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19 ABSTRACT

20 The 2014 – 2015 highly pathogenic avian influenza (HPAI) H5NX outbreak represents the 

21 largest and most expensive HPAI outbreak in the United States to date. Despite extensive 

22 traditional and molecular epidemiological studies, factors associated with the spread of HPAI 

23 among midwestern poultry premises remain unclear. To better understand the dynamics of this 

24 outbreak, 182 full genome HPAI H5N2 sequences isolated from commercial layer chicken and 

25 turkey production premises were analyzed using evolutionary models modified to incorporate 

26 epidemiological and geographic information. Epidemiological compartmental models 

27 constructed in a phylogenetic framework provided evidence that poultry type acted as a barrier to 

28 the transmission of virus among midwestern poultry farms. Furthermore, after initial 

29 introduction, a continuous external source of virus was not needed to explain the propagation of 

30 HPAI cases within the commercial poultry industries. Discrete trait diffusion models indicated 

31 that within state viral transitions occurred more frequently than inter-state transitions. Distance, 

32 road density and proportion of water coverage were all supported as associated with viral 

33 transition between county groups (Bayes Factor > 3.0). Together these findings indicate that the 

34 midwestern poultry industries were not a single homogenous population, but rather, the outbreak 

35 was shaped by poultry sectors and geographic factors. 

36 AUTHOR SUMMARY

37 The highly pathogenic avian influenza outbreak among poultry farms in the midwestern United 

38 States appears to be influenced by agricultural and geographic factors. After initial introduction 

39 of the virus into the poultry industries, no further introductions (such as from a wild bird 

40 reservoir) were necessary to explain the continuation of the outbreak from March to June 2015. 

41 Additionally, evidence suggests that proximity increases the chances of viral movement between 
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42 two locations. While many hypotheses have been proposed to explain the transmission of virus 

43 among poultry farms, the support for road density as an important driver of viral movement 

44 suggests human-mediated viral transportation played a key role in the spread of the highly 

45 pathogenic H5N2 outbreak in North America.
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46 INTRODUCTION

47 In 2014, a novel reassortant highly pathogenic avian influenza (HPAI) H5N8 virus of the 

48 hemagglutinin (HA) clade 2.3.4.4 was identified in South Korean poultry and wild birds and 

49 quickly spread to other Asian countries and Europe (1–3). By the end of 2014, both the Eurasian 

50 H5N8 virus and its reassortant H5N2 containing Eurasian- and North American-origin gene 

51 segments, were reported in western Canada and the United States (4–6). The ensuing 2014-2015 

52 North American HPAI outbreak marked the largest and most expensive HPAI outbreak in the 

53 United States to date (7). In late November 2014, commercial poultry flocks in British Columbia, 

54 Canada were reported to be infected with the novel reassortant HPAI H5N2 (5), soon followed 

55 by HPAI H5N8 isolation within wild birds in the United States Pacific Northwest (4). Over the 

56 next several months, sporadic infections arose in wild and domestic birds, including both 

57 commercial production and backyard poultry operations. In March 2015, a drastic increase of 

58 HPAI H5N2 cases was observed within domestic poultry in the Midwestern United States. By 

59 the end of the outbreak in June 2015, over 50.4 billion poultry died or were culled due to the 

60 outbreak, costing the US government over $850 million, the poultry industries an estimated $700 

61 million to $1 billion and had a negative $3.3 billion impact on the economy (7–9).

62 Risk factors that explain the continued transmission of HPAI between domestic poultry 

63 facilities remain unclear. For instance, previous analyses have provided conflicting evidence as 

64 to the role of wild birds in the propagation of the outbreak within the midwestern poultry 

65 industries. Despite frequent reports of wild birds on the grounds and within barns of HPAI-

66 positive turkey premises (10), a case-control study found no significant difference in exposure to 

67 wild birds between positive turkey premises and matched controls (11). Similarly, one 

68 phylodynamic analysis found no evidence of continued HPAI introductions into the midwestern 
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69 poultry industries (12), but other models have suggested multiple introductions (13,14). 

70 Geographic and environmental variables, such as human population, agricultural, climatological, 

71 and ecological measures, may help explain farm-to-farm transmission observed within the 

72 poultry industries. For example, proximity between midwestern poultry premises has been 

73 implicated as an important risk factor for HPAI infection (11,13). Although it has been suggested 

74 that poultry production type did not affect outbreak transmission (12), this has not been formally 

75 tested. Despite extensive molecular epidemiological studies, such environmental and ecological 

76 covariates of viral spread during this outbreak have not been investigated.

77 Direct epidemiological links between most poultry premises have not been established 

78 (15), limiting the ability to investigate risk factors that facilitated HPAI transmission among 

79 poultry farms. The incorporation of pathogen genetic sequence data into epidemiological 

80 investigations can elucidate network connections between infectious entities, be that individual 

81 hosts or populations, such as poultry farms. One approach is viral phylodynamic modeling, ie. 

82 the integration of epidemiological and evolutionary models to explore viral ecological dynamics. 

83 Based on the assumption that viral epidemiology and evolution occur on the same time scale, 

84 viral phylodynamic modeling can reveal underlying population structure and epidemiological 

85 parameters. Recent incorporation of generalized linear models (GLM), a family of commonly 

86 used regression methods, into Bayesian phylogenetic frameworks have enabled investigation into 

87 the impact of ecological factors on the geographic diffusion of viral pathogens (16,17). Through 

88 such an approach, factors associated with HPAI movement within United States poultry 

89 industries can be identified, informing future control efforts.

90 In this study, we integrated epidemiological and ecological parameters with genomic 

91 sequence data collected contemporaneously with the midwestern poultry industries HPAI 
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92 outbreak to formally test outstanding hypotheses. Whole genome HPAI H5N2 sequence data 

93 isolated from layer chicken and turkey premises were analyzed using evolutionary model-based 

94 techniques. First, we developed population models to test the importance of poultry sector 

95 divisions (i.e. layer chicken vs turkey industries) and external viral introductions from an 

96 unsampled avian population in the propagation of the outbreak. Second, we evaluated ecological 

97 predictors of geographic diffusion of virus among midwestern counties to help identify 

98 environmental and human variables associated with viral transmission. Together, these analyses 

99 use information that accumulated within the HPAI H5N2 genome during the outbreak to help 

100 decipher higher-order patterns of viral dispersal among commercial poultry farms.

101 RESULTS

102 HPAI H5N2 Evolution within Domestic Poultry

103 182 full genome HPAI H5N2 genetic sequences, each representing a single commercial 

104 poultry farm operation across 49 counties in six states (Iowa, Minnesota, Nebraska, North 

105 Dakota, South Dakota, and Wisconsin), were included in the present analysis. The sequences 

106 were isolated from samples collected between March 25 and June 15, 2015 from positive turkey 

107 premises (72.5%) and layer chicken farms (27.5%). Two molecular clock assumptions and three 

108 “traditional” coalescent models (i.e., constant population, exponential growth, and extended 

109 Bayesian skyline plot [EBSP]) were compared with marginal likelihood estimation (MLE) to 

110 evaluate the underlying population and evolutionary dynamics of the 2015 HPAI outbreak. The 

111 highly flexible EBSP coalescent with a strict molecular clock assumption had the best fit for the 

112 included sequence data (log(MLE) = -25884.06). The supported molecular clock assumption 

113 varied depending on the coalescent model employed. Statistical support between the relaxed and 

114 strict molecular clock assumptions was ambivalent for the constant and exponential coalescent 
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115 models (log Bayes factor of relaxed compared to strict molecular clock (logBFR-S) = 0.06 and -

116 0.3, respectively; Fig 1A). Stronger evidence for the strict clock was observed when the EBSP 

117 coalescent was implemented (logBFR-S = -4.45). Similarity between molecular clocks was also 

118 demonstrated by the limited impact of the molecular clock assumptions on phylogenetic tree 

119 parameter estimates such as evolutionary rate and time to the most recent common ancestor 

120 (TMRCA; Fig 1B and 1C). For example, under the EBSP coalescent, the relaxed mean clock rate 

121 was 6.84x10-3 substitutions per site per year (95% highest posterior density (HPD): 6.09x10-3 - 

122 7.59x10-3) compared to the strict clock rate estimate of 6.77x10-3 substitutions per site per year 

123 (95% HPD: 5.98x10-3 - 7.56x10-3). In contrast, selection of the coalescent model influenced the 

124 TMRCA of the included sequences. Under the strict molecular clock, EBSP coalescent models 

125 estimated the TMRCA as March 1, 2015 (95% HPD: February 16 to March 10, 2015) while the 

126 remaining traditional coalescent models had a TMRCA at least two weeks earlier (Fig 1C). 

127

128 Fig 1. Evolutionary history of HPAI H5N2 isolated from commercial poultry premises, 2015. 

129 (A) Bayes factor (BF) tests between molecular clock and coalescent evolutionary models. 

130 For each coalescent model (exponential growth [Expo] and extended Bayesian skyline 

131 plot [EBSP]), BF was calculated using the constant coalescent model as reference (Const, 

132 indicated with asterisk) under the same molecular clock model. Two horizontal gray 

133 reference lines denote log(BF) = 1 and log(BF) = 5, which represent support and very 

134 strong support, respectively, for improved fit over the reference. (B) Molecular clock rate 

135 (substitutions per site per year) comparison between molecular clock and coalescent 

136 evolutionary models. (C) The estimated time of the most recent common ancestor 

137 (TMRCA; decimal year) compared between molecular clock and coalescent evolutionary 
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138 models. (D) Maximum clade credibility tree representing the ancestral reconstruction of 

139 poultry industry (layer chicken vs. turkey) across the evolutionary history of the outbreak. 

140 The ancestral reconstruction assumed an EBSP coalescent and strict molecular clock 

141 evolutionary model. Tree branches are colored based on the most probable poultry 

142 industry of the descendant node. Thin gray node bars represent the 95% highest posterior 

143 density (HPD) of the node height (i.e., the time at which that ancestor is estimated to have 

144 existed).

145

146 HPAI H5N2 Host Dispersion and Population Dynamics

147 To explore the extent of viral dispersal between poultry industries, multiple phylogenetic-

148 based methods were performed: the structured coalescent, the discrete trait diffusion model, and 

149 epidemiologic compartmental model-based coalescent. Each of these methods estimate a 

150 different approximation for the dispersal of virus between populations. The structured coalescent 

151 treats layer chicken premises and turkey premises as separate population demes between which 

152 virus was allowed to “migrate,” and thus estimates a migration rate between the two demes. In 

153 contrast, discrete trait diffusion models treat the trait of interest (here, poultry industry) as a 

154 characteristic that evolves over time, inferring a transition rate, analogous to a nucleotide 

155 substitution model. Finally, compartmental models enable the calculation of transmission rates 

156 between the two poultry compartments. Although all approximate the amount of viral dispersal 

157 among the poultry industries, each measure is calculated differently with unique assumptions and 

158 so are referred to by a particular term. All methods estimated that viral dispersal from layer 

159 chicken premises to turkey premises occurred more frequently than from turkey premises to 

160 layer chicken (Supplemental Table S1). In the structured coalescent, the migration rate from 
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161 layer chicken to turkey premises was much greater than the reverse (migration rate from 

162 chickens to turkeys: 12.6, 95% HPD: 6.2 – 18.7; migration rate from turkeys to chickens: 0.7, 

163 95% HPD: 0.00001 – 2.2). The transition rates between the poultry industries estimated from the 

164 discrete trait diffusion model were much more similar to each other (transition rate from 

165 chickens to turkeys: 1.4, 95% HPD: 0.04 – 3.9; transition rate from turkeys to chickens: 0.3, 95% 

166 HPD: 0.003 – 0.9). These models suggest the dispersion of virus between poultry industries was 

167 not symmetrical, potentially indicating poultry type played a role in the outbreak dynamics.

168 To formally test this hypothesis, we used epidemiological compartmental model 

169 equations to describe the coalescent process (18). Four competing scenarios were constructed 

170 (Fig 2A). Models 1 and 2 described a homogenous poultry population that differed by the 

171 presence of a continuous external viral source in Model 2. In contrast, Models 3 and 4 described 

172 a host population stratified by poultry production system, again differing based on an external 

173 viral source in Model 4. It should be noted that due to the sampling scheme of genetic sequences 

174 (one HPAI whole genome sequence per infected premises), the epidemiologic unit of interest 

175 was the premises (or farm), and not the individual bird. That is, findings of the compartmental 

176 models should be interpreted on the farm-to-farm scale, not the dynamics of transmission 

177 between individual birds. Akaike’s information criteria for Markov chain Monte Carlo (AICM) 

178 calculated from the posterior sample of structured tree likelihood estimates revealed that Model 3 

179 provided the best fit for the data under both strict and relaxed molecular clock assumptions 

180 (AICM under strict clock = 330.1; under relaxed clock = 376.3; Fig 2B, Supplemental Table S2). 

181 This suggests the midwestern portion of the 2015 HPAI outbreak was isolated from external 

182 sources but most likely structured by poultry production system. Four transmission rates were 

183 estimated for Model 3 to describe the interaction between the layer chicken and turkey 
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184 populations: two within-poultry system rates (βT and βC) and two between-poultry system rates 

185 (βTC and βCT). The model estimated the transmission rates within the turkey production system to 

186 be highest (βT = 11.6, 95%HPD: 2.0 – 22.0), followed by transmission rates from chicken farms 

187 to turkey farms (βCT = 4.9, 95% HPD: 0.6 – 9.6). The lowest transmission rate was estimated 

188 from turkey farms to chicken farms (βTC = 0.1, 95% HPD: 0.02 – 0.22). This is similar to the 

189 results of the structured coalescent model and discrete trait model described above 

190 (Supplemental Table S1). Infectious period of a farm also varied substantially between the two 

191 production systems. A HPAI-positive turkey premises was estimated to remain infectious for 5.7 

192 days (95% HPD: 4.3 – 10.5), whereas layer chicken premises were estimated to remain 

193 infectious for 32.1 days (95% HPD: 22.4 – 49.3; Fig 2C).

194

195 Fig 2. Comparison of hypothesized HPAI H5N2 epidemiological compartmental models. (A) 

196 Each compartmental model represents a Susceptible-Infectious-Removed (SIR) model 

197 with varied population heterogeneity: 1) a single, closed, homogenous population, 2) a 

198 single, homogenous population with a continual external source of virus (U), 3) a closed 

199 population, stratified by poultry system (turkeys (T) and layer chickens (C)), and 4) the 

200 stratified population with a continual external source of virus. (B) Compartmental model 

201 fit for the midwestern highly pathogenic avian influenza (HPAI) H5N2 outbreak, 2015. 

202 Akaike’s information criteria for Markov chain Monte Carlo (AICM) calculated based on 

203 the posterior distribution of the structured tree likelihood was used to evaluate the relative 

204 model fit for the four assessed compartmental models under differing molecular clock 

205 assumptions. Under both molecular clocks, Model 3 provided the best model fit. (C) 

206 Estimated infectious period of layer chicken and turkey farms during the 2015 midwestern 
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207 highly pathogenic avian influenza (HPAI) H5N2 outbreak. During model specification, an 

208 informative prior was provided for the Bayesian process. This prior probability 

209 distribution was based on the reported average time from HPAI confirmation to 

210 depopulation plus 5 days to allow for delay between infection and HPAI confirmation. 

211 Model 3 estimated the infectious period for layer chickens to be longer than expected 

212 given the prior information.

213

214 Ecologic Predictors of HPAI H5N2 Geographic Diffusion

215 Using the posterior distribution of phylogenetic trees estimated under the EBSP 

216 coalescent and strict molecular clock assumptions, discrete trait diffusion models were estimated 

217 to describe the geographic dispersal of HPAI H5N2 throughout the midwestern United States. 

218 County of origin was used as the basis to categorize the 182 sequences. Counties were grouped 

219 based on their state and whether sequences within the county exclusively originated from 

220 commercial turkey premises. For example, Iowan counties with only turkey cases were grouped 

221 separately from Iowan counties which had at least one layer chicken case. County groups with 

222 only turkey cases are henceforth referred to as turkey-exclusive while county groups with at least 

223 one layer chicken case are referred to as mixed poultry. The complete ancestral reconstruction of 

224 the midwestern outbreak is shown in Fig 3A. The three largest transition rates were observed 

225 between county groups within the same state, particularly Minnesota and Iowa (Fig 3B; 

226 Supplemental Table S3). The most frequent transitions occurred from Minnesota mixed poultry 

227 counties to Minnesota turkey-exclusive counties (median rate: 3.3 transitions per year; 95% HPD 

228 0.7 – 6.4; BF = 490.6). In Minnesota, the reverse rate (i.e., from turkey-exclusive counties to 

229 mixed poultry counties) was also decisively supported with a relatively high transition rate (2.3 
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230 transitions per year; 95% HPD: 0.6 – 4.6; BF = 2,007.1). The second most frequent transition 

231 had the highest statistical support and occurred from Iowan mixed poultry counties to Iowan 

232 turkey-exclusive counties (3.3 transitions per year; 95% HPD 1.4 – 5.7; BF = 28,139.6). Three 

233 inter-state transitions were also decisively supported, but less frequent. These transitions were 

234 estimated from Iowa mixed-poultry counties to Minnesota turkey-exclusive counties (0.9 

235 transitions per year; 95% HPD 0.2 – 2.2; BF = 14,068.3), from Minnesota turkey-exclusive 

236 counties to Wisconsin turkey-exclusive counties (0.74 transitions per year; 95% HPD 0.1 – 1.8; 

237 BF = 202.3) and from Wisconsin turkey-exclusive counties to Iowan mixed-poultry counties (0.9 

238 transitions per year; 95% HPD 0.01 – 2.6; BF = 134.8). All supported transition rates (BF > 3.0) 

239 were found either within a state or between states that share borders, except for a single weakly 

240 supported rate from South Dakota turkey counties to Wisconsin mixed poultry counties (0.6 

241 transitions per year; 95% HPD 0.0002 – 2.1; BF = 3.2). This suggests geographic distance 

242 influences the dispersal of HPAI H5N2 among midwestern counties.

243

244 Fig 3. Discrete trait diffusion model of HPAI H5N2 among midwestern county groups. (A) 

245 Maximum clade credibility tree representing the ancestral reconstruction of county groups 

246 across the evolutionary history of the outbreak. The ancestral reconstruction was based on 

247 an EBSP coalescent and strict molecular clock evolutionary model. Tree branches are 

248 colored based on the most probable county group of the descendant node. Thin gray node 

249 bars represent the 95% highest posterior density (HPD) of the node height (i.e., the time at 

250 which that ancestor is estimated to have existed). (B) Diffusion rate summary among 

251 county groups. County groups were defined based on state and composition of host type 

252 within the county. Counties with only turkey cases (turkey exclusive; T) were grouped 
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253 separately from counties with at least one layer chicken case (mixed poultry; C). Arrows 

254 represent transition rates with strong support (Bayes factor > 10) with arrow thickness 

255 proportional to the magnitude of transition rate. (C) Conditional effect size of 

256 environmental and geographic covariates within the generalized linear model (GLM). 

257 Conditional effect size represents the effect size of the variable coefficient given inclusion 

258 in the GLM. Supported covariates (Bayes factor > 3) are bolded. Covariates are ordered 

259 by Bayes factor. The dashed gray line represents a conditional effect size of 0, signifying 

260 little impact of the covariate on viral dispersal.

261

262 The discrete trait diffusion model was extended with a GLM that assessed the impact of 

263 distance and other environmental variables on the transition rates among the defined county 

264 groups. County characteristics for the 9 modeled variables are summarized in Table 1. On 

265 average, county centers were 266 km apart, ranging from 30 to 862 km. HPAI-positive counties 

266 had a higher density of layer chicken farms (0.02 farms/km2) than turkey farms (0.004 

267 farms/km2). Counties also had a broad range of human population density ranging from about 1 

268 to 58 people/km2. Of the 9 variables included in the GLM, three were statistically supported to 

269 be associated with diffusion of HPAI H5N2 among county groups (Fig 3C, Supplemental Table 

270 S4). Distance between county group centroid was decisively supported to be negatively 

271 associated with transition between two groups (log conditional effect size = -1.0; 95% HPD -1.2, 

272 -0.8; BF = 216,262.9). In other words, viral transitions are less likely between county groups that 

273 are separated by a greater distance. Road density of the origin county group was positively 

274 associated with viral dispersion (log conditional effect size = 1.2; 95% HPD 0.6 – 1.7; BF = 

275 42.8). That is, county groups with a higher density of roads were associated with higher 
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276 dispersion rates to other county groups. The proportion of the destination county group covered 

277 with water was only weakly supported for inclusion in the GLM (log conditional effect size = 

278 0.6; 95% HPD 0.2 – 0.9; BF = 3.9).

279

280 Table 1. Demographic and geographic characteristics of the 49 United States counties with 
281 HPAI-positive commercial poultry premises during the H5N2 outbreak, 2015.

Mean
Standard 
Deviation Minimum Maximum

Distance between counties (km) 265.95 153.45 30.18 861.99

Layer Chicken Farm Density (farms/km2) 0.02 0.02 0.001 0.09

Turkey Farm Density (farms/km2) 0.004 0.004 3.97x10-6 0.01

Human Population Density (humans/km2) 12.53 11.21 1.39 58.07

Road Density (km/km2) 1.89 0.32 1.18 2.78

Water Coverage (%) 1.56 2.21 0.02 11.34

Important Bird Area (%) 4.23 7.60 0.0 30.96

Agricultural Land Use (%) 78.07 13.28 32.46 90.62

Frozen days 19.82 4.93 12 38
282
283

284 DISCUSSION

285 Our exploration of population models to describe the 2015 midwestern United States 

286 HPAI H5N2 outbreak provides evidence that upon entering the midwestern poultry industries, no 

287 further viral introductions from outside sources were needed to explain the observed 

288 epidemiological trajectory. Furthermore, the statistical support for a stratified poultry population 

289 suggests that poultry industries should not be considered a homogenous host population for viral 

290 pathogens. This is also supported by the discrete trait diffusion analyses, which demonstrate that 

291 geographic factors influence viral dispersion among counties, indicating heterogeneity among 

292 geographic locations. Multiple factors including poultry production system barriers and 
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293 geographic characteristics appear to have influenced the course of the outbreak within poultry 

294 industries.

295 In our analysis, the EBSP coalescent model had better support than the other traditional 

296 coalescent models in terms of model fit. This is most likely a reflection of EBSP’s flexibility, i.e. 

297 the piece-wise nature of this method, which facilitates the identification of complex population 

298 changes. Coalescent theory has been a popular technique to infer population demographics 

299 underlying viral outbreaks (19–28). By relating effective population size to the rate at which 

300 phylogenetic lineages converge backwards in time, the coalescent has become a powerful tool to 

301 infer demographic changes even in the face of incomplete sampling. Traditionally, the estimation 

302 of the coalescent process required rigid prior assumptions in the form of simplistic mathematical 

303 growth functions (e.g., constant population size or exponential growth). To better reflect 

304 biological reality, methods have been developed that incorporate more flexibility than a one to 

305 two parameter mathematical function (29,30). For instance, the EBSP assumes demographic 

306 changes follow a smoothed, piece-wise, linear function whose change points are inferred from 

307 the sequence data (31). To date, mathematical methods to incorporate population structure into 

308 EBSP coalescent models have not been developed even though population structure has been 

309 observed to confound EBSP estimates (32).

310 Despite the flexibility of EBSP, compartmental-based coalescent models are worth 

311 assessing as they allow for direct incorporation and hypothesis testing of specific population 

312 structures. Rather than the non-parametric, piece-wise approach of EBSP, the prior mathematical 

313 functions assumed are ordinary differential equations (ODEs) constructed from the specification 

314 of epidemiological compartmental models. It is the parameters of these ODEs that are fit during 

315 the Markov chain Monte Carlo (MCMC) process. Among the four analyzed compartmental 
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316 models, we found that the closed, stratified population provided the best fit for the sequence data, 

317 suggesting layer chickens and turkeys represented two separate host populations that interacted 

318 with each other, but did not receive virus from a continuous external source. Interestingly, when 

319 only observing the single homogenous population models (Models 1 and 2), the inclusion of an 

320 external viral source (Model 2) improves model fit compared to the closed population model 

321 (Model 1). Once the population structure of poultry type is included (Models 3 and 4), the closed 

322 population model provides a better fit than that with continual viral introductions. This 

323 observation underlines the importance of including population heterogeneity within evolutionary 

324 demographic models to explain observed viral diversity and population dynamics.

325 To help improve identifiability of the remaining parameters within the compartmental 

326 model, expected prior distributions for the infectious period of affected premises were specified 

327 based on reported USDA data (7). Despite the informative assumption, the infectious period of 

328 layer chicken farms was estimated to be longer than expected. In our model, we assumed a 5-day 

329 period between the onset of infectivity of the farm and reporting of HPAI infection. Delays in the 

330 identification and/or reporting of HPAI infection could result in infectious periods that begin 

331 well before the assumed 5 days. Continued infectivity beyond the completion of flock 

332 depopulation is another likely contributor to prolonged infectious periods. Although commercial 

333 poultry depopulation occurred on average 6.4 days after National Veterinary Services Laboratory 

334 (NVSL) HPAI confirmation, premises were not considered to be virus-free until, on average, 

335 87.7 days following confirmation (7). In either case, our models suggest layer chicken farms 

336 remained infectious for much longer than turkey farms, potentially explaining why the 

337 transmission rate from chicken farms to turkey farms was higher than its counterpart. In fact, 

338 regardless of the model (i.e., structured coalescent, discrete trait diffusion model, or 
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339 compartmental model), layer chicken farms played a more central role to viral transmission than 

340 turkey farms during the outbreak. This may seem contradictory to experimental evidence that 

341 demonstrated the HPAI H5N2 virus had longer mean death times in turkeys (5 – 6 days) 

342 compared to chickens (2 – 3 days (33). However, such experimental infections only describe 

343 transmission information on the individual bird scale, rather than the farm-to-farm transmission 

344 scale captured in this analysis. Although it may be that individual turkeys survive longer, in 

345 practice turkey premises were quicker to be depopulated, resulting in a shorter farm-level 

346 infectious period compared to chicken farms. Because intervention (i.e. depopulation) was 

347 performed on the farm level, individual-level infectious periods alone are not adequate to 

348 describe the overall observed outbreak dynamics.

349 The implementation of a GLM into a Bayesian discrete trait analysis has been previously 

350 applied to HPAI in China (34) and Egypt (35), providing evidence that environmental, 

351 agricultural and anthropogenic factors influence viral movement. Due to differences in social, 

352 governmental and agricultural systems, the generalization of these previous GLM results to other 

353 countries may not be appropriate. Instead, these studies provide a framework to identify 

354 epidemiological covariates of the North American HPAI H5N2 outbreak. Our results indicate 

355 that distance and road density are key factors that influenced the geographic spread of HPAI 

356 H5N2 among midwestern counties in the spring of 2015. A recent spatial modeling analysis 

357 revealed that HPAI spread among Minnesota poultry premises was heavily distance-dependent 

358 during the 2015 outbreak (13). Our results support this claim by providing evidence that the 

359 frequency of shared viral diversity increases as the distance between two counties decreases. 

360 Risk of infection due to proximity can also be observed in our discrete trait diffusion model in 

361 which within-state HPAI spread was much more frequent than inter-state spread. HPAI 
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362 movement between states may explain Bonney, et al.’s finding that distance-independent 

363 transmissions significantly improved the fit of their transmission kernel model (13). Although 

364 the causal relationship between the supported covariates and viral dispersal cannot be determined 

365 from our analysis, the statistical support for road density within the GLM may provide evidence 

366 for the relative importance of anthropogenic movement of virus. High road density may correlate 

367 with better logistic connectivity between farms, increasing the likelihood that an infected 

368 premises will export virus to nearby farms and counties. Road density has been associated with 

369 HPAI H5N1 outbreaks in Bangladesh (36), Thailand (37), Romania (38), Indonesia (39,40), and 

370 Nigeria (41), although high road density in these countries may reflect greater human population 

371 density and, therefore, a higher likelihood of case detection (42). Intensive commercial poultry 

372 surveillance during the 2015 outbreak and the lack of support for human population density as a 

373 covariate within our model suggest that the statistical support for road density in the dispersal of 

374 HPAI among midwestern counties may not merely be an artifact of sampling bias or 

375 confounding. The third variable associated with HPAI dispersal was the proportion of a 

376 destination county group covered by surface water. In other words, counties with a larger 

377 proportion of surface water received virus more frequently compared to those with less surface 

378 water. Surface water resources have been associated with HPAI dispersal and prevalence in 

379 China and may signify movement of virus by migrating waterfowl that stopover in lakes, rivers 

380 and wetlands (34,43). In our analysis, this variable was only weakly supported and had a 

381 relatively small effect size. Additionally, other variables that represent potential migratory 

382 stopover habitats, such as Important Bird Areas and agricultural land, were not supported within 

383 the model, suggesting that if wild birds contributed to HPAI dispersal within the Midwest, their 

384 role was limited. This further supports previous studies, which indicated that the midwestern 
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385 portion of the outbreak was driven by inter-farm transmission (11,12,14). Several mechanisms 

386 have been proposed to explain HPAI transmission between farms during the 2015 outbreak, 

387 including equipment sharing, personnel overlap, and aerosolization. 

388 Due to the restricted number of sequences in the presented analysis, the number of 

389 variables and demographic scenarios that could be modelled was limited. This also affected the 

390 resolution of the geographic covariates that could be included within the GLM. Ideally, the 

391 environmental and agricultural characteristics of each individual farm or county would be 

392 evaluated as predictor for HPAI spread; however, the individual transition rates between 182 

393 farms or even 49 counties would be impossible to accurately estimate from the 182 sequences of 

394 this dataset. For this reason, sequences were categorized into county groups, resulting in a 

395 manageable transition rate matrix as well as permitting the summarization of environmental 

396 characteristics across a few counties rather than across an entire state. 

397 Despite these limitations, our results present several implications for future HPAI 

398 surveillance and control in the United States. While wild birds may provide a means of viral 

399 dispersal across large distances and initial introduction into an area, evidence suggests the HPAI 

400 outbreak within the midwestern poultry industries could be maintained without continued 

401 introductions. In this sense, in-place biosecurity efforts may have been enough to prevent 

402 continued viral introductions from outside sources (including wild birds, backyard poultry 

403 flocks, or long-distance movement from other geographic regions), but were ineffective against 

404 local farm-to-farm transmission. For instance, it has been suggested that biosecurity factors could 

405 explain the lack of HPAI cases within the broiler chicken industry in the Midwest (44). The 

406 association of distance between and road density of county groups with HPAI dispersal suggests 

407 human transportation modes may have played an important role in dispersal of HPAI across the 
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408 Midwest. A better understanding of how HPAI-positive farms are logistically connected would 

409 greatly aid surveillance and control efforts. With the knowledge of how these farms share 

410 personnel and equipment, future outbreaks could be contained by disruption of the transportation 

411 network.

412 METHODS

413 Dataset

414 Whole genome HPAI H5N2 sequences collected, isolated and sequenced by the United 

415 States Department of Agriculture (USDA) during the 2014 – 2015 North American HPAI 

416 outbreak served as the basis for the analyzed data set. Full description of their collection and 

417 sequencing has been reported elsewhere (14). A subset of this sequence data was selected to 

418 better investigate the farm-to-farm transmission dynamics of the midwestern portion of the HPAI 

419 H5N2 outbreak. This subset was defined by the following inclusion criteria: 1) sequences 

420 isolated from commercial domestic poultry samples and 2) membership of the sequence in a 

421 phylogenetically distinct group, as determined by maximum likelihood estimation by Lee, et al 

422 (14). These viruses represented midwestern HPAI-positive poultry premises from the latter part 

423 of the outbreak, which was defined by a rapid increase in incidence within the midwestern 

424 poultry industries. As within-farm epidemiological dynamics were not of interest in this analysis, 

425 only one viral sequence per positive poultry premises was included. Viruses isolated from 

426 backyard poultry operations and wild birds were not included due to the incongruency in 

427 surveillance and sampling between these populations and the domestic poultry industries. A full 

428 list of the included sequence names and accession numbers are provided in Supplemental Table 

429 S5.

430 Coalescent Model Comparison
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431 Coalescent theory provides the statistical framework to estimate population changes over 

432 time from genetic sequence data. To investigate the population dynamics of the midwestern 

433 poultry portion of the outbreak, various coalescent population model prior assumptions were 

434 implemented and compared in BEAST2 (45). Using ModelFinder (46) as implemented in the IQ-

435 TREE software package (http://www.iqtree.org/), the Kimura three parameter (K3P; i.e., one 

436 transition rate and 2 transversion rates) model (47) with unequal base frequencies and a gamma 

437 distribution of rate variation among sites (48) was determined as the best fit nucleotide 

438 substitution model and was used for each BEAST2 model. All coalescent models were separately 

439 estimated under both strict and lognormally distributed, uncorrelated, relaxed molecular clock 

440 assumptions. For each BEAST2 model, at least three independent MCMC runs of 50 million 

441 chain length were initiated from random starting trees. Convergence was assessed in Tracer v1.5, 

442 ensuring an effective sample size (ESS) > 200 for each estimated parameter. If ESS < 200, the 

443 discarded burn-in fraction was increased or more MCMC runs were performed. Three 

444 “traditional” coalescent models (i.e., constant population, exponential growth, and EBSP (31)) 

445 were performed to investigate demographic dynamics. Model fit was compared among the 

446 coalescent and molecular clock models with path sampling to calculate the marginal likelihood 

447 estimate (MLE) (49). Estimating the marginal likelihood enables the calculation of a Bayes 

448 Factor (BF), which is a ratio of two marginal likelihoods. A log(BF) > 5 indicates very strong 

449 statistical support for one model over the other (50). Viral dispersion between poultry industries 

450 (layer chicken vs. turkey) was initially estimated with a simple discrete trait diffusion model as 

451 well as a structured coalescent (25). The EBSP coalescent model was used as the tree prior for 

452 the discrete trait diffusion model. Both viral dispersion models were performed under both strict 

453 and relaxed molecular clock, as above. 
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454 A recently developed structured coalescent-based BEAST2 package (PhyDyn) was used 

455 to investigate more complex pathogen population scenarios by specifying epidemiological 

456 compartmental models (18). Four alternative compartmental models were assessed to investigate 

457 the presence of population structure by poultry type (layer chicken vs. turkey) and continual viral 

458 introductions from an unknown source population. Each compartmental model was a 

459 Susceptible-Infectious-Removed (SIR) model with varied population heterogeneity (Fig 2A): 1) 

460 a single, closed, homogenous population, 2) a closed population, stratified by poultry system, 3) 

461 a single, homogenous population with a continual external source of virus, and 4) a stratified 

462 population with a continual external source of virus. By including models with an external viral 

463 source, the models test whether this aspect of the outbreak was insulated or involved repeated 

464 introductions of HPAI from wild birds, backyard poultry, or undetected HPAI-positive premises. 

465 Since marginal likelihood estimation via path sampling has not yet been developed for the 

466 PhyDyn package, Akaike Information Criterion for MCMC (AICM) (51) was used to assess 

467 model fit and was calculated from the posterior MCMC sample of the structured tree likelihood 

468 with the R package, aicm (https://rdrr.io/cran/geiger/man/aicm.html). 

469 Discrete trait diffusion models

470 To estimate the impact of environmental variables on the geographic diffusion of HPAI 

471 between midwestern counties, a discrete trait diffusion model was constructed and further 

472 extended with a generalized linear model (GLM) in BEAST v1.10 (52). Discrete trait diffusion 

473 models are a phylogeographic technique in which each analyzed genetic sequence is assigned an 

474 observed characteristic trait that is assumed to have changed across the viral evolutionary history 

475 in a continuous time Markov chain process (53). Transition rates among these observed traits can 

476 then be inferred. In this analysis, the discrete character trait definition was based on the United 
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477 States county in which the HPAI-positive poultry premises was located. Counties were then 

478 categorized by state and whether the county’s sequences exclusively originated from turkey 

479 production premises. In contrast to the simplified discrete trait model performed parallel to the 

480 structured coalescent model above, this model enables geographic dispersion of the HPAI virus 

481 to be estimated.

482 The geographic discrete trait diffusion model was extended with a GLM to assess the 

483 impact of environmental covariates on the viral transition rates among county categories. In this 

484 approach, viral diffusion rates among discrete geographic regions act as the outcome to a log-

485 linear combination of environmental variables, regression coefficients and indicator variables 

486 (17). Environmental and anthropogenic variables were selected based on previous indication of 

487 their importance to avian influenza risk (42). Layer chicken farm density and turkey farm density 

488 were calculated from USDA 2012 census data (https://quickstats.nass.usda.gov/) divided by the 

489 land area of the county group. Human population density and proportion of county covered in 

490 water was obtained from United States census data (https://factfinder.census.gov/). The 

491 remaining variables were summarized per county group using ArcGIS Pro. Geographic distance 

492 was calculated as the linear distance between county group centroid. Road density was estimated 

493 as the total length of road per county divided by the total county group area. Proportion of county 

494 designated as an important bird area (IBA) was calculated using the publicly available Audubon 

495 Important Bird Areas and Conservation Priorities data (54). Proportion of the county group used 

496 for agriculture (i.e., covered by pasture, hay or cultivated crops) was obtained from the United 

497 States Geological Survey National Land Cover Database created in 2011 and amended in 2014 

498 (55). The number of frozen days was calculated from daily freeze-thaw satellite data from March 

499 1 to June 15, 2015 (56,57). A frozen day was defined as a day in which more than half of the 
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500 county group area had a temperature measured as below 0 C. All covariate measures were log-

501 transformed and standardized before inclusion in the GLM.

502 The discrete trait diffusion models were applied to the empirical distribution of 

503 phylogenetic trees from the best fitting evolutionary model. For each diffusion model, three 

504 independent MCMC runs of 1 million steps in length were performed, sampling every 100 steps. 

505 Convergence was assessed in Tracer v1.5, ensuring ESS > 200 for each estimated parameter. 

506 Removing the first 10% of each run as burn-in and re-sampling every 300 steps, log and tree files 

507 were combined using LogCombiner in the BEAST v1.10 software suite. Statistical support for 

508 transition rates in the discrete trait diffusion model and the covariate coefficients of the GLM 

509 were inferred using Bayesian stochastic search variable selection (BSSVS). Briefly, for each 

510 estimated parameter, an indicator variable (I) is stochastically turned on (I = 1) or off (I = 0) at 

511 each step of the MCMC (16,53). The posterior distribution of indicator values can be used to 

512 calculate a Bayes factor (BF), indicating the level of statistical support for the inclusion of that 

513 parameter in the model. BF support was defined in the following categories: no support (BF < 

514 3.0), substantial support (3.0 ≤ BF < 10.0), strong support (10.0 ≤ BF < 30.0), very strong 

515 support (30.0 ≤ BF < 100.0), and decisive support (BF ≥ 100.0). Median transition rates, median 

516 conditional coefficients, 95% highest posterior density (HPD) and BF were calculated using 

517 personalized Python scripts.
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721 SUPPLEMENTAL MATERIAL CAPTIONS

722 Table S1. Estimates of viral transmission between poultry industries during the 2015 highly 

723 pathogenic avian influenza virus H5N2 outbreak within the midwestern United States.

724 Table S2. Akaike’s information criteria for Markov chain Monte Carlo (AICM) for the 

725 epidemiological compartment-based coalescent models.

726 Table S3. Discrete trait diffusion matrix of the midwestern highly pathogenic avian influenza 

727 (HPAI) H5N2 outbreak, 2015. Median rates and associated 95% highest posterior density 

728 intervals (in brackets) are presented in each cell. The diffusion model is asymmetrical, and 

729 therefore, rates have directionality from a source county group (indicated on the left) to a 

730 sink county group (indicated across the top). County groups were defined by state (IA - 

731 Iowa, MN - Minnesota, ND - North Dakota, NE - Nebraska, SD - South Dakota, WI - 

732 Wisconsin) and composition of poultry type (T - turkey exclusive, CM - layer chicken 

733 exclusive and mixed poultry). Rates are colored by the level of Bayes factor support. Gray 

734 rates represent no support.

735 Table S4. Generalized linear model (GLM) conditional effect sizes and statistical support for 

736 agricultural and geographic covariates of the dispersal of highly pathogenic avian 

737 influenza (HPAI) H5N2 among midwestern county groups. Conditional effect size and 

738 95% highest posterior density (HPD) were calculated based on the estimated GLM 

739 coefficients given the Bayesian stochastic search variable selection (BSSVS) indicator = 

740 1. The posterior probability (PP) refers to the proportion of Markov chain Monte Carlo 

741 (MCMC) samples in which the BSSVS indicator = 1. Bayes factor (BF) > 3.0 indicates 

742 statistical support for the inclusion of the covariate within the GLM.

743 Table S5. Accession number and names of 182 included HPAI H5N2 full genome sequences.
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