in the α, β, η, τ and θ parameters (Fig 5). In
line with previous works focusing on low-dimensional throwing tasks [21, 4], in our unconstrained
high-dimensional throwing task we found that skilled participants, such as P18 and P4, have
small α (accurate mean action) and small β (tolerance-variability index). Still, it is possible to
differentiate two different optimizing strategies, as the low β in P4 is achieved by minimizing
action variability, while in P18 by compensating the higher variability in action execution (η)
with higher tolerance τ and smaller alignment (i.e., smaller θ). Different combinations of bias,
noise, tolerance, and alignment, resulting in similar performances, are even more prominent in
less skilled participants. For example, participants P1, P11 and P15 have similar performance
but different proportions of α and β. Participant P15 trades off a high α with a low β while the
opposite occurs for participants P1 and P11. Moreover, participants P1 and P11 have similar
bias and similar tolerance-variability index values but different levels of noise, tolerance, and
alignment (Fig 5 and 6). Participant P11 has three times more noise (η) than participant P1
but an alignment-tolerance ratio (θ/τ) three times smaller because of both larger tolerance and
smaller alignment. Such interplay between variability and geometric features of the action-to-
score mapping can be observed in several pairs of action variables (e.g. in the vy-vz plane, Fig
7) or, in a unique and informative way, in the projection of the action vectors on the subspace
spanned by the first two eigenvectors of the Hessian matrix (Fig 11). Thus, our decomposition
provides a compact yet detailed characterization and visualization of the features of individual
action distributions affecting performance.

In redundant, high-dimensional, and noisy tasks it is not enough to characterize the mean
and the covariance of the action distribution to fully capture the relationship between action
variability and performance. In agreement with earlier computational approaches addressing
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variability in multivariate actions [23, 15, 21, 12], our method highlights the key role of the
geometry of the mapping between actions and outcomes or scores to assess how action variability
affects performance. Differently from first-order methods such as UCM, GEM, or the more
recent approach in [31], which characterize the local geometry with a linear approximation
(expressed through the Jacobian matrix or the gradient vector), our method relies on a second-
order approximation (based on the Hessian matrix). The main reason for which our method does
not depend on the first-order term of the Taylor expansion of the action-to-score function and
requires a second-order approximation is the fact that we are considering the mean score rather
than the variability in action or outcome space as a measure of performance. As indicated in Eq.
(8) and Eq. (9), the mean score does not depend on the gradient of the action-to-score function
computed at the mean action, the reason being that the first-order term of the expansion is
multiplied by the mean deviation from the mean action, which is null by definition. In other
terms, changes in score (with respect to the mean) associated to actions that deviate from
the mean action sum up to zero in the linear approximation of the action-to-score function.
Indeed, for a linear action-to-score mapping the mean score is given simply by the score of the
mean action, as all higher order derivatives in the expansion are null. Thus, in a quadratic
approximation, it is only the local curvature of the action-to-score function, captured by the
Hessian matrix, that affects the mean score.

How action distribution affects the mean score in a goal-directed behavior has been addressed
by the TNC method [21, 27, 26]. The method has been developed for, and applied to, a two-
dimensional throwing task inspired by the skittle game, in which participants have to hit a
target by releasing through a rotating joint (i.e., the action parameters are the release angle
and tangential velocity) a virtual ball that could rotate in a plane around a pole. Sternad and
collaborators have shown that the changes in action variability across two practice sessions (each
a series of trials) can be quantified by computing the difference in performance, defined as the
mean of the minimum distance of the ball from the target, as the sum of three components
[21]. The covariation component represents the difference in mean score due to the different
amount of covariation between the actions of each series. It is computed, independently for each
session, by comparing the actual mean score with the one corresponding to a surrogate data
distribution generated by randomly permuting each components of the action vectors across
different trials (thus having same mean but zero covariance). It is important to notice that this
term depends not only by the action covariances, but also by the local sensitivity of the action-
to-score map in correspondence of the mean actions. The task tolerance component corresponds
to the difference in mean score associated with the zero covariance surrogate distributions, due
to the different location of the mean action of the two series. Finally, the noise component
measures the remaining difference in mean score due to the different variability (noise) of the
individual components of the two series, once the differences in mean action and covariation
have been accounted for.

The TNC methods takes into account the geometry of the action-to-score mapping implicitly,
by evaluating the effects on performance of different action distributions through surrogate data.
In contrast, our method explicitly decomposes the contribution of different features of the action
distribution through a Taylor expansion. Such analytical approach overcomes the disadvantage
of the TNC method concerning the use of numerical procedures for generating surrogate data,
which limits its applicability to high-dimensional actions. Moreover, our method allows to
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decompose the contribution to performance of individual action distributions rather than the
differences between pairs of distributions, and to determine the contribution of the local geometry
and of the action variability independently on each other. As detailed in the Appendix (see sec.
4.1), under the assumption of a smooth action-to-score function, for which the Hessian matrix is
well defined, the tolerance, noise, and covariation terms of the TNC decomposition correspond
to specific combinations of the terms in our decomposition. Importantly, all the three terms
of the TNC decomposition depend on both the Hessian and the action covariance. Thus, the
three TNC terms, not only refer to differences between action distributions rather than to
specific features of each distribution as the terms of our decomposition, but they also do not
identify and isolate clearly the different features of the action distribution and of the action-
to-score mapping geometry that determine performance. Furthermore, as shown in Appendix
(see sec. 4.1), the TNC terms are asymmetric with respect to the moments of the two action
distributions, which reflect the fact that the result of the decomposition depends on the sequence
of application of the three steps [21]. As an advantage, however, the TNC method does not rely
on any assumption on the action-to-score mapping, such as smoothness and adequateness of a
second-order approximation.

Our decomposition method requires a smooth action-to-score function and it provides an
accurate estimate of the mean score only if the non-linearities in such function are adequately
approximated by the second-order term of the Taylor expansion over the domain spanned by
the actions. The assumption of smoothness (or at least continuity of the function and all
partial derivatives up to the second order) is valid for a broad class of score functions, such
as most penalty or reward functions usually employed to quantify task performance. For tasks
involving as action outcome a spatial position with respect to a goal, such as the arrival position
of a projectile on a target board with respect to the center of the target, and requiring to
minimize the distance from the goal, the squared distance is a good choice because it leads to an
action-to-score function which is twice differentiable everywhere the action-to-outcome function
is smooth. The squared distance is preferable over the Euclidean distance because the latter
has a singularity in the second derivative at zero, i.e. on the solution manifold. However, if the
subject is attempting to minimize (maximize) the score, as the distance and the squared distance
have the same minimum (maximum), both functions capture the control strategy equally well.

Another key assumption in our approach is that the second-order Taylor expansion of the
action-to-score function around the mean action provides an acceptable approximation. As
shown in Fig 4, for almost all participants and targets, the estimation of the mean score based
on such approximation (α + β) is close to the actual mean score (E[π]). The only exception
is participant P9 who had a poor performance and a very large variability in the ball release
parameters. Indeed, the validity of the quadratic approximation depends on the nature of the
non-linearities of the action-to-score function and the range of the deviations from the mean, i.e.
from the relative spatial scales characterizing the concentration of the action distribution and
the Hessian. Thus, if behavior is very erratic, our decomposition may become inaccurate for the
entire set of actions and may be restricted to a more concentrated subset. However, considering
that participants in our sample were untrained throwers, it is noticeable that the quadratic
approximation was good for all but one of twenty participants. This suggests that our methods
could be safely applied to more controlled tasks, e.g. in evaluating athletes performances (as
athletes do not typically exhibit high variability in motor actions) or in assessing motor skill
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learning, where training tends to quickly reduce motor variability.
Our decomposition method relies on the computation of the action covariance Σa and the

Hessian Ha of the action-to-score function. These matrices and some of the parameters of the
decomposition depend on the choice of the coordinate system in action space. In particular,
the noise η and the tolerance τ , being defined as traces of the covariance and Hessian matrices,
respectively, change under coordinate transformations (unless a metric is chosen [2]). However,
the α term is a scalar (i.e. is a single number corresponding to the score associated to the mean
action) and it does not depend on coordinates. The β term is the trace of the product of the
covariance and the Hessian matrices and it is invariant under affine coordinate transformations,
given that Σa and Ha transform in opposite ways (see Appendix 4.2). Thus, re-scaling of posi-
tional and velocity coordinates due to different choices of measurement units do not affect the
decomposition of mean score as a sum of α and β. However, β is not invariant, in general,
for non-linear coordinate transformations, such as the transformation from Cartesian to polar
coordinates. Indeed, the dependence on action coordinates has raised concerns about the re-
liability of the TNC decomposition [25]. While such dependence may provide an opportunity
to evaluate the role of different coordinate systems for control [20], it has also been noticed
that geometric properties of the action-to-score function such as the solution manifold do not
depend on coordinates [28]. In our decomposition, if the mean of the action distribution is on
the solution manifold (α = 0), β is invariant also under non-linear transformations, because
the non-linear term in the transformation of Ha depends on the gradient of the action-to-score
function, which is null on the solution manifold. Moreover, if the action distribution is not
centered on the solution manifold but it is concentrated (i.e. η is small) the change in β due to
non-linear coordinate transformations may be negligible.

In this work we have focused on characterizing steady-state performance and individual
action distribution during short experimental sessions rather than on skill improvement over
multiple sessions. Future work will include longitudinal studies to understand if and how the
observed inter-individual differences are related to the time course and the magnitude of indi-
vidual performance improvements and skill learning. Current theories of human sensorimotor
control suggest the existence of two distinct mechanisms underlying motor skill learning: a
model-based system that improves motor performance guided by an internal forward model of
the body and the environment, which is updated based on prediction errors [24]; and a model-
free system in which learning is driven by reinforcement and punishment of successful/erroneous
actions [8, 3]. Motor adaptation studies, in which a systematic perturbation of the environment
is introduced by means of force fields of visuomotor rotations, suggest that the model-based
system is responsible for the quick adaptation/compensation of the mean error. The model-free
system, driven by reinforcement and punishment, regulates instead motor variability, and is
hence responsible for the slow reduction of the variable errors. However, the interplay between
this two learning mechanisms, remains poorly understood.

We have highlighted the existence of iso-performing participants, such as P1, P11 and P15,
which have the same mean score, but different contributions of α and β. Do inter-individual
differences in terms of α and β translate into individual differences in terms of performance
improvement? In future works we plan to use the proposed framework to study the acquisition
of throwing skills in virtual reality environments in which we can alter both the dynamics of the
ball f , for instance by manipulating the (virtual) gravity field, as well as the task score geometry,
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in this work assumed quadratic and isotropic in both task directions. As adapting to an altered
dynamics requires learning a new forward model while a new task geometry changes the reward
function, the dissociation between these two contributions might allow us to dissociate between
model-based and model-free learning and to understand how initial inter-individual differences
in terms of performance, variability and score tolerance translate into individual performance
improvement.

Appendix

4.1 Relation to Muller & Sternad 2004

In this section we show that, when the score function is smooth, and actions are linearly cor-
related across muiltiple trials, it is possible to derive (Hessian-based) analytic expressions to
isolate the three components of the TNC approach [21], shown in Fig12. Given two experimen-
tal strategies, such as SA and SB in the figure, the method requires the generation of surrogate
data-sets, S0

A, S
0
B and Ssh

A , to decompose the difference in expected score ∆π̄ = π̄(SB)− π̄(SA),
into the sum of four independent components: ∆C1, or covariation is the difference in expected
score between the strategy SA and the (surrogate) strategy S0

A, that is obtained by removing
(via random permutations) any linear/non-linear correlation between the variables of the data-
set SA. Similarly, for SB, a surrogate uncorrelated data-set S0

B is used to quantify the ’delta’ in
performance ∆C2 due to covariations in SB. Notice that S

0
A and S0

B have the same mean (ā and
b̄, respectively) as their original data-sets and only differ with respect to their original data-sets
in terms of variability. A third surrogate data-set Ssh

A is generated by shifting the location of
S0
A (i.e. ā) to the average location b̄ of the SB data-set. The tolerance component is hence

quantified as ∆T = π̄(Ssh
A )− π̄(S0

A), has the two data-sets have same variability and differ only
in terms of their average location. Lastly, the noise component is extracted as the difference in
average performance between the surrogate data-set S0

B and Ssh
A , i.e. ∆N = π̄(S0

B)− π̄(Ssh
A ).

When motor strategies are drawn from a symmetric distribution, and motor actions are
linearly correlated, SA = {ā; ΣA} and SB = {b̄; ΣB}, our method allows the estimation of
all four components without using surrogate data-sets and random permutation. In this case,
the covariance matrices ΣA0

and ΣB0
of the uncorrelated strategies S0

A and S0
B, can be simply

computed as diag(ΣA) and diag(ΣB), i.e. as the matrix of the diagonal elements (variances) of
ΣA and ΣB, respectively. Knowing the Hessian matrix Hā and Hb̄ at the two locations ā and
b̄, respectively, allows to approximate ∆C1,∆T , ∆N and ∆C2, simply as:

∆C1 = π̄(S0
A)− π̄(SA) ≈ [π(ā) + trace(HāΣA0

)]− [π(ā) + trace(HāΣA)] =

trace[Hā(ΣA0
− ΣA)]

∆T = π̄(Ssh
A )− π̄(S0

A) ≈
[
π(b̄) + trace(Hb̄ΣA0

)
]
− [π(ā) + trace((HāΣA0

)] =

π(b̄)− π(ā) + trace[(Hb̄ −Hā)ΣA0
]

∆N = π̄(S0
B)− π̄(Ssh

A ) ≈
[
π(b̄) + trace(Hb̄ΣB0

)
]
−
[
π(b̄) + trace(Hb̄ΣA0

)
]
=

trace[Hb̄(ΣB0
− ΣA0

)]
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∆C2 = π̄(Ssh
B )− π̄(SB) ≈

[
π(b̄) + trace(Hb̄ΣB0

)
]
−
[
π(b̄) + trace(Hb̄ΣB)

]
=

trace[Hb̄(ΣB − ΣB0
)]

Hence, it follows that the difference in expected performance between the two strategies can
also be approximated as:

∆π̄ = π̄(SB)− π̄(SA) = ∆C1 +∆T +∆N +∆C2 ≈

π̄(b̄)− π̄(ā) + trace(Hb̄ΣB)− trace(HāΣA) = ∆α+∆β
(26)

4.2 Coordinate invariance

Approaches based on covariance matrices for the analysis of variability, such as the UCM, have
often been criticized for their dependence on the choice of coordinates. Similar critiques have
also been highlighted for the TNC approach that does not use (directly) covariance matrices:
”for instance, one can always rotate the frame of reference to get variables that have zero co-
variance” [25]. Furthermore, it is well known that Principal Component Analysis is sensitive
to co-ordinates, especially when the multivariate data contains variables with different units.
For instance, in this work the action vector contains position that are measured in meters and
velocities that are measured in ms−1. Should we rescale the action space to have comparable
variances between positions and velocities? Would scaling affect our results? Here we show that
this is not the case and that both ours and the TNC approach [21] are invariant under affine
coordinate transformations. In fact, scaling, rotations and translations, i.e. any affine trans-
formation of the action space, does not only affect covariance matrices (and hence correlations
among variables) but also affects the performance manifold, in particular the structure of its
Hessian.

Let’s assume that we have two sets of coordinates {a} and {b} with which we can parameterize
the n-dimensional action space A ⊂ R

n and that the map g describe the relationship between
the two coordinate system:

b = g(a) (27)

when the map is non-linear, its first-order approximation, around a point ā can be expressed as:

δb = J(ā)(δa) (28)

where J = ∂g
∂a

is the n× n Jacobian matrix evaluated at ā.
The score π is a scalar and therefore does not dependent on the choice of coordinates used

to express the score function. In both coordinate systems we can write:

π = sb(b) = sb(g(a)) = sa(a) (29)

By differentiating the last equality with respect to the {a} co-ordinates, we find a well-known
expression between the gradients in the two different co-ordinate systems:
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∂sa

∂a
= JT ∂s

b

∂b
(30)

Differentiating again the above expression we can express the Hessian of the score in the two
coordinate systems:

∂2sa

∂a2
= JT ∂

2sb

∂b2
J +

(
∂sb

∂b

)T
∂J

∂a
(31)

Hence:

Ha = JTHbJ +
∂J

∂a

T

∇bs
b (32)

When the average action belongs to the solution manifold (∇bs
b = 0), or when the change of

co-ordinate is affine (∂J
∂a

T
= 0), the second term on the right hand-side is zero. In this case, the

Hessian is a tensor and β does not depend on the co-ordinates used to parameterise the action
space. In fact, let Σb, be the covariance of the action expressed in the {b} coordinates, then,
if the distribution is localized (small variability), the covariance in the {a} co-ordinates can be
estimated as:

Σa = J−1ΣbJ−1T (33)

and hence:

β = trace(
1

2
HaΣa) = trace(

1

2
JTHbJJ−1TΣbJ) = trace(

1

2
HbΣb) (34)

where we have used the cyclic properties of the trace (trace(ABC) = trace(CAB)) to simplify
the last equality.

Conversely, for highly non-linear change of coordinates, or for average actions that are ‘far’
from the solution manifold, the second term on the right-hand side of (32) may not be negligible.
In such case, the Hessian looses its tensorial property, and β becomes a co-ordinate dependent
measure:

β = trace(
1

2
HaΣa) = trace(

1

2
HbΣb) + trace

(
1

2

(

∇bs
b
)T ∂J

∂a
Σb

)

(35)

4.3 Non-zero Hessian’s eigenvalues in the presence of redundant actions

In human motor control, the map between action and task variables represents a ‘change of
co-ordinates’ x = f(a), which often is non-linear and redundant. This latter properties of the
map, makes the Jacobian J = ∂f

∂a
a rectangular matrix with n columns (dimension of the action

space) and m rows (dimension of the task space). In this case, equation (32) becomes:

Ha = JTHxJ +
∂J

∂a

T

∇xs
x (36)

where Hx and ∇xs
x are the m × m Hessian and the m × 1 gradient of the task-score

function, respectively, and Ha is the n × n Hessian of the action-score function. Again, either
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on the solution manifold, or for a linear map between actions and outcomes, the second term on
the right-hand side disappears, and Ha will only have m < n non-zero eigenvalues. Conversely,
away from the solution manifold and for highly non-linear change of co-ordinates, the term
(
∇bs

b
)T ∂J

∂a
will in general affect the number of non-zero eigenvalues, as well as the symmetry

and positive-definiteness of the Hessian matrix.
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Figure 1. Throwing task and performance. (A) Schematic representation of our
unconstrained overarm throwing scenario. (B) Example of two individual release strategies
across multiple trials. Markers and arrows represent the mean release position and velocity
respectively. While ellipses are a schematic representation of variability, across multiple trials,
in the release position and velocity. (C) Ball paths and action outcomes of each individual
strategy. (D) Action outcomes and π score (squared error from the target center). (E)
Individual performance or mean squared error. Notice the blue and green bar: despite the two
participants have different release strategies, they have a very similar performance.
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Figure 2. Simulated example of three different throwing strategies in a 2D throwing task. (A)
Toy model of a throwing task involving a quadratic task-score. The action score and the
solution manifold (yellow line) are shown in the left panel. The score sensitivity (the Hessian)
is represented with red ellipses whose major axis represents, locally, the direction of maximum
sensitivity (smaller noise tolerance). (B) Three (simulated) individual strategies (b=blue,
g=green, p=purple), their task outcomes and accuracy performance (mean squared error) . (C)
Hessian-based decomposition of the mean score of the three strategies according to (24). The
blue and purple strategies have zero α (score of mean action) as the mean of the distribution
of release parameters is on the solution manifold but they have different β; the green strategy
has a non-zero α corresponding to a non-optimal mean action. Notice that the release
strategies have been chosen to have the same level of noise η so as to highlight the effect of α,
τ (tolerance) and θ (alignment) on the individual expected score. See the text for more details.
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respectively.

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/645317doi: bioRxiv preprint 

https://doi.org/10.1101/645317
http://creativecommons.org/licenses/by/4.0/


0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6 T1

1

2

3

4
5

6
7

8

10

11
12

13

14
15

16

17

18

19
20

9

0

0.1

0.2

0.3

0.4

0.5

0.6
T2

1

2

3

4

5

6
7

8

10

11
12

13

14

15

16

17

18

19

20

9

T3

1

2

3

4
5

6
7

8

10

11

12

13

14

15

16

17

18

19
20

9

0 0.1 0.2 0.3 0.4 0.5 0.6

T4

1

2

3

4

5

6

7

8

10

11
12

13

14

15

16

17

18

19
20

9

E
[

] 
[m

2
]

!
E

[
] 
[m

2
]

!

α + β [m2] α + β [m2]

Figure 4. Validity of the quadratic approximation. (Sample) mean score vs local quadratic
approximation (24) across targets (T1-T4, different panles) and participants (1-20) as in 1.
Notice that the outlier P9 was not included in the linear regression (dashed line).
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Figure 5. Decomposition of the mean score across participants for target 1. (A) The α− β
plane and the iso-performance lines. Notice that to increase the readability of the figure, P9 is
not shown as it has the largest α and β. (B) The β − η plane. Markers are gray-shaded
according to the expected score (lighter gray for lower mean score). The lines are drawn for
each participant and have slope σH

τ
. In other words, participants such as P1, P2, and P12

have the similar alignment-to-tolerance ratio and the difference in their β are only due to the
uncorrelated noise η. (C) The θ − τ (tolerance-alignment) plane.
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Figure 6. Examples of distributions of throwing outcomes and scores. Top panel : throwing
outcomes (red circles) relative to Target 1 for different representative participants. The blue
circle marks the mean outcome and hence the systematic error of each throwing strategy. The
score (π) is represented with a gray-scale map and with 10 different gray-scale levels
representative of (19). Balls landing within the white disk are balls which hit the target, hence
that receive a score that is always smaller than 0.04 (the radius squared). Bottom panel : score
(squared-error) distribution, its expected value E[π] and the α parameter for each participant.
The gap E[π]− α represents the β parameter. Notice that to larger α there corresponds a
larger systematic error (P15) and that to smaller β corresponds more precise task outcomes
(P4 and P15).
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Figure 7. Examples of distribution of release velocities for five representative participants
(target 1). Red squares represent release velocities of different throws. Blue squares and red
ellipses represent means and covariance ellipses (two-standard deviations) of each strategy.
The gray level map shows the local score, as a function of the release velocity, underlying each
strategy. The wider the white area around the mean action, the more tolerant the score is to
stochastic perturbations. Participants have been sorted from top to bottom according to their
local tolerance (see Fig5C)
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Figure 8. Distributions of the Hessian eigenvalues across participants for each target.In our
scenario, the outcome space is bi-dimensional or, the solution manifold is a four-dimensional
surface embedded in the six-dimensional action space (see sec. 4.3). Hence, the local tolerance
of each participant is dominated by the first two eigenvalues of the Hessian matrix.
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Figure 9. Distributions of the first (uH1 ) and second (uH2 ) principal curvature directions
across participants for each target. The first principal curvature direction is dominated by the
vertical release position and velocities while, the lateral and longitudinal components
contributes ’equally’ for Target 1 and Target 2, while for Target 3 and Target 4, the
longitudinal components were ’more score relevant’ than the lateral ones.. The second
principal curvature direction is instead dominated by the lateral release position and velocity.
Taken together, these results highlights that the squared error of throwing outcomes is slightly
more sensitive to throwing variability directed along the sagittal plane than the frontal plane.
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Figure 10. Distributions of the eigenvalues of the covariance matrix across participants for
each target. The first three principal components can explain 95% of the total variance.
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Figure 11. Low-dimensional representation of the beta index. A: principal curvature
directions (blue bars) and principal variability directions (black bars). B: principal curvature
plane, local action score and score-relevant perturbations (yellow square). C: principal
variability directions and principal components (thin and thick black lines respectively)
projected on the principal curvature plane. The three principal components contribute to the
score-relevant variability which is represented with the one-standard deviation yellow
covariance ellipse. The gray ellipses are a visual representation of the β index and of the effect
of the local sensitivity in amplifying the score-relevant variability (B matrix). Because β has
the units of the score, the gray colormap gives an additional visual representation of the
tolerance-variability index and facilitate the comparison across participants.
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Figure 12. The TNC method proposed in [21]. Given two datasets, A and B, for instance the
release strategies of two different partecipants, the method requires the generation of surrogate
data-sets S0 (covariation-free) and Ssh (covariation-free but shifted mean). The difference in
mean score between experimental and surrogate datasets are then used to calculate the relative
tolerance ∆T , noise ∆N and covariation ∆C1, ∆C2 between the two strategies.
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