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 31 

Abstract  32 

Since several studies have been reporting an increase in the decline of forests, a major issue 33 

in ecology is to better understand and predict tree mortality. The interactions between the different 34 

factors and the physiological processes giving rise tree mortality, as well as the inter-individual 35 

variability in mortality risk, still need to be better assessed. 36 

This study investigates mortality in a rear-edge population of European beech (Fagus sylvatica 37 

L.) using a combination of statistical and process-based modelling approaches. Based on a survey of 38 

4323 adult beeches since 2002 within a natural reserve, we first used statistical models to quantify 39 

the effects of competition, tree growth, size, defoliation and fungi presence on mortality. Secondly, 40 

we used an ecophysiological process-based model (PBM) to separate out the different mechanisms 41 

giving rise to temporal and inter-individual variations in mortality by simulating depletion of carbon 42 

stocks, loss of hydraulic conductance and damage due to late frosts in response to climate. 43 

The combination of all these simulated processes was associated with the temporal variations 44 

in the population mortality rate. The individual probability of mortality decreased with increasing 45 

mean growth, and increased with increasing crown defoliation, earliness of budburst, fungi 46 

presence and increasing competition, in the statistical model. Moreover, the interaction between 47 

tree size and defoliation was significant, indicating a stronger increase in mortality associated to 48 

defoliation in smaller than larger trees. Finally, the PBM predicted a higher conductance loss 49 

together with a higher level of carbon reserves for trees with earlier budburst, while the ability to 50 

defoliate the crown was found to limit the impact of hydraulic stress at the expense of the 51 

accumulation of carbon reserves. 52 

We discuss the convergences and divergences obtained between statistical and process-based 53 

approaches and we highlight the importance of combining them to characterize the different 54 

processes underlying mortality, and the factors modulating individual vulnerability to mortality. 55 

 56 

57 
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Introduction 58 

Global changes have been repeatedly reported to be the cause of forest decline and tree 59 

mortality, both in terms of background, non-catastrophic mortality (Van Mantgem et al. 2009, 60 

Lorenz and Becher 2012) and of massive, catastrophic mortality due to extreme, ‘pulse’ events 61 

(Allen et al. 2010; Lorenz and Becher 2012; Mueller et al. 2005). To predict how such a new regime 62 

of trees mortality will impact upon forest structure, composition and ecosystem services (Anderegg 63 

et al. 2015a; Choat et al. 2018), we need to better understand the respective roles of the various 64 

drivers and mechanisms underlying tree mortality. 65 

Studying mortality poses several challenges, in particular because it is triggered by several 66 

factors and involves several interacting physiological processes. The factors triggering mortality 67 

include extreme, pulse climatic events (i.e. drought, storms, floods, heavy snow, late frosts, 68 

wildfires) or sudden changes in biotic interactions (i.e. emerging pests, invasive species), but also 69 

long-term climatic or biotic perturbations (i.e. recurrent water deficits, changes in competition at 70 

the community level) (Maraun et al. 2003; McDowell et al. 2011). Moreover, these factors can have 71 

interactive effects. For instance, drought may increase trees’ vulnerability to pests (Durand-72 

Gillmann et al. 2014; Anderegg et al. 2015b) or predispose them to wildfires (Brando et al. 2014). 73 

Finally, a single factor triggering mortality may involve several underlying physiological processes, 74 

with several thresholds leading to mortality and potential feedback between them (McDowell et al. 75 

2011). This is exemplified by drought, which is usually considered to trigger mortality through the 76 

combination of hydraulic failure and carbon starvation (Adams et al. 2017; Anderegg et al. 2012; 77 

McDowell et al. 2011). 78 

Another challenge when studying mortality is that the physiological processes governing tree 79 

vulnerability may vary in space and time. For instance, vulnerability may vary among individual trees 80 

within a population according to (i) the spatial heterogeneity in available resources, especially soil 81 

water (Nourtier et al. 2014); (ii) the heterogeneity in an individual tree’s life history, and in particular 82 

the effects of past stresses on tree morphology and anatomy (Vanoni et al. 2016); (iii) the inter-83 

individual variation of physiological responses to stresses, which depends on ontogenic, plastic, and 84 

genetic effects controlling the expression of traits (Anderegg 2015a; Vitasse et al. 2009). 85 

Vulnerability may also vary through time for a given individual/population, not only because of 86 

temporal climatic variation but also through inter-individual variations in phenological processes. 87 

This is well illustrated by the risk of late frost damage, which is closely related to the coincidence 88 
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between temporal patterns of budburst phenology, and the climatic sequence of low temperatures. 89 

Although relatively large safety margins were found regarding the risk of late frost damage during 90 

budburst across many European temperate tree (Bigler and Bugmann 2018), these safety margins 91 

may reduce with climate change, due to earlier budburst (Augspurger 2009). When young leaves 92 

have been damaged, some species can reflush, i.e. produce another cohort of leaves (Augspurger 93 

2009; Menzel, Helm, and Zang 2015), but the time required to reflush may reduce the length of the 94 

growing season (Lenz et al. 2013), and may lead to mortality if trees do not have enough reserves 95 

to do this.  96 

Available approaches to investigate the multiple drivers and processes underlying tree 97 

mortality can be classified into two broad categories: statistical, observational approaches versus 98 

process-based, mechanistic approaches. Statistical approaches use forest inventory data to test 99 

which tree characteristics (e.g. related to tree size and growth rate, biotic and abiotic environment, 100 

including management) affect mortality. By comparing species or populations over areas with large 101 

climatic variations, such studies have demonstrated the overall effect of drought severity on 102 

mortality, although usually explaining only a limited proportion of the inter-annual variance 103 

observed in mortality rate (Allen et al. 2010; Greenwood et al. 2017). Moreover, probabilities of 104 

mortality have been predicted with a higher accuracy when individual covariates for tree growth, 105 

size and/or competition were included in the statistical models, highlighting the importance of inter-106 

individual variability in the threshold for mortality (Hülsmann, Bugmann, and Brang 2017; Monserud 107 

1976). Recent statistical studies have attempted to include functional traits involved in the response 108 

to stress as additional covariates to improve the accuracy of mortality prediction, such as defoliation 109 

(Carnicer et al. 2011) or hydraulic safety margins (Benito-Garzón et al. 2018). Overall, the main 110 

advantage of statistical approaches is their ability to account for a potentially high number of factors 111 

and processes triggering mortality and for inter-individual variability in the threshold for mortality. 112 

However, these statistical models barely deal with the usually low temporal resolution of mortality 113 

data, missing information on the cause of tree death, and non-randomization inherent to natural 114 

population designs. In addition, the accuracy of statistical predictions can decrease outside the 115 

studied area (Hülsmann, Bugmann, and Brang 2017). 116 

On the other hand, biophysical and ecophysiological process-based models (PBMs), initially 117 

developed to simulate carbon and water fluxes in forest ecosystems, are also useful to investigate 118 

the environmental drivers and physiological processes triggering tree mortality. For example, using 119 
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the PBM CASTANEA, Davi & Cailleret (2017) showed that mortality of silver fir in southern France 120 

resulted from the combination of drought-related carbon depletion and pest attacks. Using six 121 

different PBMs, Mc Dowell et al. (2013) found that mortality depended more on the duration of 122 

hydraulic stress than on a specific physiological threshold. A main advantage of PBMs is their ability 123 

to understand how physiological processes drive mortality and to predict mortality under new 124 

combinations of forcing variables in a changing environment. However, they need a large number 125 

of parameters to be calibrated. Most often, calibration is made using the average parameters’ 126 

values known at species level, and therefore does not account for possible inter-individual variability 127 

of ecophysiological processes (Berzaghi et al. 2019). Moreover, biophysical and ecophysiological 128 

PBMs generally do not take into account individual tree characteristics (i.e. related to ontogenic, 129 

plastic and/or genetic variation). Hence, statistical and process-based approaches appear as 130 

complementary, and many authors have called for studies comparing or combining them (Hawkes 131 

2000; O’Brien et al. 2017; Seidl et al. 2011). 132 

 133 

Figure 1: Combining process-based and statistical models to study variables and processes 134 

involved in tree mortality. The square boxes indicate the measured factors and response variables 135 

considered in statistical models. Boxes with rounded corners indicate stress-related output variables 136 

simulated with the PBM CASTANEA. The blue box on the left delineates the input variables of 137 

CASTANEA. At the top, grey arrows indicate the relationships considered to link stress-related 138 

output variables simulated by CASTANEA with observed mortality rate in the studied population. At 139 

the bottom, the black arrows indicate the relationships considered in the statistical model for the 140 

probability of mortality at individual level (solid lines: expected positive effect; dashed lines: 141 

expected negative effect; non-linear effects were expected for size). Moreover, the effects of size, 142 

early budburst and defoliation on the individual probability of mortality were also investigated using 143 

the PBM. PLC – percentage loss of conductance. 144 
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 145 

In this study, we used both a statistical regression model and the PBM CASTANEA (Figure 1), 146 

to investigate the drivers of mortality within a population located at the warm and dry ecological 147 

margin for European beech (42° 28' 41" N, 3° 1' 26" E; Supplementary Figure S1). Mortality, decline 148 

(crown defoliation and fungi presence), size, growth, competition and budburst were characterised 149 

in a set of 4323 adult trees over a 15 year-period from 2002 to 2016. CASTANEA was used to simulate 150 

the number of late frost days, the percentage loss of conductance (PLC) and the biomass of carbon 151 

reserves in response to stress. Specifically, we addressed the following questions: (1) How do 152 

climatic factors and physiological processes drive temporal variation in the mortality rate? (2) How 153 

do factors varying at tree-level modulate the individual tree’s probability of mortality? (3) How do 154 

physiological mechanisms modulate the vulnerability of individuals?  155 

Materials and Methods 156 

 157 

Study species 158 

The European beech (Fagus sylvatica L.) combines a widespread distribution (from northern Spain 159 

to southern Sweden and from England to Greece) and an expected high sensitivity to climate change 160 

(Cheaib et al. 2012; Kramer et al. 2010). Bioclimatic niche models predict a future reduction of this 161 

species at the rear edge of its range over the next few decades (Cheaib et al. 2012; Kramer et al. 162 

2010). Its growth is highly sensitive to droughts (Dittmar, Zech, and Elling 2003; Jump, Hunt, and 163 

Penuelas 2006; Knutzen et al. 2017), which increase defoliation (Penuelas and Boada 2003). 164 

However, the low mortality rate observed so far in beech has led some authors to propose that this 165 

species presents a higher heat stress tolerance and metabolic plasticity when compared to other 166 

tree species (García-Plazaola et al. 2008). This apparent paradox between a low mortality and a high 167 

sensitivity to climate makes beech an interesting model species to study. 168 

Study site 169 

La Massane is a forest of 336 ha located in the French eastern Pyrenees ranging from 600 to 1127 170 

m.a.s.l. Located in the south of the beech range, the forest is at the junction of Mediterranean and 171 

mountainous climates with a mean annual rainfall of 1260 mm (ranging from 440 to 2000 mm) and 172 

mean annual temperature of 11°C (with daily temperature ranging from -10°C to 35°C) 173 

(Supplementary Figure S2). No logging operations have been allowed since 1886 and the forest was 174 

classified as a reserve in 1974. European beech is the dominant tree in the canopy representing 175 
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about 68% of basal area of the forest. Beech is in mixture with downy oak (Quercus pubescens Willd), 176 

maple (Acer opalus Mill., Acer campestris L., Acer monspessulanum L.), and holly (Ilex aquifolium L.). 177 

A 10ha fenced plot has excluded grazing from livestock and large herbivores since 1956. All trees 178 

from this protected plot have been geo-referenced and individually monitored since 2002 179 

(Supplementary Figure S3). 180 

We estimated the soil water capacity (SWCa) through soil texture, soil depth and percentage of 181 

coarse elements measured in two soil pits in the protected plot. Secondly, we estimated the mean 182 

Leaf Area Index (LAI) by using hemispherical photographs (Canon 5D with Sigma 8mm EXDG fisheye). 183 

We computed the LAI and clumping index following the methodology described by Davi et al. (2009). 184 

SWCa and LAI were measured at population level. 185 

Individual tree measurements 186 

This study is based on the characterisation of twelve variables in 4323 beech trees in the 187 

protected plot over the period from 2002 to 2016 (Table 1). Note that beech sometimes produces 188 

stump shoots resulting in multiple stems from a single position (coppice). Here about 10% of beechs 189 

occur in coppice, and each stem of all the coppices was individually monitored and subsequently 190 

referred as a “tree”.  191 

  192 
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Table 1: Quantitative (a) and categorical variables (b) measured at individual level. All the variables 193 

were measured in 4323 trees, except for H2002 (1199 trees). The “Cat” column indicates the category 194 

(i.e. size, growth, competition, decline, phenology). The “YMeas.” column indicates the year of 195 

measurement; note that all the variables were measured only once, so when two dates are given 196 

they indicate the period over which the variable is computed. 197 

 198 

 (a) 199 
Code Variable Cat YMeas. mean min max unit 

DBH2002 Diameter at breast height measured 
in 2002 

Size 2002  21.7 10.0 116.0 cm 

DBH2012 Diameter at breast height measured 
in 2012 

Size 2012 22.8 10.0 116.0 cm 

MBAI Mean basal area increment between 
2002 and 2012. 

Growth 2002 
-2012 

4.7 0.0 95.0 cm². 
year-1 

H2002 Height measured in 2002 Size 2002 8.8 2.0 26.0 m 
DEFw Cumulated and weighted defoliation 

score 
Decline 2003- 

2016 
0.1 0.0 1.0  - 

Nstem Number of stems observed in the 
coppice 

Compet 
 

2002 1.5 1.0 11.0  - 

Competintra Intra-specific competition index Compet 
 

2002 2.7 0.0 11.4  - 

Competintra+ Intra-specific competition index 
accounting for within-coppice 
competition  

Compet 
 

2002 1.0 0.0 12.7  - 

Compettot Total competition index, accounting 
for within-coppice competition 

Compet 2002 4.6 0.1 20.0  - 

  200 

(b) 201 
Code Variable Cat YMeas. Level Number of trees 

Fungi Presence (1) or absence (0) of the 
saproxylic fungus 

Decline 2003-2016 1: 
0: 

414 
3913 

Budburst Early (1) or late (0) budburst Phenology 2002 1: 
0: 

237 
4090 

 202 

Tree mortality was recorded every year from 2003 to 2016, based on two observations (in 203 

autumn, based on defoliation and in spring, based on budburst). A tree was considered to have died 204 

at year n when (1) budburst occurred in the spring of year n but (2) no leaves remained in the 205 

autumn of year n, and (3) no budburst occurred in year n+1. All the 4323 trees were alive in year 206 

2003 (Supplementary Figure S4). We computed the annual mortality rate (τn) for each year n as: 207 

τn =
Ndead,n

Nalive,n−1
 (Equation 1), 208 

where Ndead,n (respectively Nalive,n) is the number of dead (respectively alive) trees in year n. 209 

Diameter at breast height (DBH) was measured 1.30 m above ground level in 2002 and 2012. 210 

As we focused on the drivers of mature tree mortality, only trees with DBH2002 greater than 10 cm 211 
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were retained for analysis. Individual growth was measured by the mean increment in basal area 212 

(MBAI) between 2002 and 2012, estimated as:  213 

 214 

MBAI= (π(DBH2012 - DBH2002)²/4)/NyearsAlivei  (Equation 2), 215 

where NyearsAlivei is the number of years where individual i was observed being alive. Height 216 

in 2002 was estimated for a subset of 1199 trees. 217 

A bimodal pattern in budburst phenology had been previously reported in La Massane 218 

(Gaussen 1958; Perci du Sert 1982). Some trees were observed to systematically initiate budburst 219 

about two weeks before all the others. Here, the monitoring allowed budburst phenology to be 220 

surveyed as a binary categorical variable, distinguishing trees with early budburst from the others. 221 

The presence of defoliated major branches was recorded each year between 2003 and 2016 222 

(except 2010) as a categorical measure (DEF = 1 for presence; DEF = 0 for absence). These annual 223 

measures were cumulated and weighted over the observation period for each individual in the 224 

following quantitative variable: 225 

DEFwi =
∑ DEFj
NyearsAlivei
j=1

NyearsAlivei
 (Equation 3), 226 

Year 2010 was not included in NyearsAlivei. DEFw integrates (without disentangling) the 227 

recurrence of defoliation and the ability to recover from defoliation. The presence of fructification 228 

of the saproxylic fungus Oudemansiella mucida (Schrad.) was recorded as a categorical measure 229 

(Fungi = 1 for presence; Fungi = 0 for absence). Given that once observed, the fructification persists 230 

throughout the subsequent years, we analysed it as a binary variable. 231 

Competition around each focal beech stem was estimated by the number of stems in the 232 

coppice (Nstem) as an indicator of within-coppice competition. We also computed competition 233 

indices accounting simultaneously for the diameter (DBH2002) and the distance (dij) of each 234 

competitor j to the competed individual i, following Martin and Ek (1984):  235 

Competi,dmax =
1

DBH2002i
∑ DBH2002jexp [

−16dij

DBH2002i+DBH2002j
]

Ncompet

j=1
 (Equation 4), 236 

where Ncompet is the total number of competitors in a given radius dmax (in m) around each focal 237 

individual i. Only trees with DBH2002> DBH2002 i are considered as competitors. Such indices were 238 

shown to describe more accurately the competition than indices relying on diameter only (Stadt et  239 

al. 2007). We computed this competition index in three ways. The intra-specific competition index 240 

Competintra only accounts for the competition of beech stems not belonging to the coppice of the 241 
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focal tree. The intra-specific competition index Competintra+ accounts for all beech stems belonging, 242 

or not, to the coppice of the focal tree. The total competition index Compettot accounts for all stems 243 

and species. We considered that stems located less than 3 m away from the focal stem belonged to 244 

the same coppice. The three indices were first computed at all distances from 1 m (or 3 m for 245 

Competintra) to 50 m from the target tree, with 1 m steps. We retained dmax = 15 m in subsequent 246 

analyses, because all indices plateaued beyond this threshold value, suggesting that in a radius 247 

greater than 15 m, the increasing number of competitors is compensated for by distance. 248 

Climate data 249 

Local climate has been daily monitored in situ since 1976 and 1960 for temperature and 250 

precipitation/mean relative humidity, respectively. In order to obtain a complete climatic series 251 

(from 1959 to 2016), we used the quantile mapping and anomaly method in the R package 252 

“meteoland” (De Caceres et al. 2018), considering the 8-km-resolution-SAFRAN reanalysis (Vidal et 253 

al. 2010) as reference.  254 

From the corrected climate series, we derived the daily climatic input variables for CASTANEA, 255 

which are the minimum, mean and maximum temperatures (in °C), the precipitation (mm), the wind 256 

speed (m.s-1), the mean relative humidity (%) and the global radiation (MJ.m-²).  257 

Simulations with CASTANEA 258 

Model overview: CASTANEA is a PBM initially developed to simulate carbon and water fluxes in 259 

forest ecosystems with no spatial-explicit representation of trees (Dufrêne et al. 2005). A tree is 260 

abstracted as six functional elements: leaves, branches, stem, coarse roots, fine roots and reserves 261 

(corresponding to non-structural carbohydrates). The canopy is divided into five layers of leaves. 262 

Photosynthesis is half-hourly calculated for each canopy layer using the model of Farquhar et al. 263 

(1980), analytically coupled to the stomatal conductance model proposed by Ball et al. (1987). 264 

Maintenance respiration is calculated as proportional to the nitrogen content of the considered 265 

organs (Ryan 1991). Growth respiration is calculated from growth increment combined with a 266 

construction cost specific to the type of tissue (De Vries, Brunsting, and Van Laar 1974). 267 

Transpiration is hourly calculated using the Monteith (1965) equations. The dynamics of soil water 268 

content (SWCo; in mm) is calculated daily using a three-layer bucket model. Soil drought drives 269 

stomata closure via a linear decrease in the slope of the Ball et al. (1987) relationship, when relative 270 

SWCo is under 40% of field capacity (Granier, Biron, and Lemoine 2000; Sala and Tenhunen 1996). 271 

In the carbon allocation sub-model (Davi et al., 2009; Davi & Cailleret 2017), the allocation 272 
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coefficients between compartments (fine roots, coarse roots, wood, leaf and reserves) are 273 

calculated daily depending on the sink force and the phenological constraints. CASTANEA model was 274 

originally developed and validated at stand-scale for beech (Davi et al. 2005). 275 

Focal processes and output variables: In this study, we focussed on three response variables 276 

simulated by CASTANEA: (1) the percentage loss of conductance (PLC) as an indicator of vulnerability 277 

to hydraulic failure; (2) the number of late frost days (NLF) as an indicator of vulnerability to frost 278 

damage; and (3) the biomass of reserves (BoR) as an indicator of vulnerability to carbon starvation. 279 

Note that we did not simulate mortality with CASTANEA because the thresholds in PLC, NLF and BoR 280 

triggering mortality are unknown. These variables were simulated using the CASTANEA version 281 

described in Davi and Cailleret (2017) with two major modifications. First, for budburst, we used the 282 

one-phase UniForc model, which describes the cumulative effect of forcing temperatures on bud 283 

development during the ecodormancy phase (Chuine, Cour, and Rousseau 1999; Gauzere et al. 284 

2017). We simulated damage due to late frosts (see details in Appendix 1) and considered that trees 285 

were able to reflush after late frosts. We calculated NLF as the sum of late frost days experienced 286 

after budburst initiation.  287 

Second, we implemented a new option in CASTANEA to compute PLC following the formula of 288 

Pammenter and Willigen (1998): 289 

PLC =
1

1+eslope(Ψleaf−ΨP50)
 (Equation 5), 290 

with Ψleaf (MPa) the simulated midday leaf water potential, Ψ50 (MPa) the species-specific 291 

potential below which 50% of the vessels are embolized, and slope a constant fixed to 50.  292 

The leaf water potential Ψleaf was calculated as:  293 

Ψleaf(t + 1) = Ψsoil(t + 1) −
TR

3600
× RSoilToLeaves +

Ψleaf(t)

Ψsoil(t + 1) + TR × RSoilToLeaves
294 

× e
deltaT

RSoilToLeaves×CapSoilToLeaves  295 

(Equation 6), 296 

where the soil water potential (Ψsoil MPa) was calculated from daily SWCo (Campbell 1974). Ψleaf 297 

was calculated hourly (deltaT = 3600s) based on the sap flow (TR in mmol.m-2.leaf-1) simulated 298 

following the soil-to-leaves hydraulic pathway model of Loustau et al. (1990). We used a single 299 

resistance (RSoilToleaves in MPa.m2.s1.kg-1, following Campbell 1974) and a single capacitance 300 

(CapSoilToleaves in kg.m-2.MPa-1) along the pathway. RSoilToleaves was assessed using midday and predawn 301 

water potentials found in the literature. 302 
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We added a binary option in CASTANEA to simulate branch mortality and defoliation as a 303 

function of PLC. In our case, when defoliation capability was added to the simulation with the 304 

option, we traduced the loss of leaves by reducing the LAI of the simulated tree. If the PLC at year n 305 

was >0, the LAI at year n was reduced by the PLC value for trees able to defoliate (option “Defoli-306 

able”). Otherwise, PLC has no consequences on LAI (no defoliation possible). 307 

 308 

Simulation design: The aim of the first simulations was to investigate whether response variables 309 

simulated by CASTANEA correlated with patterns of observed mortality  in the studied population. 310 

We simulated a population of 100 trees representing the variability in individual characteristics 311 

observed in La Massane in terms of height-diameter allometry, DBH, leaf area index and budburst 312 

phenology (Appendix 1). We also simulated a range of environmental conditions representing the 313 

observed variability in SWCa and tree density. We also used this first simulation to validate 314 

CASTANEA based on the correlation between simulated and observed ring width (Appendix 1). 315 

For this first simulation, the values of focal output variables (BoR, PLC and NLF) were averaged across 316 

the 100 trees. We also computed a cumulated vulnerability index (CVI) for each year n combining 317 

the simulated BoR, PLC and NLF as follows: 318 

CVIn = (
PLCn

max(PLC)
+

NLFn

max(NLF)
) −

BoRn

max(BoR)
 (Equation 7), 319 

Note that each term is weighted by its maximal value across all years, so that the contribution of 320 

the three drivers to vulnerability is balanced. The possible range of CVI is [-1; 2].  321 

The second set of simulations aimed at investigating the differences in physiological responses 322 

between individuals with different characteristics. We simulated eight individuals corresponding to 323 

a complete cross design with two size categories (5 and 40 cm in DBH), two budburst types (early 324 

and normal), and two defoliation levels (option “Defoli-able” activated or not). 325 

Statistical models of mortality to explore individual drivers of mortality 326 

We used logistic regression models to investigate how tree characteristics affect the individual 327 

probability of mortality (Pmortality). This approach is appropriate for a binary response variable and a 328 

mixture of categorical and quantitative explanatory variables, which are not necessarily normally 329 

distributed (Hosmer and Lemeshow 2000). We considered the following four full logistic 330 

regression models, which differ for the competition variable (separated below by "OR"): 331 

 332 
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Pmortality ~ [DEFw + Fungi + Budburst+ MBAI + (Nstem OR Competintra OR Competintra+ OR 333 

Compettot)] × (DBH2002 + DBH2002²) (Equation 8) 334 

 335 

where the predictors defoliation (DEFw), growth (MBAI), size (DBH2002) and competition (Nstem or 336 

the Compet indices) were quantitative variables, and the presence of fungi (Fungi) and budburst 337 

phenology (Budburst) were categorical variables. We included both a linear and quadratic effect of 338 

DBH2002 by specifying this effect as a polynomial of second degree. Interaction effects of the previous 339 

predictors with this polynomial were included.  340 

All variables were scaled before fitting the models. To select the best model depending on the 341 

choice of competition variable, we first fitted the full model described by equation 8 with each 342 

competition variable successively (Appendix 3). Then, we used the R package “MuMin” to compare 343 

and select the most parsimonious model among the four studied, based on AIC (Bartoń 2020).. Once 344 

de best competition variable chosen, our objective was to understand factors related to mortality 345 

rather than to achieve the best prediction, so we kept all the variables as recommended by Heinze 346 

et al. (2018) and Lederer et al. (2019). Model validity was checked based on the leverage points (i.e. 347 

points having a greater weight than expected by chance) with the Cook's distance (Cook distance < 348 

0.5 indicate no leverage). We evaluated the goodness-of-fit with the Brier test score (Brier 1950). 349 

We evaluated the sensitivity and specificity of the model using the receiver operating characteristic 350 

(ROC) curve. 351 

Collinearity resulting from correlations between predictor variables is expected to affect the 352 

statistical significance of correlated variables by increasing type II errors (Schielzeth 2010). To 353 

evaluate this risk, we first checked for correlation among predictors included in equation 9 (Figure 354 

S5). We also computed the variation inflation factor (VIF) with the R package “car”. A threshold of 355 

the generalized VIF (GVIF) < 2 is commonly accepted to show that variables are not excessively 356 

correlated and do not make the model unstable.  357 

We expressed the results in terms of odds ratios, indicating the degree of dependency 358 

between variables. For instance, the odds ratio for mortality as a function of budburst characteristics 359 

(early vs normal) is: 360 

OddsRatioEarly.vs.Normal =
Od𝑑𝑠Early

Od𝑑𝑠Normal
 (Equation 9), 361 

 362 
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With OddsEarly =
Pmortality(Early)

1−Pmortality(Early)
  and OddsNormal =

Pmortality(Normal)

1−Pmortality(Normall)
. 363 

 364 

We computed odds ratios with “questionr” the R package (Barnier, Briatte, and Larmarange 2018). 365 

The interactions were visualized with the package “jtools” (Long 2018). 366 

Results 367 

Temporal variations in population mortality rate in relation to physiological vulnerability 368 

simulated with CASTANEA.  369 

We found a significant positive correlation between observed and simulated ring widths (p-370 

value << 0.01). Although CASTANEA tended to overestimate growth at the beginning of the 371 

simulated period, and simulated a decreasing trend in growth over time bigger than that in the 372 

observations. This is likely to be due to a bad estimation of population density prior to the 373 

monitoring period (see details in Appendix 1).  374 

The cumulated mortality rate between 2004 and 2016 was 23% (Figure 2; Table S1). After 2004 375 

(2.6%), two peaks of high annual mortality were observed, in 2006-2007 (3.3% in 2006) and in 2010 376 

(2.9%). The lowest annual mortality rate was observed in 2008 (0.8%).  377 

CASTANEA simulated inter-annual variations in the percent loss of conductance (PLC): the 378 

mean PLC value varied among years, from 10% in 2004 and 2005 to 31% in 2006 (Figure 2a). The 379 

mean simulated biomass of carbon reserves (BoR) varied among years, from 51 gC.m-² in 2006 to 380 

354 gC.m-² in 2011. Finally, the number of late frost days (NLF) varied among years, from 0.2 in 2016 381 

to 7.56 days in 2010 (Figure 2c). The variation in the cumulative vulnerability index (CVI) integrated 382 

these different responses (Figure 2d), showed a peak in 2006 (drought), in 2010 (late frost) and in 383 

2012 (combination of frost and drought). 384 

None of the response variables simulated by CASTANEA (NLF, PLC, BoR) was alone significantly 385 

correlated to annual variation in mortality rate. However, a significant correlation was observed 386 

between CVI and the annual mortality rate (r = 0.58, p-value = 0.04). Hence, inter-annual variations 387 

in CVI were a good predictor of the mortality rate, except in year 2007. Besides the stress-related 388 

variables simulated with CASTANEA, we also investigated the effects of climatic variables on inter-389 

annual variations in mortality rates using a beta-regression model (Appendix 2). We considered 390 

drought indices computed from climatic series, and this approach confirmed the effect of drought 391 

on mortality.  392 
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Figure 2: Stress-related output variable simulated with CASTANEA from 2004 to 2016: (a) 393 

percentage loss of conductance (PLC); (b) biomass of reserves in gC.kg-1 (BoR); (c) number of late 394 

frost days (NLF); (d) Cumulated vulnerability index (CVI) integrating a, b and c. The black line is the 395 

mean of simulation, and the grey area represents the inter-individual variation from the 1st to the 396 

3rd quartile. The yellow line is the mortality rate observed in La Massane. 397 

 398 

 399 

Inter-individual variation in vulnerability simulated with CASTANEA  400 

Simulations with CASTANEA showed that inter-individual differences in tree size, phenology, 401 

and defoliation, together with the intensity of climatic stress, affected the physiological responses 402 

to stress. The magnitude of the individual effects of each variable on tree vulnerability differed 403 
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during a drought year (2006), a frost year (2010) and a good year (2008, 2014 or 2016; Figure 3). 404 

The loss of conductance was higher for trees with early budburst and for larger trees, but this effect 405 

was only evident in drought years (Figure 3a). Moreover, during drought, the ability to defoliate 406 

decreased the risk of cavitation (Figure 3a) but increased the risk of carbon starvation (Figure 3b). 407 

By contrast, phenology only poorly affected the biomass of reserve (BoR): even during a frost year, 408 

trees with earlier budburst did not reduce their BoR, due to their ability to reflush (Figure 3b). BoR 409 

was always lower for large tree, even without stress (Figure 3b). This was expected, because there 410 

is no explicit competition for light in CASTANEA. Hence large trees and small trees have a relatively 411 

similar photosynthesis when it is scaled by soil surface (large trees photosynthesise slightly more 412 

because they have a stronger LAI). Large trees, on the other hand, have a larger living biomass and 413 

thus a higher level of respiration, which leads to lower reserves (Table S2). 414 

 415 

  416 
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Figure 3: Physiological proxies of vulnerability simulated for eight trees differing in size, 417 

defoliation and budburst phenology. We focus on three key years: 2006 (drought); 2008 (no stress); 418 

2010 (late frosts). Colours indicate the DBH at the beginning of the simulation: 5 cm (light blue) 419 

versus 40 cm (dark green). Triangles (respectively round) indicate individuals with early (respectively 420 

“normal”) budburst. Empty (respectively full) indicate individuals able (respectively not able) to 421 

defoliate. PLC: percentage of loss conductance; BoR: biomass of reserves. 422 

 423 

 424 

  425 
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Figure 4:  Interaction effects in the logistic regression model for individual mortality rates (a) 426 

between diameter (DBH2002) and weighted defoliation (DEFw). (b) between DBH2002 and the mean 427 

growth in basal area (MBAI). Regression lines are plotted for three values of DBH2002, corresponding 428 

to ± 1 standard deviation (10.7 cm) from the mean (22 cm). Confidence intervals at 95% are shown 429 

around each regression line. 430 

 431 

 432 

  433 
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Inter-individual variation in the probability of mortality  434 

Among the four models tested, the more parsimonious one was the one with the variable of 435 

competition Nstem. All the variables listed in equation 8 had significant main effects on the 436 

probability of mortality, except DBH in its linear form (Table 2). This model explained 49% of the 437 

observed mortality and had both a good validity and goodness-of-fit (Appendix 3). However, the 438 

GVIF1/2df score for DBH was superior to 2 meaning that the collinearity with other variables was high, 439 

which we interpret as a consequence of the high number of interactions tested and not significant. 440 

Defoliation had the strongest linear effect on mortality: the relative probability of mortality 441 

increased by 1020 times for a one-unit increase in DEFw. Then, the relative probability of mortality 442 

was 2.26 higher for trees with earlier budburst as compared to others, and 1.88 higher for trees 443 

bearing fungi fructifications as compared to others. The relative probability of mortality increased 444 

with increasing Nstem, and decreased with increasing MBAI. Regarding the effect of tree size, the 445 

polynomial of degree 2 corresponded to a U-shape and traduced a higher relative probability of 446 

mortality for both the smaller and the larger trees (In addition, this calibration is based on the mean 447 

of the individuals' 2, Appendix 3). 448 

 449 

Table 2: Effects of tree characteristics on the individual tree’s probability of mortality. Variables 450 

are defined in Table 1. Effects were estimated with a logistic regression model (equation 8). β is the 451 

maximum likelihood estimate, with its estimated error (SE), z-value, and associated p-value. OR is 452 

the odds ratio. 453 

 454 

Variables β SE z value p-value OR 

DEFw 6.93 0.26 26.30 <0.0001 1.02 103 
Fungi 0.63 0.16 3.96 <0.0001 1.88 
Budburst 0.82 0.17 4.71 <0.0001 2.26 
MBAI -0.45 0.08 -5.58 <0.0001 0.64 
Nstem 0.13 0.04 3.44 <0.0001 1.14 
DBH2002 -9.19 8.16 -1.13 0.26 1.02 10-4 

DBH2002
2 21.32 9.32 2.29 0.02 1.81 109 

DEFw:DBH2002 -49.71 15.51 -3.20 5.91 10-4 2.57 10-22 
DEFw:DBH2002

2 32.97 17.08 1.93 0.05 2.08 1014 
Fungi:DBH2002 -11.33 8.69 -1.30 0.19 1.21 10-5 
Fungi:DBH2002

2 -0.44 8.51 -0.05 0.96 0.65 
Budburst:DBH2002 0.27 10.41 0.03 0.98 1.31 
Budburst:DBH2002

2 -3.11 12.19 -0.26 0.80 4.46 10-2 
MBAI:DBH2002 2.89 3.37 0.86 0.39 18.10 
MBAI:DBH2002

2 -6.18 3.34 -1.85 0.06 2.07 10-3 
Nstem:DBH2002 1.32 4.12 0.32 0.75 3.76 
Nstem:DBH2002

2 0.00 4.88 0.00 1.00 1.00 
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Interaction effects between diameter and defoliation on mortality were significant: the 455 

relative probability of mortality increased more rapidly with DEFw for small rather than larger trees, 456 

and at an equal level of defoliation, the probability of mortality was always higher for smaller trees 457 

(Figure 4a, Table 2). Interaction effects between DBH2002
2 and growth on mortality were also 458 

significant: the decrease in the relative probability of mortality with increasing mean growth was 459 

evident mostly for small trees (Figure 4b). These results were robust whatever the choice of the 460 

competition variable (Nstem versus competition indices), or the choice of the size variable (height 461 

instead of diameter) and the choice of considering size (DBH2002) as a quantitative or a categorical 462 

variable (Appendix 3). Finally, we obtained similar results with an alternative approach (survival 463 

analysis) which account simultaneously for both levels of variability (individual and temporal) in our 464 

data set (Appendix 4). 465 

 466 

 467 

Table 3: Summary of the main effects of the studied variables on mortality. 468 

NLF: number of late frost days; PLC= percentage of loss conductance; BoR: Biomass of reserve 469 

 470 

Temporal variations in the population mortality rate. 

Simulated 

variables 

Related climate 

stress 
Process-based model 

NLF late frost Not directly correlated with the observed mortality rate 

PLC drought Not directly correlated with the observed mortality rate 

BoR late frost and drought Not directly correlated with the observed mortality rate 

CVI PLC + NLF - BoR Positively correlated with the observed mortality rate 

Inter-individual variations in tree’s probability of mortality 

Variables Statistical model Process-based model 

Crown defoliation 
Associated to a strong increase in 

mortality, especially for small trees 

Associated to a lower BoR but also to 

a lower PLC 

Size (DBH) 
The smallest and the largest trees had 

a higher mortality 

Large trees had always a lower BoR, 

and a higher PLC in drought year  

Growth (MBAI) 
Fast-growing trees had a lower 

mortality (evident only for small trees) 
Not tested 

Budburst phenology 
Tree with earlier budburst had a higher 

mortality 

Tree with earlier budburst had a lower 

PLC in drought year  

Competition (Nstem) 
Increasing competition was associated 

to a higher mortality 
Not tested 

Presence of fungi Tree with fungi had a higher mortality Not tested 

 471 

 472 
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Discussion 473 

By comparing statistical and process-based models, this study shed new light on the inter-474 

annual and inter-individual variability of mortality in a drought- and frost-prone beech population. 475 

We showed that mortality in this marginal population is triggered by a combination of climatic 476 

factors, and that the vulnerability to drought and frost is modulated by several individual 477 

characteristics (defoliation, vegetative phenology, growth, size, competitors), as summarized in 478 

Table 3.  479 

The rate of mortality increased in response to drought and late frosts 480 

The annual mortality rates observed in this study ranged between 0.7 and 3.3% (mean value 481 

= 2%). This is at the upper range of the few mortality estimates available for beech. Hülsmann et al. 482 

(2016) reported annual mean rates of mortality of 1.4%, 0.7% and 1.5% in unmanaged forests of 483 

Switzerland, Germany and Ukraine, with a maximum mortality rate of 2.2%. Archambeau et al. 484 

(2019) estimated even lower mortality rates (mean annual value = 3.8 10-3%, range = 3.7 10-3% to 485 

3.8 10-3%) from European forest inventory data (including managed and unmanaged forests). 486 

Overall, these mortality rates are low when compared to other tree species; for instance, according 487 

to the French national forest inventory, the average mortality is 0.1% for beech against 0.3% on 488 

average for other species and 0.4% for spruce or 0.2% for silver fir (IFN 2016). The relatively high 489 

value of natural mortality observed here may result from the absence of management (which 490 

resulted in high tree density), combined with the population location being at the dry, warm margin 491 

of species distribution (Figure S1), where most population extinctions are expected in Europe 492 

(Thuiller et al. 2005). However, we cannot rule out that the size threshold in inventories, which differ 493 

between studies, also affects these different mortality estimates (e.g., a higher frequency of smaller 494 

trees increases the mortality rate).  495 

We showed that inter-annual variations in the observed mortality rate  in our studied 496 

population were significantly associated with variations in the cumulative vulnerability index (CVI) 497 

integrating the number of late frost days (NLF), the percentage loss of conductance (PLC) and the 498 

biomass of carbon reserves (BoR) simulated by CASTANEA. We found no correlation when the three 499 

response variables simulated by CASTANEA were considered separately, highlighting that patterns 500 

of mortality in beech are driven by a combination of drought and late-frost stresses. In particular, 501 

simulations showed that in 2010 (a year without drought), the high mortality rate coincided with an 502 

extreme late frost event. This is consistent with the study of Vanoni et al (2016), which showed that 503 
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both drought and frost could contribute to beech mortality. Our results also support the emerging 504 

consensus that mortality at dry, warm margins is not due either to carbon starvation or hydraulic 505 

failure, but is rather the result of a balance of all these responses (e.g. McDowell et al. 2011; Sevanto 506 

et al. 2014). 507 

In future developments, the CVI could be refined in several ways. Its different components 508 

could be weighted based on ecophysiological knowledge. The CVI could also benefit from taking into 509 

account the temporal dynamics of mortality, such as the existence of positive or negative post-510 

effects across years. The number of years of observations in this study did not allow to account for 511 

these lagged effects, which probably explains why the CVI failed to predict the high mortality 512 

observed in 2007. Indeed, the high mortality in 2007 was probably due to the lagged effect of the 513 

2006 drought. Such lags between the weakening of a tree and its final death were shown for beech 514 

in Vanoni (2016) and silver fir in Davi & Cailleret (2017). 515 

The vulnerability to drought and frost varied among individuals 516 

The large number of trees individually monitored each year provided us with an exceptionally 517 

large sample size to test the inter-individual vulnerability to climatic hazards (drought and late frost) 518 

and to biotic pressures (competition and the presence of a fungus). Firstly, we found that a higher 519 

mean growth was associated with a lower probability of mortality, as previously demonstrated 520 

(Cailleret and Davi 2011; Gao et al. 2018). This decrease in mortality with increasing mean growth 521 

was evident mostly for small trees as already reported in beech seedlings (Collet and Le Moguedec 522 

2007) and other species (Kneeshaw et al. 2006; Lines, Coomes, and Purves 2010), but not in adult 523 

beech trees to our knowledge.  524 

Secondly, we found that increased defoliation was associated with increased mortality. This 525 

result was expected from previous studies (Dobbertin and Brang 2001, Carnicer et al. 2011), 526 

although the consequences of defoliation are still being debated for beech. Senf et al. (2018) 527 

showed that defoliation was associated with tree decline, while Bauch et al., (1996) and Pretzsch 528 

(1996) found that the growth of highly defoliated beech trees did not decrease and could even 529 

increase in some cases. Our simulations comparing trees able, or not, to defoliate, shed light on the 530 

multiple effects of defoliation on mortality. These simulations showed that defoliation decreased 531 

carbon reserves in good years but could also limit the loss of hydraulic conductance during dry years. 532 

Furthermore, we observed a significant interaction between defoliation and tree size on mortality, 533 

showing that small trees were more vulnerable to mortality in response to defoliation than large 534 
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trees. However, we cannot rule out that this effect is due in part to the categorical method used to 535 

survey defoliation, which does not take into account the percentage of crown loss. Hence, 536 

defoliation may be biased with respect to size, such that small and defoliated trees will on average 537 

have a higher proportion of canopy loss, and therefore be more impacted than large and defoliated 538 

trees.  539 

Thirdly, both statistical and process-based approaches found that trees with early budburst 540 

were more prone to die. By contrast, Robson et al. (2013) showed that trees with early budburst 541 

were not more vulnerable to mortality, but rather grew better, consistent with our simulations 542 

where trees with early budburst accumulate more reserves during good years. This discrepancy may 543 

be due to the location of our studied population at the rear-edge of beech distribution, where earlier 544 

budburst dates may expose trees to a higher risk of late frost.  We can hypothesize that early 545 

budburst trees have been maintained in this population until now because they grow better in the 546 

"good" years, and therefore, are more likely to become dominant tree and have abundant 547 

reproduction. In CASTANEA simulations, the higher vulnerability of early trees resulted rather from 548 

a higher risk of hydraulic failure than from a higher impact of late frosts. This is because trees with 549 

early budburst have a longer vegetation season and they develop their canopies faster, which also 550 

increases their water needs due to the increase of transpiration. Altogether, the relationships 551 

between phenology and mortality deserve further investigation, especially since the spatio-552 

temporal variation of budburst patterns under climate change may produce complex spatio-553 

temporal patterns of stresses (Vanoni et al. 2016).  554 

Regarding the effect of size, the results differed between the statistical approach, where large 555 

trees died less than small ones, and the simulations, which predicted a greater vulnerability to 556 

drought of large trees. There may be several explanations for this discrepancy. The first reason is 557 

that CASTANEA simulates an average tree without explicit competition for light and water; hence 558 

not accounting for the higher observed background mortality in small trees as compared to large 559 

ones. In addition, CASTANEA also does not account for individual dominance status, which can affect 560 

the current carbon balance of a tree and hence its capacity to mitigate stress. In the studied 561 

population, large trees are more likely to be dominant, with better access to light resources 562 

promoting carbon accumulation, as compared to small trees, which are more likely to be 563 

suppressed. Another reason is that tree size may vary with environmental factors in the studied 564 

population, such that large trees have a tendency to occur on better soils. Therefore, the size effect 565 
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observed through the statistical approach may reveal the confounding effect of spatial soil 566 

heterogeneity, not taken into account in the PBM. A measurement of water availability at individual 567 

tree level would be necessary to address this issue but was out of the scope of this study. 568 

Comparing statistical and process-based approaches allow to identify the causes of tree 569 

vulnerability 570 

These two approaches illustrate the classical compromise between a fine understanding of 571 

physiological mechanisms driving mortality, with complex and expensive PBMs, versus efficient 572 

precision in local mortality predictions, with statistical models requiring less data, but having a 573 

weaker ability to generalize proximal causes. Most often, studies adopt either of the two 574 

approaches, and generally statistical approaches prevail (Hülsmann et al. 2016; Seidl et al. 2011). 575 

However, the two approaches are highly complementary, and combining them allows to decipher 576 

the respective roles of the drivers and mechanisms underlying tree mortality and to understand 577 

their variability among individuals or years (Hawkes 2000; O’Brien et al. 2017; Seidl et al. 2011). The 578 

two approaches can be compared at the individual level, as this study does, or they can be 579 

combined, as when we analysed the correlation between the observed mortality rate and simulated 580 

stress response variables. An upper level of integration would be inverse modelling, where observed 581 

mortality rates could be used to infer the physiological thresholds (e.g. in BoR, PLC and NLF) likely 582 

to trigger mortality (Davi & Cailleret 2017; Cailleret et al., 2020). 583 

This study illustrated a classical difficulty in combining statistical and process-based 584 

approaches, related to the difference between observed variables and PBM parameters. For 585 

instance, the comparison of defoliated and non-defoliated trees does not have exactly the same 586 

meaning when using CASTANEA and the statistical approach. In CASTANEA, we compared trees, able 587 

versus unable to defoliate, while these average trees shared on average the same edaphic 588 

conditions. In the statistical approach, we compared trees with different levels of defoliation, but 589 

which also probably did not share the same edaphic and biotic conditions. Defoliation was thus also 590 

likely to be an indicator of the fertility of the environment, such that on shallow soils, defoliation 591 

was stronger and the probability of mortality increased. Hence, the correlation does not necessarily 592 

involve a causal relationship between defoliation and mortality.  593 

The major benefit of our approach combining different approaches (statistical, process-based) 594 

at different scales (forest stand, individual) is to allow to relate the ecological patterns observed at 595 

an upper scale (forest stand, multi-year period) with the patterns observed at a lower scale where 596 
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processes operate (individual, year). This ability to aggregate/disaggregate patterns is 597 

acknowledged as a powerful approach to understand apparent contradictions between patterns 598 

observed at different scales (Clark et al. 2011). There are however some limitations to the 599 

approaches we used here. First, none of them could fully account for the non-independence of 600 

climatic effects on mortality between years. Indeed, the effect of climatic variables at a given year 601 

may depend on other variables expressed in previous years. This was observed in beech, where 602 

several drought years finally led to a growth decline (Jump et al. 2006; Knutzen et al. 2017; Vanoni 603 

et al. 2016) or a modification in sap flow (Hesse et al. 2019). Moreover, the processes driving 604 

mortality may change through time as the most sensitive individuals are progressively eliminated, 605 

and/or the surviving trees become less and less sensitive (i.e. acclimation Niinemets 2010). Finally, 606 

the statistical model at the individual level could not fully make use of the repeated measurements 607 

of mortality over the years, partly because other individual variables were measured only once over 608 

the study period (except defoliation). Survival analyses could unfortunately not fully address this 609 

limitation (Appendix 4), and the development of a finely tuned Bayesian approach was out of the 610 

scope of this study. Besides methodological improvements, another extension to the present study 611 

would be to combine statistical and process-based approaches at a larger spatial scale, among 612 

populations across climatic gradients. This would allow the investigation of whether the respective 613 

drought and late frost sensitivity differ between the rear, core and leading edge of species 614 

distribution, as suggested by Cavin and Jump (2017). 615 

Data accessibility 616 

The data set analysed in this preprint is available online under the zenodo repository 617 

(https://doi.org/10.5281/zenodo.3519315). Raw data can be obtained from JG, JAM and CH. 618 

Supplementary material 619 

The process-based model CASTANEA is an open-source software available on capsis website: 620 

http://capsis.cirad.fr/ 621 

Supplementary materials (Figures and Tables) for this preprint are available on bioRxiv (XXX). 622 

Author Contributions 623 

JAM, JG, CH and EM measured and mapped all the trees. CPC performed the wood core analyses. 624 

CPC, FL and SOM designed and ran the statistical models. CPC and HD ran the PBM. CPC drafted the 625 

manuscript, and all authors contributed to its improvement. 626 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.3519315
http://capsis.cirad.fr/
https://doi.org/10.1101/645747


 

26 

 

Acknowledgments 627 

We are grateful to M. Cailleret, B. Fady, and N. Martin Saint Paul for discussions and comments on 628 

a previous version of this manuscript. We thank E.Walker and F.Bonneu for statistical discussions 629 

and advices, N. Mariotte for wood core sampling, and F. Guibal for their analyses. SOM and HD were 630 

funded by the EU ERA-NET BiodivERsA projects TIPTREE (BiodivERsA2-2012-15) and the ANR project 631 

MeCC (ANR-13-ADAP-0006). CP received funding from the European Union’s Horizon 2020 research 632 

and innovation programme under grant agreement No. 676876 (GenTree).  633 

Conflict of interest disclosure 634 

The authors of this preprint declare that they have no financial conflict of interest with the content 635 

of this article. SOM is one of the PCIEcology recommenders. 636 

References 637 

Adams, Henry D. et al. 2017. “A Multi-Species Synthesis of Physiological Mechanisms in Drought-638 

Induced Tree Mortality.” Nature Ecology and Evolution 1(9):1285–91. 639 

Akaike, Hirotugu. 1987. “Factor Analysis and AIC.” Pp. 371–86 in. Springer, New York, NY. 640 

Allen, Craig D. et al. 2010. “A Global Overview of Drought and Heat-Induced Tree Mortality Reveals 641 

Emerging Climate Change Risks for Forests.” Forest Ecology and Management 259(4):660–642 

84. 643 

Anderegg, W. R. L. et al. 2012. “From the Cover: The Roles of Hydraulic and Carbon Stress in a 644 

Widespread Climate-Induced Forest Die-Off.” Proceedings of the National Academy of 645 

Sciences 109(1):233–37. 646 

Anderegg, William R. L. 2015a. “Spatial and Temporal Variation in Plant Hydraulic Traits and Their 647 

Relevance for Climate Change Impacts on Vegetation.” New Phytologist 205(3):1008–14. 648 

Anderegg, William R. L. et al. 2015b. “Tree Mortality from Drought, Insects, and Their Interactions 649 

in a Changing Climate.” New Phytologist 208(3):674–83. 650 

Archambeau, Juliette et al. 2019. “Similar Patterns of Background Mortality across Europe Are 651 

Mostly Driven by Drought in European Beech and a Combination of Drought and 652 

Competition in Scots Pine.” Agricultural and Forest Meteorology, 2020, vol. 280, p. 107772. 653 

Arnold, Todd W. 2010. “Uninformative Parameters and Model Selection Using Akaike’s 654 

Information Criterion.” Journal of Wildlife Management 74(6):1175–78. 655 

Augspurger, Carol K. 2009. “Spring 2007 Warmth and Frost: Phenology, Damage and Refoliation in 656 

a Temperate Deciduous Forest.” Functional Ecology 23(6):1031–39. 657 

Ball, J. Timothy, Ian E. Woodrow, and Joseph A. Berry. 1987. “A Model Predicting Stomatal 658 

Conductance and Its Contribution to the Control of Photosynthesis under Different 659 

Environmental Conditions.” Pp. 221–24 in Progress in photosynthesis research. Springer. 660 

Barnier, Julien, François Briatte, and Joseph Larmarange. 2018. “Questionr: Functions to Make 661 

Surveys Processing Easier.” 662 

Bartoń, Kamil. 2020. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-663 

project.org/package=MuMIn 664 

Bauch, Josef. 1986. “Characteristics and Response of Wood in Declining Trees from Forests 665 

Affected by Pollution.” IAWA Journal 7(4):269–76. 666 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747


 

27 

 

Beguería, Santiago and Sergio M. Vicente-Serrano. 2017. “SPEI: Calculation of the Standardised 667 

Precipitation-Evapotranspiration Index.” 668 

Benito Garzón, Marta et al. 2018. “The Legacy of Water Deficit on Populations Having Experienced 669 

Negative Hydraulic Safety Margin.” Global Ecology and Biogeography 27(3):346–56. 670 

Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J., Reyer, C. P., ... & Hartig, F. 671 

2020. Towards a new generation of trait-flexible vegetation models. Trends in Ecology & 672 

Evolution, 35(3), 191-205. 673 

Bigler, Christof and Harald Bugmann. 2018. “Climate-Induced Shifts in Leaf Unfolding and Frost 674 

Risk of European Trees and Shrubs.” Scientific Reports 8(1):1–10. 675 

Brando, Paulo Monteiro et al. 2014. “Abrupt Increases in Amazonian Tree Mortality Due to 676 

Drought-Fire Interactions.” Proceedings of the National Academy of Sciences of the United 677 

States of America 111(17):6347–52. 678 

Bréda, Nathalie, Roland Huc, André Granier, and Erwin Dreyer. 2006. “Temperate Forest Trees and 679 

Stands under Severe Drought : A Review of Ecophysiological Responses , Adaptation 680 

Processes and Long-Term Consequences.” Annals of Forest Science 63(6):625–44. 681 

Brier, Glenn W. 1950. “Verification of Forecasts Expressed in Terms of Probability.” Monthey 682 

Weather Review 78(1):1–3. 683 

De Caceres, Miquel, Nicolas Martin-StPaul, Marco Turco, Antoine Cabon, and Victor Granda. 2018. 684 

“Estimating Daily Meteorological Data and Downscaling Climate Models over Landscapes.” 685 

Environmental Modelling and Software 186–96. 686 

Cailleret, Maxime et al. 2017. “A Synthesis of Radial Growth Patterns Preceding Tree Mortality.” 687 

Global Change Biology 23(4):1675–90. 688 

Cailleret, Maxime and Hendrik Davi. 2011. “Effects of Climate on Diameter Growth of Co-Occurring 689 

Fagus Sylvatica and Abies Alba along an Altitudinal Gradient.” Trees 25(2):265–76. 690 

Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L., & Bugmann, H. (2020). Bayesian calibration of a 691 

growth dependent tree mortality model to simulate the dynamics of European temperate ‐ 692 

forests. Ecological Applications, 30(1), e02021 693 

Campbell, Gaylon S. 1974. “A Simple Method for Determining Unsaturated Conductivity from 694 

Moisture Retention Data.” Soil Science 117(6):311–14. 695 

Carnicer, Jofre et al. 2011. “Widespread Crown Condition Decline, Food Web Disruption, and 696 

Amplified Tree Mortality with Increased Climate Change-Type Drought.” Proceedings of the 697 

National Academy of Sciences 108(4):1474–78. 698 

Cavin, Liam and Alistair S. Jump. 2017. “Highest Drought Sensitivity and Lowest Resistance to 699 

Growth Suppression Are Found in the Range Core of the Tree Fagus Sylvatica L. Not the 700 

Equatorial Range Edge.” Global Change Biology 23(1):362–79. 701 

Cheaib, Alissar et al. 2012. “Climate Change Impacts on Tree Ranges: Model Intercomparison 702 

Facilitates Understanding and Quantification of Uncertainty.” Ecology Letters 15(6):533–44. 703 

Choat, Brendan et al. 2018. “Triggers of Tree Mortality under Drought.” Nature 558(7711):531–39. 704 

Chuine, Isabelle, P. Cour, and D. D. Rousseau. 1999. “Selecting Models to Predict the Timing of 705 

Flowering of Temperate Trees: Implications for Tree Phenology Modelling.” Plant, Cell and 706 

Environment 22(1):1–13. 707 

Clark, James S. et al. 2011. “Individual-Scale Variation, Species-Scale Differences: Inference 708 

Needed to Understand Diversity.” Ecology Letters 14(12):1273–87. 709 

Collet, Catherine and Gilles Le Moguedec. 2007. “Individual Seedling Mortality as a Function of 710 

Size, Growth and Competition in Naturally Regenerated Beech Seedlings.” Forestry 711 

80(4):359–70. 712 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747


 

28 

 

Cowan, I. R. and G. D. Farquhar. 1977. “Stomatal Function in Relation to Leaf Metabolism and 713 

Environment.” Symposia of the Society for Experimental Biology 31:471–505. 714 

Cribari-Neto, Francisco and Achim Zeileis. 2010. “Beta Regression in R.” Journal of Statistical 715 

Software 34(2). 716 

Davi, H. et al. 2005. “Modelling Carbon and Water Cycles in a Beech Forest. Part II.: Validation of 717 

the Main Processes from Organ to Stand Scale.” Ecological Modelling 185(2–4):387–405. 718 

Davi, H., C. Barbaroux, C. Francois, and E. Dufrêne. 2009. “The Fundamental Role of Reserves and 719 

Hydraulic Constraints in Predicting LAI and Carbon Allocation in Forests.” Agricultural and 720 

Forest Meteorology 149(2):349–61. 721 

Davi, Hendrik and Maxime Cailleret. 2017. “Assessing Drought-Driven Mortality Trees with 722 

Physiological Process-Based Models.” Agricultural and Forest Meteorology 232:279–90. 723 

Dittmar, Christoph, Wolfgang Zech, and Wolfram Elling. 2003. “Growth Variations of Common 724 

Beech (Fagus Sylvatica L.) under Different Climatic and Environmental Conditions in 725 

Europe—a Dendroecological Study.” Forest Ecology and Management 173(1–3):63–78. 726 

Dobbertin, Matthias and Peter Brang. 2001. “Crown Defoliation Improves Tree Mortality Models.” 727 

Forest Ecology and Management 141(3):271–84. 728 

Dufrêne et al. 2005. “Modelling Carbon and Water Cycles in a Beech Forest Part I : Model 729 

Description and Uncertainty Analysis on Modelled NEE.” Ecological Modelling 185:407–36. 730 

Durand-Gillmann, Marion, Maxime Cailleret, Thomas Boivin, Louis Michel Nageleisen, and Hendrik 731 

Davi. 2014. “Individual Vulnerability Factors of Silver Fir (Abies Alba Mill.) to Parasitism by 732 

Two Contrasting Biotic Agents: Mistletoe (Viscum Album L. Ssp. Abietis) and Bark Beetles 733 

(Coleoptera: Curculionidae: Scolytinae) during a Decline Process.” Annals of Forest Science 734 

71(6):659–73. 735 

Farquhar, G. D., S. von Caemmerer, and J. A. Berry. 1980. “A Biochemical Model of Photosynthetic 736 

CO2 Assimilation in Leaves of C3 Species.” Planta 149(1):78–90. 737 

Feng, Xue et al. 2018. “The Ecohydrological Context of Drought and Classification of Plant 738 

Responses.” Ecology Letters, November 1, 1723–36. 739 

Gao, Shan et al. 2018. “Dynamic Responses of Tree-Ring Growth to Multiple Dimensions of 740 

Drought.” Global Change Biology 24(11):5380–90. 741 

García-Plazaola, José Ignacio, Raquel Esteban, Koldobika Hormaetxe, Beatriz Fernández-Marín, and 742 

José María Becerril. 2008. “Photoprotective Responses of Mediterranean and Atlantic Trees 743 

to the Extreme Heat-Wave of Summer 2003 in Southwestern Europe.” Trees 22(3):385–92. 744 

Gaussen, H. 1958. “Le Hêtre Aux Pyrénées Espagnoles.” Pp. 185–91 in Actas del tercer congreso 745 

internacional de estudios pirenaicos, Gerona. 746 

Gauzere, J. et al. 2017. “Integrating Interactive Effects of Chilling and Photoperiod in Phenological 747 

Process-Based Models. A Case Study with Two European Tree Species: Fagus Sylvatica and 748 

Quercus Petraea.” Agricultural and Forest Meteorology 244–245:9–20. 749 

Gillner, Sten, Nadja Rüger, Andreas Roloff, and Uta Berger. 2013. “Low Relative Growth Rates 750 

Predict Future Mortality of Common Beech (Fagus Sylvatica L.).” Forest Ecology and 751 

Management 302:372–78. 752 

Granier, A., P. Biron, and D. Lemoine. 2000. “Water Balance, Transpiration and Canopy 753 

Conductance in Two Beech Stands.” Agricultural and Forest Meteorology 100(4):291–308. 754 

Greenwood, Sarah et al. 2017. “Tree Mortality across Biomes Is Promoted by Drought Intensity, 755 

Lower Wood Density and Higher Specific Leaf Area” edited by J. Chave. ECOLOGY LETTERS 756 

20(4):539–53. 757 

 Heinze, Georg. Christine Wallisch et al., Variable selection – A review and recommendations for 758 

the practicing statistician. Biometrical Journal 60 (2018), S. 431-449 759 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747


 

29 

 

Hawkes, Corinna. 2000. “Woody Plant Mortality Algorithms: Description, Problems and Progress.” 760 

Ecological Modelling 126(2–3):225–48. 761 

Hesse, Benjamin D., Michael Goisser, Henrik Hartmann, and Thorsten E. E. Grams. 2019. 762 

“Repeated Summer Drought Delays Sugar Export from the Leaf and Impairs Phloem 763 

Transport in Mature Beech” edited by M. Dannoura. Tree Physiology 39(2):192–200. 764 

Hijmans, Robert J., Steven Phillips, John Leathwick, Jane Elith, and Maintainer Robert J. Hijmans. 765 

2017. “Package ‘Dismo.’” Circles 9(1):1–68. 766 

Hosmer, David W. and Stanley Lemeshow. 2000. Applied Logistic Regression. 767 

Hülsmann, Lisa et al. 2016. “Does One Model Fit All? Patterns of Beech Mortality in Natural Forests 768 

of Three European Regions.” Ecological Applications 26(8):2463–77. 769 

Hülsmann, Lisa, Harald Bugmann, and Peter Brang. 2017. “How to Predict Tree Death from 770 

Inventory Data – Lessons from a Systematic Assessment of European Tree Mortality Models - 771 

SUPP.” Canadian Journal of Forest Research (April):cjfr-2016-0224. 772 

Hülsmann, Lisa, Harald Bugmann, Maxime Cailleret, and Peter Brang. 2018. “How to Kill a Tree: 773 

Empirical Mortality Models for 18 Species and Their Performance in a Dynamic Forest 774 

Model.” Ecological Applications 28(2):522–40. 775 

IGN. 2016. La Mortalité. France. https://inventaire-forestier.ign.fr/IMG/pdf/2018_mortalite.pdf  776 

Jump, Alistair S., Jenny M. Hunt, and Josep Pen̈uelas. 2006. “Rapid Climate Change-Related 777 

Growth Decline at the Southern Range Edge of Fagus Sylvatica.” Global Change Biology 778 

12(11):2163–74. 779 

Kneeshaw, Daniel D., Richard K. Kobe, K. David Coates, and Christian Messier. 2006. “Sapling Size 780 

Influences Shade Tolerance Ranking among Southern Boreal Tree Species.” Journal of 781 

Ecology 94(2):471–80. 782 

Knutzen, Florian, Choimaa Dulamsuren, Ina Christin Meier, and Christoph Leuschner. 2017. 783 

“Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of 784 

Its Distribution Range.” Ecosystems 20(8):1494–1511. 785 

Kramer, Koen et al. 2010. “Modelling Exploration of the Future of European Beech (Fagus Sylvatica 786 

L.) under Climate Change-Range, Abundance, Genetic Diversity and Adaptive Response.” 787 

Forest Ecology and Management 259(11):2213–22. 788 

Lebourgeois, F., N. Bréda, E. Ulrich, and A. Granier. 2005. “Climate-Tree-Growth Relationships of 789 

European Beech (Fagus Sylvatica L.) in the French Permanent Plot Network (RENECOFOR).” 790 

Trees 19:385–401. 791 

Lederer, D. J., S. C. Bell et al., Control of Confounding and Reporting of Results in Causal Inference 792 

Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. 793 

Ann Am Thorac Soc 16 (2019), S. 22-28. 794 

Lenz, Armando, Günter Hoch, Yann Vitasse, and Christian Körner. 2013. “European Deciduous 795 

Trees Exhibit Similar Safety Margins against Damage by Spring Freeze Events along 796 

Elevational Gradients.” New Phytologist 200(4):1166–75. 797 

Lines, Emily R., David A. Coomes, and Drew W. Purves. 2010. “Influences of Forest Structure, 798 

Climate and Species Composition on Tree Mortality across the Eastern US” edited by A. 799 

Hector. PLoS ONE 5(10):e13212. 800 

Long, Jacob A. 2018. “Jtools: Analysis and Presentation of Social Scientific Data.” 801 

Lorenz, Martin and Georg Becher. 2012. Forest Condition in Europe. 802 

Loustau, D., A. Granier, F. El Hadj Moussa, M. Sartore, and M. Guedon. 1990. “Evolution 803 

Saisonnière Du Flux de Sève Dans Un Peuplement de Pins Maritimes.” Annales Des Sciences 804 

Forestières 47(6):599–618. 805 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747


 

30 

 

Van Mantgem, Phillip J. et al. 2009. “Widespread Increase of Tree Mortality Rates in the Western 806 

United States.” Science 323(5913):521–24. 807 

Maraun, Mark, Jörg-Alfred Salamon, Katja Schneider, Matthias Schaefer, and Stefan Scheu. 2003. 808 

“Oribatid Mite and Collembolan Diversity, Density and Community Structure in a Moder 809 

Beech Forest (Fagus Sylvatica): Effects of Mechanical Perturbations.” Soil Biology and 810 

Biochemistry 35(10):1387–94. 811 

Martin, George L. and Alan R. Ek. 1984. “A Comparison of Competition Measures and Growth 812 

Models for Predicting Plantation Red Pine Diameter and Height Growth.” Forest Science 813 

30(3):731–43. 814 

McDowell, Nate G. et al. 2013. “Evaluating Theories of Drought-Induced Vegetation Mortality 815 

Using a Multimodel-Experiment Framework.” New Phytologist 200(2):304–21. 816 

McDowell, Nate G. et al. 2011. “The Interdependence of Mechanisms Underlying Climate-Driven 817 

Vegetation Mortality.” Trends in Ecology & Evolution 26(10):523–32. 818 

Meir, Patrick, Maurizio Mencuccini, and Roderick C. Dewar. 2015. “Drought-Related Tree 819 

Mortality: Addressing the Gaps in Understanding and Prediction.” New Phytologist 820 

207(1):1443–47. 821 

Menzel, Annette, Raimund Helm, and Christian Zang. 2015. “Patterns of Late Spring Frost Leaf 822 

Damage and Recovery in a European Beech (Fagus Sylvatica L.) Stand in South-Eastern 823 

Germany Based on Repeated Digital Photographs.” Frontiers in Plant Science 6:110. 824 

Monserud, Robert A. 1976. “Simulation of Forest Tree Mortality.” Forest Science 22(4):438–44. 825 

Monteith, J. L. 1965. “Evaporation and Environment. The State and Movement of Water in Living 826 

Organisms. Symposium of the Society of Experimental Biology, Vol. 19 (Pp. 205-234).” 827 

Mueller, Rebecca C. et al. 2005. “Differential Tree Mortality in Response to Severe Drought: 828 

Evidence for Long-Term Vegetation Shifts.” Journal of Ecology 93(6):1085–93. 829 

Niinemets, Ülo. 2010. “Responses of Forest Trees to Single and Multiple Environmental Stresses 830 

from Seedlings to Mature Plants: Past Stress History, Stress Interactions, Tolerance and 831 

Acclimation.” Forest Ecology and Management 260(10):1623–39. 832 

Nourtier, Marie et al. 2014. “Transpiration of Silver Fir (Abies Alba Mill.) during and after Drought 833 

in Relation to Soil Properties in a Mediterranean Mountain Area.” Annals of Forest Science 834 

71(6):683–95. 835 

O’Brien, Michael J. et al. 2017. “A Synthesis of Tree Functional Traits Related to Drought-Induced 836 

Mortality in Forests across Climatic Zones. Journal of Applied Ecology 54(6):1669–86. 837 

O’Brien, Michael J., Sebastian Leuzinger, Christopher D. Philipson, John Tay, and Andy Hector. 838 

2014. “Drought Survival of Tropical Tree Seedlings Enhanced by Non-Structural Carbohydrate 839 

Levels.” Nature Climate Change 4(8):710–14. 840 

Pammenter NW and Vander Willigen C. 1998. “A Mathematical and Statistical Analysis of the 841 

Curves Illustrating Vulnerability of Xylem to Cavitation.” Tree Physiology 18(Equation 1):589–842 

593. 843 

Penuelas, Josep and Martí Boada. 2003. “A Global Change-Induced Biome Shift in the Montseny 844 

Mountains (NE Spain).” Global Change Biology 9(2):131–40. 845 

Perci du Sert, Th. 1982. Relations Entre La Phenologie et La Morphologie Du Hêtre Dans Le Massif 846 

Des Albères. 847 

Pretzsch, Hans. 1996. “Growth Trends of Forests in Southern Germany.” Pp. 107–31 in Growth 848 

Trends in European Forests. Berlin, Heidelberg: Springer Berlin Heidelberg. 849 

Robson, T. Matthew, Erwin Rasztovits, Pedro J. Aphalo, Ricardo Alia, and Ismael Aranda. 2013. 850 

“Flushing Phenology and Fitness of European Beech (Fagus Sylvatica L.) Provenances from a 851 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747


 

31 

 

Trial in La Rioja, Spain, Segregate According to Their Climate of Origin.” Agricultural and 852 

Forest Meteorology 180:76–85. 853 

Ryan, Michael G. 1991. “Effects of Climate Change on Plant Respiration.” Ecological Applications 854 

1(2):157–67. 855 

Sala, A. and J. D. Tenhunen. 1996. “Simulations of Canopy Net Photosynthesis and Transpiration in 856 

Quercus Ilex L. under the Influence of Seasonal Drought.” Agricultural and Forest 857 

Meteorology 78(3–4):203–22. 858 

Schielzeth, Holger. 2010. “Simple Means to Improve the Interpretability of Regression 859 

Coefficients.” Methods in Ecology and Evolution 1(2):103–13. 860 

Seidl, Rupert et al. 2011. “Modelling Natural Disturbances in Forest Ecosystems: A Review.” 861 

Ecological Modelling 222(4):903–24. 862 

Senf, Cornelius et al. 2018. “Canopy Mortality Has Doubled in Europe’s Temperate Forests over 863 

the Last Three Decades.” Nature Communications 9(1):4978. 864 

Sevanto, Sanna, Nate G. Mcdowell, L. Turin Dickman, Robert Pangle, and William T. Pockman. 865 

2014. “How Do Trees Die? A Test of the Hydraulic Failure and Carbon Starvation 866 

Hypotheses.” Plant, Cell and Environment 37(1):153–61. 867 

Stadt, Kenneth J. et al. 2007. “Evaluation of Competition and Light Estimation Indices for 868 

Predicting Diameter Growth in Mature Boreal Mixed Forests.” Annals of Forest Science 869 

64(64):477–90. 870 

Thuiller, Wilfried, Sandra Lavorel, M. B. Araujo, Martin T. Sykes, and I. Colin Prentice. 2005. 871 

“Climate Change Threats to Plant Diversity in Europe.” Proceedings of the National Academy 872 

of Sciences 102(23):8245–50. 873 

Tyree, M. T. and J. S. Sperry. 1989. “Vulnerability of Xylem to Cavitation and Embolism.” Annual 874 

Review of Plant Physiology and Plant Molecular Biology 40(1):19–36. 875 

Vanoni, Marco, Harald Bugmann, Magdalena Nötzli, and Christof Bigler. 2016. “Drought and Frost 876 

Contribute to Abrupt Growth Decreases before Tree Mortality in Nine Temperate Tree 877 

Species.” Forest Ecology and Management Journal 382:51–63. 878 

Vidal, Jean-Philippe, Eric Martin, Laurent Franchistéguy, Martine Baillon, and Jean-Michel 879 

Soubeyroux. 2010. “A 50-Year High-Resolution Atmospheric Reanalysis over France with the 880 

Safran System.” International Journal of Climatology 30(11):1627–44. 881 

Vitasse, Yann et al. 2009. “Leaf Phenology Sensitivity to Temperature in European Trees: Do 882 

within-Species Populations Exhibit Similar Responses?” Agricultural and Forest Meteorology 883 

149(5):735–44. 884 

De Vries, F. W. T. Pennin., A. H. M. Brunsting, and H. H. Van Laar. 1974. “Products, Requirements 885 

and Efficiency of Biosynthesis a Quantitative Approach.” Journal of Theoretical Biology 886 

45(2):339–77. 887 

 888 

Appendices 889 

Four supplementary appendices are available on bioRxiv (645747):  890 

Appendix 1: CASTANEA model, calibration and simulation design  891 

Appendix 2: Beta-regression model for the temporal variations in the rate of mortality   in the studied 892 

population 893 

Appendix 3: Logistic regression models for the probability of mortality at tree-level 894 

Appendix 4: Survival analysis the probability of mortality at tree- and year-levels  895 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 23, 2020. ; https://doi.org/10.1101/645747doi: bioRxiv preprint 

https://doi.org/10.1101/645747

