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ABSTRACT 

A major function of sensory processing is to achieve neural representations of objects that are stable 
across changes in context and perspective. Small changes in exploratory behavior can lead to large 

changes in signals at the sensory periphery, thus resulting in ambiguous neural representations of 
objects. Overcoming this ambiguity is a hallmark of human object recognition across sensory modalities. 

Here, we investigate how the perception of tactile texture remains stable across exploratory movements 
of the hand, including changes in scanning speed, despite the concomitant changes in afferent 

responses. To this end, we scanned a wide range of everyday textures across the fingertips of Rhesus 
macaques at multiple speeds and recorded the responses evoked in tactile nerve fibers and 

somatosensory cortical neurons. We found that individual cortical neurons exhibit a wider range of 
speed-sensitivities than do nerve fibers. The resulting representations of speed and texture in cortex are 

more independent than are their counterparts in the nerve and account for speed-invariant perception 
of texture. We demonstrate that this separation of speed and texture information is a natural 

consequence of previously described cortical computations. 

INTRODUCTION 

We are endowed with a remarkable ability to identify objects across a wide range of contexts and 
perspectives. For example, we can visually identify objects in a fraction of a second, even over broad 

changes in lighting, distance, or viewing angle. Similarly, we can auditorily identify the timbre of voices 
and musical instruments across a wide range of loudness and pitches (Handel and Erickson 2001; 

Marozeau et al. 2003). In both vision and audition, these perceptual invariances are achieved despite 
sensory representations at the periphery (the retina, the cochlea) that are highly dependent on 

perspective and context (Enroth-Cugell and Robson 1966; Sachs and Young 1979; Croner and Kaplan 
1995; Joris et al. 2011). Indeed, a signature of sensory processing is a progression of object 

representations that become increasingly robust to changes in context (Avidan et al. 2002; Finn et al. 
2007; Sadagopan and Wang 2008; Walker et al. 2011; Cadieu et al. 2014; Metzen et al. 2016). 

In touch, the best known instance of perceptual invariance is for texture: tactile texture perception has 

been shown to be nearly independent of the force exerted on the surface (Lederman and Taylor 1972; 
Lederman 1981) or the speed at which it is scanned across the skin (Lederman 1974; Meftah et al. 2000; 

Boundy-Singer et al. 2017). Remarkably, this perceptual invariance is achieved despite responses in the 
somatosensory nerves that are strongly modulated by exploratory parameters such as scanning speed 

(Goodwin and Morley 1987a; Phillips et al. 1992; DiCarlo and Johnson 1999) and, to a lesser degree, 
force (Goodwin and Morley 1987b; Phillips et al. 1992; Saal et al. 2018). The effect of scanning speed on 

texture coding in the nerve is particularly pronounced for fine textures, which are encoded in precisely 
timed, texture-specific spiking sequences that contract or dilate multiplicatively with increases and 

decreases in speed, respectively (Weber et al. 2013). Thus, to achieve an invariant percept of texture, 
texture-specific information must be extracted from peripheral signals that are highly dependent on 

exploratory parameters. 

As texture representations ascend the somatosensory neuraxis towards somatosensory cortex, precisely 
timed patterns of spatio-temporal activity are processed by canonical sensory transformations, such as 

differentiating filters that calculate spatial (DiCarlo and Johnson 2000; Sripati et al. 2006; Bensmaia et al. 
2008) and temporal (DiCarlo and Johnson 2000; Sripati et al. 2006; Saal et al. 2015) variation across the 

peripheral signal. These filters extract perceptually-relevant stimulus information that may not be 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2019. ; https://doi.org/10.1101/646042doi: bioRxiv preprint 

https://doi.org/10.1101/646042
http://creativecommons.org/licenses/by-nc-nd/4.0/


present in the firing rates of peripheral afferents (Connor 1990). It thus stands to reason that these 

same mechanisms could extract a speed-invariant representation of texture that was not present in the 
peripheral response. Indeed, previous work suggests that a subpopulation of neurons in somatosensory 

cortex may exhibit speed-invariant responses to texture (Sinclair and Burton 1991; DiCarlo and Johnson 
1999; Dépeault et al. 2013; Bourgeon et al. 2016). However, these studies only characterized cortical 

responses to parametrically defined dot patterns and gratings that span a narrow range of tangible 
textures (Weber et al. 2013). Furthermore, these studies focused primarily on the speed-sensitivity of 

cortical neurons without comparing these effects to those seen in peripheral afferents.  

In the present study, we seek to fill this gap by recording the responses of neurons in somatosensory 

cortex – including Brodmann’s areas 3b, 1, and 2 – to natural textures scanned over the skin at various 
speeds, spanning the range used in natural texture exploration (Morley et al. 1983; Gamzu and Ahissar 

2001; Libouton et al. 2010; Tanaka et al. 2014; Callier et al. 2015). Using these data, we then directly 
compare how neuronal firing rate responses are modulated by speed in the nerve and in cortex. We find 

that while speed modulation is generally weaker in cortical firing rates than in afferent firing rates, this 

effect does not typically confer a speed-invariant texture code to individual cortical neurons. Rather, we 
find that speed-invariant texture perception is best explained by an untangling of information about 

speed and texture across the responses of neuronal populations. The resulting cortical population 
response better accounts for speed-invariant texture perception than does its peripheral counterpart. 

METHODS 

Experimental Methods 

Peripheral texture responses 

We recorded the responses of 39 tactile fibers in six anesthetized macaque monkeys to 55 textured 
surfaces scanned over the fingertip, including everyday textures such as fabrics, sandpapers, as well as 

plastic gratings and embossed dots. Recordings were collected from afferents innervating the distal 
fingertip, using standard methods (Talbot et al. 1968). For 21 of these 39 afferents (9 slowly adapting 

type 1 – SA1 – fibers, 9 rapidly-adapting – RA – fibers, and 3 Pacinian – PC – fibers), we were able to 
maintain isolation long enough to record responses at 3 different scanning speeds, namely 40, 80, and 

120 mm/s (all ± 0.1 mm/s, typically for 1, 2, and 4 repetitions at each speed, respectively). In these 
experiments, texture presentation was blocked by speed rather than by texture. That is, we first 

recorded the response of afferents to all 55 textures at 80 mm/s, then at 40 mm/s or 120 mm/s, and in 
the third block at the remaining speed. Our analyses only consider responses during the steady-state 

contact period for force and speed, which lasted for at 2, 1, and 0.5 seconds, at 40, 80, and 120 mm/s, 
respectively. For 14/21 afferents, we had only 1 repetition at 40 mm/s. We confirmed with our 

remaining 7 afferents (2 SA1s, 2 PCs, 3 RAs) that using single trials to calculate the firing rate at 40 mm/s 
introduced minimal error to the estimation of speed-sensitivity (median absolute error between 

subsamples < 4% / doubling). Anesthesia was maintained using isoflurane. All experimental procedures 
complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and 

were approved by the Animal Care and Use Committee of the University of Chicago. The 
neurophysiological approach is described in more detail in previously published articles describing 

studies that used a subset of these data (Weber et al. 2013; Lieber et al. 2017). 

Cortical texture responses 
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Extracellular recordings were made in the postcentral gyri of three hemispheres in each of three awake 

macaque monkeys (all male, 6-8 yrs old, 8-11 kg). On each recording day, a multielectrode microdrive 
(NAN Instruments, Nazaret Illit, Israel) was loaded with three electrodes (tungsten, Epoxylite insulated, 

FHC Inc.), spaced 650-µm apart, which were driven into cortex until they encountered neurons from 
Brodmann’s areas 3b, 1, and 2 of with RFs on the distal fingerpad of digits 2-5. The respective cortical 

fields were identified based on anatomical landmarks, RF location, and response properties. Recordings 
were obtained from neurons that met the following criteria: (1) action potentials were well isolated 

from the background noise, (2) the finger could be positioned such that the textured surface impinged 
on the center of the RF, and (3) the neuron was clearly driven by light cutaneous touch. Isolations had to 

be maintained for at least 30 minutes to complete 5 repetitions of the basic texture protocol (59 
different textures presented at 80 mm/s) and an additional 25 minutes to complete 5 repetitions of the 

speed protocol (10 different textures presented at 4 different speeds).  

Responses from 141 single units were obtained for the basic texture protocol: 35 units from area 3b, 81 

units from area 1, and 25 units from area 2. For 49 of these single units, we were able to maintain 

isolation long enough to obtain responses for the speed protocol: 14 units from area 3b, 26 units from 
area 1, and 9 units from area 2. In this protocol, ten textures were presented at 4 different speeds: 60, 

80, 100, and 120 mm/s (all ± 1.1 mm/s). We opted not to test textures at 40 mm/s as we had in the 
peripheral nerve experiments because we subsequently discovered that this is well below the typical 

range of speeds used to explore textures (Callier et al. 2015). Four of the textures (satin, chiffon, nylon, 
and hucktowel) were also used in our recordings of afferent responses. The other six textures were 

chosen to contain an overlay of both fine (< 1 mm) and coarse (> 1 mm) spatial features (fabric grating 
[wide spacing], sunbrella upholstery, fuzzy upholstery, faux croc skin, 7.7 mm dots, 7.7 mm dots / 1 mm 

grating overlay). Each texture was presented 5 times at each speed, for 2.3, 1.7, 1.4, and 1.2 seconds at 
60, 80, 100, and 120 mm/s, respectively. Textures and speeds were presented in pseudo-random order. 

All experimental procedures complied with the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals and were approved by the Animal Care and Use Committee of the University of 

Chicago. The neurophysiological approach is described in more detail in a previously published article 
describing a study that used a subset of these data (Lieber and Bensmaia 2019). 

Roughness magnitude estimation 

Six subjects (5m, 1f, ages 18-24) were passively presented with each of 59 textures presented at 80 
mm/s and produced a rating proportional to its perceived roughness. This procedure was repeated 6 

times over 6 blocks. Ratings were normalized within block and then averaged within subject. Because 
ratings were consistent across subjects (correlation: 0.87 ± 0.079), ratings were then averaged across 

subjects. All procedures were approved by the Institutional Review Board of the University of Chicago 
and all subjects provided informed consent. The psychophysical procedure has been previously 

described in detail in a previously published article describing a study using these data (Lieber and 
Bensmaia 2019). 

Analysis 

Firing rates and speed effects 

Peripheral firing rates were calculated over windows of 2, 1, and 0.5 seconds for textures presented at 

40, 80, and 120 mm/s, respectively. Cortical firing rates were calculated over windows of 2.3, 1.7, 1.4, 
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and 1.2 seconds for textures presented at 60, 80, 100, and 120 mm/s, respectively. All cortical firing 

rates were corrected for baseline firing. For each neuron, the firing rate over a 500-ms period before 
each trial was averaged over all trials to obtain the baseline firing rate, which was then subtracted from 

the neuron’s texture-evoked firing rates. 

To minimize any systematic biases due to differences in texture sets across the peripheral and cortical 

experiments, we selected textures in the peripheral experiment to match the 10 textures used in the 
cortical experiment. As four textures were used in both experiments, we sought appropriate matches 

for the remaining six. To this end, we examined the subset of 20 textures for which we had cortical 
responses at 80 mm/s and peripheral responses at all three speeds. To assess similarity between the 

speed-set of 6 textures and the shared set of 20 textures, we calculated the Euclidian distance between 
texture pairs based on trial-averaged firing rates across the cortical population (6*20=120 pairs) and 

then selected the 6 pairs with the shortest distance. That is, we chose the 6 textures in the shared set of 
20 textures that evoked the most similar pattern of responses across the cortical population to the 6 

textures in the speed set. We then used these 6 textures to round out the peripheral set. The underlying 

assumption is that if two textures evoke similar patterns of responses across cortical neurons, they 
would also evoke similar responses across peripheral afferents. For all analyses in the manuscript, we 

achieved qualitatively similar results when we used peripheral responses to the full set of 55 textures or 
to the 4 shared textures.  

To quantify the effect of speed on texture-driven firing rates, we regressed firing rate on the log (base 2) 
of speed, having established that a logarithmic function better captures the effect of speed on firing rate 

than does a linear one (cf. (Essick and Edin 1995; DiCarlo and Johnson 1999)).  

Calculating speed-sensitivity, speed/texture ratio, and response heterogeneity 

We wished to quantify the relative effect of speed and texture on each afferent and neuron. To this end, 
we calculated three quantities for each cell. First, we defined speed-sensitivity as the slope of the linear 

regression between log speed and firing rate, normalized by the mean firing rate at 80 mm/s evoked by 
all 10 textures (to correct for overall firing rate differences across neurons). Second, we defined texture-

sensitivity as the across-texture coefficient of variation: that is, the standard deviation across the firing 
rate responses to a set of 24 textures used in both experiments, (presented at 80 mm/s, see (Lieber and 

Bensmaia 2019)), normalized by the average firing rate of those same 24 textures. Finally, we defined 
the speed/texture ratio as the ratio of speed-sensitivity to texture-sensitivity.  

Because this ratio metric becomes unstable if texture-sensitivity is near zero, we verified that all 

neurons exhibited sufficiently large values of texture-sensitivity (all peripheral afferents > 0.37, all 
cortical neurons > 0.28). Note further that, for all neurons, texture-sensitivity was significantly greater 

than that expected by chance, based on a permutation test that compares the measured texture-
sensitivity to that obtained when single-trial responses are shuffled across texture labels (p < 0.05). We 

report that the cortical population contains a significant proportion of neurons with a smaller 
speed/texture ratio than any peripheral afferent. To test the reliability of this effect, we randomly 

shuffled the cortex/periphery labels on the combined population of afferents and cortical neurons, and 
recomputed the number of “neurons” with smaller speed/texture ratios than “afferents.” From this 

simulation, we could characterize the relative distribution of speed/texture ratios expected by chance.  

Neural population analyses 
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We sought to evaluate the extent to which representations of texture and speed in the neural 

populations were either overlapping or well-separated. This required a three step process: 1) identify 
the texture representation in each population, 2) identify the speed-representation in each population, 

and 3) determine the amount of overlap between the two representations. 

To identify the major axes of each population’s texture response, we applied a principal components 

analysis (PCA) to peripheral and cortical population responses, using only the responses to the set of 24 
textures (presented at 80 mm/s) shared between the two data sets. This allowed us to identify the first 

D dimensions in each population that captured the majority of the texture response variance, which we 
refer to as �� . To identify the main speed-related axis in each population, we applied demixed principal 

components analysis (dPCA)(Kobak et al. 2016) to the full set of trial-averaged responses to textures 
presented at multiple speeds (periphery: 10 textures at 3 speeds, cortex: 10 textures at 4 speeds). 

Specifically, we first created a speed-marginalization of the population response by subtracting out each 
texture’s average firing rate (across all speeds) from the full response matrix. Thus, the full response 

matrix can be expressed as: 

� � �� � �� 

where � is the full texture response, ��  is the texture marginalization, and ��  is the speed 
marginalization (which, in the terminology of (Kobak et al. 2016), contains both the pure speed 

marginalization and speed-texture interaction marginalization). Next, we found the best linear mapping 
from the full texture response to the speed marginalization using least squares regression:  

� � �������� � ��	�
��� 

where � is a regularization parameter (set to 10-6, as in (Kobak et al. 2016)) and 	�  is each neuron’s 

variance across all speed and texture conditions. Finally, we used PCA on the best linear approximation 
of the speed marginalization, ��, to find its primary axis of variation, which we refer to as ��. In the 

terminology of (Kobak et al. 2016), this corresponds to the primary encoder axis for the speed 
marginalization.  

We validated each population’s primary speed-axis using two metrics. First, we confirmed that the 

projection of any given population response onto the speed axis covaried with the actual speed (in log 
units) by measuring the coefficient of determination (R2) between the two variables (periphery: 10x3=30 

conditions, cortex: 10x4=40 conditions). Second, we quantified the extent to which the primary speed-
axis accounted for speed-driven neural responses by computing the ratio of the variance captured by 

the single speed axis to the total variance in the speed marginalization (summed across neurons).  

To determine the amount of overlap between the texture space and the speed dimension, we calculated 
an alignment index (Elsayed et al. 2016; Gallego et al. 2018), defined as the amount of speed-driven 

variance captured by the texture space, normalized by the total amount of speed-related variance in the 
population response. Specifically, we define the alignment index as: 

�
 �  
�
�����������

�
���������
 

where ��  is defined as the principal axes of the texture space. We emphasize that, by construction, this 

metric is insensitive to the raw magnitude of speed-related fluctuations in the population response. We 
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verified with simulations that when the speed/texture ratio of the population response is doubled or 

halved the alignment index stays constant. In this sense, the alignment index is more similar to a relative 
angle between to representations than to a measurement of raw speed-sensitivity. For Figure 2, we 

recomputed the texture-space, speed-axis, and alignment index for different subsamples of 21 neurons 
within the cortical space (to control for systematic biases due to sample size), for either individual 

dimensions of ��  (Figure 2A) and for a range of the first D dimensions of ��  (Figure 2B).  

Texture discriminability across changes in speed 

We sought to quantify how well populations of neurons could discriminate pairs of textures, and to 

what extent discrimination was impaired by changes in speed. For an individual neuron responding to 
any pair of textures and pair of speeds, we define a signal-to-noise ratio (SNR): 

��� �  
�
��,�� � 
��,��� � �
��,�� � 
��,���

�
��,�� � 
��,��� � �
��,�� � 
��,��� � �
 

where 
��,�� is the response (firing rate) of the neuron to texture �� at speed ��. We added � (= 1) to the 

denominator to avoid the instability in SNR caused by neurons that do not respond under some stimulus 

conditions. To compute the SNR for populations of neurons, we first collapsed the multidimensional, 
population-wide firing rates to a single discriminant value. To this end, we defined a population vector 
of firing rates ���,�� for a given texture �� scanned at speed ��. We then found the line connecting the 

two textures’ average population response: ����,�� � ���,��� � ����,�� � ���,���. This line defines the 

texture-relevant axis in neural space. Next, we found the projections of the four population vectors onto 
this line, resulting in four scalar values, each corresponding to a texture, speed pair. To the extent that 

speed has no impact along the texture axis, the projections onto this line of the response vectors to 
each texture at different speeds will be identical. Finally, we computed the SNR on these projections in 

place of the full population vectors of rates.  

Predicting roughness from neural responses 

We sought to evaluate how well neural population responses could predict human judgments of surface 
roughness (55/59 textures for periphery and cortex, respectively, all presented at 80 mm/s). To this end, 

we implemented three distinct models: a mean firing rate regression model, a multiple regression 
model, and a second multiple regression model, constrained to be speed-invariant. The mean firing rate 

model comprised a single regressor, the mean firing rate across the full population of neurons (21 
afferents, 49 cortical neurons). The multiple regression model included the first N principal components 

of the texture representation. For Figure 5, we chose a number of principal components where 
regression performance began to saturate (N=5), though the results were stable over different numbers 

of components (Supplementary Figure 5). For the constrained multiple regression model, we first found 
the primary speed axis in each population using dPCA (described above). Next, we removed the speed-

axis projection from the full set of population firing rates. Finally, we performed the multiple regression 
as described before. This methodology ensured that the final regression weights were orthogonal to the 

primary speed axis and that the roughness predictions of the model were almost entirely speed-
invariant.  

For all three models, we used leave-one-out cross-validation to compute an equivalent of the coefficient 

of determination (R2). Specifically, for each texture in the set, we first fit the model using the other 23 
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texture responses as training data. We then applied that model to produce a prediction of roughness 

magnitude ���  for the final, left-out texture. Across all textures, we compute the coefficient of 
determination as:  

�� � 1 �
∑ ��� � ��� ���

∑ ��� � �����

 

where ��  is the reported roughness. 

To test the speed-invariance of these models, we applied each model (now fit on the full set of 55/59 

textures) to texture responses at multiple speeds (10 textures in each set). We computed speed-
sensitivity of the roughness predictions in a manner similar to that used for the neural data. First, we 

compute the slope of roughness (averaged across textures) vs. log2(speed). Then, we normalized the 
slopes by the average predicted roughness magnitude at 80 mm/s. As with the neuronal data, then, we 

report the speed-sensitivity of the roughness predictions as a percentage increase per doubling of 
speed.  

Modeling neural computations 

As somatosensory information ascends from the periphery to cortex, spatiotemporal patterns of 

peripheral population activity are subject to spatial and temporal differentiation (variation) 
computations (Connor and Johnson 1992; DiCarlo and Johnson 2000; Saal et al. 2015). We built a simple 

model of these variation filters by combining the responses of peripheral afferents to textures presented 
at multiple speeds. Specifically, we first temporally smoothed afferent spiking responses using a filter 

designed to mimic an excitatory post-synaptic potential (EPSP) (Bengtsson et al. 2013):  

 ������ � � ! "�� � �	�#�
����� �⁄  

where �	 is the time of each spike, $ is a decay time set to 5 ms, "��� is the Heaviside step function, and 

� is a normalization constant such that % &�  ������ � 1. The integration time of temporally lagged 
inhibition is generally longer than that of excitation (DiCarlo and Johnson 2000; Sripati et al. 2006), so 

for the temporal variation inhibitory field (see below), we computed the post-synaptic potentials with $ 
set to 9 ms. 

This way, we generated a large population of temporally aligned post-synaptic potential traces, to which 

we applied spatial and temporal variation computations as described below. For each texture and 
speed, we first aligned all the trial-averaged traces in the population (between 21 and 39 neurons, 

depending on the speed). To this end, we first found the strongest cross-correlation between any two 
pairs of neurons (within a maximum shift of 300 ms), averaged them at their optimal lag, and then found 

the strongest cross-correlation between this new trace and any of the remaining traces. This procedure 
was repeated until the full population was aligned. As we only had one 2-second trace for any given 

texture at 40 mm/s, these traces were split in half and then maximally aligned to create two 1-second 
traces.  

Next, we computed pseudo-populations of “downstream” neurons that implement both spatial and 

temporal variation filters. We implemented temporal variation by subtracting out a delayed version of 
the same spike train (this time smoothed over 9 ms), at random delays (sampled evenly between 15 and 

50 ms) and weights (0 to 50% of the excitatory weight), the ranges of which were selected based on  
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previously documented spatial-temporal receptive fields of cortical neurons (DiCarlo and Johnson 1999, 

2000; Sripati et al. 2006; Saal et al. 2015). We implemented spatial variation by subtracting from one 
response trace the trace derived from a different, randomly selected afferent of the same type (SA1, RA, 

or PC). We simulated the relative spatial location of the inhibitory subfield as trailing (along the axis 
defined by the scanning direction) 2 to 4 mm (randomly selected) behind the excitatory subfield at a 

random weight (0 to 50% of the excitatory weight), again inspired by previous findings (DiCarlo and 
Johnson 1999, 2000; Sripati et al. 2006). In practice, this meant subtracting out the spatial inhibition at a 

temporal delay that shifted for different speeds. After subtracting out the temporal and spatial 
inhibition, we half-wave rectified each trace and summed it to obtain the “output” of that simulated 

neuron. This procedure was repeated for two trials of every texture response at every speed, and then 
repeated 100 times for each afferent, each time with a different set of randomized parameters. From 

the responses of each afferent, then, we simulated the responses of a set of neurons that each reflected 
an idiosyncratic variation computation.  

We then computed the correlation between each simulated cortical response and the simulated 

response averaged across the population (24 shared textures, 80 mm/s, all 141 neurons). We also 
computed the speed/texture ratio from the simulated responses of each neuron (as defined above). The 

median correlation reported in the text and the cumulative distribution in Figure 4A were computed 
across all permutations and afferents. To compute the alignment index for the simulated population, we 

first randomly selected a simulated neuron derived from each of the 21 afferents. We then computed 
the alignment index on this pseudo-population as described above. We repeated this procedure over 

200 random selections of simulated neurons. 

RESULTS 

We have previously reported the texture-evoked responses of 39 tactile afferents from six anesthetized 

macaque monkeys (Weber et al. 2013) and 141 neurons from the somatosensory cortices of three 
awake macaque monkeys (Lieber and Bensmaia 2019), as many different textures were scanned over 

the skin. For a subset of these neurons, we were able to maintain isolation quality long enough to run a 
second protocol of textures presented at multiple speeds. This protocol was run on 21 tactile fibers – 9 

slowly adapting type 1 (SA1), 9 rapidly adapting (RA), and 3 Pacinian (PC) fibers — and 49 neurons in 
somatosensory cortex – 14 from Brodmann’s area 3b, 26 from area 1, and 9 from area 2 – with receptive 

fields on the distal fingertip. For the peripheral nerve experiments, each of 55 different textures was 
scanned over the skin at 3 different speeds (40, 80, and 120 mm/s) using a rotating drum stimulator. For 

the cortical experiments, each of 10 different textures was scanned over the skin at 4 different speeds 
(60, 80, 100, and 120 mm/s), which spans the range of speeds spontaneously used to explore tactile 

textures (Morley et al. 1983; Gamzu and Ahissar 2001; Libouton et al. 2010; Tanaka et al. 2014; Callier et 
al. 2015). We sought to determine the effect of scanning speed on the neural representation of texture, 

and how these representations change between periphery and cortex. 

Texture responses are modulated by scanning speed  

We found that, for both tactile nerve fibers and cortical neurons, increasing the speed at which a texture 
is scanned across the skin drives an increase in the firing rate response (Figure 1A-C). This effect was 

significant for nearly every tactile nerve fiber (20/21, p <0.05, permutation test) and for a majority of 
neurons in cortex (37/49). For consistency, we only included in the analysis the responses to textures 

that were either shared across the peripheral and cortical experiments or were similar (Supplementary 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2019. ; https://doi.org/10.1101/646042doi: bioRxiv preprint 

https://doi.org/10.1101/646042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1A, see Methods). Using this matched set of textures, we compared the speed-sensitivity of

peripheral afferents to that of cortical neurons by expressing sensitivity as a percentage increase in

firing rate per doubling in speed (Supplementary Figure 1B-D). Using this metric, we found that

peripheral afferents exhibited more speed-sensitivity than did cortical neurons (Figure 1D)(median

across cells ± median absolute deviation: periphery: 28.7%±5.1%, cortex: 20.0%±11.5%, p<0.05 Wilcoxon

rank-sum test; also see Supplementary Figure 1E and Supplementary Table 1). This difference was

almost entirely driven by a subpopulation of cortical cells with highly speed-invariant responses (13/49

with speed-sensitivity < 10% increase/doubling, 0/21 peripheral afferents < 10%). While we did observe

significant differences in speed-sensitivity across different afferent classes (Delhaye et al. 2019), every

submodality trended towards more speed-sensitivity than that was observed in cortex (RA: 29.3%±3.3%

and PC: 35.0%±5.4%, p < 0.05, SA1: 23.8%±6.2%, p=0.18, see Supplementary Figure 2A-B). The speed-

sensitivity of responses in area 3b trended towards smaller values than responses from areas 1 and 2

(area 3b: 12.9%±9.8% < area 1: 23.1%±7.5% at p<0.05 and area 2: 24.4%±24.9%, p=0.33, see

Supplementary Figure 2A-B), consistent with previous reports (Dépeault et al. 2013; Bourgeon et al

2016).  

Figure 1. Texture responses are modulated by scanning speed. A| Spiking responses from two example

tactile nerve fibers (top: RA, bottom: PC) and two cortical neurons (top: area 3b, bottom: area 1) to a

texture (hucktowel) presented at three/four different speeds, respectively. B| Average firing rate of the

spiking response shown in A| for the two afferents (red) and two cortical neurons (blue). Speeds on the

abscissa are plotted on a log scale. Error bars are standard deviations across trials. C| Average firing rate

across all textures and cells at the periphery (red) and in cortex (blue) vs. scanning speed. Speeds on the

abscissa are plotted on a log scale. Error bars denote standard errors across cells, textures, and trials. D|

Median speed effect, reported as the percentage increase in mean population firing rate per doubling in

speed (normalized to the firing rate at 80 mm/s). Different points denote different neurons. Error bars

are median absolute deviations across cells. E| Cumulative distribution of the ratio between the speed

effect and texture effect for peripheral afferents (red) and cortical neurons (blue). While the medians of

the distributions are similar, the distribution derived from cortex contains a large proportion of neurons

whose responses to texture are strongly speed-independent.  
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Next, we assessed whether the decreased speed-sensitivity in cortex resulted in a more speed-invariant 

representation of texture. To this end, we computed the ratio between the texture-dependence of firing 
rates and their speed dependence (Figure 1E). The resulting speed/texture ratio, lower for more speed 

invariant texture coding – was only marginally lower in cortex than in the periphery (median ratio of 
speed to texture-sensitivity, periphery: 0.59, cortex: 0.47, p=0.287 Wilcoxon rank-sum test), suggesting 

that cortical texture representations are only slightly more speed invariant in cortex than at the 
periphery. Indeed, while speed-sensitivity tends to decrease in cortex, so does texture-sensitivity. To 

directly test the ability of individual neurons to discriminate between textures, we computed a signal-to-
noise ratio (SNR) as a metric of discriminability for texture pairs (see Methods). We found that, for any 

given speed difference, SNR values were largely similar for individual peripheral and cortical neurons 
(Supplementary Figure 3A). Thus, at the single-cell level, speed had a largely similar effect on peripheral 

and cortical texture responses. 

Given that median speed-sensitivity was similar between the peripheral and cortical populations, we 

next considered whether speed-invariance might be achieved by a specialized subpopulation of cortical 

neurons. As signals ascend the somatosensory hierarchy, the tuning of individual neurons becomes 
increasingly heterogeneous (Lieber and Bensmaia 2019). We might thus expect subpopulations of 

cortical neurons to show specialization for speed or texture coding (Dépeault et al. 2013; Bourgeon et al. 
2016). Indeed, we found a significant proportion of cortical cells exhibited speed/texture ratios weaker 

than any observed in peripheral afferents (Figure 1E) (12/49 with ratio < 0.12, p<0.05, permutation test, 
see Methods), an effect that was present in all three cortical fields (Supplementary Figure 2C). 

Therefore, somatosensory processing does not simply extinguish speed-sensitivity as signals ascend 
from the periphery to somatosensory cortex but rather creates a wide range of response properties in 

cortex that could potentially represent information about both texture and scanning speed. 

Texture and speed signals are more independent in cortex than at the periphery 

The diverse tuning of individual cortical neurons suggests that the population representations of texture 

and speed may be more independent in cortex than at the periphery. To this end, we first identified 
linear combinations of neurons within each population that best captured either texture-driven or 

speed-driven modulations of firing rate. 

To identify the most texture-sensitive dimensions in the peripheral and cortical populations, we applied 
principal components analysis (PCA) to each population’s response to 24 textures presented at a single 

speed (80 mm/s). The PCA yielded principal components [PCs], ordered by their ability to account for 
variance in the texture response. To identify the speed-sensitive dimension in each neural 

representation, we applied demixed principal components analysis (dPCA) (Kobak et al. 2016) to each 
population’s response to 10 textures presented at multiple speeds. Although this analysis identified 

multiple speed-sensitive dimensions in each population response, a single dimension captured most of 
the speed-related response variance (peripheral: 87.6%, cortical: 63.9%, see Methods) and significantly 

tracked speed magnitude across different textures (R2 to log2 speed, periphery: 0.64, cortex: 0.24, p < 
0.01, F-test).  

To examine the relationship between the texture and speed representations, we assessed the extent to 

which the texture- and speed subspaces were orthogonal. That is, to what degree do changes in speed 
affect the speed representation but not the texture representation, and vice versa? To this end, we 

computed the proportion of speed-related variance that was captured by each dimension of the texture 
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representation (Figure 2C), a quantity we refer to as the alignment index (Elsayed et al. 2016; Gallego et

al. 2018)(see Methods). We found that speed-driven changes were primarily captured by the first

principal component of the texture representation and this relationship was far stronger in the

periphery than in cortex (average alignment index, peripheral: 0.80, cortical: 0.46). This effect was

robust across the full texture space (Figure 2D), where the peripheral representations of texture and

speed were still more closely aligned than were their cortical counterparts. Surprisingly, this effect was

not simply a consequence of a subpopulation of particularly speed-invariant neurons. Rather, we found

that the increased separation of speed and texture was robustly present even when the most speed-

invariant cortical neurons were removed (Supplementary Figure 4). We surmised that the increased

independence of the cortical texture response could endow it with an increased ability to support

speed-independent texture discrimination. We extended our SNR analysis to populations of neurons

(see Methods) and indeed found that cortical subpopulations showed stronger discriminability of

texture pairs than comparably sized populations of tactile fibers (Supplementary Figure 3B-C), a strong

contrast to the largely similar performance seen for individual cortical neurons and afferents. We

conclude that, as texture-driven responses ascend the somatosensory hierarchy, populations of neurons

encode speed and texture information in increasingly independent representations that support speed-

invariant texture discrimination.  

 

Figure 2. Texture and speed signals are more independent in cortex than at the periphery. A-B| Texture

population responses are projected to a two-dimensional plane. One dimension (plotted on the

abscissa, and also as a horizontal black line) corresponds to the first principal component of the texture

space (found by applying PCA to texture responses at 80 mm/s). A second dimension (corresponding to

the oblique black line) corresponds to the primary speed axis (found by applying dPCA to texture

responses at multiple speeds). The primary texture and speed axes are not orthogonal to each other and

a more acute angle between the two black lines indicates greater overlap in the representations of

texture and speed. Accordingly, the ordinates of the plots correspond to the component of the speed

axis orthogonal to the primary texture axis. Texture responses are plotted at three speeds (principa
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components for 10 different textures plotted at different speeds, low speeds: dark green, high speeds

light green). Speed-driven changes in firing rate are less aligned to the primary texture axis in cortex

than at the periphery. C| Alignment index between the primary speed axis and individual texture axes

for the peripheral (red) and cortical (blue) populations. The alignment index measures the proportion of

speed-related variance captured by each texture dimension (see Methods). Error bars for the cortica

population (blue) are the standard deviation across randomly sampled subpopulations of 21 neurons

D| Alignment index between the primary speed axis and the multidimensional texture space for the

peripheral (red) and cortical (blue) populations, shown for the first 9 principal components of the

texture space. 

Cortical responses account for speed-invariant texture perception 

Next, we examined the extent to which neuronal responses could account for the well-documented

speed-invariance of texture perception (Lederman 1974; Meftah et al. 2000; Boundy-Singer et al. 2017)

To this end, we tested the hypothesis that perceived roughness is determined by the population firing

rate in somatosensory cortex (Burton and Sinclair 1994; Lieber and Bensmaia 2019) using a previously

published set of roughness ratings obtained from human subjects. First, we regressed roughness ratings

onto the population firing rate evoked when textures are scanned across the skin at 80 mm/s (Figure

3A)(cross validated R
2
, peripheral: 0.81, cortical: 0.77). Next, we assessed how well this linear mode

could account for the neuronal responses at other speeds (Figure 3B). We found that roughness

estimated from both peripheral and cortical responses were strongly modulated by changes in scanning

speed (% increase in roughness per doubling of speed, periphery: 29.9%, cortex: 19.4%) in contrast to

the roughness ratings, which were largely speed-independent. Given the observed heterogeneity of

cortical tuning, we next considered that the neural code for roughness might rely more on some

neurons than others (Chapman et al. 2002; Bourgeon et al. 2016). To test this hypothesis, we regressed

the first five texture-related principal components of each population response on perceived roughness

(Figure 3A-B, middle bars). This led to a more accurate prediction of perceived roughness (cross-

validated R
2
, peripheral: 0.87, cortical: 0.81), but only marginally reduced the speed dependence of the

roughness predictions (% increase in roughness per doubling of speed, periphery: 25.8%, cortex: 15.3%).

 

Figure 3. Cortical responses account for speed-invariant texture perception. A| Cross-validated R
2

between the predicted and true roughness, for predictions based on peripheral (red) and cortical (blue)

population responses (populations of 21 cells). From left to right, bars represent predictions based on

regressions of the population averaged firing rate (light, rate), the best-fit regression of 5 principa

components (medium, M.R.), and a best-fit regression constrained to minimize speed dependence (dark,

S.I.). Error bars denote standard deviations across different samples of 21 cells. B| Speed dependence of

the roughness prediction reported as a percentage increase in firing rate per doubling of speed, with
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color conventions as in A| The cortical population can support a speed-independent prediction of 
roughness, while the peripheral population cannot simultaneously support speed-independence and an 
accurate roughness prediction. 

To create fully speed-independent roughness predictions, we next constrained our regression weights to 

be orthogonal to the primary speed-related dimension (found using dPCA) in each population (Figure 

3A-B, right bars). This approach successfully eliminated the speed-dependence for both sets of 

roughness predictions (% increase in roughness per doubling of speed, periphery: 1.2%, cortex: 0.2%). 
However, for the peripheral population, enforcing speed-independence strongly reduced the predictive 

power of the peripheral model (peripheral cross-validated R
2: 0.73, from 0.87). In contrast, enforcing 

speed independence had essentially no effect on the predictive power of the cortical model (cortical 

cross-validated R2: 0.79 from 0.81). This effect was robust across a wide range of subpopulation sizes 
and regression parameters (Supplementary Figure 5A-B) but was highly variable for different individual 

subpopulations of peripheral afferents (Supplementary Figure 5C). That is, while some subpopulations of 
afferents reached levels of roughness prediction that nearly matched their cortical counterparts, others 

failed catastrophically. Thus, the cortical population response contains a robust, speed-independent 
readout of perceived roughness that is not present in the peripheral firing rate response. 

Known cortical computations account for the untangling of speed and texture information  

As information ascends any sensory neuraxis, neural representations are repeatedly transformed by a 

set of canonical computations that shape the feature selectivity of downstream neurons. One well-
established transformation in the somatosensory system is the computation of spatial (Connor and 

Johnson 1992; DiCarlo and Johnson 2000; Lieber and Bensmaia 2019) and temporal (Saal et al. 2015) 
variation: the extent to which the peripheral neural representation exhibits inhomogeneous (“edge-

like”) structure in space or time. We hypothesized that these differentiation computations could also 
give rise to an increasingly heterogeneous population response to texture and speed as signals ascend 

from periphery through cortex. Indeed, increased response heterogeneity has been proposed as an 
organizing principle for the structure of receptive fields in the visual and auditory systems (Olshausen 

and Field 1996, 2004; Van Hateren and Ruderman 1998; Lewicki 2002). To test this hypothesis, we built 
a neurally plausible model of spatial and temporal variation using the responses of peripheral afferents. 

Specifically, we added two subtractive influences to each modeled cell: spatially offset inhibition 
originating from a separate afferent, and temporally offset inhibition tracking the cell’s response but 

with the sign inverted (Figure 4A). Using a range of biologically plausible model parameters (see 
Methods), we investigated whether pseudo-populations of such simulated neurons exhibited speed-

invariant texture coding. 

We first verified that the outputs of the variation model resembled actual cortical responses to texture 
(median correlation with population-averaged cortical response to 24 textures scanned at 80 mm/s: 

variation model outputs r=0.71, individual cortical neurons r=0.75). Next, we evaluated the speed-
sensitivity of individual “downstream” model outputs by calculating their speed/texture sensitivity ratio 

(as above). Outputs of the variation model showed comparable levels of speed-sensitivity to peripheral 
afferents (Figure 4B)(speed/texture ratio, median ± median absolute deviation, model: 0.43±0.18 vs. 

afferents: 0.59±0.18). However, when we examined population-level representations in model outputs 
using the texture/speed alignment index (as above), we found that small populations (N=21 units) 

separated texture and speed more robustly than did peripheral afferents (Figure 4C). Comparing these 
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results to models built with only spatially or temporally offset inhibition, we found that this separation

was most strongly driven by spatial variation mechanisms, although temporal variation mechanisms

contributed significantly to the separation as well (Supplementary Figure 6). Thus, our simulation

suggests that the well-established cortical computations of spatial and temporal differentiation

contribute to the heterogeneous speed- and texture-sensitivity observed in somatosensory cortex,

which in turn underlies the untangling of speed and texture representations. 

 

Figure 4. Known cortical computations account for the untangling of speed and texture information. A|

Cartoon of the variation model. The texture response of a single afferent is combined with a spatia

variation signal, modeled as an inhibitory response stemming from an afferent whose receptive field is

located 2 to 4 mm away along the scanning direction, and a temporal variation signal, modeled as an

inhibitory copy of the original afferent’s response delayed by 15-50 ms. B| Cumulative distribution of

the ratio between the speed effect and texture effect for tactile fibers (red) and simulated cortica

neurons (green). C| Alignment index (as in Figure 2) between the speed and texture spaces for smal

populations (N=21 units) of tactile fibers (red) and simulated neurons (green), shown for the first 9

principal components of the texture space. Error bars denote the standard deviation across subsamples

of simulated responses. The variation model exhibits a greater separation of speed and texture

information than does the afferent population.  

DISCUSSION 

The perception of texture is remarkably tolerant to changes in scanning speed. Indeed, psychophysica

ratings along the three principal perceptual axes of textures – roughness, hardness, and stickiness – are

identical across speeds (Lederman 1974; Meftah et al. 2000; Boundy-Singer et al. 2017). Furthermore,

the perceived dissimilarity of a pair of textures – which probes texture perception across all of its

dimensions and attributes – is very similar whether the two textures are scanned at the same speed or

at different speeds (Boundy-Singer et al. 2017). What makes this perceptual invariance so remarkable is

that the response of tactile nerve fibers are highly speed dependent. Indeed, in the nerve, texture-
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elicited firing rates increase with scanning speed, and temporal spiking sequences, which carry critical 

texture information, also change with speed. The central result of the present study is that the cortical 
population response exhibits a capacity for speed-invariant coding of texture that exceeds the 

capabilities of the peripheral population response. Therefore, somatosensory processing between the 
periphery and cortex yields overlaid representations of texture and speed that are relatively 

independent, and thus much easier to decode independently.  

Experimental caveats 

The textures used in the peripheral and cortical experiments were designed to address different 

scientific questions and only overlap partially. To overcome differences in texture set, we analyzed the 
neuronal responses to a subset of textures that drives similar patterns of responses in somatosensory 

cortex (Supplementary Figure 1A). The speeds used in the cortical experiments spanned a different 
range than did those in the peripheral experiments to better span the behaviorally relevant range 

(Callier et al. 2015). To overcome differences in speed range, we selected a metric of speed-sensitivity 
(change in firing rate per doubling in speed) that is consistent at low and high ranges of speed (see 

Methods). These features of the analysis address biases based on stimulation paradigm (textures, 
speeds) that might skew our results. Note that we reach the same conclusions when using the full set of 

textures and speeds (Supplementary Figure 1E) and that our measurements of peripheral and cortical 
speed-sensitivity are consistent with those observed by other groups (Supplementary Table 1). 

In the present study, we use neural responses measured in macaques to predict texture perception in a 

different species: humans. Human and macaque hands show very similar patterns of cutaneous 
innervation (Johansson and Vallbo 1979; Darian-Smith and Kenins 1980; Paré et al. 2003) and the tactile 

nerve fibers in the two species exhibit nearly identical response properties (Johansson et al. 1982; 
Phillips et al. 1992). Macaques can successfully perform texture discrimination tasks (Chapman and 

Ageranioti-Bélanger 1991; Tremblay et al. 1996), and human texture perception can be successfully 
predicted by the responses of macaque nerve fibers (Connor et al. 1990; Connor and Johnson 1992; 

Blake et al. 1997; Weber et al. 2013; Lieber et al. 2017) and cortical neurons (Bourgeon et al. 2016; 
Lieber and Bensmaia 2019). We therefore believe that the macaque model of texture and speed coding 

is well suited to account for human texture perception.  

Previous work on the speed invariance of texture representations 

We find a continuum of response properties in somatosensory cortex, from neurons that are as sensitive 
to speed as are peripheral afferents to neurons that are nearly speed-independent. These data are 

broadly consistent with previous studies that have emphasized that different cortical neurons show 
responses that are purely texture-selective, purely speed-selective, or responsive to both texture and 

speed (Tremblay et al. 1996; Dépeault et al. 2013; Bourgeon et al. 2016). However, we emphasize that 
there exists significant response heterogeneity within these subpopulations as well, and that the 

distribution of speed-sensitivity across cortex is likely better described as a continuum than as a bimodal 
distribution of texture and speed specialists. 

Variation computations give rise to speed-invariant representations of texture 

In the above analyses, we compare texture representations in afferent firing rates and cortical firing 

rates. However, a large body of evidence suggests that stimulus information is not encoded simply in the 
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firing rates of tactile nerve fibers, but rather in spatio-temporal patterns of activation (Talbot et al. 1968; 

LaMotte and Mountcastle 1975; Connor and Johnson 1992; DiCarlo and Johnson 2000; Mackevicius et 
al. 2012; Weber et al. 2013; Birznieks and Vickery 2017). These putative peripheral neural codes imply 

computations along the neuraxis where spatio-temporal motifs in the afferent input are converted to 
firing rate codes downstream. One of the canonical computations is that of differentiation, both spatial 

and temporal. Indeed, neurons in somatosensory cortex have been shown to exhibit Gabor-like spatial 
receptive fields, reflecting a spatial differentiation (DiCarlo and Johnson 2000; Sripati et al. 2006; 

Bensmaia et al. 2008), and bi-lobed temporal receptive fields, reflecting temporal differentiation 
(DiCarlo and Johnson 2000; Sripati et al. 2006; Saal et al. 2015). We demonstrate that these 

computations confer an additional benefit to the cortical code for texture: increased separability of 
information about texture and speed. This separability likely reflects a broader sensory function, namely 

to create a basis set that efficiently and sparsely encodes behaviorally relevant features across the 
breadth of naturally occurring stimuli (Olshausen and Field 2004). In the somatosensory system, Gabor-

like spatial and temporal filters transform a largely homogeneous set of peripheral responses into a 
widely divergent set of cortical responses, as has also been shown in the visual system (Olshausen and 

Field 1996; Van Hateren and Ruderman 1998). 

We emphasize that a single variation filter, by itself, is not sufficient to create response heterogeneity in 
a neural representation. Consider the receptive field structure of neurons in the lateral geniculate 

nucleus (LGN). Although these neurons do compute spatial variation, they do so using a spatial receptive 
field structure (center-surround) that is relatively homogeneous within any local population (Derrington 

and Lennie 1984). One synapse later, local populations of neurons in primary visual cortex exhibit 
receptive field structures that vary widely in their spatial extent, spatial frequency, and orientation (De 

Valois et al. 1982). This expansion in response properties is likely due to the increase in neural 
representation size between LGN and cortex. A comparable expansion exists between the 

somatosensory periphery and cortex, an important prerequisite for the observed heterogeneity in 
cortical responses. As such, we would attribute the separation of speed and texture information not just 

to the presence of variation filters per se, but rather to the wide range of different variation filters 
implemented along the somatosensory neuraxis. As inhibitory “variation-like” computations have been 

observed in the cuneate nucleus and ventral posterior thalamus (Bystrzycka et al. 1977; Lee et al. 1994), 
this separation of speed and texture information may begin to arise at earlier stages of processing and 

continue to progress at later ones. 

Invariance as a canonical sensory computation 

To produce a stable percept of object identity, the somatosensory system must correct for the influence 

of speed from the texture representation. However, information about tactile speed is behaviorally 
relevant, and thus ideally would be preserved rather than eliminated. We find that the somatosensory 

system does not discard speed information but rather partitions texture and speed representations into 
increasingly separated subspaces. This partitioning is not perfect: the representation of tactile speed in 

somatosensory cortex is highly contaminated by texture identity and this influence of texture leads to a 
predictably non-veridical perception of tactile speed (Delhaye et al. 2019). Nonetheless, the 

preservation of any speed information speaks to the capacity of the cortical population representation 
to simultaneously encode many relevant variables simultaneously.  
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We find that, at the somatosensory periphery, object information (texture) and information about 

exploratory parameters (speed) are inextricably tangled together. As this mixed signal ascends the 
somatosensory hierarchy, it is transformed into two independently readable representations of these 

two parameters. This mirrors results from vision and audition, where successive levels of processing lead 
to a higher fidelity readout of both object identity (Rust and DiCarlo 2010; Town et al. 2018) and 

exploratory parameters (Hong et al. 2016). These convergent results suggest that separating (or 
untangling) information about objects and exploratory parameters is a canonical sensory computation 

(DiCarlo and Cox 2007). 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Different subsets of textures yield similar conclusions about speed-sensitivity

A| Cortical population responses to 30 different textures were projected onto the first two principa

components of the texture representation (all presented at 80 mm/s). Four (4) of these textures were

included in the speed set for both experiments (purple), twenty textures were included in the periphera

speed set but not the cortical one (red), and 6 textures (blue) were included in the cortical speed set but

not the peripheral one. To fairly compare analyses periphery to cortex, we found the 6 textures from the

peripheral speed set that evoked cortical responses most similar to the 6 non-overlapping textures from

the cortical speed set (black lines). This set of 6 textures (combined with the set of 4 overlapping

textures) was used for all analyses. B| Speed-sensitivity of individual neurons (measured in Hz / doubling

of speed) vs. that neuron’s mean firing rate across textures, for peripheral afferents (red, using the set

of 10 matched textures) and cortical neurons (blue). Each point denotes a cell. Speed slopes increase

proportionally to each neuron’s average excitability (F-test for regression fit, both p<10-6). C| Speed-

sensitivity vs. mean firing rate across textures as in B|, but afferent responses are averaged over the ful

set of 55 textures (F-test for regression fit, both p<10-6). Results are similar regardless of the texture set

used. D| Population speed-sensitivity vs. mean firing rate across neurons, for individual textures. Dark

red points indicate the matched peripheral set of 10 textures, light red indicate the other 45 textures

While peripheral slopes are closely related to the averaged population firing rates (F-test for regression

fit, p<10-3), cortical slopes show a much noisier relationship (p=0.19). Different points denote different

textures. E| Median normalized speed-sensitivity for the peripheral and cortical population for different

sets of textures and speeds. For the five bars on the left: peripheral slopes were computed over either

the full set of 55 textures, the matched set of 10 textures, or the exactly overlapping set of 4 textures

Cortical slopes were computed over the full set of 10 textures or the overlapping set of 4 textures. For

the four bars on the right: peripheral and cortical slopes were computed using only “low” speeds

(periphery: 40 and 80 mm/s, cortical: 60 and 80 mm/s) or “high” speeds (peripheral and cortical: 80 and

120 mm/s). All four sets of slopes were computed over the matched set of 10 textures. Cortical slopes

are consistently lower than peripheral slopes, regardless of the texture set or speed range used to

compute them. 
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Supplementary Figure 2. Speed-sensitivity differs across afferent classes and cortical fields. A| Speed-

sensitivity for afferents and cortical neurons, broken out by afferent submodality and cortical field

Neurons in area 3b trend towards less speed-sensitivity than those in area 1 (p<0.05) or area 2 (p=0.33)

B| Cumulative distribution of speed-sensitivity (absolute value) across afferents and neurons (same data

as in A|, replotted). Colors represent afferent submodality and cortical area, as in A|. C| Cumulative

distribution of the ratio between speed-sensitivity (as in B|) and texture coefficient of variation for each

afferent and cortical neuron. All three cortical areas contain a significant subpopulation of neurons that

exhibit stronger speed-invariance than the least speed-invariant SA1 afferent (fraction of neurons with a

speed/texture ratio less than the lowest SA1 ratio: area 3b: 6/14, area 1: 4/26, area 2: 2/9, all p < 0.05). 

  

-

. 

. 

a 

e 

h 

t 

a 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2019. ; https://doi.org/10.1101/646042doi: bioRxiv preprint 

https://doi.org/10.1101/646042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 3. The cortical population representation of texture exhibits more invariance to

changes in speed than does the peripheral representation. A| SNR vs. speed ratio, averaged across al

texture pairs (10 textures) for peripheral afferents (red) or cortical neurons (blue). We defined SNR as

the difference in response to each texture, averaged across a pair of speeds (the “signal”) divided by the

spread of each texture’s firing rate across speeds (the “noise”). SNR was calculated over mean firing

rates at two speeds which could be close together (left) or far apart (right). Best-fit curves of the form

 were fit to the data (see Methods). As expected, larger differences in speed drove lower

discriminability for both tactile nerve fibers and cortical neurons, but discriminability is similar between

the two populations at any given difference in speed. B| SNR vs. speed difference, now in

multidimensional space for groups of 21 neurons. Discriminability was calculated along the neura

dimension connecting the centers of the two textures. C| SNR vs. group size for individual conditions

(light colors) and averaged across conditions (dark colors). Peripheral discriminability saturates quickly,

while cortical discriminability grows rapidly for all conditions. 
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Supplementary Figure 4. Cortical separation of texture and speed information is robust even among the

most speed-sensitive subpopulations. A| Alignment index between the primary speed axis and

individual texture axes, as in Figure 3C for three cortical subpopulations: the full cortical population

(dark blue), a cortical population with the 13 most speed-invariant cells removed (medium blue,

invariance measured using speed/texture ratio, as in Figure 2B), and a cortical population with the 25

most speed-invariant cells removed (light blue). B| Alignment index between the primary speed axis and

the multidimensional texture space, as in Figure 3D. Colors as in A|. Even when the analysis is confined

to the most speed-sensitive neurons, the cortical population response still shows more separation

between speed and texture than does its peripheral counterpart. 
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Supplementary Figure 5. Predictions of perceived roughness are robust to changes in model parameters

A| Difference in cross-validated R
2
 between the full multiple regression model and the regression mode

constrained to be speed-independent, for neuronal subpopulations of different sizes (periphera

afferents: red, cortical neurons: blue). Each regression model was constrained to use the first 5 principa

components of the population response – as such, we only plot results for subpopulations of size 5 and

larger. B| Difference in cross-validated R
2
 between the two model classes, now for regression models

trained using different numbers of principal components. All models were trained on subpopulations of

21 neurons. Cortical regression models were consistently more robust to the imposition of speed-

independence. C| Performance of the speed-invariant model vs. performance of the full multiple

regression model, for many different subpopulations of neurons (N = 10 cells), using 5 PCs. The speed-

invariant performance of peripheral afferents was highly variable across subpopulations (median

absolute deviation=0.12), compared to relatively stable performance of cortical subpopulations (median

absolute deviation = 0.04). Despite this variability, peripheral subpopulations consistently exhibited

larger drops in performance than cortical subpopulations (bigger peripheral drop for 96.8% of

subpopulations). Thus, while some peripheral subpopulations showed cortical-level robustness, many

catastrophically failed in their predictions of speed-invariant roughness. 
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Supplementary Figure 6. Both spatial and temporal mechanisms contribute to the separation of speed 
and texture information. Alignment index between speed and texture spaces for small groups of 
neurons (N=21) from four different populations. Indices for peripheral afferents (red) and full model 
outputs (green) are plotted as in Figure 4C. Also plotted are instantiations of the model that implement 
only feedforward inhibition (yellow, “temp.”) or surround inhibition (blue, “spat.”). Temporal or spatial 
variation, by themselves, can each increase the separability of speed and texture information. Models 
that implement both mechanisms exhibit less alignment than do those that only implement spatial 
variation (spatial and temporal < spatial alignment index for 95% of shuffled populations, for all # 
texture PCs conditions <= 6). 
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Paper Neural 
Subpopulation 

Slope Notes 

Goodwin and Morley 
1987a 

SA1 ~ 0% Gratings, sinusoidal motion 

 RA 23% Gratings, sinusoidal motion 
 PC 28% Gratings, sinusoidal motion 
Phillips and Johnson 1994 Human SA1 24% 2 mm spaced dot pattern 
 Human RA 22% 2 mm spaced dot pattern 
Essick and Edin 1995 Human, unspecified 

Aβ afferent 
14% Brush stroked over RF 

DiCarlo and Johnson 1999 SA1 17% Random dot pattern 
 RA 30% Random dot pattern 
 Cortical: 3b 14% Random dot pattern 
Sinclair and Burton 1991 Cortical: 3b & 1 14% Actively scanned texture, scans at 

higher velocity were correlated with 
lower applied normal force 

Dépeault et. al. 2013 Cortical: 3b, 1, and 2 28% Data from a subset of cortical neurons 
that exhibited statistically significant 
speed modulation 

 

Supplementary Table 1. Previously published results on speed-sensitivity at the periphery and in cortex. 
Firing rate responses from previous studies were re-fit using the speed-sensitivity metric described in 
this paper (slope of the linear fit in log2(speed) coordinates). Results from (Goodwin and Morley 1987a) 
are based on the peak speeds of sinusoidal, back-and-forth sweeps, measured for a range of different 
periodic grating textures. Results from (Essick and Edin 1995) are in response to a brush sweeping over 
the skin, rather than a classically defined texture. Neural responses from (Sinclair and Burton 1991) were 
in response to macaque monkeys actively scanning textures with their finger (in contrast to the passive 
presentation of texture used in the other cited studies). As a result, the velocity and force used to scan 
the texture were under the volitional control of the animal, and thus 1) not consistent from trial to trial 
and 2) negatively correlated across trials. That is, unlike scans in the passive condition, scans at higher 
velocities tended to use less force. This may help explain the slightly lower levels of observed speed-
sensitivity. Finally, the responses reported in (Dépeault et al. 2013) are not from the full population of 
somatosensory cortical neurons – rather, the authors only report the effect size of speed-modulation 
from the subset of neurons where that effect reaches statistical significance. This may help explain the 
slightly higher levels of observed speed-sensitivity. Overall, the levels of speed-sensitivity found in the 
present study broadly line up with those observed in previous work. 
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