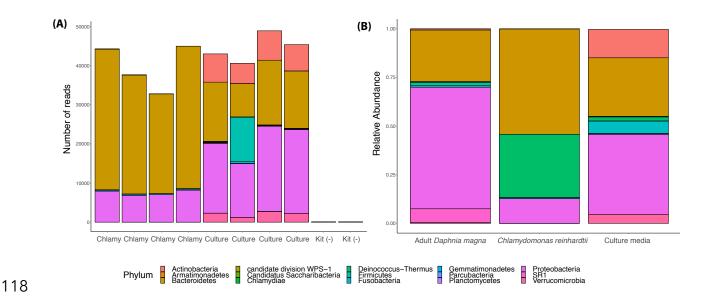
- 1 Characterization of core bacterial species in the Daphnia magna microbiota using
- 2 shotgun metagenomics
- 3 Reilly O. Cooper^{1*} & Clayton E. Cressler¹
- 4 ¹School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- 5 *Corresponding author: Reilly O. Cooper, Email: <u>reilly.cooper@huskers.unl.edu</u>
- 6 Clayton E. Cressler, Email: <u>ccressler2@unl.edu</u>
- 7

8 Abstract

9	Background: The keystone zooplankton Daphnia magna has recently been used as a
10	model system for understanding host-microbiota interactions. However, the bacterial
11	species present and functions associated with their genomes are not well understood.
12	In order to understand potential functions of these species, we combined 16S rRNA
13	sequencing and shotgun metagenomics to characterize the whole-organism microbiota
14	of Daphnia magna.
15	
16	Results: Five metagenome-assembled genomes (MAGs) were assembled from the
17	Daphnia magna microbiota. Phylogenetic placement of these MAGs indicated that two
18	belong to the Limnohabitans genus, one to Polaromonas, one to Pedobacter, and one
19	unclassifiable below the Burkholderiaceae family. Average nucleotide identity of these
20	MAGs to their closest sequenced relative was <95%, suggesting these may be new
21	species in known genera. 16S rRNA community profiling shows that the Daphnia magna
22	microbiota is distinct from its culture environment. Genes involved in host colonization
23	and immune system evasion were detected across the MAGs. Some metabolic
24	pathways were specific to some MAGs, including sulfur oxidation, nitrate reduction, and
25	flagellar assembly. Threonine and arginine exporters were encoded by the

- 26 Limnohabitans and Burkholderiaceae MAGs, and pathways for key vitamin biosynthesis
- 27 and export were identified across MAGs.
- 28
- 29 Conclusions: In this study, we characterize five metagenome-assembled bacterial
- 30 genomes within the Daphnia magna microbiota. Our examination of functions
- 31 associated with these genomes shows a diversity of nutrient acquisition and metabolism
- 32 pathways present that may benefit the host, as well as genomic signatures of host
- 33 association and immune system evasion.
- 34
- 35 Keywords: Metagenomics, shotgun sequencing, Daphnia magna, microbiota function
- 36

37 Introduction


Organisms are hosts to complex communities of microorganisms that live on any tissue in contact with the environment, collectively known as the microbiota. Species in the microbiota may provide beneficial functions to the host and to other species in the microbiota, including nutrient acquisition and uptake [1], production of host-accessible metabolites [2], host immune system priming [3], and direct pathogen protection [4]. However, characterizing these beneficial host-microbe and microbe-microbe interactions in biologically relevant systems can be difficult due to the number of core

45	species present in the microbiota and the variation in an individual organism's
46	microbiota over time from dietary changes or differential environmental exposure [5].
47	
48	The zooplankton Daphnia magna provides a useful model for studying functional
49	relationships between microbes and their hosts. Daphnia species are used as a model
50	system in ecology, ecotoxicology, and host-parasite dynamics due to their well-
51	documented life cycle and rapid asexual reproduction [6]. The ability to raise Daphnia
52	magna clonally in the laboratory allows for genetically identical hosts to be used
53	experimentally, reducing the impact of genetic variation on the microbiota.
54	Furthermore, their indiscriminate filter feeding within the water column allows for
55	control over food input. Daphnia are colonized with bacteria throughout their entire
56	body cavity and gut [7,8]. Composition of the Daphnia microbiota appears to be similar
57	in spatially unique populations [8,9], suggesting mechanisms of acquisition and
58	cultivation of these microbes by the host. The Daphnia microbiota is relatively simple at
59	the class level, with β -proteobacteria, γ -proteobacteria, and Flavobacteriia consistently
60	identified at high relative abundances [9,10]. While some work on the Daphnia
61	microbiota has used shotgun sequences to examine potential bacterial symbionts [7],
62	the majority of studies have used coarse-level 16S rRNA analyses to profile the taxa
63	present. Species-level identification and subsequent functional profiling of the Daphnia

64	microbiota has not been achieved with these studies, as resolution of the microbiota
65	using 16S rRNA sequencing can only reliably identify bacterial genera. Much of the
66	genomic content of Daphnia-associated bacteria is unknown, and potentially novel taxa
67	may not be identified by standard 16S rRNA techniques.
68	
69	Beyond identifying the composition of the microbiota, it is clear that this composition
70	affects host fitness. The microbiota as a whole has been implicated in nutrient
71	acquisition and breakdown of toxic compounds [11], and survival and growth are
72	affected by the presence of, and perturbations to, the microbiota [12-14]. Host
73	fecundity has been specifically tied to the most abundant genus in the Daphnia
74	microbiota, Limnohabitans. Entirely bacteria-free Daphnia experience significant
75	declines in fecundity, but monocolonization of bacteria-free Daphnia with
76	Limnohabitans restores fecundity to that of Daphnia with a complete microbiota [15].
77	However, it is unclear what metabolic functions Limnohabitans provides to achieve
78	these effects. How the other species in the Daphnia microbiota contribute to host life
79	history and what functions these species may be providing is entirely unclear.
80	
81	Here, we use shotgun metagenomics to characterize the bacterial species present in
82	the Daphnia magna microbiota. The metagenome-assembled genomes generated from

83	this data were then used to examine potential metabolic functions of the microbiota in
84	total and for each species assembled. This study is the first to report metagenome-
85	assembled genomes of bacteria in the Daphnia magna microbiota and is the first to
86	suggest functions based on gene content of these microbes. This increased resolution
87	allows us to formulate testable hypotheses about the metabolic interactions happening
88	between the host and microbes, and among microbes, that impact host fitness. This
89	functional knowledge will provide a new lens for studying this important ecological
90	model system.
91	
~~	
92	Results
92 93	Results Shotgun sequencing, assembly, and binning
93	Shotgun sequencing, assembly, and binning
93 94	Shotgun sequencing, assembly, and binning Shotgun sequencing of the adult and juvenile <i>Daphnia magna</i> microbiota resulted in
93 94 95	Shotgun sequencing, assembly, and binning Shotgun sequencing of the adult and juvenile <i>Daphnia magna</i> microbiota resulted in 20.19Mbp of paired-end Illumina read data, which was then reduced to 9.64Mbp after
93 94 95 96	Shotgun sequencing, assembly, and binning Shotgun sequencing of the adult and juvenile <i>Daphnia magna</i> microbiota resulted in 20.19Mbp of paired-end Illumina read data, which was then reduced to 9.64Mbp after quality trimming and host genome filtering. A co-assembly of all four samples
93 94 95 96 97	Shotgun sequencing, assembly, and binning Shotgun sequencing of the adult and juvenile <i>Daphnia magna</i> microbiota resulted in 20.19Mbp of paired-end Illumina read data, which was then reduced to 9.64Mbp after quality trimming and host genome filtering. A co-assembly of all four samples generated 174,991 contigs (N50 of 1,923bp; longest assembled contig 226,522bp).
93 94 95 96 97 98	Shotgun sequencing, assembly, and binning Shotgun sequencing of the adult and juvenile <i>Daphnia magna</i> microbiota resulted in 20.19Mbp of paired-end Illumina read data, which was then reduced to 9.64Mbp after quality trimming and host genome filtering. A co-assembly of all four samples generated 174,991 contigs (N50 of 1,923bp; longest assembled contig 226,522bp). Summaries of assembly statistics for the co-assemblies and the individual sample

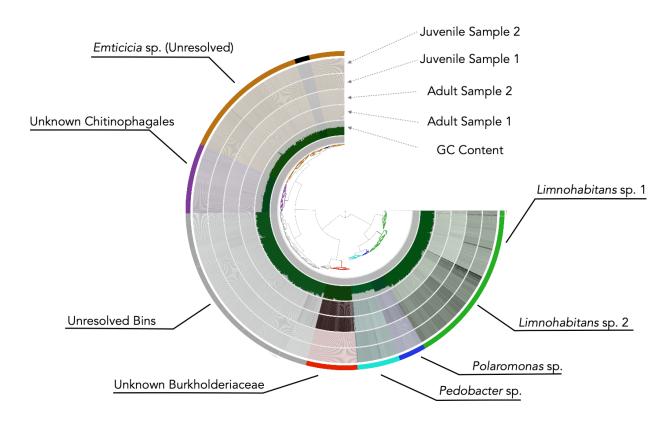
102	only Limnohabitans was identified by all three tools in reads and contigs. Other
103	abundant genera included Pedobacter, Flavobacterium, Polaromonas and other
104	unclassified Burkholderiaceae. 16S rRNA sequencing of the library preparation and
105	DNA extraction kits resulted in <50 reads (Figure 1A). 16S rRNA community profiles of
106	the Daphnia magna food source, Chlamydomonas reinhardtii, the COMBO culture
107	media Daphnia magna are raised in, and samples of 5 healthy adult Daphnia magna
108	were found to have differences in composition (Figure 1A). The Chlamydomonas
109	samples showed reduced relative abundance of Proteobacteria as compared to adult
110	Daphnia and the culture media. The culture media showed higher relative abundance
111	of Actinobacteria, and healthy Daphnia magna primarily were colonized by
112	Proteobacteria and Bacteroidetes. These same community profiles were analyzed using
113	an unweighted principal coordinate analysis (PCoA) on the unweighted UniFrac
114	distances between samples, which represents the phylogenetic relatedness between
115	samples based on ASV presence and absence (Supplementary Figure 2). The three
116	sample groups were found to cluster separately, with no overlap.
117	

119 Figure 1. (A) Phylum-level 16S rRNA profiles of Chlamydomonas reinhardtii (Chlamy, n

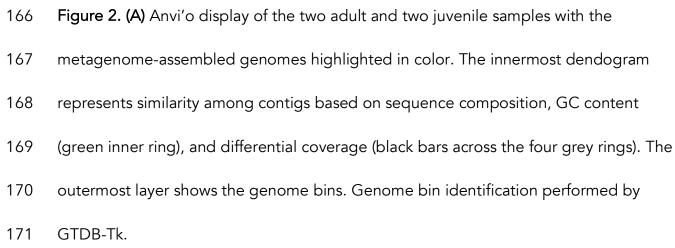
= 4), COMBO culture media (Culture, n= 4), and the DNA extraction kit and library
preparation kit used for sequencing (Kit (-), n=2). (B) Relative abundance of phyla
generated from 16S rRNA community profiles in *Chlamydomonas reinhardtii*, healthy
adult *Daphnia magna*, and the culture media (all n=4).

Assembly	Total assembly length (bp)	Number of contigs	Number of contigs ≥1 kb	Largest contig (bp)	GC content (%)	N50
Master co- assembly	50,283,761	174,991	9,449	226,522	51.7	1,923
Adult co- assembly Juvenile	27,616,512	93,427	4,021	103,086	53.61	1,535
co- assembly Adult	32,024,657	17,982	6,627	142,752	49.18	3,165
sample 1	11,565,605	39,625	2,783	62,388	52.42	1,546

Adult							
sample 2	22,274,108	65,709	3 <i>,</i> 585	85,806	54.09	2,074	
Juvenile							
sample 1	24,570,320	65,656	5,093	85,390	49.05	3,179	
Juvenile							
sample 2	22,525,058	50,433	4695	65,631	49.35	3,256	
Table 1. Sur	nmary of asse	embly stati	istics for inc	dividual samp	ole assemb	lies and co-	

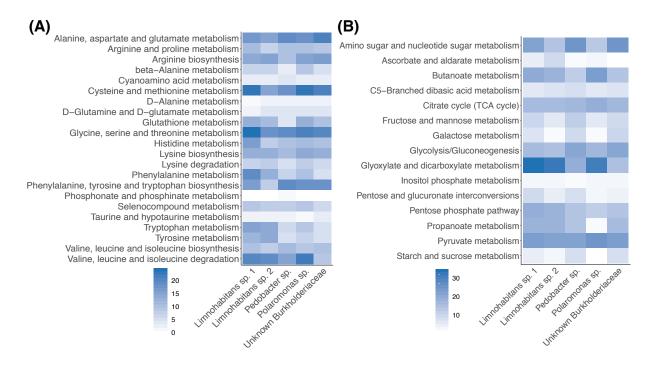

assemblies of all four samples (master co-assembly), the two adult samples (adult coassembly), and the two juvenile samples (juvenile co-assembly).

128


129	CONCOCT clustering of contigs from the master co-assembly by tetranucleotide
130	composition, GC content, and coverage resulted in 19 bins of draft and incomplete
131	genomes. Manual curation, refinement, and merging using Anvi'o resulted in 15 bins,
132	with 7 meeting the \geq 50 quality metric. The adult-only co-assembly generated 12 bins,
133	which further refined to 5 bins, with 4 meeting the \geq 50 quality metric (Supplementary
134	Figure 5). Three of the four high-quality bins were also present in the master co-
135	assembly and one unique bin was identified. The juvenile-only co-assembly generated
136	15 bins, which further refined to 7 bins, with 4 meeting the \geq 50 quality metric
137	(Supplementary Figure 6). Because the master co-assembly generated bins with higher
138	coverage or higher completeness, we used GTDB-Tk on bins refined in the master co-
139	assembly only. Phylogenetic placement using GTDB-Tk for the seven high- and
140	medium-quality bacterial MAGs identified from the master co-assembly placed two in
141	the Limnohabitans genus (Limnohabitans MAG 1 and MAG 2), one in the Polaromonas

142	genus (Polaromonas MAG), one unable to be placed below the Burkholderiaceae family
143	(Burkholderiaceae MAG), one in the Pedobacter genus (Pedobacter MAG), one in the
144	Emticicia genus, and one unable to be placed below the Chitinophagales order
145	(Supplementary Table 1; Supplementary Figure 4). None of the MAGs mapped to
146	previously identified species in the GTDB-Tk database. Average nucleotide identity of
147	the two Limnohabitans MAGs was measured at 86.6% similarity. This is less than the
148	95% cutoff generally accepted for strain-levels similarity, suggesting the MAGs are
149	likely separate species [16].
150	
151	To examine potential functions of the Daphnia magna microbiota, we focused on the
152	three most complete MAGs: unknown Burkholderiaceae, 99.28% complete, 11.5X
153	mean coverage; Pedobacter sp., 98.56% complete, 14.87X mean coverage; and
154	Polaromonas sp., 82.73% complete, 15.3X mean coverage. We also examined the two
155	Limnohabitans MAGs: sp1, 78.42% complete, 29.99X coverage; sp2, 60.43% complete,
156	14.16X coverage (Figure 2). Though the Limnohabitans MAGs were not over 90%
157	complete, according to read-based and contig-based identification tools they were the
158	most abundant, and coverage of both exceeded 30x in the juvenile <i>D. magna</i> samples.
159	Furthermore, prior work has indicated the presence and importance of this genus in the
160	Daphnia magna microbiota, suggesting unique functions may be present in these

- 161 genomes. We extracted the nearest matching reference genome for each of the five
- 162 MAGs above and calculated ANI for each to further investigate if these MAGs were
- 163 novel or just new strains of already sequenced species (Table 2).
- 164



MAG	Closest Sequenced Relative	ANI		
Limnohabitans sp. 1	Limnohabitans sp. 63ED37-2	0.879		
<i>Limnohabitans</i> sp. 2 Unknown	Limnohabitans sp. Rim28	0.820		
Burkholderiaceae	Pigmentiphaga sp. NML080357	0.693		
Pedobacter sp.	Pedobacter ruber	0.773		
Polaromonas sp.	Polaromonas sp. A23	0.761		
Table 2. Average nucleot	ide identity of the five MAGs of inte	erest to their nearest		
sequenced relative. The closest sequenced relative was identified from placement				
within GTDB-Tk's referen	ce phylogeny output.			
Functional profiling of the	e five high- and medium-quality ba	cterial metagenome-		
assembled genomes				
Contigs from the entire metagenome and from the 5 MAGs independently were				
analyzed for potential coding sequences (CDS) using Prokka. All identified CDS were				
then queried against the	KEGG database using GhostKOAL	A and identified orthol		
of functional genes were	grouped and quantified into KEGG	i functional categories		
(Figure 3). We focused or		ion, carbohydrate		
	i pathways associated with respirat	, ,		
metabolism, amino acid i	netabolism, other energy metaboli	-		

187	could indicate what functions these species are providing to the host. Out of the 7,453
188	CDS from the five high-quality MAGs that mapped to KEGG pathways, 707 (9.48%)
189	were associated with carbohydrate metabolism, 642 (8.71%) were associated with
190	amino acid metabolism, and 358 (4.80%) were associated with other energy
191	metabolism (Figure 3A-B; Supplementary Figure 3). Although C. reinhardtii has a
192	relatively high concentration of lipids [17], only 188 (2.52%) of all CDS were associated
193	with lipid metabolism. To understand how much genetic overlap there was among the
194	five MAGs, we compared predicted genes identified with Prokka and clustered with
195	OrthoVenn. The two Limnohabitans MAGs shared the highest number of genes (641),
196	and across all MAGs 325 genes were shared (Figure 4). The Pedobacter MAG had the
197	most unique genes in its gene set (117), while the Burkholderiaceae had so much
198	overlap with other MAGs that it had relatively few unique genes (21).
199	

200

Figure 3. (A) Number of genes associated with carbohydrate metabolism pathways in the five MAGs. Genes within each MAG bin were annotated with Prokka, assigned KEGG orthology, and mapped to KEGG metabolic pathways. Genes assigned to pathways were then counted. (B) Number of genes associated with KEGG amino acid metabolism pathways in the five MAGs.

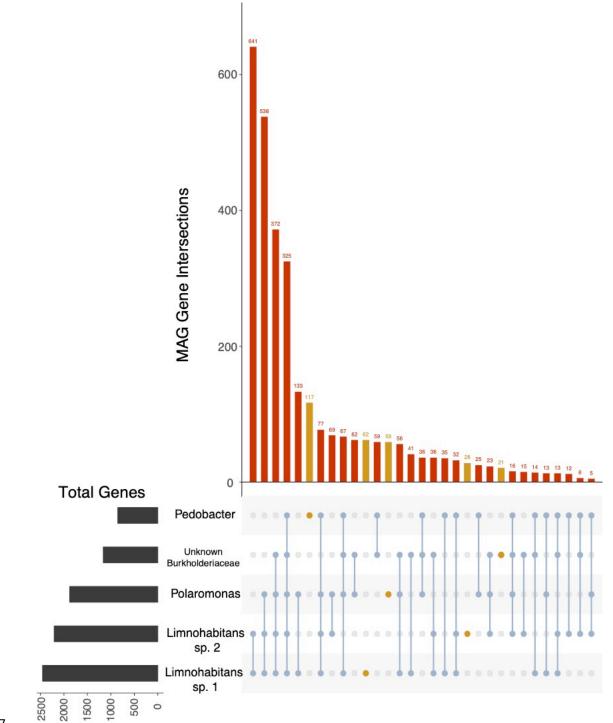


Figure 4. Shared and unique genes with KEGG orthologs in each MAG. Unique gene
sets are highlighted in gold; shared genes are in red. Intersections between MAGs, or

210	numbers of genes in each MAG's gene set shared with the other MAGs connected by
211	lines, are noted in the bottom matrix. The total number of genes in each MAG is listed
212	on the left side of the matrix.
213	
214	(Table after references)
215	Table 3. Shared and unique complete KEGG pathways in the five high- and medium-
216	quality MAGs. 'MAG' column indicates which MAG encodes that complete pathway;
217	'All' denotes that the pathway is shared among all five MAGs.
218	
219	After examining genetic overlap and unique gene content of the five MAGs, we
220	examined complete metabolic pathways annotated by KEGG present in the microbiota.
221	Here, we describe some of the complete pathways annotated, specifically focusing on
222	metabolic pathways involved in critical functions for bacteria such as nutrient uptake
223	and biosynthesis as well as pathways that may be involved in host or environment
224	interaction. A description and comparison of each MAG's set of complete pathways can
225	be found in Supplementary Materials and in Supplemental Tables 2-5. We separate
226	complete pathways into those encoded by all or multiple MAGs, indicating shared
227	pathways that could indicate functional redundancy or common metabolites accessible
228	to multiple species, and pathways uniquely encoded by single MAGs, indicating

229 potential niche differentiation within the microbiota [18]. Finally, we summarize some of 230 the described shared and unique functions and some functions specifically associated 231 with host association as genomic signals of host association, providing potential 232 explanations for why these genera are commonly found in the Daphnia magna 233 microbiota. 234 Shared functions of the Daphnia magna microbiota 235 236 Nutrient uptake and major biosynthesis pathways. All five MAGs shared genes involved 237 in some key metabolic pathways (Table 3, 'All' MAGs, Supplementary Tables 2 & 3). In 238 all MAGs, a complete TCA cycle was encoded. Genes encoding a cytochrome c 239 oxidase were identified in all MAGs, suggesting all have the capacity for aerobic 240 respiration. All encoded for lipopolysaccharide transport and lipoprotein release. All 241 MAGs except the Pedobacter encoded for a complete glyoxylate cycle, and the non-242 oxidative phase of the pentose phosphate pathway was present in all MAGs except the 243 *Limnohabitans* species. Transporters for multiple TCA cycle intermediates are present 244 across the MAGs, including a C₄-dicarboxylate transport system in all MAGs that allows 245 for transport of multiple different molecules into bacterial cells. Other transporters for 246 TCA cycle intermediates encoded included those for alpha-glucosides, malate, 247 fumarate, 2-oxogultarate, succinate, and aspartate.

249	Transport and biosynthesis of other essential molecules were shared across MAGs as
250	well. All MAGs except Pedobacter shared transport systems for phospholipids,
251	phosphate, and branched-chain amino acids. All species except for Limnohabitans
252	MAG 2 encoded for the elongation step of fatty acid biosynthesis, but only the
253	Burkholderiaceae, Polaromonas, and Pedobacter MAGs encoded for fatty acid
254	biosynthesis initiation. The Limnohabitans MAGs shared multiple copies of sialic acid
255	TRAP transporter genes (siaM, siaT, siaQ).
256	
257	All genomes encoded for the transport of multiple necessary vitamins, including
258	riboflavin (B ₂ , <i>ribX</i> , <i>ribY</i> , <i>ribZ</i>), pantothenate precursors (B ₅ , <i>panS</i>), and cobalamin (B ₁₂ ,
259	btuB). Genes involved in the salvage pathway for cobalamin were also present in both
260	Limnohabitans MAGs and in the Polaromonas MAGs (cobO, cobP). Some species were
261	also able to biosynthesize vitamins: the Pedobacter and Polaromonas MAGs encoded
262	for biotin biosynthesis, and all MAGs except Pedobacter encoded for tetrahydrofolate
263	biosynthesis. All MAGs encoded for a pyridoxine 5-phosphate synthase (PdxJ),
264	indicating likely biosynthesis of pyridoxine (B6).
265	

266	Biosynthesis and transport of amino acids varied across MAGs, with no shared amino
267	acid transport systems present across all species. All MAGs except Pedobacter were
268	able to biosynthesize arginine and ornithine. The Burkholderiacae, Limnohabitans 1,
269	and Polaromonas MAGs encoded for threonine, cysteine, lysine, proline, phenylalanine,
270	tyrosine, and glutathione biosynthesis. Valine, leucine, and tryptophan were also able
271	to be biosynthesized by some of the MAGs.
272	
273	Host and environment interaction. Superoxide dismutase (sodA, sodB) and catalase-
274	peroxidase (katG) were found in all MAGs. These act as reactive oxygen species
275	detoxifiers and scavengers. The universal minimal Tat system was encoded by all MAGs
276	(tatA, tatC), and both Limnohabitans MAGs also encoded tatB, allowing all of these
277	species to transport folded proteins across their cell membranes. Complete adhesin
278	transport systems and a gene associated with type IV pilus biosynthesis were present in
279	both Limnohabitans MAGs and the Polaromonas MAG (pilQ). These MAGs also
280	encoded two membrane proteases related to aminoglycoside resistance (HtpX, FtsH)
281	[19]. All MAGs except the Pedobacter encoded for the QseC-QseB quorum sensing
282	regulatory system. Though the Polaromonas MAG was the only one to encode for
283	complete flagellar assembly, the Limnohabitans MAGs encoded for multiple genes

involved in flagellar assembly (*flhA*, *flhB*, *flgB – L*). A gene for chemotaxis protein CheA
was present in these three MAGs as well.

286

some amino acid importers were present across the MAGs. These include arginine

289 (artM), proline (proP), cystine (yecS) in Limnohabitans MAGs, glutamine (glnQ, glnM)

and glutathione (gsiC) in Limnohabitans MAGs and in the Polaromonas MAG, and

histidine (hisP, hisM, hisQ) in the Burkholderiaceae MAG and Limnohabitans MAG 1. It

is unclear whether food (e.g., Chlamydomonas reinhardtii) or export from other bacteria

is the source of these amino acids for these MAGs. As some MAGs are able to

biosynthesize amino acids that others must import, there may be cross-feeding among

295 species in the microbiota occurring.

296

Environmental stress tolerance mechanisms were shared among genomes as well. All
encoded for the phosphate starvation response regulatory system PhoR-PhoB. The *Limnohabitans* MAGs and the *Polaromonas* MAG shared the EnvZ-OmpR osmotic
stress response system, allowing the bacterial cells to respond to changes in osmolality. *Limnohabitans* MAG 2 and the *Polaromonas* MAG shared CusS-CusR, a copper
tolerance regulatory system.

303

304 MAG-specific functions of the Daphnia magna microbiota

- 305 Nutrient uptake and major energy pathways. There were potential differences in
- 306 respiration for some of the MAGs. The Burkholderiaceae encoded a nitrate/nitrite
- 307 transporter (*narK*) and a respiratory nitrate reductase (*narGHI*). Use of this system for
- 308 respiration was supported by the presence of genes encoding the nitrate respiration
- 309 two-component regulatory system NarX-NarL. The Polaromonas encoded for
- 310 thiosulfate transport (cysT, cysW, cysP) and potential use via a subunit of the Sox
- 311 complex (soxA). We found a supplementary energy pathway in the *Limnohabitans*
- 312 MAGs, which share a pathway for the biosynthesis of bacteriochlorophyll (*pufLM*, *bchY*).
- 313 This pathway has been documented in other *Limnohabitans* species [20].
- 314

Differences in carbohydrate metabolism among MAGs was apparent. The *Pedobacter*MAG was the only high-quality genome to encode for glycolysis and glycogen
biosynthesis; the Burkholderiaceae MAG for the Leloir pathway; and *Limnohabitans*MAG 2 for the Entner-Doudoroff pathway. The *Polaromonas* MAG encoded for a
complete beta-oxidation system, enabling fatty acid metabolism. Different
carbohydrate transporters were found in the MAGs as well. *Limnohabitans* MAG 1
uniquely encoded for the transport of glucose, mannose, and glycerol (gtsABC, malK).

322	It also encoded for transport of L-arabinose (araPQ) and for a semiSWEET general sugar
323	transporter. The Burkholderiaceae MAG encoded for methyl-galactoside transport
324	(mgIABC) and a galactose processing pathway. The Pedobacter MAG can potentially
325	utilize chitin, as the MAG uniquely encoded for chitin degradation to fructose-6-
326	phosphate (<i>chiA</i> , <i>chb</i> , <i>nagB</i>).
327	
328	Other pathways for vitamin and amino acid import, biosynthesis, and degradation were
329	uniquely present in some genomes. Limnohabitans MAG 1 was the only MAG to
330	encode taurine import (tauA, tauB). This MAG also uniquely encoded a pathway for the
331	degradation of histidine to glutamate. Limnohabitans MAG 2 could transport thiamine
332	into the cell via a putative thiamine transport system (KEGG Module M00192).
333	Uniquely, Polaromonas could synthesize cobalamin (cobA, cobQ, cbiB, cobP, cobC). It
334	may also synthesize riboflavin via the purine biosynthesis pathway.
335	
336	Host and environment interaction. Multiple genes and pathways involved in antibiotic
337	resistance and detoxification were found in the bacterial MAGs. Pedobacter encoded
338	an MdIAB/SmdAB transporter as well as two genes involved in macrolide (macA, macB).
339	The Polaromonas MAG encoded an AcrAB-ToIC/SmeDEF efflux pump, and the

340 Burkholderiaceae MAG encoded the BaeS-BaeR envelope stress respon	onse two-
---	-----------

- 341 component regulatory system.
- 342
- 343 The MAGs encoded for different secretion systems and regulatory systems. The
- 344 Polaromonas MAG was the only one to encode for a type I secretion system (RaxAB-
- 345 RaxC). The Burkholderiaceae MAG encoded for an alpha-hemolysin and cyclolysin
- secretion system and a type IV secretion system (*virB1 5, 10, 11*). The
- 347 Burkholderiaceae MAG encoded for an osmotically-inducible protein, OsmY, part of an
- 348 osmoprotectant ABC transporter complex, and a putrescine transporter (*potFGHI*).

349

350 Genomic signs of host association in the Daphnia magna microbiota

351 Because the Daphnia magna microbiota has been shown to differ significantly from the 352 surrounding aquatic environment at the genus level [9,21], we examined the MAGs for 353 any potential indicators of host association. Multiple instances of host immune system 354 evasion or tolerance were noted in the MAGs. Both Limnohabitans MAGs encoded for 355 the microbial stealth protein CpsY, implicated in host immune system evasion [22]. 356 Genes involved in dTDP-L-rhamnose biosynthesis were present in all MAGs, indicating 357 these species are able to use rhamnose as an alternative cell wall polysaccharide. L-358 rhamnose has been linked to bacterial viability and virulence [23], and similarly

359	structured polysaccharides have been shown to modulate host immune systems [24]. A
360	gene involved in quorum quenching (signaling between other microbial species or
361	between microbes and the host) was identified in Limnohabitans MAG 1 and the
362	Pedobacter MAG (ytnP). Other virulence factors and regulators were identified in both
363	Limnohabitans and the Pedobacter MAG (cvfB, bvgS/bvgA).
364	
365	These bacterial species may benefit the host via amino acid and vitamin biosynthesis
366	and export. Complex eukaryotes must acquire some essential vitamins and amino acids
367	from their diet or from heterotrophic microorganisms. Six amino acids have been
368	demonstrated as essential for Daphnia magna's close relative, Daphnia pulex: arginine,
369	histidine, leucine, phenylalanine, isoleucine, and tryptophan [25]. All of the dietary
370	essential amino acids are biosynthesized by at least one of the MAGs, and some may
371	be able to export these as well. The Limnohabitans MAGs and the Burkholderiaceae
372	MAG encode for an arginine exporter (argO), Limnohabitans sp. 1 encodes for a
373	threonine exporter (<i>rhtA</i>), and the Burkholderiaceae MAG a threonine-serine exchanger
374	(steT). The Chlamydomonas reinhardtii food source used here does not contain
375	cobalamin [26], a beneficial vitamin for Daphnia magna, suggesting that Daphnia
376	magna raised in culture must acquire cobalamin from the culture media and from
377	microorganisms. In the Daphnia metagenome, the Polaromonas MAG encodes for

378	cobalamin biosynthesis. Other vitamins are biosynthesized by at least one of the MAGs,
379	including tetrahydrofolate, biotin, and pyridoxine. Supplementation of Daphnia magna
380	growth media with biotin and cobalamin has been shown to increase host fitness [27],
381	though it is unclear if these vitamins are essential for Daphnia survival.
382	
383	Other host-microbe interactions were also present in the MAGs. An essential nutrient
384	for bacteria is iron, and catalase genes were found in all MAGs along with other ABC
385	transporters for iron. The Limnohabitans MAG 2 encoded for heme binding proteins
386	and a heme export system (ccmB, ccmC), systems implicated in bacterial use of host-
387	synthesized heme [28]. The Pedobacter MAG encoded for an N-acetylneuraminate
388	lyase (nanA) and all five MAGs contain genes involved in transport of sialic acids. As
389	sialic acids are found in complex host tissue [29], this may indicate cleavage of sialic
390	acids from host cells for import and use by the bacteria. Pathways involved in host
391	invasion and colonization were also present in the MAGs. The Polaromonas MAG
392	encoded a suite of type IV pilus and fimbriae associated genes, including type IV pilus
393	biogenesis factors (<i>pilY1</i> , <i>pilQ</i>), fimbrial proteins (<i>pilE</i>), the type IV fimbriae synthesis
394	two-component regulatory system PilS-PilR, and a complete set of flagellar assembly
395	genes. This MAG, along with the two Limnohabitans Mags, also encoded for twitching
396	motility (pilT). Both Limnohabitans MAGs encoded for swarming motility (swrC, rssA),

397	and all three for other genes involved in chemotaxis (pctA, cheA, cheY, tar, cheB,
398	mcp4, tsr, cheW). Though genes for adhesin production were not identified, genes
399	involved in adhesin transport were identified in both Limnohabitans MAGs and in the
400	Burkholderiaceae MAG (bmaC, ehaG, ata).
401	
402	Discussion
403	To date, studies examining the Daphnia magna microbiota have only sequenced the
404	16S rRNA marker gene to understand broad-level interactions and functions of the
405	microbiota. Here, we were able to assemble the first metagenome-assembled genomes
406	from the Daphnia magna microbiota to elucidate genome-specific functions associated
407	with highly abundant members of the bacterial community. Our 16S rRNA gene level
408	data shows that the Daphnia magna bacterial community is structured differently than
409	the surrounding environment and from the microbiome of their food, which has been
410	also been corroborated by earlier studies [9,30]. We identified five MAGs that were
411	distinct from each other and distinct from their closest sequenced relatives based on
412	average nucleotide identity. We found that these MAGs were high- or medium-quality,
413	meaning they contained some or most of the single-copy genes found in all bacteria.
414	With metagenomic short-read shotgun sequencing it is unlikely that the MAGs
415	assembled here contained the full gene sets associated with these species; however,

416	bins of relatively high-quality suggest that we found many important genes within each
417	assembled genome. Most studies of the Daphnia magna microbiota using marker-
418	based sequencing have identified more OTUs or ASVs and higher diversity than the 12
419	bins we identified, likely due to the higher sequencing depth necessary for shotgun
420	sequencing to identify rare taxa [31]. However, the five MAGs assembled from our
421	shotgun sequencing are mostly consistent with genera found in 16S rRNA sequencing
422	from other studies and from our own sequencing.
423	
424	The Burkholderiales order has been demonstrated as the most abundant in the
425	Daphnia gut and whole organism microbiota [9,13], and four of the five MAGs
426	assembled here were identified to families or genera within this order. Two
427	Limnohabitans MAGs were assembled and found at high abundances in adults and
428	juveniles. Within the Burkholderiales, the genus Limnohabitans has been reported to be
429	highly abundant in the Daphnia microbiota, and has been implicated in increasing host
430	fecundity [12,15]. Here, we show that there are two distinct Limnohabitans MAGs that
431	encode for different metabolic potential. Only one other study has definitively
432	identified more than one OTU in this genus [13]. We also identify two other MAGs in
433	the Burkholderiales order, including a Polaromonas species and one unclassified

434 Burkholderiaceae. Surprisingly, we also identify a Pedobacter MAG, which has 435 previously only been reported as a rare taxon in the Daphnia microbiota [32]. 436 437 Analysis of annotated genes and pathways across the five MAGs showed overlap and differences in metabolism. Key pathways such as the TCA cycle were shared across all 438 439 MAGs, and multiple ABC transporters of key vitamins and amino acids were identified. 440 Many genes encoding for the use of different carbohydrates were encoded across the 441 MAGs. Microalgae are generally rich in carbohydrates [33] and serve as a major food 442 source for Daphnia magna [34], potentially allowing these microbes easy access to 443 myriad nutrient sources. The two Limnohabitans MAGs shared a high proportion of 444 annotated genes, suggesting some functional similarity between them. Indeed, 445 multiple metabolic pathways were shared between these two MAGs, including the 446 glyoxylate cycle, bacteriochlorophyll biosynthesis, and biosynthesis of some vitamins 447 and amino acids. The *Limnohabitans* MAGs also shared many genomic features with 448 the Polaromonas MAG and the Burkholderiaceae MAG, including multiple TCA cycle 449 intermediate importers and several transport systems. There is also potential flexibility 450 among the taxa in encoded respiration, notably in the Polaromonas MAG's ability to 451 use thiosulfate and the Burkholderiaceae's ability to utilize nitrate under hypoxic

452 conditions. Along with the variety of two-component regulatory systems found within

453	each MAG, the wide range of potential respiratory pathways may allow functions to
454	sustain through different bacterial species even when stressful environments cause
455	fluctuations in the abundance of species within the microbiota.
456	
457	The difference between taxa identified in the Daphnia magna microbiota and its
458	environment suggest that there are some key interactions between the host and its
459	associated microbes in order to establish and maintain these microbial populations.
460	Furthermore, there may be some interactions between bacterial species in the
461	microbiota that could impact the host. We found many genes in the Limnohabitans
462	MAGs and the Polaromonas MAG involved in flagellar assembly, type IV pilus
463	biogenesis and production, and biofilm formation, all of which have been implicated in
464	host colonization and successful adhesion to host-associated surfaces [35,36,37]. All
465	MAGs encode for I-rhamnose production, which has been implicated in adhesion to
466	other cells [23]. Genes in secretion systems implicated in host cell adhesion, particularly
467	Type I, II, and IV were also encoded [38]. We found many genes involved in host
468	immune system evasion or modification, which may allow these bacteria to persist
469	within the host species [39]. Notably, superoxide dismutase and catalase were encoded
470	by multiple MAGs, suggesting the bacteria could defend against radical oxygen species
471	produced by the host as a defense mechanism [40]. Also present across MAGs are

472	genes involved in the detoxification of antibiotics and toxins, including multidrug efflux
473	transporters and pumps (MdIAB/SmdAB, AcrAB-ToIC/SmeDEF), macrolide export
474	(macA, macB), and stress tolerance to antibiotics (BaeS-BaeR).
475	
476	Biosynthesis and provision of amino acids by bacteria to their host is a well-
477	documented set of interactions that is known to confer fitness benefits to the host [41-
478	43]. Here, we find that the Limnohabitans MAGs and the Burkholderiaceae MAG
479	encode for the export of arginine and threonine, essential amino acids for the host
480	Daphnia [25]. Similarly, biosynthesis or metabolism of vitamins and minerals by bacteria
481	and provisioning to the host has been well-documented in the microbiota of other
482	organisms [44-46]. Many genes involved in vitamin B biosynthesis were found across all
483	MAGs. Media supplemented with cobalamin (B_{12}) is used to successfully culture
484	Daphnia magna [47], and we find the Polaromonas MAG encoded for a complete
485	cobalamin biosynthesis pathway, suggesting potential vitamin provisioning to the host
486	from this species. We also find a potential microbe-microbe interaction, where the
487	Pedobacter MAG encodes for cleavage of sialic acids from host tissue, where it can
488	then be transported and utilized by other species as a carbohydrate source via a sialic
489	acid TRAP transporter. The breakdown of sialic acid to metabolites that are accessible
490	to the host by microbiome-associated species has been shown to increase host fitness

491	[48]. If Limnohabitans are able to use sialic acid as a nutrient source, this may be the
492	basis for a microbe-host-microbe interaction, where Limnohabitans provides essential
493	amino acids to the host using energy generated from metabolism of molecules
494	provisioned from the host.
495	
496	In total, our data shows that there is much versatility in metabolism among the MAGs,
497	but some overlap in function. As Daphnia magna are indiscriminate filter feeders, they
498	may feed on a wide variety of particulate matter with variable nutrient profiles. The
499	versatility in metabolism encoded by these MAGs indicates that they are able to utilize
500	this unpredictable range of nutrients both in the digestive tract and on the carapace.
501	The specific functions of certain MAGs, particularly in amino acid and vitamin
502	biosynthesis and export, seem critical in providing nutritional benefits to the host
503	zooplankton.
504	
505	Conclusions
506	Daphnia magna is an important model system for multiple facets of ecology, and has
507	recently become an organism of interest for understanding fundamental questions
508	about the microbiota. Our metagenomic sequencing and subsequent analysis
509	characterizes the Daphnia magna microbiota to the species level and finds some

510	genomic features that allow core bacterial species to acquire and biosynthesize
511	nutrients, and to potentially interact with their host via amino acid and vitamin export.
512	By examining this relatively simple microbiota via metagenome-assembled genomes,
513	we can begin to investigate metabolic interactions between the host and its associated
514	microbes. Future work to further elucidate functions of these MAGs will involve long-
515	read metagenome sequencing to complete genome assemblies and pure, single-
516	isolate sequencing to understand strain variation within the microbiota. Furthermore,
517	transcriptomics and metabolomics could be used to understand which of these
518	encoded genes are functioning under different environmental and host conditions, and
519	will direct future hypotheses on host-microbiota interactions. For example, how much of
520	the differences in Daphnia life history and population dynamics across food
521	environments [49] can be attributed to differences in microbiota composition? These
522	results will help to inform future work studying the effects of the microbiota on host
523	health and population dynamics across ecological contexts. Moreover, as more
524	populations of <i>Daphnia</i> and their microbiota are sequenced, it will become possible to
525	examine the coevolutionary relationships between hosts and microbiota, and this
526	functional information will be essential for making sense of those relationships.
527	

528 Methods

529	Sample collection and extraction. Two samples of 100 21-day-old adult Daphnia magna
530	and two samples of 6-day-old juvenile Daphnia were collected from laboratory cultures
531	maintained in defined COMBO medium [47]. Laboratory cultures were fed a
532	standardized volume of green algae Chlamydomonas reinhardtii (CPCC 243) to provide
533	0.25 mg C/ml/day. Samples were immediately ground after collection using in sterile
534	1.5mL microcentrifuge tubes. To separate bacterial cells from host cells, a modified
535	protocol from Benson et al. 2014 was used [50]. Samples were suspended in 2mL PBE
536	buffer and layered on a cushion of 50% sucrose, then centrifuged at 4,000g for 10
537	minutes. DNA was extracted from the pellets at the base of the sucrose fractions
538	following the Qiagen DNEasy Blood & Tissue Kit spin-column protocol of total DNA
539	from animal tissues (Qiagen, Hilden, Germany).
540	
541	Library preparation and sequencing. Shotgun sequencing libraries from the two adult
542	samples and two technical replicates of one juvenile sample were prepared and
543	multiplexed using the Illumina Nextera XT kit and protocol. Input DNA was quantified
544	using the Qubit dsDNA system. Libraries were checked using the Agilent Technology
545	2100 Bioanalyzer. Libraries were manually normalized due to a final library yield under

546 10nM. Paired-end sequencing was performed on an Illumina MiSeq using a MiSeq

547 Reagent Kit V2.

549	Quality filtering and metagenome assembly. Reads were demultiplexed using the built-
550	in Illumina MiSeq Reporter. Quality of demultiplexed reads was checked using FastQC
551	v0.11.5. Reads were trimmed using Trimmomatic v0.36 [51] with the commands:
552	ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3
553	SLIDINGWINDOW:4:25 MINLEN:36 to remove adapter sequences and to remove
554	segments of reads where quality fell below 25. Trimmed reads were mapped to the
555	Daphnia magna draft genome [52] using BWA [53], Samtools [54], and BEDtools [55],
556	and reads with greater than 80% identity over 50% of the read were filtered. Remaining
557	paired unmapped reads were assembled de novo using metaSPAdes in SPAdes v3.11
558	[56]. A co-assembly of all four samples, a co-assembly of the adult samples, a co-
559	assembly of the juvenile samples, and individual assemblies for each sample were
560	created.
561	
562	Taxonomy-independent sequence binning and identification of individual
563	metagenome-assembled genomes. To resolve genomes of identified organisms and to
564	discover genomes of organisms not present in read-based taxonomy identification
565	programs or entirely new organisms, contigs from the master co-assembly with reads
566	mapped from each sample were binned using CONCOCT within Anvi'o [57], accepting

567	contigs over 2500 bp in length. Contigs greater than 20kb in length were split into
568	20kb fragments prior to running CONCOCT. Bins from the master co-assembly were
569	assessed using Anvi'o, using Parks et al.'s quality score (genome completeness - 5x
570	estimated redundancy or contamination) of \geq 50 as a cutoff for further refinement [58].
571	Bins meeting this quality cutoff were manually curated within Anvi'o, where contigs
572	within a bin that deviated dramatically from the mean GC content or mean coverage of
573	the bin were removed from the bin. Bins that increased completeness when merged,
574	did not increase redundancy above 10%, and were similar in GC content were merged.
575	Bins that did not have high (>90% completion) or medium quality (>50% completion)
576	after merging and refining were not analyzed further. After merging and refining, bins
577	that still met the quality score cutoff were assigned taxonomy using GTDB-Tk [59,60].
578	GTDB-Tk uses average nucleotide identity and genome topology to find the closest
579	genomic relative in its database. The same process was repeated for the juvenile co-
580	assembly and the adult co-assembly to confirm species presence and attempt to
581	resolve species identity at different host life stages. Similarity between MAGs was
582	calculated using the average nucleotide identity tool in Pyani [61].
583	

584 Read-based taxonomic classification. Kaiju v1.5 [62], Kraken v1.0 [63], and MetaPhlAn2
585 v2.6 [64] were used to assign taxonomy to reads. We used all three identifiers due to

586	due to Kaiju's high rate of false identification [65] and MetaPhlAn2's use of specific
587	marker genes from reference organisms rather than entire genomes. All programs were
588	used with their built-in databases. Kraken results were confirmed via cross-comparison
589	of abundant species with both Kaiju and MetaPhlAn2. All three taxonomy profilers were
590	also used to assign taxonomy to contigs assembled from each sample. Visualization of
591	each sample's community composition was performed in R.
592	
593	Functional profiling. Contigs from each metagenome-assembled genome and from the
594	adult, juvenile, and master co-assemblies were annotated using Prokka v1.12 [66].
595	Genes annotated in Prokka were assigned KOs (KEGG Orthologs) using the
596	GhostKOALA tool on the Kyoto Encyclopedia of Genes and Genomes [67]. KOs
597	identified from GhostKOALA were mapped to standard KEGG categories and
598	metabolic pathways using the KEGG Pathway Mapper & KEGG Module tools to
599	examine pathway completeness and identify pathways of interest [68]. Genes identified
600	using KEGG and GhostKOALA in each MAG were compared using OrthoVenn [69].
601	Overlapping and unique orthologs were compared using custom R scripts and with the
602	'UpSetR' package [70].

5 1 5	604	16S rRNA gene sequencing and identification of contaminant taxa. The V4	
-------	-----	---	--

605	hypervariable region of the 16S rRNA gene was sequenced on the Illumina MiSeq using
606	a MiSeq Reagent Kit V2 and the same Qiagen DNEasy Blood & Tissue Kit and reagents
607	as in the shotgun sequencing sample processing. Four samples of five adult Daphnia
608	magna were sequenced to compare community composition found in 16S sequencing
609	to that found in shotgun sequencing, along with four samples of the COMBO media
610	Daphnia magna cultures are raised in, four samples of Chlamydomonas reinhardtii, and
611	two samples of the DNA sequencing kit and library preparation kit as negative controls.
612	Paired-end reads were analyzed in R using the 'dada2' package to trim primer
613	sequences, identify amplicon sequence variants, and assign taxonomy [71]. Taxonomy
614	was assigned using the RefSeq+RDP taxonomic training data set formatted for dada2
615	[72]. Further analysis of community composition and visualization were carried out using
616	the 'phyloseq' package in R [73].
617	
618	Declarations
619	Ethics approval and consent to participate

- 620 Not applicable.
- 621 Consent for publication
- 622 Not applicable.

623 Availability of data and materials

- 624 The datasets supporting the conclusions of this article are available at the NCBI
- 625 BioProject Portal under IDs PRJNA543317 (shotgun sequences) and PRJNA543842 (16S
- 626 rRNA sequences. Raw metagenomic sequencing reads from each sample are deposited
- 627 under accession numbers SAMN11660785 and SAMN11660786. 16S rRNA sequencing
- data can be found under accession numbers SAMN11784745 SAMN11784837. All
- 629 scripts for data analysis and visualization are available on GitHub
- 630 (https://github.com/reillyowencooper/daphnia_magna_metagenome).
- 631 Competing interests
- 632 The authors declare that they have no competing interests.
- 633 Funding
- 634 This work was supported by funds from the University of Nebraska and a Maude
- 635 Hammond Fling Faculty Research Fellowship to CEC.
- 636 Authors' contributions
- 637 ROC and CEC designed the study. ROC collected and analyzed the metagenomic data.
- 638 ROC wrote the first draft of the manuscript, and ROC and CEC revised the manuscript
- 639 and approved its final form.
- 640 Acknowledgements

641	We are grateful for Dr. Andrew K. Benson, Mallory Van Haute, and Qinnan Yang's
642	assistance with sequencing preparation and machine use, and to Brady Bathke for
643	assistance with bioinformatic analyses. This work was completed utilizing the Holland
644	Computing Center of the University of Nebraska, which receives support from the
645	Nebraska Research Initiative.
646	
647	References
648	1. Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S,
649	McHardy AC, Dangl JL, Knight R, Ley R, Schulze-Lefert P. Microbiota and Host
650	Nutrition across Plant and Animal Kingdoms. Cell Host Microbe 2015;
651	https://doi.org/10.1016/j.chom.2015.04.009
652	2. Wahlström A, Sayin SI, Marschall H, Bäckhed F. Intestinal Crosstalk between Bile
653	Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;
654	<u>https://doi.org/10.1016/j.cmet.2016.05.005</u>
655	3. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B,
656	Buchon N, Cherry S. Microbiota-Dependent Priming of Antiviral Intestinal
657	Immunity in <i>Drosophila</i> . Cell Host Microbe 2015;
658	https://doi.org/10.1016/j.chom.2015.10.010

659	4.	Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic Bacteria Protect
660		Wasp Larvae from Fungal Infestation. Curr Biol. 2005;15:475-479.
661	5.	Spor A, Koren O, Ley R. Unravelling the effects of the environment and host
662		genotype on the gut microbiome. Nat. Rev. Microbiol. 2011;9:279-290.
663	6.	Ebert, D. A Genome for the Environment. Science 2011;331:539-540.
664	7.	Qi W, Nong G, Preston JF, Ben-Ami F, Ebert D. Comparative metagenomics of
665		Daphnia symbionts. BMC Genom. 2009;10:21.
666	8.	Eckert EM, Pernthaler J. Bacterial epibionts of Daphnia: a potential route for the
667		transfer of dissolved organic carbon in freshwater food webs. ISME J.
668		2014;8(9):1808-1819.
669	9.	Freese HM, Schink B. Composition and Stability of the Microbial Community
670		inside the Digestive Tract of the Aquatic Crustacean Daphnia magna. Microb
671		Ecol. 2011;62:882-894.
672	10	. Sison-Mangus MP, Mushegian AA, Ebert D. Water fleas require microbiota for
673		survival, growth and reproduction. ISME J. 2015;9:59-67.
674	11	. Macke E, Callens M, Meester LD, Decaestecker E. Host-genotype dependent
675		gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat
676		Commun. 2017;8:13.

677	12. Peerakietkhajorn S, Tsukado K, Kato Y, Matsuura T, Watanabe H. Symbiotic
678	bacteria contribute to increasing the population size of a freshwater crustacean,
679	Daphnia magna. Environ. Microbiol. Rep. 2015;7(2):364-372.
680	13. Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K,
681	Liewenborg B, Udekwu K, Gorokhova E. Disparate effects of antibiotic-induced
682	microbiome change and enhanced fitness in Daphnia magna. Preprint.
683	https://doi.org/10.1101/586669
684	14. Callens M, Hajime W, Yasuhiko K, Miura J, Decaestecker E. Microbiota inoculum
685	composition affects holobiont assembly and host growth in Daphnia.
686	Microbiome 2018;6:56.
687	15.Peerakietkhajorn S, Kato Y, Kasalicky V, Matsuura T, Watanabe J.
688	Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean
689	Daphnia magna: symbiotic relationship between major bacterioplankton and
690	zooplankton in freshwater ecosystem. Environ Microbiol. 2016;18(8):2366-2374.
691	16. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the
692	prokaryotic species definition. Proc Natl Acad Sci U.S.A 2009;106(45):19126-
693	19131.
694	17. Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G,
695	Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas

41

696	reinhardtii under heat stress unveil a direct route for the conversion of
697	membrane lipids into storage lipids. Plant Cell Environ. 2016;39:834-847.
698	18. Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome
699	in Corals' Microbial Soup. Trends Microbiol. 2017;25(2):125-140.
700	19. Hinz A, Lee S, Jacoby K, Manoil C. Membrane Proteases and Aminoglycoside
701	Antibiotic Resistance. J Bacteriol. 2011;193(18):4790-4797.
702	20. Kasilicky V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek. Aerobic
703	Anoxygenic Photosynthesis Is Commonly Present within the Genus
704	Limnohabitans. Environ Microbiol. 2018;84(1):13.
705	21. Mariadassou M, Pichon S, Ebert D. Microbial ecosystems are dominated by
706	specialist taxa. Ecol Lett. 2015;18:974-982.
707	22. Sperisen P, Schmid CD, Bucher P, Zilian O. Stealth Proteins: In Silico
708	Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible
709	to Host Immune Defense. PLOS Comput Biol. 2005;1(6):0492-0499.
710	23. Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-
711	containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol
712	Rev. 2016;40:464-479.
713	24.Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway
714	MO, Shanahan F, Nally K, Dougan G, van Sinderen D. Bifidobacterial surface-

715	exopolysaccharide facilitates commensal-host interaction through immune
716	modulation and pathogen protection. Proc Natl Acad Sci U.S.A
717	2012;109(6):2108-2113.
718	25. Fink P, Pfilitsch C, Marin K. Dietary Essential Amino Acids Affect the
719	Reproduction of the Keystone Herbivore Daphnia pulex. PLoS ONE
720	2011;6(12):8.
721	26. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG. Insights into the
722	Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes. Mol Biol
723	Evol. 2011;28(10):2921-2933.
724	27. Elendt BP, Bias WR. Trace nutrient deficiency in Daphnia magna cultured in
725	standard medium for toxicity testing. Effects of the optimization of culture
726	conditions on life history parameters of <i>D. magna</i> . Water Res. 1990;24(9):1157-
727	1167.
728	28. Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination
729	modes. Arch Biochem Biophys. 2009;481(1):1-15.
730	29. Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens.
731	Microbiology 2007;153:2817-2822.

732	30. Callens M, Macke E, Muylaert K, Bossier P, Lievens B, Waud M, Decaestecker E.
733	Food availability affects the strength of mutualistic host-microbiota interactions
734	in Daphnia magna. ISME J. 2016;10:911-920.
735	31. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the
736	microbiome: Advantages of whole genome shotgun versus 16S amplicon
737	sequencing. Biochem Biophysis. Res Commun. 2016;469(4):967-977.
738	32. Poehlein A, Daniel R, Simeonova DD. Genome sequence of Pedobacter
739	glucosidilyticus DD6b, isolated from zooplankton Daphnia magna. Stand
740	Genomic Sci. 2015;10:100.
741	33. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens
742	LML, Dismukes GC, Posewitz MC. Increased Lipid Accumulation in the
743	Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increase
744	Carbohydrate Synthesis in Complemented Strains. Eukaryot Cell 2010;9(8):1251-
745	1261.
746	34. Taipale SJ, Galloway AWE, Aalto SL, Kahilainen KK, Strandberg U, Kankaala P.
747	Terrestrial carbohydrates support freshwater zooplankton during phytoplankton
748	deficiency. Sci Rep 2016;6:e30897.
749	35. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penadés JR, Lasa I.
750	BapA, a large secreted protein required for biofilm formation and host

751	colonization of Salmonella enterica serovar Enteritidis. Mo Microbiol.
752	2005;58(5):1322-1339.
753	36. Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. Bacterial Flagella: Twist
754	and Stick, or Dodge across the Kingdoms. PLoS Pathog. 2015;11(1):e1004483.
755	37. McLoughlin K, Schluter J, Rakoff-Nahoum S, Smith AL, Foster KR. Host Selection
756	of Microbiota via Differential Adhesion. Cell Host Microbe 2016;19:550-559.
757	38. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial
758	Adhesins in Host-Microbe Interactions. Cell Host Microbe 2009;5:580-592.
759	39. Foster TJ. Immune evasion by Staphylococci. Nat Rev Microbiol. 2005;3:948-
760	958.
761	40. Reveillaud J, Anderson R, Reves-Sohn S, Cavanaugh C, Huber JA. Metagenomic
762	investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman
763	Rise reveals new insights into metabolism and diversity. Microbiome 2018:6:19.
764	41. Hansen AK, Moran NA. Aphid genome expression reveals host-symbiont
765	cooperation in the production of amino acids. Proc Natl Acad Sci U.S.A
766	2011;108(7):2849-2854.
767	42. Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ,
768	Moya A, Latorre A. A Small Microbial Genome: The End of a Long Symbiotic
769	Relationship? Science 2006;314:312-313.

45

770	43. Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol.
771	2011;23:38-47.
772	44. Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a Modulator of Gut
773	Microbial Ecology. Cell Metab. 2014;20:769-778.
774	45. Smith TA, Driscoll T, Gillespie JJ, Raghavan R. A Coxiella-Like Endosymbiont Is a
775	Potential Vitmain Source for the Lone Star Tick. Genome Biol Evol.
776	2015;7(3):831-838.
777	46. McKenney EA, Koelle K, Dunn RR, Yoder AD. The ecosystem services of animal
778	microbiomes. Mol Ecol. 2018;27:2164-2172.
779	47. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L. COMBO: a defined
780	freshwater culture medium for algae and zooplankton. Hydrobiologia
781	1998;377:147-159.
782	48. Castanys-Muñoz E, Martin MJ, Vazquez E. Building a Beneficial Microbiome
783	from Birth. Adv Nutr 2016;7:323-330.
784	49. Nelson WA, McCauley E, Wrona FJ. Multiple dynamics in a single predator-prey
785	system: experimental effects of food quality. Proc R Soc Lond B. 2001;268:1223-
786	1230.
787	50. Benson AK, David JRD, Gilbreth SE, Smith G, Nietfeldt J, Legge R, Kim J, Sinha
788	R, Duncan CE, Ma J, Singh I. Microbial successions are associated with changes

789	in chemical profiles of a model refrigerated fresh pork sausage during an 80-day
790	shelf-life study. Appl Environ Microbiol. 2014;80(17):5178-5194.
791	51.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
792	sequence data. Bioinformatics 2014;30(15):2114-2120.
793	52. Daphnia Genomics. Genome Informatics Lab, Indiana University Biology
794	Department. <u>http://wfleabase.org</u> . Accessed 02 March 2018.
795	53. Li H. Aligning sequence reads, clone sequences and assembly contigs with
796	BWA-MEM. Preprint. https://arxiv.org/abs/1303.3997
797	54. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
798	G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence
799	Alignment/Map format and SAMtools. Bioinformatics 2009;25(16):2078-2079.
800	55. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
801	genomic features. Bioinformatics 2010;26(6):841-842.
802	56. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
803	metagenomic assembler. Genome Res. 2017;27:824-834.
804	57. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO.
805	Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ
806	2015;3:e1319.

807	58. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN,
808	Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled
809	genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533-
810	1542.
811	59. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski, Chaumeil PA,
812	Hugenholtz P. A standardized bacterial taxonomy based on genome phylogeny
813	substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996-1004.
814	60. Chaumeil PA, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes
815	with the Genome Taxonomy Database.
816	https://github.com/Ecogenomics/GTDBTk
817	61. Pritchard L, Glover RH, Humphris S, Elphinstone GJ, Toth IK. Genomics and
818	taxonomy in diagnostics for food security: soft-rotting enterobacterial plant
819	pathogens. Anal Methods 2016;8:12-24.
820	62. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
821	metagenomics with Kaiju. Nat Commun. 2016;7:11257.
822	63. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification
823	using exact alignments. Genome Biol. 2014;15:R46.

824	64. Segata N, Waldron L, Ballarini A, Narsimhan V, Jousson O, Huttenhower C.
825	Metagenomic microbial community profiling using unique clade-specific marker
826	genes. Nat Methods 2012;9(8):811-814.
827	65. Piro VC, Matschkowski M, Renard BY. MetaMeta: integrating metagenome
828	analysis tools to improve taxonomic profiling. Microbiome 2017;5:101.
829	66. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics
830	2014;30(14):2068-2069.
831	67. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA for Functional
832	Characterization of Genome and Metagenome Sequences. J Mol Biol.
833	2016;428:726-731.
834	68. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
835	reference resource for gene and protein annotation. Nucleic Acids Res.
836	2016;44:D457-D462.
837	69. Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: a web server for
838	genome wide comparison and annotation of orthologous clusters across
839	multiple species. Nucleic Acids Res. 2015;43:W78-W84.
840	70. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of
841	intersecting sets and their properties. Bioinformatics 2017;33(18):2938-2940.

842	71.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
843	DADA2: High-resolution sample inference from Illumina amplicon data. Nat
844	Methods 2016;13(7):581-583.
845	72. Alishum A. DADA2 formatted 16S rRNA gene sequences for both bacteria &
846	archaea. Version 1 Refseq+RDP. 2019; <u>http://doi.org/10.5281/zenodo.2541239</u>
847	73. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive
848	Analysis and Graphics of Microbiome Census Data. PLoS ONE
849	2013;8(4):e61217.
850	

851 Table 3.

KEG G ID	Module	Pathway Name	MAG
M00 307	Central carbohydrate metabolism	Pyruvate oxidation, pyruvate => acetyl-CoA	All
M00 009	Central carbohydrate metabolism	Citrate cycle (TCA cycle, Krebs cycle)	All
M00 010	Central carbohydrate metabolism	First carbon oxidation, oxaloacetate => 2- oxoglutarate	All
M00 011	Central carbohydrate metabolism	Citrate cycle, second carbon oxidation, 2- oxoglutarate => oxaloacetate	All

M00 005	Central carbohydrate metabolism	PRPP biosynthesis, ribose 5P => PRPP	All
M00 120	Cofactor and vitamin metabolism	Coenzyme A biosynthesis, pantothenate => CoA	All
M00 793	Polyketide sugar unit biosynthesis	dTDP-L-rhamnose biosynthesis	All
M00 250	ABC-2 type and other transport systems	Lipopolysaccharide transport system	All
M00 255	ABC-2 type and other transport systems	Lipoprotein-releasing system	All
M00 336	Bacterial secretion system	Twin-arginine translocation (Tat) system	All
M00 434	Two-component regulatory system	PhoR-PhoB (phosphate starvation response) two-component regulatory system	All
M00 045	Histidine metabolism	Histidine degradation, histidine => N- formiminoglutamate => glutamate	Limnohabitans sp. 1
M00 435	Mineral and organic ion transport system	Taurine transport system	Limnohabitans sp. 1
M00 193	Mineral and organic ion transport system	Putative spermidine/putrescine transport system	Limnohabitans sp. 1
M00 605	Saccharide, polyol, and lipid transport system	Glucose/mannose transport system	Limnohabitans sp. 1

M00 607	Saccharide, polyol, and lipid transport system	Glycerol transport system	Limnohabitans sp. 1
M00 008	Central carbohydrate metabolism	Entner-Doudoroff pathway, glucose-6P => glyceraldehyde-3P + pyruvate	Limnohabitans sp. 2
M00 192	Mineral and organic ion transport system	Putative thiamine transport system	Limnohabitans sp. 2
M00 259	ABC-2 type and other transport systems	Heme transport system	Limnohabitans sp. 2
M00 001	Central carbohydrate metabolism	Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate	Pedobacter sp.
M00 854	Oher carbohydrate metabolism	Glycogen biosynthesis, glucose-1P => glycogen/starch	Pedobacter sp.
M00 026	Histidine metabolism	Histidine biosynthesis, PRPP => histidine	Pedobacter sp.
M00 096	Terpenoid backbone biosynthesis	C5 isoprenoid biosynthesis, non- mevalonate pathway	Pedobacter sp.
M00 364	Terpenoid backbone biosynthesis	C10-C20 isoprenoid biosynthesis, bacteria	Pedobacter sp.
M00 256	ABC-2 type and other transport systems	Cell division transport system	Pedobacter sp.
M00 707	Drug efflux transporter/pump	Multidrug resistance, MdIAB/SmdAB transporter	Pedobacter sp.

M00	Sulfur metabolism	Thiosulfate oxidation by SOX complex,	Polaromonas
595		thiosulfate => sulfate	sp.
M00	Fatty acid biosynthesis	beta-Oxidation	Polaromonas
087	and degradation		sp.
M00	Serine and threonine	Serine biosynthesis, glycerate-3P => serine	Polaromonas
020	metabolism		sp.
M00	Cofactor and vitamin	Riboflavin biosynthesis, GTP =>	Polaromonas
125	metabolism	riboflavin/FMN/FAD	sp.
M00	Cofactor and vitamin	Cobalamin biosynthesis, cobinamide =>	Polaromonas
122	metabolism	cobalamin	sp.
M00 436	Mineral and organic ion transport system	Sulfonate transport system	Polaromonas sp.
M00	Saccharide, polyol, and lipid transport system	gamma-Hexachlorocyclohexane transport	Polaromonas
669		system	sp.
M00 320	ABC-2 type and other transport systems	Lipopolysaccharide export system	Polaromonas sp.
M00	Drug efflux	Multidrug resistance, efflux pump AcrAB-	Polaromonas
647	transporter/pump	TolC/SmeDEF	sp.
M00	Bacterial secretion	RaxAB-RaxC type I secretion system	Polaromonas
339	system		sp.
M00	Two-component regulatory system	KdpD-KdpE (potassium transport) two-	Polaromonas
454		component regulatory system	sp.

M00 493	Two-component regulatory system	AlgZ-AlgR (alginate production) two- component regulatory system	Polaromonas sp.
M00 501	Two-component regulatory system	PilS-PilR (type 4 fimbriae synthesis) two- component regulatory system	Polaromonas sp.
M00 632	Oher carbohydrate metabolism	Galactose degradation, Leloir pathway, galactose => alpha-D-glucose-1P	Unknown Burkholderiac eae
M00 549	Oher carbohydrate metabolism	Nucleotide sugar biosynthesis, glucose => UDP-glucose	Unknown Burkholderiac eae
M00 554	Oher carbohydrate metabolism	Nucleotide sugar biosynthesis, galactose => UDP-galactose	Unknown Burkholderiac eae
M00 579	Carbon fixation	Phosphate acetyltransferase-acetate kinase pathway, acetyl-CoA => acetate	Unknown Burkholderiac eae
M00 183	RNA polymerase	RNA polymerase, bacteria	Unknown Burkholderiac eae
M00 300	Mineral and organic ion transport system	Putrescine transport system	Unknown Burkholderiac eae
M00 209	Mineral and organic ion transport system	Osmoprotectant transport system	Unknown Burkholderiac eae
M00 214	Saccharide, polyol, and lipid transport system	Methyl-galactoside transport system	Unknown Burkholderiac eae
M00 204	Saccharide, polyol, and lipid transport system	Trehalose/maltose transport system	Unknown Burkholderiac eae

M00 325	Bacterial secretion system	alpha-Hemolysin/cyclolysin transport system	Unknown Burkholderiac eae
M00 333	Bacterial secretion system	Type IV secretion system	Unknown Burkholderiac eae
M00 449	Two-component regulatory system	CreC-CreB (phosphate regulation) two- component regulatory system	Unknown Burkholderiac eae
M00 450	Two-component regulatory system	BaeS-BaeR (envelope stress response) two-component regulatory system	Unknown Burkholderiac eae
M00 471	Two-component regulatory system	NarX-NarL (nitrate respiration) two- component regulatory system	Unknown Burkholderiac eae