
 

 

 

 

BOLD and EEG Signal Variability at Rest 

Differently Relate to Aging in the Human Brain 

 

 

D. Kumral1,2, F. Şansal3,1, E. Cesnaite1, K. Mahjoory1,4, E. Al2,1, M. Gaebler1,2, V. V. 

Nikulin1,5,6, A. Villringer1,2,7,8 

 

1Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 

Leipzig, Germany 
2MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu 

Berlin, Berlin, Germany 
3International Graduate Program Medical Neurosciences, Charité-Universitätsmedizin, Berlin, 

Germany 
4Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, 

Germany 
5Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité 

Universitätsmedizin Berlin, Berlin, Germany 
6Centre for Cognition and Decision Making, National Research University Higher School of 

Economics, Moscow, Russian Federation 
7Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany 
8Department of Cognitive Neurology, University Hospital Leipzig 

 

 

Corresponding author: Deniz Kumral, Department of Neurology, Max Planck Institute for 

Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany.  

Email: dkumral@cbs.mpg.de 

 

 

Abbreviations: BOLD – Blood Oxygenation Level Dependent; CBF – cerebral blood flow; CBV– 

cerebral blood volume; CCA – canonical correlation analysis; CMRO2 – cerebral metabolic rate of 

oxygen; CVR – cerebrovascular reactivity; DMN – Default Mode Network; EEG – 

electroencephalography; EC – eyes closed; EO – eyes open; FDR - false discovery rate; FEM – finite 
element method; fMRI – functional Magnetic Resonance Imaging; fNIRS – functional Near-Infrared 

Spectroscopy; FWHM – full-width half-maximum; ICBM – International Consortium for Brain 

Mapping; MEG – magnetoencephalography; MNI – Montreal Neurological Institute; rho – 
Spearman’s rank correlation coefficient; PET –Positron-emission tomography; ROI – regions of 

interests; rs – resting state; SD – standard deviation; SVD – Singular Value Decomposition 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


 2 

Abstract 

Variability of neural activity is regarded as a crucial feature of healthy brain function, and 

several neuroimaging approaches have been employed to assess it noninvasively. Studies on 

the variability of both evoked brain response and spontaneous brain signals have shown 

remarkable changes with aging but it is unclear if the different measures of brain signal 

variability – identified with either hemodynamic or electrophysiological methods – reflect the 

same underlying physiology. In this study, we aimed to explore age differences of 

spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in 

healthy younger (25±3 years, N=135) and older (67±4 years, N=54) adults. Consistent with 

the previous studies, we found lower blood oxygenation level dependent (BOLD) variability 

in the older subjects as well as less signal variability in the amplitude of low-frequency 

oscillations (1–12 Hz), measured in source space. These age-related reductions were mostly 

observed in the areas that overlap with the default mode network. Moreover, age-related 

increases of variability in the amplitude of beta-band frequency EEG oscillations (15–25 Hz) 

were seen predominantly in fronto-temporal and sensorimotor brain regions. There were 

significant sex differences in BOLD and EEG signal variability in various brain regions, but 

no significant interactions between age and sex were observed. Further, both univariate and 

multivariate correlation analyses revealed no significant associations between these two 

variability measures. In summary, we show that both BOLD and EEG signal variability 

reflect aging-related processes but are likely to be dominated by different physiological 

origins, which relate differentially to age and sex. 

Keywords: brain signal variability, resting state, BOLD, fMRI, EEG, aging, sex, default 

mode network 
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1. Introduction 

Functional neuroimaging methods such as fMRI, PET, fNIRS, EEG, or MEG have 

allowed the non-invasive assessment of functional changes in the aging human brain (Cabeza, 

2001; Cabeza et al., 2018). Most previous functional neuroimaging studies on aging have 

employed a task-based design (Grady, 2012) and in their data analysis the central tendency 

has typically been assumed to be the most representative value in a distribution (e.g., mean) 

(Speelman and McGann, 2013) or the “signal” within distributional “noise”. In recent years, 

also the variability of brain activation in task-dependent and task-independent measurements 

(as spontaneous variations of background activity) has been shown to provide relevant 

information about the brain’s functional state (Garrett et al., 2013b; Grady and Garrett, 2018; 

Nomi et al., 2017). These studies primarily measured the blood oxygen level dependent 

(BOLD) signal using fMRI. For example, it has been demonstrated that the variance of the 

task-evoked BOLD response was differentially related to aging as well as cognitive 

performance (Armbruster-Genc et al., 2016; Garrett et al., 2013a). Similarly, spontaneous 

signal variability in resting state fMRI (rsfMRI) has been associated with age (Grady and 

Garrett, 2018; Nomi et al., 2017), emotional state (state anxiety; Labrenz et al., 2018), and 

mental or neural disorders such as stroke (Kielar et al., 2016), Attention Deficit Hyperactivity 

Disorder (Nomi et al., 2018) or 22q11.2 deletion syndrome (Zöller et al., 2017). From these 

studies, it was concluded that reductions in BOLD signal variability might serve as an index 

for deficits in neural processing and cognitive flexibility (Grady and Garrett, 2014). 

These conclusions of aforementioned studies imply that BOLD signal variability is 

mainly determined by neuronal variability. To a large extent, this is based on the premise that 

BOLD is related to neuronal activity: The evoked BOLD signal in task-based fMRI reflects 

the decrease of the deoxyhemoglobin concentration to changes in local brain activity, which is 

determined by vascular (blood velocity and volume: “neurovascular coupling”) and metabolic 

(oxygen consumption: “neurometabolic coupling”) factors (Logothetis and Wandell, 2004; 

Villringer and Dirnagl, 1995). The BOLD signal is therefore only an indirect measure of 

neural activity (Logothetis, 2008). For the variability of task-evoked BOLD signal and for 

spontaneous variations of the BOLD signal, in principle, the same considerations apply 

regarding their relationship to underlying neural processes (Murayama et al., 2010). However, 

since in rsfMRI there is no explicit external trigger for evoked brain activity to which time-

locked averaging could be applied, the time course of rsfMRI signals is potentially more 

susceptible to contributions of “physiological noise”, such as cardiac and respiratory signals 

(Birn et al., 2008; Chang et al., 2009), but also spontaneous fluctuations of vascular tone, 
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which is found even in isolated arterial vessels (Failla et al., 1999; Hudetz et al., 1998; Wang 

et al., 2006). In the same vein, the variability of task-evoked fMRI is not necessarily 

reflecting only the variability of evoked neuronal activity, as it may also – at least partly – 

reflect the variability of the spontaneous background signal on which a constant evoked 

response is superimposed. 

In aging, non-neuronal signal fluctuations may also introduce spurious common 

variance across the rsfMRI time series (Caballero-Gaudes and Reynolds, 2017), thus 

confounding estimates of “neural” brain signal variability. Previous evidence suggests that the 

relationship between neuronal activity and the vascular response is attenuated with age – and 

so is, as a consequence, the BOLD signal (for review see D’Esposito et al., 2003). For 

instance, aging has been associated with altered cerebrovascular ultrastructure, reduced 

elasticity of vessels, and atherosclerosis (Farkas and Luiten, 2001) but also with a decrease in 

resting cerebral blood flow (CBF) (Ances et al., 2009; Martin et al., 1991), cerebral metabolic 

rate of oxygen consumption (CMRO2) (Aanerud et al., 2012), and cerebrovascular reactivity 

(CVR) (Liu et al., 2013). Taken together, age-related changes in BOLD signal or BOLD 

signal variability are related to a mixture of alterations in non-neural spontaneous fluctuations 

of vascular signals, neural activity, neurovascular coupling, and/or neurometabolic coupling 

(D’Esposito et al., 2003; Geerligs et al., 2017; Tsvetanov et al., 2015). 

While BOLD fMRI signal and specifically variance measures based on fMRI are only 

partially and indirectly related to neural activity (Liu, 2013; Logothetis, 2008), 

electrophysiological methods such as EEG can provide a more direct assessment of neural 

activity with a higher temporal but poorer spatial resolution (Cohen, 2017). EEG measures 

neuronal currents resulting from the synchronization of dendritic postsynaptic potentials 

across the neural population; the cerebral EEG rhythms thereby reflect the underlying brain 

neural network activity (Steriade, 2006). Resting state (rs)EEG is characterized by 

spontaneous oscillations (“brain rhythms”) at different frequencies. Previously, the mean 

amplitude of low-frequency bands (e.g., delta and/or theta, 1-7 Hz) has been shown to 

correlate negatively with age (Vlahou et al., 2015), while higher-frequency bands (e.g., beta, 

15-25 Hz) show the reverse pattern (Rossiter et al., 2014). However, less is known about the 

within-subject variability of EEG measures and their association with aging. Several studies 

have addressed the variability in the spectral amplitudes of different frequency bands using 

variance (Hawkes and Prescott, 1973; Oken and Chiappa, 1988), coefficient of variation 

(Burgess and Gruzelier, 1993; Maltez et al., 2004), and complexity (Fernández et al., 2012; 

Sleimen-Malkoun et al., 2015). For instance, reductions of the complexity in rsEEG signal 
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have been found not only in healthy aging (Yang et al., 2013; Zappasodi et al., 2015) but also 

in age-related pathologies such as mild cognitive impairment (McBride et al., 2014) and 

Alzheimer’s disease (Smits et al., 2016). Accordingly, it has been suggested that irregular 

(e.g., variable) systems indicate a normal and healthy state (more integrated information) 

while highly regular systems often mark dysfunction or disease (Lipsitz and Goldberger, 

1992; Vaillancourt and Newell, 2002). 

The different methodological approaches, fMRI based “vascular” approaches on the 

one hand and electrophysiological methods such as EEG and MEG, on the other hand, 

indicate alterations of brain signal variability with aging. However, it remains unclear whether 

these different measures of brain variability at rest reflect the same underlying physiological 

changes. Evidently, there are some correlations between the two signal sources (for a review 

see, Jorge et al., 2014; Ritter and Villringer, 2006). For instance, in task-based EEG-fMRI 

simultaneous recordings, a relationship between BOLD responses and amplitude of evoked 

potentials has been demonstrated (e.g., Ritter et al., 2009; Seaquist et al., 2007), while in 

resting state EEG-fMRI studies, a negative association between spontaneous modulations of 

alpha rhythm and BOLD signal has also been established (e.g., Chang et al., 2013; Goldman 

et al., 2002; Gonçalves et al., 2006; Moosmann et al., 2003). Further, differential correlation 

patterns have been noted for the various rhythms of different frequencies in EEG/MEG and 

the fMRI signal, such that low-frequency oscillations show a negative (Deligianni et al., 2014; 

Mantini et al., 2007; Meyer et al., 2013), while higher frequencies oscillations demonstrate a 

positive correlation with the BOLD signal (Niessing et al., 2005; Scheeringa et al., 2011). 

Regarding the known age-related changes in BOLD and EEG signal variability, 

respectively, the question arises whether these alterations are dominated by joint signal 

sources of fMRI and EEG or by – potentially different – signal contributions that relate to 

each of these two methods. Given the – potentially large – non-neuronal signal contribution, 

this issue is particularly relevant for rsfMRI studies. Here, we addressed this question 

analyzing rsfMRI and EEG measures of variability in healthy younger and older subjects. To 

our knowledge, the only study that compared variability in a “vascular” imaging method 

(rsfMRI) and an electrophysiological method (rsMEG at the sensor space) concluded that the 

effects of aging on BOLD signal variability were mainly driven by vascular factors (e.g., 

heart rate variability) and not well-explained by the changes in neural variability (Tsvetanov 

et al., 2015). The main aims of the present study were to explore i) age differences of brain 

signal variability measures, as well as to investigate ii) how neural variability derived from 

rsEEG related to the analogous parameters of BOLD signal variability derived from rsfMRI. 
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We used rsfMRI and rsEEG from the “Leipzig Study for Mind-Body-Emotion Interactions” 

(Babayan et al., 2019). As an explanatory analysis, we further investigated sex-related 

differences of brain signal variability measures. To measure the brain signal variability, we 

calculated the standard deviation (SD) of both the BOLD signal and of the amplitude 

envelope of the filtered rsEEG time series for a number of standard frequency bands at the 

source space. We hypothesized that brain signal variability would generally decrease with 

aging. In addition, based on the premise that BOLD fMRI signal variability reflects neural 

variability as measured by rsEEG, we expected that the corresponding changes in both signal 

modalities would demonstrate moderate to strong similarity in their spatial distribution. Given 

the confounding effects of vascular factors during aging on the fMRI signal (D’Esposito et al., 

2003; Liu, 2013; Thompson, 2018), we further expected to find the relationship between 

BOLD and EEG signal variability to be stronger in younger than older adults. 
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2. Method 

2.1.Participants 

The data of the “Leipzig Study for Mind-Body-Emotion Interactions” (LEMON; 

Babayan et al., 2019) comprised 227 subjects in two age groups (younger: 20-35, older: 59-

77). Only participants who did not report any neurological disorders, head injury, alcohol or 

other substance abuse, hypertension, pregnancy, claustrophobia, chemotherapy and malignant 

diseases, current and/or previous psychiatric disease or any medication affecting the 

cardiovascular and/or central nervous system in a telephone pre-screening were invited to the 

laboratory. The study protocol conformed to the Declaration of Helsinki and was approved by 

the ethics committee at the medical faculty of the University of Leipzig (reference number 

154/13-ff). 

RsEEG recordings were available for 216 subjects who completed the full study 

protocol. We excluded data from subjects that had missing event information (N=1), different 

sampling rate (N=3), mismatching header files or insufficient data quality (N=9). Based on 

the rsfMRI quality assessment, we further excluded data from subjects with faulty 

preprocessing (N=7), ghost artefacts (N=2), incomplete data (N=1), or excessive head motion 

(N=3) (criterion: mean framewise displacement (FD) ≤ 0.5 mm; Power et al., 2012) 

(Supplementary Figure 1). The final sample included 135 younger (M = 25.10 ± 3.70 years, 

42 females) and 54 older subjects (M = 67.15 ± 4.52 years, 27 females). 

 

2.1.fMRI Acquisition 

Brain imaging was performed on a 3T Siemens Magnetom Verio MR scanner 

(Siemens Medical Systems, Erlangen, Germany) with a standard 32-channel head coil. The 

participants were instructed to keep their eyes open and not fall asleep. 

The structural image was recorded using an MP2RAGE sequence (Marques et al., 2010) with 

the following parameters: TI 1 = 700 ms, TI 2 = 2500 ms, TR = 5000 ms, TE = 2.92 ms, FA 1 

= 4°, FA 2 = 5°, band width = 240 Hz/pixel, FOV = 256 × 240 × 176 mm3, voxel size = 1 x 1 

x 1 mm3. The functional images were acquired using a T2*-weighted multiband EPI sequence 

with the following parameters: TR = 1400 ms, TE = 30 ms, FA= 69°, FOV = 202 mm, voxel 

size = 2.3 x 2.3 x 2.3 mm3, slice thickness = 2.3 mm, slice gap = 0.67 mm, 657 volumes, 

multiband acceleration factor = 4, duration = 15 min 30 s. A gradient echo field map with the 

sample geometry was used for distortion correction (TR = 680 ms, TE 1 = 5.19 ms, TE 2 = 

7.65 ms). 
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2.2.fMRI Preprocessing 

Preprocessing was implemented in Nipype (Gorgolewski et al., 2011), incorporating 

tools from FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), ANTs 

(Avants et al., 2011), CBS Tools (Bazin et al., 2014), and Nitime (Rokem et al., 2009). The 

pipeline comprised the following steps: (I) discarding the first five EPI volumes to allow for 

signal equilibration and steady state, (II) 3D motion correction (FSL mcflirt), (III) distortion 

correction (FSL fugue), (IV) rigid body coregistration of functional scans to the individual 

T1-weighted image (Freesurfer bbregister), (V) denoising including removal of 24 motion 

parameters (CPAC, Friston et al., 1996), motion, signal intensity spikes (Nipype rapidart), 

physiological noise in white matter and cerebrospinal fluid (CSF) (CompCor; Behzadi et al., 

2007), together with linear and quadratic signal trends, (VI) band-pass filtering between 0.01-

0.1 Hz (Nilearn), (VII) spatial normalization to MNI152 (Montreal Neurological Institute) 

standard space (2 mm isotropic) via transformation parameters derived during structural 

preprocessing (ANTS). (VIII) The data were then spatially smoothed with a 6-mm full-width 

half-maximum (FWHM) Gaussian kernel. 

BOLD Signal Variability (SDBOLD). Standard deviation (SD) quantifies the amount of 

variation or dispersion in a set of values (Garrett et al., 2015; Grady and Garrett, 2018). 

Higher SD in rsfMRI signal indicates greater intensity of signal fluctuation or an increased 

level of activation in a given area (Garrett et al., 2011). We first calculated SDBOLD across the 

whole time series for each voxel and then within 96 boundaries of preselected atlas-based 

regions of interests (ROIs) based on the Harvard-Oxford cortical atlas (Desikan et al., 2006). 

The main steps of deriving brain signal variability (SDBOLD) from the preprocessed fMRI 

signal are shown in Figure 1. 

The reproducible workflows containing fMRI preprocessing details can be found here: 

https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0. 

 

2.3.EEG Recordings 

Sixteen minutes of rsEEG were acquired on a separate day with BrainAmp MR-plus 

amplifiers using 61 ActiCAP electrodes (both Brain Products, Germany) attached according 

to the international standard 10-20 localization system (Jurcak et al., 2007) with FCz as a 

reference. The ground electrode was located at the sternum. Electrode impedance was kept 

below 5 kΩ. Continuous EEG activity was digitized at a sampling rate of 2500 Hz and band–

pass filtered online between 0.015 Hz and 1 kHz. 
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The experimental session was divided into 16 blocks, each lasting 60 s, with two 

conditions interleaved, eyes closed (EC) and eyes open (EO), starting with the EC condition. 

Changes between blocks were announced with the software Presentation (v16.5, 

Neurobehavioral Systems Inc., USA). Participants were asked to sit comfortably in a chair in 

a dimly illuminated, sound-shielded Faraday recording room. During the EO periods, 

participants were instructed to stay awake while fixating a black cross presented on a white 

background. To maximize comparability, only EEG data from the EO condition were 

analyzed, since rsfMRI data were collected only in the EO condition. 

 

2.4.EEG Data Analysis 

EEG processing and analyses were performed with custom Matlab (The MathWorks, 

Inc, Natick, Massachusetts, USA) scripts using functions from the EEGLAB environment 

(version 14.1.1b; Delorme and Makeig, 2004). The continuous EEG data were down-sampled 

to 250 Hz, band-pass filtered within 1–45 Hz (4th order back and forth Butterworth filter) and 

split into EO and EC conditions. Segments contaminated by large artefacts due to facial 

muscle tensions and gross movements were removed following visual inspection; rare 

occasions of artifactual channels were excluded from the analysis. The dimensionality of the 

data was reduced using principal component analysis (PCA) by selecting at least 30 principle 

components explaining 95% of the total variance. Next, using independent component 

analysis (Infomax; Bell and Sejnowski, 1995), the confounding sources e.g. eye-movements, 

eye-blinks, muscle activity, and residual ballistocardiographic artefacts were rejected from the 

data. 

 

2.5.EEG Source Reconstruction 

Before conducting source reconstruction, preprocessed EEG signals were re-

referenced to a common average. We incorporated a standard highly detailed finite element 

method (FEM) volume conduction model as described by Huang et al. (2016). 

The geometry of the FEM model was based on an extended MNI/ICBM152 (International 

Consortium for Brain Mapping) standard anatomy, where the source space constrained to 

cortical surface and parceled to 96 ROIs based on the Harvard-Oxford atlas (Desikan et al., 

2006). The forward model was also expressed in MNI coordinates and determined using 

boundary element models as implemented in the M/EEG Toolbox of Hamburg (METH; 

Haufe and Ewald, 2016; Huang et al., 2016). The leadfield matrix was calculated between 

1804 points located on the cortical surface to the 61 scalp electrodes. Source activity was 
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estimated using exact low-resolution tomography (eLORETA; Haufe and Ewald, 2016; 

Pascual-Marqui, 2007). Following the singular value decomposition (SVD) of each voxel’s 

three-dimensional time course, the dominant orientation of the source signal was identified by 

preserving the first SVD component. We filtered into several frequency bands, associated 

with brain oscillations: delta (1–3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz). 

The amplitude envelope of filtered oscillations was extracted using the Hilbert transform. 

Next, we applied temporal coarse graining by averaging data points in non-overlapping 

windows of length 0.5 s (Figure 1).  

EEG Variability (SDEEG). We calculated the SD of amplitude envelope of band-pass filtered 

oscillations on the coarse-grained signal. RsEEG signal variability (SDEEG) was obtained for 

different frequency bands (SDDELTA, SDTHETA, SDALPHA, SDBETA) in each of 96 ROIs. Main 

steps toward deriving brain signal variability from the preprocessed EEG signal are shown in 

Figure 1. The raw and preprocessed fMRI and EEG data samples can be found at 

https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/ 

 

Figure 1. Main steps of deriving brain signal variability from the preprocessed resting state 

fMRI and EEG signal. We calculated the standard deviation of the blood oxygen level 

dependent (BOLD) signal and of the coarse-grained amplitude envelope of the rsEEG time 

series for a number of standard frequency bands at the source space. 
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2.6.Statistical Analyses 

Mean SDBOLD and SDEEG. For the topographic information (based on ROIs), the mean BOLD 

and EEG variability were calculated by I) log-transforming the SD values, II) averaging 

separately for younger and older subjects, and III) back-transforming then the values 

(McDonald, 2014). 

Age and Sex Effects. A series of 2x2 (age group vs. sex) analyses of variance (ANOVAs) 

were applied to each ROI of brain signal variability values separately for SDBOLD and SDEEG, 

using controlling false discovery rate (FDR) according to Benjamini and Hochberg (1995) as 

correction for multiple comparisons. Significant group differences were further examined by 

Tukey HSD post-hoc comparisons.  

The signal variability values were log-transformed to normalize SDBOLD and SDEEG before 

further analyses (assessed by Lilliefors test at a significance level of 0.05). Analyses were 

performed using R (R core team, 2018). 

SDBOLD – SDEEG Correlation. To investigate the association between each ROI of SDBOLD and 

SDEEG, we used pairwise Spearman’s rank correlation separately for younger and older 

subjects, corrected for FDR (96 ROIs). We further applied sparse canonical correlation 

analysis (CCA) to show that the relationship between SDBOLD and SDEEG is not missed when 

only mass bivariate correlations are used. CCA is a multivariate method to find the 

independent linear combinations of variables such that the correlation between variables is 

maximized (Witten et al., 2009). The sparse CCA criterion is obtained by adding a Lasso 

Penalty function (l1), which performs continuous shrinkage and automatic variable selection 

and can solve statistical problems such as multicollinearity and overfitting (Tibshirani, 2011). 

We used l1 penalty as the regularization function to obtain sparse coefficients, that is, the 

canonical vectors (i.e., translating from full variables to a data matrix’s low-rank components 

of variation) will contain exactly zero elements. Sparse CCA was performed using the R 

package PMA (Penalized Multivariate Analysis; Witten et al., 2009; http://cran.r-

project.org/web/packages/PMA/). In our analyses, the significance of the correlation was 

estimated using the permutation approach (N=1000) as implemented in the CCA.permute 

function in R (pperm<0.05). 
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3. Results 

Mean SDBOLD and SDEEG. The topographic distribution of SDBOLD in younger adults revealed 

the largest brain signal variability values in fronto-temporal regions while in older adults it 

was in the frontal and occipital areas. Further, we found strongest variability across younger 

subjects in occipito-temporal regions for SDDELTA, SDTHETA, SDALPHA, and in medial frontal 

brain regions for SDBETA, while older adults showed strongest brain signal variability in the 

fronto-central brain regions for SDDELTA, in parietal-central brain regions for SDTHETA, 

SDALPHA, and in medial frontal brain regions for SDBETA. The details of topographic 

distribution of SDBOLD and SDEEG across age groups are available at Neurovault 

(https://neurovault.org/collections/WWOKVUDV/).  

Age and Sex Effects. The 2x2 ANOVA analyses with SDBOLD as dependent variable 

demonstrated that there was a significant main effect of age group in 49 ROIs in frontal, 

temporal, and occipital brain regions (F-values: 13.01–63.25; Figure 2). We also found a 

significant main effect of sex on SDBOLD in 17 ROIs, mainly in frontal and occipital brain 

regions (F-values: 13.19–32.04; Figure 3) but no significant interaction between age group 

and sex (all pFDR>0.05). Tukey HSD post-hoc analyses showed that older subjects had 

decreased SDBOLD compared to younger adults which were presented in both sexes (nROI=31, 

Supplementary Figure 3A). We further found that male subjects had higher SDBOLD, that was 

restricted to the groups of younger adults in most of the significant ROIs (nROI=12, 

Supplementary Figure 3B). 

The 2x2 ANOVAs with SDEEG as dependent variable showed significant main 

effects of age group in all frequency bands: SDDELTA in 17 ROIs in occipital and frontal lobes 

(F-values: 12.77–25.64), SDTHETA in 13 ROIs in frontal (F-values: 14.18–36.62), SDALPHA in 

13 ROIs in occipital (F-values: 13.35–18.83), and SDBETA in 63 ROIs in central, fronto-

temporal, and sensorimotor brain regions (F-values: 12.71–38.71), as shown in Figure 2. 

There were also significant main effects of sex in all frequency bands: SDDELTA in 9 ROIs in 

occipital (F-values: 12.57–19.17), SDTHETA in 46 ROIs in occipital and temporal (F-values: 

12.51–25.95), SDALPHA in 4 ROIs in frontal (F-values: 12.69–17.40), and SDBETA in 61 ROIs 

in temporal, occipital, and frontal (F-values: 12.73–46.91), as shown in Figure 3. No 

significant interaction effects between age group and sex on SDEEG were observed in any 

frequency band (pFDR>0.05). Tukey HSD post-hoc analyses on SDEEG showed that older 

subjects had less brain signal variability, which was present in both sexes for SDDELTA 

(nROI=11), SDTHETA (nROI=10), and SDALPHA (nROI=11). Additionally, older adults showed 

higher SDBETA, driven by female subjects (nROI=39) (Supplementary Figure 3A). With regard 
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to sex differences, post-hoc analyses showed that females had higher SDDELTA, SDTHETA, 

SDALPHA, and SDBETA than males. The sex differences in SDDELTA (nROI=8) were mostly 

pronounced in younger adults, while the effect of sex in SDTHETA (nROI=29) and SDBETA 

(nROI=44) were mainly presented in both age groups (p<0.05) (Supplementary Figure 3B). 

The graphical distribution of the F-values for the main effects of age group or sex for each 

ROI are shown in Supplementary Figure 2. Additional tables and boxplots showing SDBOLD 

and SDEEG for each frequency band and in each the 96 ROIs, split up by age group and sex, 

are presented in the Supplementary Tables 1-5. 

 

Figure 2. Spatial maps of significant age group differences in SDBOLD and SDEEG.  

We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD) 

signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–

3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source 

space. Statistical significance was determined using 2x2 ANOVAs corrected for multiple 

comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Blue colored 

areas indicate where brain signal variability was lower in older than in younger adults, while 

red color indicates the opposite. 
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Figure 3. Spatial maps of significant sex differences in SDBOLD and SDEEG.  

We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD) 

signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–

3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source 

space. Statistical significance was determined using 2x2 ANOVAs corrected for multiple 

comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Light blue 

indicates that the brain signal variability was higher in male subjects as compared to female 

subjects, and yellow indicates the opposite. 
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SDBOLD – SDEEG Correlation. The correlation coefficient of pairwise associations for 96 ROIs 

of SDBOLD with SDDELTA, SDTHETA, SDALPHA, and SDBETA ranged in younger adults from rho=-

0.200 to rho=0.223 (Figure 4A, Supplementary Table 6) and in older adults from rho=0.386 

to rho=0.349 (Figure 4B, Supplementary Table 7). None of the pairwise associations between 

SDBOLD and SDEEG remained significant after the correction for multiple comparison 

corrections. Confirmatory multivariate sparse CCA further showed that correlations between 

SDBOLD and SDEEG across all subjects were rather low, highly sparse, and non-significant 

(SDDELTA; r=0.145, pperm =0.750, l1=0.367; SDTHETA; r=0.143, pperm=0.713 l1=0.7; SDALPHA; 

r=0.153, pperm=0.528, l1=0.1; SDBETA; r=0. 232, pperm=0.096, l1=0.633). 

 

Figure 4. The distribution of correlation coefficients (rho) for the association between 

SDBOLD and SDEEG in A) younger (N=135) and B) older (N=54) adults for different frequency 

bands. The correlations between SDBOLD and SDEEG were tested using pairwise Spearman’s 

rank correlation corrected for multiple comparison by false discovery rates (FDR; Benjamini 

and Hochberg, 1995). 

 

  

A) Younger Adults (N=135) B) Older Adults (N=54) 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


 16 

4. Discussion 

Comparing healthy younger and older adults, we found widespread variability 

reductions in BOLD signal as well as in the amplitude envelope of delta, theta, and alpha 

frequency of rsEEG, whereas increased variability with aging was observed in the beta-band 

frequency. As a complementary analysis, we also explored sex differences and found that 

male subjects exhibited higher BOLD signal variability, while the sex differences in the 

rsEEG variability showed the opposite pattern. There were no significant correlations between 

hemodynamic (SDBOLD) and electrophysiological (SDEEG) measures of brain signal 

variability, neither in the younger nor in the older adults. Our results suggest that variability 

measures of rsfMRI and rsEEG – while both related to aging – are dominated by different 

physiological origins and relate differently to age and sex. 

 

4.1.BOLD Signal Variability  

The first aim of our study was to investigate the effect of age on BOLD signal 

variability, as measured by SD of spontaneous fluctuations during rsfMRI. Consistent with 

recent rsfMRI studies demonstrating that BOLD signal variability decreases with age in large-

scale networks (Grady and Garrett, 2018; Nomi et al., 2017), we found that older subjects had 

reduced SDBOLD in temporal and occipital brain regions but also in cortical midline structures 

like the precuneus, anterior and posterior cingulate cortices, as well as orbitofrontal cortex 

compared to younger adults. These age-related reductions in BOLD signal variability were 

thus especially apparent in regions of the Default Mode (DMN) and the Fronto-Parietal 

Network (FPN). The DMN is an intrinsically correlated network of brain regions, that is 

particularly active during rest or fixation blocks (Biswal et al., 2010). It reflects the systematic 

integration of information across the cortex (Margulies et al., 2016) and has been frequently 

associated with psychological functions like self-referential thought or mind-wandering, and 

also memory retrieval (Andrews-Hanna et al., 2014; Raichle, 2015). The FPN is involved in 

cognitive control processes (Spreng et al., 2013), and closely interacts with the DMN, for 

example during mind-wandering state (Golchert et al., 2017). Previous studies in healthy 

aging noted that older subjects showed lower connectivity as well as reduced network 

modularity and functional segregation in DMN and FPN regions (Damoiseaux, 2017; 

Damoiseaux et al., 2008; Meunier et al., 2009; Petersen et al., 2014). Similarly, an altered 

functional connectivity in the DMN has been found in different pathologies, for example, in 

Alzheimer’s disease (Greicius et al., 2004) or mild cognitive impairment (Das et al., 2015). 

One can speculate that decreased BOLD signal variability in the DMN and the FPN, 
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particularly in the overlapping frontal brain regions, may be related to reduced modularity and 

integrity in the aging brain, that may reflect functional alterations involved in cognitive 

processes (Campbell et al., 2012). Therefore, characterizing BOLD signal variability and its 

transitions in age-related health conditions promises to further our understanding of basic 

neurocognitive functioning in aging. 

In our exploratory analysis of sex differences, we found that male subjects exhibited 

higher BOLD signal variability in frontal, temporal, and occipital regions than female 

subjects. Sex-specific differences in brain structure and function have been previously shown 

(for a review see, Gong et al., 2011; Ruigrok et al., 2014; Sacher et al., 2013). For example, 

larger total brain volume has been reported in male as compared to female subjects (Gong et 

al., 2011), whereas higher cerebral blood flow (Gur et al., 1982; Rodriguez et al., 1988) and 

stronger functional connectivity in the DMN (Tomasi and Volkow, 2012) were found in 

females than males. Further, a cross-sectional study has demonstrated sex differences in 

functional connectivity in large-scale resting state networks in aging (Scheinost et al., 2015). 

Although the relationship between BOLD signal variability and functional connectivity has 

not been extensively examined, it has been suggested that they may capture similar functional 

properties (Grady and Garrett, 2018; Leo et al., 2012; Nomi et al., 2017). Assuming this 

relationship to be genuine, our results correspond to previous studies showing that males have 

higher functional connectivity strength in occipital, temporal and parietal regions than females 

(Biswal et al., 2010; Filippi et al., 2012; Ritchie et al., 2018). 

  

4.2.Electrophysiological Signal Variability 

Measures of neural variability were derived from rsEEG for several main frequency 

bands (delta, theta, alpha, beta) as the standard deviation of their amplitude of envelope time 

series data, analogously to the BOLD signal variability. Multimodal imaging studies have 

shown that the amplitude envelope of neural oscillatory activity across frequency bands 

relates to different rsfMRI networks (Brookes et al., 2011; Deligianni et al., 2014), confirming 

the neurophysiological origin of the resting state networks measured with BOLD fMRI. 

Additionally, these studies also concluded that different frequency bands can be related to the 

same functional network, but also differentially to distinct networks (Brookes et al., 2011; 

Laufs et al., 2006; Mantini et al., 2007; Meyer et al., 2013). For instance, Mantini et. al. 

(2007) reported that the visual network is associated with all frequency bands with the 

exclusion of the gamma rhythm, while the sensorimotor network is primarily associated with 

beta-band oscillations. We found age-dependent EEG signal variability changes within 
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networks which were associated with more than one frequency band, thus confirming that 

neurons generating oscillations at different frequencies may contribute to the same network. 

More precisely, we found age-related reductions in SDDELTA and SDALPHA mainly in a visual 

network (including calcarine regions, cuneal cortex, and occipital pole), SDTHETA in posterior 

DMN, while an enhancement of SDBETA was mainly seen in the fronto-temporal and 

sensorimotor networks. These results align with previous reports of age-dependent changes of 

electrophysiological activity using spectral power (Dustman et al., 1993; Vlahou et al., 2015), 

and signal variability (Dustman et al., 1999; Tsvetanov et al., 2015). For instance, age-related 

decreases of alpha amplitude and alpha band variability (measured by SD of the oscillatory 

signal) were found in posterior and occipital brain regions (Babiloni et al., 2006; Tsvetanov et 

al., 2015). Alpha rhythm is a classical EEG hallmark of resting wakefulness (Laufs et al., 

2003) that is modulated by thalamo-cortical and cortico-cortical interactions (Bazanova and 

Vernon, 2014; Goldman et al., 2002; Lopes Da Silva et al., 1997; Moosmann et al., 2003). It 

has been suggested that the posterior alpha-frequency plays an important role in the top-down 

control of cortical activation and excitability (Klimesch, 1999). Accordingly, decreased alpha 

variability in occipital regions might be associated with altered functioning of the cholinergic 

basal forebrain, affecting thalamo-cortical and cortico-cortical processing. Our finding of an 

higher fronto-temporal and sensorimotor SDBETA in the elderly is in line with previous 

findings (Rossiter et al., 2014; Tsvetanov et al., 2015). Aging has previously been associated 

with an increase in movement-related beta-band attenuation, suggesting an enhanced motor 

cortex GABAergic inhibitory activity in older individuals (Rossiter et al., 2014). Similarly, 

beta-band activity is thought to play a key role in signaling maintenance of the status quo of 

the motor system, despite the absence of movement (Engel and Fries, 2010). Therefore, 

greater SDBETA in sensorimotor brain regions could be interpreted as a compensatory 

mechanism to account for a decline of motor performance during aging (Quandt et al., 2016). 

In addition to the effect of age on rsEEG signal variability, an exploratory analysis 

showed sex differences in distinct brain regions and EEG frequencies. More precisely, we 

found higher SDDELTA in occipital, SDTHETA in occipito-temporal, SDALPHA in frontal, and 

SDBETA in frontal as well as occipito-temporal brain regions in female compared to male 

subjects. Previously, higher alpha (Aurlien et al., 2003), theta (Duffy et al., 1993), and beta 

power (Jaušovec and Jaušovec, 2010; Matsuura et al., 1985; Veldhuizen et al., 1993) have 

been reported in female relative to male subjects, while the reverse pattern was found in delta 

power (Zappasodi et al., 2006). Notably, different EEG frequencies were related to distinct 

hormonal level fluctuations (Becker et al., 1982; Solis-Ortiz et al., 1994). For instance, 
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reduced absolute theta and alpha power have been reported during the preovulatory phase 

while increased absolute beta power has been shown during and after the menstrual phase 

(Solis-Ortiz et al., 1994). Based on this evidence, one could speculate that the sex differences 

in rsEEG signal variability are related to hormonal variations. 

 

4.3.The Association between BOLD and EEG Variability  

We further assessed how neural variability in source-reconstructed rsEEG related to 

the analogous parameters of BOLD signal variability in rsfMRI using univariate and 

multivariate correlation analyses. Previously, simultaneous EEG-fMRI studies have shown 

meaningful relationships between fluctuations in EEG power, frequency, phase, and local 

BOLD changes (for a review see, Jorge et al., 2014; Ritter and Villringer, 2006). Due to age-

related physiological (particularly cardiovascular) alterations in the brain, we expected the 

relationship between BOLD and EEG signal variability to be stronger in younger than older 

adults. However, in the present study, both univariate and multivariate analyses showed no 

significant correlations between SDBOLD and SDEEG neither in the younger nor in the older 

adults. This finding was supported by the distinct anatomical distributions of age-related 

changes in BOLD and EEG signal variability, that barely showed a spatial overlap, suggesting 

different underlying physiological processes. The precise nature of these physiological 

processes, however, remains speculative, but it seems likely that they include both neuronal 

and vascular components. The former are likely to be dominant for EEG- and MEG-based 

variability measures. However, BOLD signal variability seems to reflect both vascular and 

neural processes (Garrett et al., 2017). The vascular factors in the elderly are, among other 

things, related to the known morphological changes of blood vessels and metabolic changes 

with aging which are reflected in CBF (Ances et al., 2009; Martin et al., 1991), CMRO2 

(Aanerud et al., 2012), and CVR (Liu et al., 2013). While neuronal components in the rsfMRI 

BOLD signal are also likely to be relevant (Garrett et al. 2017), the main finding of our study 

– little correlation with measures of EEG variability – indicates that these neuronal 

contributions do not dominate BOLD variability measures. While it cannot be excluded that 

our EEG-based variability measures reflect different aspects of neuronal function than BOLD 

variability, given these data, it would be desirable to perform – in future studies – concurrent 

electrophysiological and vascular neuroimaging for a comprehensive assessment of neuronal 

as well as vascular factors related to aging. 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


 20 

5. Limitations 

There are several limitations of our study: EEG and MRI scans were not recorded 

simultaneously. Therefore, we could not directly relate the two signals in a cross-correlation 

analysis. Furthermore, EEG and MRI were performed with different body postures (fMRI; 

supine, EEG; seated) known to affect brain function, for example, changes in the amplitude of 

the EEG signal have been related to different body postures presumably due to the shifts in 

cerebrospinal fluid layer thickness (Rice et al., 2013). Moreover, subjects were instructed to 

lay or sit calm during the recording and not to think of anything particular. However, the 

participants’ actual mental states at rest cannot be controlled or measured accurately, thereby, 

there might have been differences between the fMRI and EEG recordings. Yet, resting state 

measures of EEG (Näpflin et al., 2007) and fMRI (Shehzad et al., 2009; Zuo et al., 2010) 

have been shown to be reliable within-individuals across time. Thus, it is unlikely that there 

were systematic differences during resting state due to different timing of EEG and fMRI 

experiments. Finally, the computation of the source reconstructed rsEEG required the 

parcellation of the brain into relatively large anatomical ROIs. It could well be that the 

analysis with a higher spatial resolution (e.g., at the voxel-level) may provide additional 

insights about brain signal variability. 

6. Conclusion 

In this study, we report age and sex differences of brain signal variability obtained 

with rsfMRI and rsEEG from the same subjects. We demonstrate extensive age-related 

reduction of SDBOLD, SDDELTA, SDTHETA, and SDALPHA mainly in the DMN and the visual 

network, while a significant increase of SDBETA was seen in fronto-temporal and sensorimotor 

brain regions. We could not demonstrate significant associations between SDBOLD and SDEEG. 

Our findings indicate that measurements of BOLD and EEG signal variability, respectively, 

are likely to stem from different physiological origins and relate differentially to age and sex. 

While the two types of measurements are thus not interchangeable, it seems, however, 

plausible that both markers of brain variability may provide complementary information 

about the aging process. 
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10. Supplementary Material 

Supplementary Figure 1. Flowchart of selecting participants from the Mind-Brain-Body 

study.  

 

 

Mind-Brain-Body Sample
N = 227

EEG Sample
N = 214

Sample after EEG quality assessment
N = 201

Sample after fMRI Preprocessing
N = 192

Final Sample after fMRI quality assessment 
N = 189

Missing information in EEG (N=1)
Different sampling rate (N=3)
Insufficient data quality (N=9)

Incomplete data (N=1)
Problems in preprocessing (N=7)
Ghost Artefact (N=2)

Mean framewise displacement (FD) 
>= 0.5 mm (N=3)
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Supplementary Figure 2. Scatter plots showing the distribution of F-values and p-values for the main effect of age group (upper row) and sex 

(lower row), derived from 2x2 ANOVAs on the brain signal variability values in 96 regions-of-interest (Harvard-Oxford anatomical atlas; 

Desikan et al., 2006). While x-axes show the F-values for the main effect of age-group, y-axes show the corresponding p-values, corrected for 

multiple comparisons by false discovery rates(FDR; Benjamini and Hochberg, 1995).  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 3. Number of brain regions in which brain signal variability as measured by rsfMRI or rsEEG (delta: 1–3 Hz, theta: 4–8 

Hz, alpha: 8–12 Hz, beta:15–25 Hz) differed significantly depending on age and sex: 96 region of interests (ROIs), 2x2 ANOVA, corrected for 

multiple comparisons by false discovery rate (FDR; Benjamini and Hochberg, 1995). Group differences were further examined by Tukey HSD 

post hoc comparisons. The boxplots show Tukey’s post-hoc test results for the differences in brain signal variability measures between age 

groups (A), and sex (B) respectively. 

 
  

A) Age group difference by sex B) Sex differences by age group
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Supplementary Table 1. Table showing the F-values for the main effect of age group (left) and sex (right) for BOLD signal variability 
(SDBOLD). Statistical significance was determined using 2x2 ANOVAs corrected for multiple comparisons by false discovery rates (FDR; 
Benjamini and Hochberg, 1995). 

ROI 
F-value: 
age   ROI  

F-value: 
sex 

Left Cingulate Gyrus anterior division 48.615   Left Frontal Operculum Cortex 13.695 
Left Cingulate Gyrus posterior division 20.389   Left Frontal Pole 21.401 
Left Frontal Orbital Cortex 28.551   Left Inferior Frontal Gyrus pars opercularis 16.935 
Left Frontal Pole 34.085   Left Inferior Frontal Gyrus pars triangularis 23.529 
Left Inferior Frontal Gyrus pars opercularis 41.622   Left Insular Cortex 13.187 
Left Inferior Frontal Gyrus pars triangularis 14.852   Left Middle Frontal Gyrus 32.036 
Left Inferior Temporal Gyrus posterior division 25.290   Left Occipital Fusiform Gyrus 17.001 
Left Insular Cortex 58.085   Left Planum Temporale 18.550 
Left Intracalcarine Cortex 30.026   Left Precuneous Cortex 27.658 
Left Juxtapositional Lobule Cortex formerly 
Supplementary Motor Cortex  40.124   Right Frontal Operculum Cortex 17.626 
Left Middle Frontal Gyrus 19.113   Right Frontal Pole 16.021 
Left Occipital Fusiform Gyrus 34.200   Right Middle Frontal Gyrus 15.123 
Left Occipital Pole 23.057   Right Middle Temporal Gyrus anterior division 16.937 
Left Paracingulate Gyrus 62.433   Right Occipital Fusiform Gyrus 14.597 
Left Parahippocampal Gyrus anterior division 28.623   Right Occipital Pole 21.222 
Left Parahippocampal Gyrus posterior division 16.951   Right Precuneous Cortex 31.206 
Left Postcentral Gyrus 15.551   Right Superior Frontal Gyrus 20.345 
Left Subcallosal Cortex 22.227       
Left Superior Frontal Gyrus 13.411       
Left Supracalcarine Cortex 15.271       
Left Supramarginal Gyrus anterior division 19.024       
Left Temporal Fusiform Cortex posterior division 16.808       
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Left Temporal Occipital Fusiform Cortex 55.093       
Right Cingulate Gyrus anterior division 44.117       
Right Cingulate Gyrus posterior division 21.659       
Right Frontal Medial Cortex 39.596       
Right Frontal Orbital Cortex 63.259       
Right Frontal Pole 44.426       
Right Inferior Frontal Gyrus pars triangularis 13.015       
Right Inferior Temporal Gyrus anterior division 23.696       
Right Inferior Temporal Gyrus posterior division 18.688       
Right Insular Cortex 15.497       
Right Juxtapositional Lobule Cortex formerly 
Supplementary Motor Cortex  26.559       
Right Lateral Occipital Cortex inferior division 28.214       
Right Middle Temporal Gyrus anterior division 33.323       
Right Occipital Fusiform Gyrus 35.136       
Right Occipital Pole 40.811       
Right Paracingulate Gyrus 28.450       
Right Parahippocampal Gyrus anterior division 14.644       
Right Planum Polare 63.030       
Right Planum Temporale 15.649       
Right Postcentral Gyrus 20.781       
Right Subcallosal Cortex 35.103       
Right Superior Parietal Lobule 24.682       
Right Superior Temporal Gyrus anterior division 13.131       
Right Supracalcarine Cortex 16.332       
Right Supramarginal Gyrus anterior division 21.994       
Right Temporal Fusiform Cortex anterior division 16.711       
Right Temporal Occipital Fusiform Cortex 13.253       
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Supplementary Table 2. Table showing the F-values for the main effect of age group (left) and sex (right) for EEG signal variability (SDDELTA). 
Statistical significance was determined using 2x2 ANOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and 
Hochberg, 1995). 
 

ROI 
F value: 
age   ROI 

F value: 
sex 

Left Cingulate Gyrus posterior division 21.535   Left Cuneal Cortex 14.114 
Left Cuneal Cortex 24.636   Left Intracalcarine Cortex 15.355 
Left Intracalcarine Cortex 16.454   Left Supracalcarine Cortex 16.818 
Left Juxtapositional Lobule Cortex formerly Supplementary Motor 
Cortex  14.326   Right Cuneal Cortex 16.985 
Left Lateral Occipital Cortex superior division 13.663   Right Intracalcarine Cortex 18.605 

Left Precuneous Cortex 20.890   
Right Lateral Occipital Cortex inferior 
division 14.544 

Left Supracalcarine Cortex 22.222   Right Lingual Gyrus 12.575 
Right Cingulate Gyrus posterior division 22.989   Right Supracalcarine Cortex 19.167 
Right Cuneal Cortex 25.640   Right Temporal Occipital Fusiform Cortex 13.512 
Right Intracalcarine Cortex 21.456       
Right Juxtapositional Lobule Cortex formerly Supplementary Motor 
Cortex  15.721       
Right Lateral Occipital Cortex inferior division 14.275       
Right Lateral Occipital Cortex superior division 18.901       
Right Occipital Pole 14.197       
Right Precuneous Cortex 23.734       
Right Superior Frontal Gyrus 12.769       
Right Supracalcarine Cortex 25.020       
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Supplementary Table 3. Table showing the F-values for the main effect of age group (left) and sex (right) for EEG signal variability (SDTHETA). 
Statistical significance was determined using 2x2 ANOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and 
Hochberg, 1995). 
 

ROI 
F-value: 
age   ROI 

F-value: 
sex 

Left Cingulate Gyrus  anterior division 28.485   Left Angular Gyrus 12.752 
Left Cingulate Gyrus  posterior division 16.852   Left Cingulate Gyrus  posterior division 17.834 
Left Juxtapositional Lobule Cortex  formerly 
Supplementary Motor Cortex  35.755   Left Cuneal Cortex 21.253 
Left Middle Frontal Gyrus 17.237   Left Inferior Temporal Gyrus  posterior division 13.007 
Left Paracingulate Gyrus 16.139   Left Inferior Temporal Gyrus  temporooccipital part 13.842 
Left Superior Frontal Gyrus 30.468   Left Intracalcarine Cortex 23.104 

Right Cingulate Gyrus  anterior division 27.225   
Left Juxtapositional Lobule Cortex  formerly 
Supplementary Motor Cortex  14.819 

Right Cingulate Gyrus  posterior division 17.526   Left Lateral Occipital Cortex  inferior division 13.942 
Right Juxtapositional Lobule Cortex  formerly 
Supplementary Motor Cortex  36.622   Left Lingual Gyrus 18.89 
Right Middle Frontal Gyrus 20.439   Left Middle Temporal Gyrus  temporooccipital part 14.08 
Right Paracingulate Gyrus 14.178   Left Occipital Fusiform Gyrus 14.779 
Right Precentral Gyrus 16.266   Left Occipital Pole 17.024 
Right Superior Frontal Gyrus 30.123   Left Parahippocampal Gyrus  posterior division 12.582 
      Left Parietal Operculum Cortex 18.352 
      Left Planum Temporale 16.806 
      Left Postcentral Gyrus 16.214 
      Left Precentral Gyrus 16.055 
      Left Precuneous Cortex 17.811 
      Left Supracalcarine Cortex 23.691 
      Left Supramarginal Gyrus  anterior division 18.926 
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      Left Supramarginal Gyrus  posterior division 13.417 
      Left Temporal Occipital Fusiform Cortex 15.509 
      Right Central Opercular Cortex 14.245 
      Right Cingulate Gyrus  posterior division 16.628 
      Right Cuneal Cortex 21.429 
      Right Frontal Operculum Cortex 23.344 
      Right Frontal Orbital Cortex 14.445 
      Right Inferior Frontal Gyrus  pars opercularis 25.208 
      Right Inferior Frontal Gyrus  pars triangularis 25.954 
      Right Inferior Temporal Gyrus  temporooccipital part 14.395 
      Right Insular Cortex 14.807 
      Right Intracalcarine Cortex 22.191 

      
Right Juxtapositional Lobule Cortex  formerly 
Supplementary Motor Cortex  14.315 

      Right Lateral Occipital Cortex  inferior division 19.27 
      Right Lateral Occipital Cortex  superior division 12.508 
      Right Lingual Gyrus 18.709 
      Right Middle Frontal Gyrus 14.549 
      Right Middle Temporal Gyrus  temporooccipital part 14.787 
      Right Occipital Fusiform Gyrus 17.696 
      Right Occipital Pole 21.974 
      Right Postcentral Gyrus 15.479 
      Right Precentral Gyrus 18.576 
      Right Precuneous Cortex 15.741 
      Right Supracalcarine Cortex 23.478 
      Right Supramarginal Gyrus  anterior division 13.914 
      Right Temporal Occipital Fusiform Cortex 15.857 
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Supplementary Table 4: Table showing the F-values for the main effect of age group (left) and sex (right) for EEG signal variability (SDALPHA). 
Statistical significance was determined using 2x2 ANOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and 
Hochberg, 1995). 
 

ROI 
F-value: 
age   ROI 

F-value: 
sex 

Left Cingulate Gyrus posterior division 15.519   Left Frontal Pole 14.036 
Left Cuneal Cortex 17.085   Right Frontal Pole 13.691 
Left Juxtapositional Lobule Cortex formerly Supplementary Motor 
Cortex  14.159   

Right Inferior Frontal Gyrus pars 
opercularis 12.692 

Left Precuneous Cortex 14.320   
Right Inferior Frontal Gyrus pars 
triangularis 17.399 

Left Supracalcarine Cortex 16.292       
Right Cingulate Gyrus posterior division 15.481       
Right Cuneal Cortex 18.827       
Right Intracalcarine Cortex 16.574       
Right Juxtapositional Lobule Cortex formerly Supplementary Motor 
Cortex  13.353       
Right Lateral Occipital Cortex superior division 15.251       
Right Occipital Pole 15.986       
Right Precuneous Cortex 15.817       
Right Supracalcarine Cortex 18.376       
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Supplementary Table 5: Table showing the F-values for the main effect of age group (left) and sex (right) for EEG signal variability (SDBETA). 
Statistical significance was determined using 2x2 ANOVAs corrected for multiple comparisons by false discovery rates (FDR; Benjamini and 
Hochberg, 1995). 
 

ROI 
F-value: 
age   ROI 

F-value: 
sex 

Left Angular Gyrus 33.889   Left Angular Gyrus 27.94 
Left Central Opercular Cortex 29.092   Left Cingulate Gyrus posterior division 27.591 
Left Cingulate Gyrus posterior division 14.001   Left Cuneal Cortex 44.014 
Left Frontal Medial Cortex 20.640   Left Frontal Medial Cortex 26.259 
Left Frontal Operculum Cortex 13.810   Left Frontal Orbital Cortex 16.42 
Left Frontal Orbital Cortex 16.708   Left Frontal Pole 15.711 
Left Frontal Pole 17.605   Left Heschls Gyrus includes H1 and H2  18.317 
Left Heschls Gyrus includes H1 and H2  35.760   Left Inferior Temporal Gyrus posterior division 18.946 
Left Inferior Frontal Gyrus pars opercularis 16.834   Left Inferior Temporal Gyrus temporooccipital part 28.281 
Left Inferior Frontal Gyrus pars triangularis 12.733   Left Intracalcarine Cortex 45.176 
Left Inferior Temporal Gyrus anterior division 17.838   Left Lateral Occipital Cortex inferior division 32.363 
Left Inferior Temporal Gyrus posterior division 30.217   Left Lateral Occipital Cortex superior division 28.676 
Left Inferior Temporal Gyrus temporooccipital part 15.195   Left Lingual Gyrus 42.538 
Left Insular Cortex 25.333   Left Middle Temporal Gyrus posterior division 13.19 
Left Middle Frontal Gyrus 18.560   Left Middle Temporal Gyrus temporooccipital part 23.922 
Left Middle Temporal Gyrus anterior division 18.218   Left Occipital Fusiform Gyrus 33.962 
Left Middle Temporal Gyrus posterior division 28.902   Left Occipital Pole 41.701 
Left Middle Temporal Gyrus temporooccipital part 23.834   Left Paracingulate Gyrus 14.425 
Left Paracingulate Gyrus 13.773   Left Parahippocampal Gyrus anterior division 23.759 
Left Parahippocampal Gyrus anterior division 19.654   Left Parahippocampal Gyrus posterior division 33.883 
Left Parietal Operculum Cortex 37.639   Left Parietal Operculum Cortex 21.278 
Left Planum Polare 24.914   Left Planum Temporale 23.662 
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Left Planum Temporale 38.708   Left Postcentral Gyrus 13.534 
Left Postcentral Gyrus 29.919   Left Precuneous Cortex 33.556 
Left Precentral Gyrus 24.920   Left Subcallosal Cortex 23.546 
Left Subcallosal Cortex 18.873   Left Superior Parietal Lobule 17.175 
Left Superior Parietal Lobule 20.882   Left Superior Temporal Gyrus posterior division 12.733 
Left Superior Temporal Gyrus anterior division 20.881   Left Supracalcarine Cortex 46.791 
Left Superior Temporal Gyrus posterior division 30.706   Left Supramarginal Gyrus anterior division 15.331 
Left Supramarginal Gyrus anterior division 34.328   Left Supramarginal Gyrus posterior division 23.282 
Left Supramarginal Gyrus posterior division 36.668   Left Temporal Fusiform Cortex anterior division 17.685 
Left Temporal Fusiform Cortex anterior division 18.248   Left Temporal Fusiform Cortex posterior division 27.478 
Left Temporal Fusiform Cortex posterior division 23.363   Left Temporal Occipital Fusiform Cortex 34.95 
Left Temporal Pole 17.297   Left Temporal Pole 13.448 
Right Central Opercular Cortex 30.886   Right Angular Gyrus 26.753 
Right Cingulate Gyrus anterior division 12.714   Right Cingulate Gyrus posterior division 27.907 
Right Cingulate Gyrus posterior division 13.216   Right Cuneal Cortex 40.424 
Right Frontal Medial Cortex 22.281   Right Frontal Medial Cortex 26.339 
Right Frontal Orbital Cortex 17.829   Right Frontal Orbital Cortex 15.318 
Right Frontal Pole 14.471   Right Frontal Pole 15.657 

Right Heschls Gyrus includes H1 and H2  23.901   
Right Inferior Temporal Gyrus temporooccipital 
part 31.698 

Right Inferior Frontal Gyrus pars opercularis 13.248   Right Intracalcarine Cortex 40.575 
Right Inferior Temporal Gyrus anterior division 17.982   Right Lateral Occipital Cortex inferior division 44.382 
Right Inferior Temporal Gyrus posterior division 16.913   Right Lateral Occipital Cortex superior division 26.79 
Right Insular Cortex 23.181   Right Lingual Gyrus 39.961 

Right Middle Frontal Gyrus 16.461   
Right Middle Temporal Gyrus temporooccipital 
part 30.557 

Right Middle Temporal Gyrus anterior division 22.190   Right Occipital Fusiform Gyrus 37.958 
Right Middle Temporal Gyrus posterior division 22.708   Right Occipital Pole 46.91 
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Right Paracingulate Gyrus 15.398   Right Paracingulate Gyrus 16.984 
Right Parahippocampal Gyrus anterior division 18.606   Right Parahippocampal Gyrus anterior division 19.682 
Right Parietal Operculum Cortex 27.257   Right Parahippocampal Gyrus posterior division 26.839 
Right Planum Polare 24.096   Right Parietal Operculum Cortex 16.684 
Right Planum Temporale 26.151   Right Planum Temporale 17.16 
Right Postcentral Gyrus 24.073   Right Precuneous Cortex 30.788 
Right Precentral Gyrus 22.804   Right Subcallosal Cortex 23.739 
Right Subcallosal Cortex 20.934   Right Superior Parietal Lobule 13.833 
Right Superior Parietal Lobule 17.571   Right Supracalcarine Cortex 42.859 
Right Superior Temporal Gyrus anterior division 27.364   Right Supramarginal Gyrus posterior division 20.224 
Right Superior Temporal Gyrus posterior division 28.260   Right Temporal Fusiform Cortex anterior division 16.612 
Right Supramarginal Gyrus anterior division 24.980   Right Temporal Fusiform Cortex posterior division 19.912 
Right Supramarginal Gyrus posterior division 16.383   Right Temporal Occipital Fusiform Cortex 35.103 
Right Temporal Fusiform Cortex anterior division 18.007       
Right Temporal Pole 19.108       
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Supplementary Table 6. Spearman correlation of SDBOLD with SDEEG for each frequency 

band in young subjects (N=135). None of the pairwise correlations between SDBOLD and 

SDEEG were statistically significant. 

ROI 
rho 
SDDELTA 

rho 
SDTHETA 

rho 
SDALPHA 

rho 
SDBETA 

Left Angular Gyrus 0.005 0.015 0.014 0.071 
Left Central Opercular Cortex 0.037 0.001 0.076 0.034 
Left Cingulate Gyrus, anterior division -0.090 -0.077 0.091 -0.028 
Left Cingulate Gyrus, posterior division -0.096 -0.048 -0.018 0.042 
Left Cuneal Cortex -0.166 -0.153 -0.040 -0.055 
Left Frontal Medial Cortex -0.009 -0.083 -0.105 -0.100 
Left Frontal Operculum Cortex -0.067 -0.128 0.074 -0.094 
Left Frontal Orbital Cortex 0.035 -0.010 0.137 0.107 
Left Frontal Pole 0.110 -0.018 -0.029 -0.052 
Left Heschl's Gyrus (includes H1 and H2) -0.019 0.029 0.112 -0.096 
Left Inferior Frontal Gyrus, pars opercularis 0.040 -0.082 0.063 -0.091 
Left Inferior Frontal Gyrus, pars triangularis 0.031 -0.114 0.064 -0.041 
Left Inferior Temporal Gyrus, anterior division 0.035 0.023 0.099 0.012 
Left Inferior Temporal Gyrus, posterior division 0.047 0.078 0.116 0.034 
Left Inferior Temporal Gyrus, temporooccipital part 0.030 -0.002 0.025 -0.089 
Left Insular Cortex 0.023 -0.134 -0.017 -0.077 
Left Intracalcarine Cortex 0.018 0.028 0.072 0.032 
Left Juxtapositional Lobule Cortex (formerly 
Supplementary Motor Cortex) -0.050 -0.099 0.077 0.022 
Left Lateral Occipital Cortex, inferior division -0.048 -0.030 -0.078 -0.077 
Left Lateral Occipital Cortex, superior division -0.062 -0.081 0.018 -0.088 
Left Lingual Gyrus 0.131 0.060 -0.022 -0.035 
Left Middle Frontal Gyrus 0.041 -0.066 0.131 0.015 
Left Middle Temporal Gyrus, anterior division 0.004 -0.063 -0.014 -0.173 
Left Middle Temporal Gyrus, posterior division 0.115 0.005 -0.041 -0.029 
Left Middle Temporal Gyrus, temporooccipital part 0.072 0.037 0.071 -0.092 
Left Occipital Fusiform Gyrus 0.146 0.149 0.115 0.026 
Left Occipital Pole -0.017 0.052 0.036 0.035 
Left Paracingulate Gyrus -0.044 -0.087 -0.012 -0.036 
Left Parahippocampal Gyrus, anterior division 0.024 0.021 0.121 0.027 
Left Parahippocampal Gyrus, posterior division -0.086 0.030 0.117 0.162 
Left Parietal Operculum Cortex -0.130 -0.064 0.039 -0.110 
Left Planum Polare 0.030 0.018 0.073 -0.004 
Left Planum Temporale -0.066 0.009 0.120 -0.071 
Left Postcentral Gyrus -0.019 -0.032 0.139 -0.060 
Left Precentral Gyrus -0.015 -0.074 0.091 -0.056 
Left Precuneous Cortex -0.029 -0.070 0.107 -0.044 
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Left Subcallosal Cortex -0.038 -0.087 0.034 -0.074 
Left Superior Frontal Gyrus -0.108 -0.139 0.027 -0.038 
Left Superior Parietal Lobule 0.087 0.041 0.135 -0.084 
Left Superior Temporal Gyrus, anterior division -0.010 -0.074 0.033 0.064 
Left Superior Temporal Gyrus, posterior division -0.059 -0.045 -0.047 -0.087 
Left Supracalcarine Cortex -0.076 -0.071 0.036 0.016 
Left Supramarginal Gyrus, anterior division 0.026 -0.060 0.001 -0.057 
Left Supramarginal Gyrus, posterior division -0.005 0.066 0.106 0.043 
Left Temporal Fusiform Cortex, anterior division 0.188 0.120 0.051 0.031 
Left Temporal Fusiform Cortex, posterior division 0.056 0.052 0.144 0.075 
Left Temporal Occipital Fusiform Cortex 0.096 0.094 0.128 0.092 
Left Temporal Pole 0.224 0.105 0.152 -0.010 
Right Angular Gyrus -0.010 0.025 0.010 0.046 
Right Central Opercular Cortex 0.084 -0.015 0.068 -0.030 
Right Cingulate Gyrus, anterior division -0.079 -0.085 0.062 -0.046 
Right Cingulate Gyrus, posterior division -0.090 -0.048 -0.004 0.021 
Right Cuneal Cortex -0.118 -0.096 0.017 -0.074 
Right Frontal Medial Cortex 0.042 -0.043 0.063 -0.050 
Right Frontal Operculum Cortex 0.004 -0.017 0.089 -0.075 
Right Frontal Orbital Cortex 0.085 -0.024 0.100 -0.032 
Right Frontal Pole 0.149 -0.022 0.014 -0.061 
Right Heschl's Gyrus (includes H1 and H2) -0.085 -0.045 0.065 -0.071 
Right Inferior Frontal Gyrus, pars opercularis -0.020 -0.029 0.127 -0.138 
Right Inferior Frontal Gyrus, pars triangularis -0.047 -0.092 0.061 -0.170 
Right Inferior Temporal Gyrus, anterior division 0.013 -0.018 0.058 0.028 
Right Inferior Temporal Gyrus, posterior division 0.179 0.070 0.128 -0.048 
Right Inferior Temporal Gyrus, temporooccipital 
part 0.106 0.068 0.177 0.093 
Right Insular Cortex -0.034 -0.087 0.043 -0.054 
Right Intracalcarine Cortex -0.063 -0.121 0.008 -0.065 
Right Juxtapositional Lobule Cortex (formerly 
Supplementary Motor Cortex) -0.040 -0.142 0.015 -0.049 
Right Lateral Occipital Cortex, inferior division -0.025 0.005 0.081 0.026 
Right Lateral Occipital Cortex, superior division -0.008 -0.037 0.044 -0.113 
Right Lingual Gyrus 0.040 0.033 0.058 0.034 
Right Middle Frontal Gyrus -0.167 -0.083 0.063 -0.143 
Right Middle Temporal Gyrus, anterior division 0.135 0.049 0.054 -0.113 
Right Middle Temporal Gyrus, posterior division 0.002 0.080 0.191 0.060 
Right Middle Temporal Gyrus, temporooccipital 
part 0.026 0.011 0.094 0.049 
Right Occipital Fusiform Gyrus 0.095 0.039 0.022 0.007 
Right Occipital Pole 0.019 -0.050 0.025 -0.036 
Right Paracingulate Gyrus -0.063 -0.041 0.034 -0.012 
Right Parahippocampal Gyrus, anterior division -0.027 -0.005 0.071 0.102 
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Right Parahippocampal Gyrus, posterior division 0.020 -0.037 0.037 0.024 
Right Parietal Operculum Cortex -0.066 -0.039 0.124 -0.075 
Right Planum Polare 0.186 0.073 0.105 -0.021 
Right Planum Temporale -0.028 -0.043 0.074 0.070 
Right Postcentral Gyrus 0.070 0.026 0.133 -0.056 
Right Precentral Gyrus -0.031 -0.047 0.134 -0.040 
Right Precuneous Cortex -0.099 -0.145 0.053 -0.200 
Right Subcallosal Cortex -0.084 -0.086 0.098 0.054 
Right Superior Frontal Gyrus -0.100 -0.158 -0.026 -0.116 
Right Superior Parietal Lobule -0.035 -0.067 0.080 -0.103 
Right Superior Temporal Gyrus, anterior division 0.144 0.056 0.050 0.021 
Right Superior Temporal Gyrus, posterior division 0.067 0.068 0.064 0.004 
Right Supracalcarine Cortex -0.004 0.049 0.089 0.065 
Right Supramarginal Gyrus, anterior division 0.134 0.092 0.116 0.046 
Right Supramarginal Gyrus, posterior division 0.058 0.055 0.096 0.052 
Right Temporal Fusiform Cortex, anterior division 0.038 -0.019 0.013 0.142 
Right Temporal Fusiform Cortex, posterior division 0.012 0.011 0.075 0.103 
Right Temporal Occipital Fusiform Cortex -0.013 0.018 0.115 0.098 
Right Temporal Pole 0.135 0.006 0.044 -0.129 

*pFDR < 0.05; **pFDR < 0.01; ***pFDR < 0.001, 2-tailed 
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Supplementary Table 7. Spearman correlation of SDBOLD with SDEEG for each frequency 

band in old subjects (N=54). None of the pairwise correlations between SDBOLD and SDEEG 

were statistically significant. 

ROI 
rho 
SDDELTA 

rho 
SDTHETA 

rho 
SDALPHA 

rho 
SDBETA 

Left Angular Gyrus -0.118 -0.100 -0.001 -0.192 
Left Central Opercular Cortex 0.129 0.132 -0.006 0.204 
Left Cingulate Gyrus, anterior division -0.043 0.175 -0.034 0.010 
Left Cingulate Gyrus, posterior division 0.014 -0.077 0.012 -0.301 
Left Cuneal Cortex -0.134 -0.157 -0.096 -0.387 
Left Frontal Medial Cortex -0.165 -0.129 -0.265 0.061 
Left Frontal Operculum Cortex 0.173 0.168 0.063 0.029 
Left Frontal Orbital Cortex 0.085 0.192 0.020 0.021 
Left Frontal Pole 0.038 -0.009 -0.044 -0.080 
Left Heschl's Gyrus (includes H1 and H2) -0.066 -0.152 -0.166 0.027 
Left Inferior Frontal Gyrus, pars opercularis 0.039 0.041 -0.039 0.177 
Left Inferior Frontal Gyrus, pars triangularis 0.107 0.113 0.033 0.086 
Left Inferior Temporal Gyrus, anterior division 0.111 0.153 0.088 0.278 
Left Inferior Temporal Gyrus, posterior division 0.072 0.040 -0.035 0.040 
Left Inferior Temporal Gyrus, temporooccipital part 0.016 0.074 0.034 -0.066 
Left Insular Cortex 0.225 0.042 -0.079 0.026 
Left Intracalcarine Cortex 0.102 0.130 0.254 0.172 
Left Juxtapositional Lobule Cortex (formerly 
Supplementary Motor Cortex) -0.054 -0.175 -0.035 -0.059 
Left Lateral Occipital Cortex, inferior division 0.036 -0.027 -0.057 -0.184 
Left Lateral Occipital Cortex, superior division 0.130 0.033 0.013 -0.083 
Left Lingual Gyrus -0.181 -0.101 -0.044 -0.130 
Left Middle Frontal Gyrus 0.159 0.161 -0.009 -0.008 
Left Middle Temporal Gyrus, anterior division -0.004 0.000 -0.012 0.349 
Left Middle Temporal Gyrus, posterior division -0.007 -0.073 -0.197 0.077 
Left Middle Temporal Gyrus, temporooccipital part 0.042 0.203 0.128 0.015 
Left Occipital Fusiform Gyrus 0.105 0.118 0.088 0.086 
Left Occipital Pole -0.212 -0.082 0.070 -0.203 
Left Paracingulate Gyrus -0.109 -0.024 -0.042 0.065 
Left Parahippocampal Gyrus, anterior division 0.048 0.086 -0.069 -0.146 
Left Parahippocampal Gyrus, posterior division -0.012 0.058 0.062 -0.116 
Left Parietal Operculum Cortex 0.151 -0.030 -0.036 -0.101 
Left Planum Polare 0.041 0.075 -0.010 0.219 
Left Planum Temporale 0.139 0.000 -0.060 0.079 
Left Postcentral Gyrus -0.015 -0.118 -0.082 -0.060 
Left Precentral Gyrus -0.131 -0.007 -0.045 -0.060 
Left Precuneous Cortex 0.059 0.007 -0.004 -0.101 
Left Subcallosal Cortex -0.065 -0.078 -0.140 -0.002 
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Left Superior Frontal Gyrus -0.020 -0.126 -0.050 0.026 
Left Superior Parietal Lobule -0.075 -0.023 0.028 -0.054 
Left Superior Temporal Gyrus, anterior division 0.052 0.140 -0.072 0.148 
Left Superior Temporal Gyrus, posterior division -0.150 0.047 0.002 -0.093 
Left Supracalcarine Cortex -0.004 -0.077 0.181 -0.093 
Left Supramarginal Gyrus, anterior division 0.029 0.005 -0.033 0.114 
Left Supramarginal Gyrus, posterior division 0.167 0.100 0.090 -0.027 
Left Temporal Fusiform Cortex, anterior division 0.045 0.076 -0.059 0.062 
Left Temporal Fusiform Cortex, posterior division -0.052 0.124 0.069 0.182 
Left Temporal Occipital Fusiform Cortex 0.089 -0.049 -0.054 -0.100 
Left Temporal Pole 0.015 0.073 0.025 0.187 
Right Angular Gyrus -0.015 -0.032 0.063 -0.074 
Right Central Opercular Cortex -0.120 -0.020 -0.063 -0.070 
Right Cingulate Gyrus, anterior division 0.027 0.176 0.038 0.036 
Right Cingulate Gyrus, posterior division 0.092 -0.058 0.051 -0.256 
Right Cuneal Cortex -0.111 -0.174 0.015 -0.224 
Right Frontal Medial Cortex -0.119 -0.072 -0.060 -0.011 
Right Frontal Operculum Cortex -0.032 -0.015 -0.019 -0.056 
Right Frontal Orbital Cortex -0.018 -0.040 -0.104 0.076 
Right Frontal Pole -0.018 -0.050 -0.095 0.058 
Right Heschl's Gyrus (includes H1 and H2) -0.025 -0.084 -0.079 -0.138 
Right Inferior Frontal Gyrus, pars opercularis -0.102 -0.050 -0.156 -0.094 
Right Inferior Frontal Gyrus, pars triangularis -0.215 -0.062 -0.185 -0.128 
Right Inferior Temporal Gyrus, anterior division 0.038 -0.076 -0.097 -0.180 
Right Inferior Temporal Gyrus, posterior division 0.069 -0.002 -0.071 -0.128 
Right Inferior Temporal Gyrus, temporooccipital 
part -0.153 -0.115 -0.171 -0.217 
Right Insular Cortex -0.035 0.031 -0.006 -0.068 
Right Intracalcarine Cortex -0.078 -0.140 -0.117 -0.088 
Right Juxtapositional Lobule Cortex (formerly 
Supplementary Motor Cortex) -0.013 -0.167 -0.114 -0.135 
Right Lateral Occipital Cortex, inferior division -0.055 -0.088 0.125 0.008 
Right Lateral Occipital Cortex, superior division -0.035 -0.078 0.043 -0.119 
Right Lingual Gyrus -0.180 -0.115 -0.096 -0.149 
Right Middle Frontal Gyrus 0.117 0.014 0.102 0.055 
Right Middle Temporal Gyrus, anterior division -0.130 -0.068 -0.120 -0.126 
Right Middle Temporal Gyrus, posterior division -0.030 -0.033 -0.008 0.045 
Right Middle Temporal Gyrus, temporooccipital 
part -0.008 -0.071 0.010 -0.109 
Right Occipital Fusiform Gyrus 0.115 0.249 0.163 0.237 
Right Occipital Pole -0.053 -0.067 0.074 -0.006 
Right Paracingulate Gyrus -0.062 0.123 0.042 -0.085 
Right Parahippocampal Gyrus, anterior division -0.093 -0.061 -0.033 -0.109 
Right Parahippocampal Gyrus, posterior division -0.105 -0.118 -0.103 -0.137 
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Right Parietal Operculum Cortex 0.105 -0.050 -0.019 -0.072 
Right Planum Polare -0.033 0.050 -0.042 -0.148 
Right Planum Temporale -0.064 -0.135 -0.057 -0.209 
Right Postcentral Gyrus -0.071 0.014 0.047 0.051 
Right Precentral Gyrus 0.031 0.027 -0.039 -0.175 
Right Precuneous Cortex 0.077 0.071 0.010 -0.035 
Right Subcallosal Cortex 0.018 0.044 -0.007 -0.106 
Right Superior Frontal Gyrus -0.159 -0.162 -0.149 -0.156 
Right Superior Parietal Lobule -0.007 0.035 -0.001 -0.063 
Right Superior Temporal Gyrus, anterior division -0.155 -0.045 -0.124 -0.175 
Right Superior Temporal Gyrus, posterior division -0.133 -0.052 -0.127 -0.081 
Right Supracalcarine Cortex -0.131 -0.153 0.138 -0.174 
Right Supramarginal Gyrus, anterior division -0.101 -0.061 -0.078 -0.068 
Right Supramarginal Gyrus, posterior division -0.149 -0.079 -0.022 -0.222 
Right Temporal Fusiform Cortex, anterior division -0.005 0.064 -0.020 -0.041 
Right Temporal Fusiform Cortex, posterior division -0.095 -0.036 0.030 -0.137 
Right Temporal Occipital Fusiform Cortex -0.124 -0.080 0.002 -0.073 
Right Temporal Pole -0.181 -0.112 -0.230 -0.284 

*pFDR < 0.05; **pFDR 
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