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Abstract: 24	

 25	

The development of sequencing technologies has promoted the survey of genome-wide 26	

chromatin accessibility at single-cell resolution; however, comprehensive analysis of single-cell 27	

epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based 28	

epigenomic clustering (APEC) method, which classifies each individual cell by groups of 29	

accessible regions with synergistic signal patterns termed “accessons”. By integrating with other 30	

analytical tools, this python-based APEC package greatly improves the accuracy of unsupervised 31	

single-cell clustering for many different public data sets. APEC also identifies significant 32	

differentially accessible sites, predicts enriched motifs, and projects pseudotime trajectories. 33	

Furthermore, we developed a fluorescent tagmentation- and FACS-sorting-based single-cell 34	

ATAC-seq technique named ftATAC-seq and investigated the per cell regulome dynamics of 35	

mouse thymocytes. Associated with ftATAC-seq, APEC revealed a detailed epigenomic 36	

heterogeneity of thymocytes, characterized the developmental trajectory and predicted the 37	

regulators that control the stages of maturation process. Overall, this work illustrates a powerful 38	

approach to study single-cell epigenomic heterogeneity and regulome dynamics. 39	

  40	
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INTRODUCTION 41	

 42	

As a technique for probing genome-wide chromatin accessibility in a small number of cells 43	

in vivo, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-44	

seq) has been widely applied to investigate the cellular regulomes of many important biological 45	

processes1, such as hematopoietic stem cell (HSC) differentiation2-4, embryonic development5, 6, 46	

neuronal activity and regeneration7-10, tumor cell metastasis11, and patient responses to 47	

anticancer drug treatment12. Recently, several experimental schemes have been developed to 48	

capture chromatin accessibility at single-cell/nucleus resolution, i.e., single-cell ATAC-seq 49	

(scATAC-seq)13, single-nucleus ATAC-seq (snATAC-seq)14, 15, and single-cell combinatorial 50	

indexing ATAC-seq (sci-ATAC-seq)16, 17, which significantly extended researchers’ ability to 51	

uncover cell-to-cell epigenetic variation and other fundamental mechanisms that generate 52	

heterogeneity from identical DNA sequences. By contrast, the in-depth analysis of single-cell 53	

chromatin accessibility profiles for this purpose remains a challenge. Numerous efficient 54	

algorithms have been developed to accurately normalize, cluster and visualize cells from single-55	

cell transcriptome sequencing profiles, including but not limited to SCnorm18, Seurat19, SC320, 56	

SIMLR21, bigSCale22, and SCANPY23. However, most of these algorithms are not directly 57	

compatible with a single-cell ATAC-seq dataset, for which the signal matrix is much sparser. To 58	

characterize scATAC-seq data, the Greenleaf lab developed an algorithm named chromVAR24, 59	

which aggregates mapped reads at accessible sites based on annotated motifs of known 60	

transcription factors (TFs) and thus projects the sparse per accessible peak per cell matrix to a 61	

bias-corrected deviation per motif per cell matrix and significantly stabilizes the data matrix for 62	

downstream clustering analysis. Other mathematical tools, such as the latent semantic indexing 63	

(LSI) and density-based clustering methods, have also been applied to process single-64	

cell/nucleus ATAC-seq data15, 17. However, none of these methods can precisely distinguish cells 65	

from low sequencing depth without prior knowledge of essential principle components or TF motifs. 66	

Therefore, a refined algorithm is urgently needed to better categorize cell subgroups with minor 67	

differences under low coverage, thereby providing a deeper mechanistic understanding of single-68	

cell epigenetic heterogeneity and regulation. 69	

 70	

 71	

  72	
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RESULTS 73	

 74	

Accesson-based algorithm improves single-cell clustering 75	

 76	

Here, we introduce a new single-cell chromatin accessibility analysis toolkit named APEC 77	

(accessibility pattern-based epigenomic clustering), which combines peaks with the same signal 78	

fluctuation among all single cells into peak groups, termed "accessons", and converts the original 79	

sparse cell-peak matrix to a much denser cell-accesson matrix for cell type categorization (Figure 80	

1a). In contrast to previous motif-based methods (e.g., chromVAR), this accesson-based 81	

reduction scheme naturally groups synergistic accessible regions together without a priori 82	

knowledge of genetic information (such as TF motifs) and provides more efficient, accurate and 83	

rapid cell clustering from single-cell ATAC-seq profiles. More conveniently, APEC integrates all 84	

necessary procedures, from raw sequence trimming, alignment, and quality control 85	

(Supplementary Figure 1a-1c) to cell clustering, motif enrichment, and pseudotime trajectory 86	

prediction into a head-to-toe program package that has been made available on GitHub 87	

(https://github.com/QuKunLab/APEC). 88	

To test the performance of APEC, we first obtained data from previous publications, which 89	

performed scATAC-seq on lymphoid-primed multipotent progenitors (LMPPs), monocytes, HL-60 90	

lymphoblastoid cells (HL60), and blast cells and leukemic stem cells (LSCs) from two acute 91	

myeloid leukemia (AML) patients24. Compared to the motif-based method chromVAR24, 25, this 92	

new accesson-based algorithm more precisely and clearly clustered cells into their corresponding 93	

identities (Figure 1b-1e). For instance, distinct cell types, such as LMPPs, monocytes and HL60 94	

cells, were more vividly separated from each other (Adjusted Rand Index (ARI)=0.95, compared 95	

to ARI=0.59 for chromVAR); similar cells, such as the blast cells and LSCs from two AML patients, 96	

were ambiguous in chromVAR (ARI=0.36) but were more clearly categorized in both the 97	

hierarchical clustering heatmap and the tSNE scattering plot in APEC (ARI=0.69). The 98	

contribution of the minor differences between similar cells is aggregated in accessons but diluted 99	

in motifs. For example, APEC identified prominent superenhancers around the E3 ligase inhibitor 100	

gene N4BP126 and the MLL fusion gene GPHN27 in the LSC cells from AML patient 1 (P1-LSC) 101	

but not in the other cell types (Figure 1f, Supplementary Figure 1d). We noticed that all peaks in 102	

these superenhancers were classified into one accesson that was critical for distinguishing P1-103	

LSCs from P2-LSCs, P1-blast cells and P2-blast cells. However, these peaks were distributed in 104	

multiple TF motifs, which significantly diluted the contributions of the minor differences 105	

(Supplementary Figure 1e-f). To test the robustness of APEC at low sequencing depth, we 106	
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randomly selected reads from the raw data and calculated the ARI values for each sampled data. 107	

Compared with chromVAR, the APEC algorithm exhibits better robustness at sequencing depth 108	

as low as 10% of the original data (Supplementary Figure 1g). 109	

 110	

APEC is applicable to multiple single-cell chromatin detection techniques 111	

 112	

To evaluate the compatibility and performance of APEC with other single-cell chromatin 113	

accessibility detection techniques, such as snATAC-seq15, transcript-indexed scATAC-seq28 and 114	

sciATAC-seq16, APEC was also tested with the data sets generated by those experiments. For 115	

example, APEC discovered 10 cell subpopulations in adult mouse forebrain snATAC-seq data15, 116	

including three clusters of excitatory neurons (EX1-3), five groups of inhibitory neurons (IN1-4), 117	

astroglia cells (AC), oligodendrocyte cells (OC), and microglial cells (MG; Figure 2a & 2b), as 118	

defined by the chromatin accessibilities at the loci of cell type-specific genes (Figure 2c). 119	

Compared to published results15, APEC identified 4 rather than 2 distinct inhibitory subpopulations, 120	

among which IN1 and IN4 were more similar and IN2 and IN3 were more distinct (Figure 2d). The 121	

motif enrichment analysis module in APEC identified cell type-specific regulators that are 122	

consistent with previous publications15. For example, the NEUROD1 and OLIG2 motifs were 123	

generally enriched on excitatory clusters (EX1~3); the MEF2C motif was more enriched on EX3 124	

than on EX1/2 neurons; the motifs of MEIS2 and DLX2 were differentially enriched on two 125	

subtypes of inhibitory neurons (IN2 and IN3, respectively); and the NOTO, SOX2, and ETS1 126	

motifs were enriched on the AC, OC, and MG clusters, respectively (Figure 2e). These results 127	

suggest that APEC is capable of identifying cell subtype-specific regulators. 128	

Since the divergence of the gene expression levels in a single cell is much greater than 129	

that of the chromatin accessibilities, single-cell transcriptome analysis usually identifies more cell 130	

subpopulations. Therefore, it is critical to anchor the cell types identified from scATAC-seq to 131	

those from scRNA-seq. Lake et al. identified dozens of excitatory and inhibitory neuronal subtypes 132	

in the adult human brain using snDrop-seq and scTHS-seq experiments14 and provided tens of 133	

signature genes that distinguished these cell types. Interestingly, the accessons that represent 134	

these signature genes were also distinctly enriched at corresponding clusters of neurons. For 135	

example, the upright part of the EX1 cell cluster in snATAC-seq enriched accessons represents 136	

the genes Cbln2 and Col5a2, which are specific genes in clusters Ex1/2/3a that were defined in 137	

the scDrop-seq data (Figure 2f). The left part of the EX1 cell cluster in snATAC-seq matched the 138	

Ex3b/3c/3e clusters in scDrop-seq (marked by Nefm), EX2 matched Ex4/5/6 (marked by Foxp2 139	

and Pcp4), and EX3 matched Ex3d (marked by Phactr2). The same method also works to anchor 140	
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inhibitory neurons, as the IN2 cells in the snATAC-seq data corresponded to the In1/2 clusters in 141	

the scDrop-seq data (marked by Cck and Cnr1), the IN3 cells corresponded to the In6b/8 clusters 142	

(marked by Stxbp6 and Tac1), the IN4 cells corresponded to the In1c/3 clusters (marked by Vip 143	

and Tshz2), and the low right branch of IN1 corresponded to the In7 cluster (marked by Npy) 144	

(Figure 2g). These results highlight the potential advantages of the accesson-based method for 145	

integrative analysis of scRNA-seq and scATAC-seq data. 146	

In addition, due to the sparser per-cell-per-peak fragment count matrix, more than 29.7% 147	

(946 out of 3034) of high-quality cells were previously unable to be correctly assigned into any 148	

subpopulation of interest15, but APEC successfully categorized all cells into their corresponding 149	

subtypes, confirming its high sensitivity. In contrast, chromVAR misclustered AC and EX4 with 150	

inhibitory neurons, although the same parameters were applied (Supplementary Figure 2a-2c). 151	

These results confirm that this accesson-based APEC method can better distinguish and 152	

categorize single cells with great sensitivity and reliability. 153	

 154	

APEC constructs a pseudotime trajectory that predicts cell differentiation lineage 155	

 156	

Cells are not static but dynamic entities, and they have a history, particularly a 157	

developmental history. Although single-cell experiments often profile a momentary snapshot, a 158	

number of remarkable computational algorithms have been developed to pseudo-order cells 159	

based on the different points they were assumed to occupy in a trajectory, thereby leveraging 160	

biological asynchrony29, 30. For instance, Monocle30, 31 constructs the minimum spanning tree, and 161	

Wishbone32 and Spring33 construct the nearest neighbor graph from single-cell transcriptome 162	

profiles. These tools have been widely used to depict neurogenesis34, hematopoiesis35, 36 and 163	

reprogramming37. APEC integrates the Monocle algorithm into the accesson-based method and 164	

enables pseudotime prediction from scATAC-seq data38 and was applied to investigate HSC 165	

differentiation linages (Figure 3a). Principal component analysis (PCA) of the accesson matrix 166	

revealed multiple stages of the lineage during HSC differentiation (Figure 3b) and was consistent 167	

with previous publications3, 38. After utilizing the Monocle package, APEC provided more precise 168	

pathways from HSCs to the differentiated cell types (Figure 3c). In addition to the differentiation 169	

pathways to MEP cells through the CMP state and to CLP cells through the LMPP state, MPP 170	

cells may differentiate into GMP cells through two distinct trajectories: Path A through the CMP 171	

state and Path B through the LMPP state, which is consistent with the composite model of HSC 172	

and blood lineage commitment39. Notably, APEC suggested that CD34+ plasmacytoid dendritic 173	
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cells (pDCs) from the bone marrow (Supplementary Figure 3) were derived from CLP cells on the 174	

psuedotime trajectory (Figure 3c), which also agrees with a previous report40. Furthermore, APEC 175	

is capable of evaluating the deviation of each TF along the single-cell trajectory to determine the 176	

regulatory mechanisms during HSC differentiation. As expected, the HOX motif is highly enriched 177	

in the accessible sites of HSCs/MPP cells, as are the GATA1, CEBPB and TCF4 motifs, which 178	

exhibit gradients that increase along the erythroid, myeloid and lymphoid differentiation pathways, 179	

respectively38 (Figure 3d). In addition, we can see that the TF regulatory strategies of the two 180	

paths from MMPs towards GMP cells were very different. Finally, we generated a hematopoiesis 181	

tree based on the APEC analysis (Figure 3e). 182	

 183	

APEC reveals the single-cell regulatory heterogeneity of thymocytes 184	

 185	

T cells generated in the thymus play a critical role in the adaptive immune system, and 186	

the development of thymocytes can be divided into 3 main stages based on the expression of the 187	

surface markers CD4 and CD8, namely, CD4 CD8 double-negative (DN), CD4 CD8 double-188	

positive (DP) and CD4 or CD8 single-positive (CD4SP or CD8SP, respectively) stages41. However, 189	

due to technical limitations, our genome-wide understanding of thymocyte development at single-190	

cell resolution remains unclear. Typically, more than 80% of thymocytes stay in the DP stage in 191	

the thymus, whereas DN cells account for only approximately 3% of the thymocyte population. To 192	

eliminate the impacts of great differences in proportion, we developed a fluorescent tagmentation- 193	

and FACS-sorting-based scATAC-seq strategy (ftATAC-seq), which combined the advantages of 194	

ATAC-see42 and Pi-ATAC-seq43 to manipulate the desired number of target cells by indexed 195	

sorting (Figure 4a). Tn5 transposomes were fluorescently labeled in each cell to evaluate the 196	

tagmentation efficiency so that cells with low ATAC signals could be gated out easily 197	

(Supplementary Figure 4a, Figure 4b). With ftATAC-seq, we acquired high-quality chromatin 198	

accessibility data for 352 index-sorted DN, DP, CD4SP, and CD8SP single cells and 352 mixed 199	

thymocytes (Figure 4b). We applied APEC to mouse thymocyte ftATAC-seq data to investigate 200	

the chromatin accessibility divergence during the developmental process and to reveal refined 201	

regulome heterogeneity at single-cell resolution. Taking into account all 130685 peaks called from 202	

the raw sequencing data, APEC aggregated 600 accessons and successfully assigned over 92% 203	

of index-sorted DN, DP, CD4SP and CD8SP cells into the correct subpopulations (Figure 4c, 4d), 204	

providing a much better classification than chromVAR (Supplementary Figure 4b, 4c), for which 205	

this rate was only 56%. As expected, the majority of randomly sorted and mixed thymocytes were 206	

classified into DP subtypes based on similarity hierarchical clustering, which was consistent with 207	
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the cellular subtype proportions in the thymus. APEC further classified all thymocytes into 14 208	

subpopulations, including 2 DN, 7 DP, 1 CD4SP, 2 CD8SP, 1 coherence (Coh.A) and 1 transition 209	

(Tran.A) state, suggesting that extensive epigenetic heterogeneity exists among cells with the 210	

same CD4 and CD8 surface markers (Figure 4e). For instance, there are four main subtypes of 211	

DN cells, according to the expression of the surface markers CD44 and CD2544, while two clusters 212	

were identified in ftATAC-seq. The accessibility signals around the Il2ra (Cd25) and Cd44 gene 213	

loci demonstrated that DN.A1 comprised CD44+CD25- and CD44+CD25+ DN subtypes (DN1 and 214	

DN2), and DN.A2 cells comprised CD44-CD25+ and CD44-CD25- subtypes (DN3 and DN4), 215	

suggesting significant chromatin changes between DN2 and DN3 cell development (Figure 4f). 216	

Many TFs have been reported to be essential in regulating thymocyte development, and 217	

we found that their motifs were remarkably enriched at different stages during the process (Figure 218	

4g). For instance, Runx3 is well known for regulating CD8SP cells45, and we observed significant 219	

enrichment of the RUNX motif on DN cells and a group of CD8SP cells. Similarly, the TCF46, 47, 220	

RORC48 and NFkB49 family in regulating the corresponding stages during this process. More 221	

enriched TF motifs in each cell subpopulation were also observed, suggesting significant 222	

regulatory divergence in thymocytes (Supplementary Figure 4d). Interestingly, two clusters of 223	

CD8SP cells appear to be differentially regulated based on motif analysis, in which CD8.A1 cells 224	

are closer to DP cells, while CD8.A2 cells are more distant at the chromatin level, suggesting that 225	

CD8.A2 cells are more mature CD8SP cells. In addition to the well-defined subtypes, APEC also 226	

found a mixed cell population without specific features that was termed the coherence state 227	

(Coh.A) and a transitional population between DP and SP cells (Tran.A). 228	

APEC is capable of integrating single-cell transcriptional and epigenetic information by 229	

scoring gene sets of interest based on their nearby peaks from scATAC-seq, thereby converting 230	

the chromatin accessibility signals to values that are comparable to gene expression profiles 231	

(online Methods). To test the performance of this integrative analysis approach and to evaluate 232	

the accuracy of thymocyte classification by APEC, we assayed the transcriptomes of single 233	

thymocytes and obtained 357 high-quality scRNA-seq profiles using the SMART-seq2 protocol50. 234	

Unsupervised analysis of gene expression profiles clustered these thymocytes into 13 groups in 235	

Seurat19 (Supplementary Figure 5a, 5b), and each subpopulation was identified based on known 236	

feature genes (Supplementary Figure 5c, 5d). We then compared the adjusted scores obtained 237	

from APEC with the single-cell RNA expression profile and observed a strong correlation between 238	

the subtypes identified from the transcriptome and the subtypes identified from chromatin 239	

accessibility (Figure 4h), confirming the reliability and stability of cellular classification using APEC. 240	

 241	
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APEC reconstructs the thymocyte developmental trajectory from ftATAC-seq profiles 242	

 243	

APEC is capable of constructing a pseudotime trajectory and then predicting the cell 244	

differentiation lineage from a “snapshot” of single-cell epigenomes (Figure 3). We applied APEC 245	

to recapitulate the developmental trajectory and thereby reveal the single-cell regulatory dynamics 246	

during the maturation of thymocytes. Psuedotime analysis based on single-cell ftATAC-seq data 247	

shaped thymocytes into 5 developing stages (Figure 5a, Supplementary Figure 6a-b), where most 248	

of the cells in stages 1, 2, 4, and 5 were DN, DP, CD8SP and CD4SP cells, respectively. APEC 249	

also identified a transitional stage 3, which consisted of DP, coherence and transitional cells. 250	

Interestingly, the psuedotime trajectory suggests three developmental pathways for this process, 251	

one of which started with stage 1 (DN) and ended in stage 2 (DP), and the other two of which 252	

started with stage 1 (DN), went through a transitional stage 3 (a mixture of DP, Coh and Tran) 253	

and then bifurcated into stage 4 (CD8SP) and 5 (CD4SP). The predicted developmental trajectory 254	

could also be confirmed by the gene expression of surface markers, such as Cd4, Cd8, Runx3 255	

and Ccr7 (Figure 5b). To evaluate the gene ontology (GO) enrichments over the entire process, 256	

we implemented an accesson-based GO module in APEC, which highlights the significance of 257	

the association between cells and biological function (Figure 5c). For instance, T cells selections, 258	

including β-selection, positive selection and negative selection, start from the DN3 stage. 259	

Consistent with this process, we observed a strong “T cell selection” GO term on the trajectory 260	

path after DN.A1. Since TCR signals are essential for T cell selection, we also observed the “T 261	

cell activation” GO term accompanied by “T cell selection”. Meanwhile, the regulation of protein 262	

binding signal was also decreased at SP stages, indicating the necessity of weak TCR signal for 263	

the survive of SP T cells during negative selection.   264	

To further uncover the regulatory mechanism underlying this developmental process, 265	

APEC was implemented to identify stage-specific enriched TFs along the trajectory and pinpoint 266	

the “pseudotime” at which the regulation occurs. In addition to the well-studied TFs mentioned 267	

above (Figure 4g, Supplemental Figure 4c), APEC also identified Zeb151, Ctcf52 and Id4 as 268	

potential stage-specific regulators (Figure 5d). Interestingly, the Id4 motif enriched on DP cells 269	

was also reported to regulate apoptosis in other cell types53, 54. Associated with the fact that the 270	

vast majority of DP thymocytes die because of a failure of positive selection55, we hypothesize 271	

that stage 2 may be the path towards DP cell apoptosis. We then checked the distribution of DP 272	

cells along the stage 2 trajectory and found that most DP.A1 cells were scattered in “early” stage 273	

2, and they were enriched with GO terms such as “T cell selection”, “cell activation” and 274	

“differentiation” (Figure 5e, Supplementary Figure 6c). However, most DP.A5-A6 cells were 275	
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distributed at the end of stage 2, and their principle accessons were enriched with GO terms such 276	

as “apoptosis” and “chromatin modification”. These results suggest that a majority of DP 277	

thymocytes undergo T cell selection and enter an apoptosis state. Although it is believed that 278	

more than 95% of DP thymocytes are subjected to death in positive selection, only a small 279	

proportion of apoptotic cells could be detected in a snapshot of the thymus. By comparing the 280	

number of cells near stage 3 with all the cells in stage 2, we estimated that ~3-5% of cells would 281	

survive positive selection, which is consistent with previous publications56, 57. Our data suggest 282	

that before entering an apoptotic stage, DP thymocytes that fail selection could have already 283	

committed to apoptosis at the chromatin level. 284	

 285	

DISCUSSION 286	

 287	

Here, we introduced an accesson-based algorithm for single-cell chromatin accessibility 288	

analysis. Without any prior information (such as motifs), this approach generated more refined 289	

cell groups with reliable biological functions and properties. Integrating the new algorithm with all 290	

necessary chromatin sequencing data processing tools, APEC provides a comprehensive 291	

solution for transforming raw experimental single-cell data into final visualized results. In addition 292	

to better clustering of subtle cell subtypes, APEC is also capable of locating potential specific 293	

superenhancers, searching enriched motifs, estimating gene opening scores, and building time-294	

dependent cell developmental trajectories, and it is compatible with many existing single-cell 295	

accessibility datasets. Despite these advantages, the biological implications of accessons are still 296	

obscure, especially for those that involve only a small number of peaks; therefore, further 297	

investigations may require uncovering the biology that underlies accessons. 298	

To evaluate the performance of this approach in the context of the immune system, we 299	

also adopted APEC with scATAC-seq technology to investigate the regulome dynamics of the 300	

thymic development process. We developed a novel method of ftATAC-seq that captures Tn5-301	

tagged single cells of interest and outlines the chromatin accessibility heterogeneity and dynamics 302	

during this process. Coordinated with essential cell surface markers, APEC provided a much more 303	

in-depth classification of thymocytes than the conventional DN, DP, CD4SP and CD8SP stages 304	

based on single-cell chromatin status. By reconstructing the developmental pseudotime trajectory, 305	

APEC discovered a transitional stage before thymocytes bifurcate into CD4SP and CD8SP cells 306	

and inferred that one of the stages leads to cell apoptosis. APEC analysis suggested that DP cells 307	
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were gradually programmed to undergo apoptosis at the chromatin level; however, further studies 308	

are needed to fully understand the regulatory mechanism of this process. 309	
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FIGURES 456	

 457	

Figure 1. The accesson matrix constructed from the sparse fragment count matrix improved the 458	

clustering of scATAC-seq data. (a) Step-by-step workflow of APEC. Peaks were grouped into 459	

accessons by their accessibility pattern among cells with the K nearest neighbors (KNN) method. 460	

(b, c) Hierarchical clustering of cell-cell correlations based on the accesson matrix (from APEC) 461	

and the motif matrix (from chromVAR). The scATAC-seq data include leukemic stem cells (LSCs), 462	

leukemia blast cells, lymphoid-primed multipotential progenitors (LMPPs), HL60 cells, and 463	

monocytes. P1, acute myeloid leukemia (AML) patient 1 (SU070); P2, AML patient 2 (SU353). 464	

The cells are labeled by their fluorescence indices. (d, e) t-Distributed Stochastic Neighbor 465	

Embedding (tSNE) diagrams based on the accesson matrix and the motif matrix. (f) Fragment 466	

counts were specifically enriched in the superenhancer region upstream of N4BP1 in P1-LSCs. 467	
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 469	

Figure 2. APEC improved the cell type classification of adult mouse forebrain snATAC-seq data. 470	

(a) A tSNE diagram demonstrates the KNN clustering of forebrain cells. (b) Hierarchical clustering 471	

of the cell-cell correlation matrix. The side bar denotes cell clusters from the KNN method. (c) 472	

Average of the marker gene scores for each cell cluster, normalized by the standard score (z-473	

score). The top row lists the cell numbers for each cluster. (d) Hierarchical clustering of the cluster-474	

cluster correlation matrix. (e) Differential enrichments of cell type-specific motifs in different 475	

clusters. (f, g) Intensity of representative accessons associated with signature genes of excitatory 476	

(Ex) and inhibitory (In) neuron subtypes. The subtypes listed in parentheses were defined by the 477	

signature genes in the results from scRNA-seq data14. 478	
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 479	

Figure 3. APEC constructed a differentiation pathway from scATAC-seq data from human 480	

hematopoietic cells. (a) The pseudotime trajectory construction scheme based on the accesson 481	

matrix and Monocle. (b) Principal component analysis (PCA) of the accesson matrix for human 482	

hematopoietic cells. The first principal component is not shown here because it was highly 483	

correlated with sequencing depth38. HSC, hematopoietic stem cell; MPP, multipotent progenitor; 484	

LMPP, lymphoid-primed multipotential progenitor; CMP, common myeloid progenitor; CLP, 485	

common lymphoid progenitor; pDC, plasmacytoid dendritic cell; GMP, granulocyte-macrophage 486	
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progenitor; MEP, megakaryocyte-erythroid progenitor; unknown, unlabeled cells. (c) Pseudotime 487	

trajectory for the same data constructed by calling Monocle on the accesson matrix. Paths A and 488	

B represent different pathways for GMP cell differentiation. (d) The deviations of significant 489	

differential motifs (HOXA9, GATA1, CEBPB, and TCF4) plotted on the pseudotime trajectory. (e) 490	

Modified schematic of human hematopoietic differentiation. 491	
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 493	

Figure 4. APEC accurately identified cell subtypes based on scATAC-seq data from Mus 494	

musculus thymocytes. (a) Experimental workflow of the fluorescent tagmentation- and FACS-495	

sorting-based scATAC-seq strategy (ftATAC-seq). (b) Indexed sorting of double-negative (DN), 496	

double-positive (DP), CD4+ single-positive (CD4SP), and CD8+ single-positive (CD8SP) cells with 497	

strong tagmentation signals. (c) The tSNE of thymocyte single-cell ftATAC-seq data based on the 498	

accesson matrix, in which the cells are labeled by the sorting index. (d) Hierarchical clustering of 499	

the cell-cell correlation matrix. On the sidebar, each cell was colored by the sorting index. (e) The 500	
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accesson-based KNN method clustered thymocytes into 14 subtypes. DN.A1&A2, double-501	

negative clusters; DP.A1~A7, double-positive clusters; Coh.A, coherent state; Tran.A, transition 502	

state; CD8.A1&A2, CD8+ single-positive clusters; CD4.A, CD4+ single-positive cluster. (f) Average 503	

fragment counts of two DN clusters around the marker genes Cd44 and Il2ra. (g) Differential 504	

enrichment of the motifs Runx, Tcf, Rorc, and Nfkb in the cell clusters. (h) Correlation of the cell 505	

clusters identified by data from single-cell transcriptome (SMART-seq) and chromatin accessibility 506	

(ftATAC-seq) analysis. 507	
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 509	

Figure 5. APEC depicted the developmental pathways of Mus musculus thymocytes by 510	

pseudotime analysis. (a) Pseudotime trajectory based on the accesson matrix of thymocyte 511	

ftATAC-seq data. Cell colors were defined by the developmental stages along pseudotime. Pie 512	

charts show the proportion of cell clusters at each stage. (b) Normalized scores of important 513	

marker genes (Cd8a, Cd4, Runx3, and Ccr7) along each branch of the pseudotime trajectory. (c) 514	

Accesson weight scores of important functional GO terms along each branch of the pseudotime 515	

trajectory. (d) Enrichment of specific motifs searched from the differential accessons of each cell 516	

subtype. (e) On the stage 2 branch, the cell number distribution of clusters DP.A1~A7 along 517	

pseudotime (upper panel) and the intensity of marker accessons of DP.A1 and DP.A5/A6 (lower 518	

panel). 519	
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METHODS 521	

Mice. C57BL/6 mice were purchased from Beijing Vital River Laboratory Animal Technology and 522	

maintained under specific pathogen-free conditions until the time of experiments. All mouse 523	

experiments in this study were reviewed and approved by the Institutional Animal Care and Use 524	

Committee of the University of Science and Technology of China. 525	

ftATAC-seq on mouse thymocytes. Alexa fluor 488-labeled adaptor oligonucleotides were 526	

synthesized at Sangon Biotech as follows: Tn5ME, 5’-[phos]CTGTCTCTTATACACATCT-3’; 527	

AF488-R1, 5’-AF488- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’; and AF488-R2, 5’-528	

AF488-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’. Then, 50 μM of AF488-529	

R1/Tn5ME and AF488-R2/Tn5ME were denatured separately in TE buffer (Qiagen) at 95 °C for 530	

5 min and cooled down to 22 °C at 0.1 °C/s. AF488-labeled adaptors were assembled onto Robust 531	

Tn5 transposase (Robustnique) according to the user manual to form fluorescent transposomes. 532	

Thymus tissues isolated from 6- to 8-week-old male mice were gently ground in 1 mL of RPMI-533	

1640. Thymocytes in a single-cell suspension were counted after passing through a 40 μm nylon 534	

mesh. A total of 1 × 106 thymocytes were stained with PerCP-Cy5.5-anti-CD45, PE-anti-CD8a 535	

and APC-Cy7-anti-CD4 antibodies (Biolegend) and then fixed in 1× PBS containing 1% methanol 536	

at room temperature for 5 min. After washing twice with 1× PBS, the cells were counted again. A 537	

total of 1 × 105 fixed cells were resuspended in 40 μL of 1× TD buffer (5 mM Tris-HCl , pH 8.0, 5 538	

mM MgCl2 , and 10% DMF) containing 0.1% NP-40. Then, 10 μL of fluorescent transposomes 539	

were added and mixed gently. Fluorescent tagmentation was conducted at 55 °C for 30 min and 540	

stopped by adding 200 µL of 100 mM EDTA directly to the reaction mixture. The cells were loaded 541	

on a Sony SH800S sorter, and single cells of the CD45+/AF488-Tn5hi population were index-542	

sorted into each well of 384-well plates. The 384-well plates used to acquire sorted cells were 543	

loaded with 2 µL of release buffer (50 mM EDTA, 0.02% SDS) before use. After sorting, the cells 544	

in the wells were incubated for 1 min. Plates that were not processed immediately were preserved 545	

at -80 °C. 546	

To prepare a single-cell ATAC-seq library, plates containing fluorescently tagmented cells were 547	

incubated at 55 °C for 30 min. Then, 4.2 μL of PCR round 1 buffer (1 μL of 100 μM MgCl2, 3 μL 548	

of 2× I-5 PCR mix [MCLAB], and 0.1 μL each of 10 μM R1 and R2 primers) were added to each 549	

well, followed by PCR: 72 °C for 10 min; 98 °C for 3 min; 10 cycles of 98 °C for 10 s, 63 °C for 30 550	

s and 72 °C for 1 min; 72 °C for 3 min; and holding at 4 °C. Thereafter, each well received 4 µL 551	

of PCR round 2 buffer (2 μL of I-5 PCR Mix, 0.5 μL each of Ad1 and barcoded Ad2 primers, and 552	

1 μL of ddH2O), and final PCR amplification was carried out: 98 °C for 3 min; 12 cycles of 98 °C 553	
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for 10 s, 63 °C for 30 s and 72 °C for 1 min; 72 °C for 3 min; and holding at 4 °C. Wells containing 554	

different Ad2 barcodes were collected together and purified with a QIAquick PCR purification kit 555	

(Qiagen). Libraries were sequenced on an Illumina HiSeq X Ten system. 556	

SMART-seq on thymocytes. Thymocytes were stained and sorted directly into 384-well plates 557	

without fixation. SMART-seq was performed as described with some modifications.58 Reverse 558	

transcription and the template-switch reaction were performed at 50 °C for 1 hr with Maxima H 559	

Minus Reverse Transcriptase (Thermo Fisher); for library construction, 0.5-1 ng of cDNA was 560	

fragmented with 0.05 μL of Robust Tn5 transposome in 20 μL of TD buffer at 55 °C for 10 min, 561	

then purified with 0.8× VAHTS DNA Clean Beads (Vazyme Biotech), followed by PCR 562	

amplification with Ad1 and barcoded Ad2 primers and purification with 0.6× VAHTS DNA Clean 563	

Beads. Libraries were sequenced on an Illumina HiSeq X Ten system. 564	

Data source. All experimental raw data used in this paper are available online. The single-cell 565	

data for mouse thymocytes captured by the ftATAC-seq experiment can be obtained from the 566	

Genome Sequence Archive at BIG Data Center with the accession number CRA001267 and is 567	

available via http://bigd.big.ac.cn/gsa/s/yp1164Et. Other published data sets used in this study 568	

are available from NIH GEO: (1) scATAC-seq data for LSCs and leukemic blast cells from patients 569	

SU070 and SU353, LMPP cells, and monocytes from GSE743103; (2) scATAC-seq data for HL-570	

60 cells from GSE6536013; and (3) scATAC-seq data for hematopoietic development (HSCs, 571	

MPPs, CMPs, LMPPs, GMPs, EMPs, CLPs and pDCs) from GSE9677238. APEC is also 572	

compatible with a preprocessed fragment count matrix from the snATAC-seq data for the 573	

forebrain of adult mice (p56) from GSE10003315. 574	

Preparing the fragment count matrix from the raw data. APEC adopted the general mapping, 575	

alignment, peak calling and motif searching procedures to process the scATAC-seq data. To trim 576	

the adapters in the raw data (in paired-end fastq format files for each single-cell sample), we 577	

implanted the python version trimming code from our previous published pipeline (ATAC-pipe)59. 578	

Then, APEC used BOWTIE2 to map the trimmed sequencing data to the corresponding genome 579	

index and used PICARD for the sorting, duplicate removal, and fragment length counting of the 580	

aligned data. The pipeline called peaks from the merged file of all cells by MACS2, ranked and 581	

filtered out the low quality peaks based on the false discovery rate (Q-value). Genomic locations 582	

of the peaks were annotated by HOMER, and motifs searched by FIMO. APEC calculates the 583	

number of fragments and the percent of reads mapped to the TSS region (±2000 BP) for each 584	

cell, and filters out high quality cells for downstream analysis. All required files for the hg19 and 585	

mm10 assembly have been integrated into the pipeline. If users want to process data from other 586	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


species, they can also download corresponding reference files from the UCSC website. By 587	

combining existing tools, APEC made it possible to finish all of the above data processing steps 588	

by one command line, and generate a fragment count matrix for subsequent cell clustering and 589	

differential analysis. 590	

Accesson-based clustering algorithm. We define accesson as a set of peaks with similar 591	

accessibility patterns across all single cells, similar to the definition of gene modules for RNA-seq 592	

data. The peaks of a same accesson can be distant from each other on the genome, and 593	

sometimes on multiple chromosomes. After preprocessing, a filtered fragment count matrix M is 594	

obtained, and APEC groups peaks to construct accessons and then performs cell clustering 595	

analysis as follows: 596	

(1) Normalization of the fragment count matrix. Each matrix element 𝑀"#  represents the 597	

number of raw reads in cell 𝑖 and peak 𝑗, and element 𝑀"# was then normalized by the 598	

total number of reads in each cell 𝑖, as if there are 10,000 reads in each cell. 599	

𝑀′"# = 𝑙𝑜𝑔+
𝑀"#×10000

𝑀"#/#/
+ 1  600	

(2) Constructing accessons. The top 40 principal components of the normalized matrix M’ 601	

were used to construct the connectivity matrix (Cpeak) of peaks by the K-nearest-neighbor 602	

(KNN) method. Based on the matrix Cpeak, all peaks were grouped by agglomerative 603	

clustering with the Ward’s method, and the sum of one peak group was an accesson. In 604	

processing of all datasets in this study, the default number of accessons was set to 600. 605	

We recommend using a flexible number of accessons so that you can accumulate enough 606	

peaks in one accesson while avoiding incorrect grouping of differential peaks. However, 607	

not all accessons were used for cell clustering in the next step. Sparse accessons with 4 608	

or fewer peaks were discarded since they will interfere with the clustering accuracy. Only 609	

accessons containing 5 or more peaks were retained in the accesson count matrix Ma. 610	

Each row of Ma is an accesson, each column is a cell and the elements of Ma represents 611	

the cumulative read counts of each accesson in each cell. If less than 30% of the 612	

accessons contain enough number of peaks, the users may consider to reduce the default 613	

accesson number to avoid sparse accessons. 614	

(3) Cell clustering. From the accesson matrix Ma, APEC calculated the Pearson correlation 615	

between each pair of cells, and then performed both hierarchical and KNN clustering on 616	

the correlation matrix to categorize cells into different clusters. The number of cell clusters 617	

can be predicted by the Louvain method, or inputted by the users. By default, cell 618	
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clustering was performed in the high-dimensional PCA transformed space, but also 619	

supports clustering in the tSNE space. 620	

(4) Comparison with other clustering methods. To investigate the accuracy of clusters 621	

generated by different algorithms, APEC provides two ways to compare cell clusters: a) 622	

The contingency matrix, in which each element represents the number of common cells 623	

between two clusters from different methods (e.g., hierarchy and KNN clustering, or 624	

accesson-based and motif-based clustering); b) The ARI value, which evaluates the 625	

similarity of clustering results from two different algorithms20. Moreover, one clustering 626	

method can be compared with known cell types in the original single-cell data (such as 627	

the FACS index) to confirm the accuracy of the cell type classification algorithm. 628	

Gene score evaluated by peaks around the TSS. To evaluate the accessibility score of one 629	

gene, we calculated the average count of all peaks around its TSS (±20000 BP) as its raw score 630	

(𝑆"# for cell i and gene j). Then, we obtained the gene accessibility score by normalizing the raw 631	

score (𝑆′"# = 𝑆"# ∗ 10000 𝑆"#" ), which is in a range comparable to the gene expression from 632	

scRNA-seq data. The average score of all cells in one cluster represents the accessibility of a cell 633	

type (𝑆3# for cell cluster k and gene j). We normalized the gene score matrix 𝑆 by caculating z-634	

score for each row and column, and the final matrix 𝑆4 represents the relative strength of gene 635	

accessibility for each cell type. 636	

Significant differential peaks, genes and motifs. APEC used the Student’s t-test to estimate 637	

the significance of the fragment count differences between cell clusters, with P-value and fold 638	

changes, and one can determine the thresholds to identify significant differential peaks for each 639	

cluster. The significant differential genes of each cell cluster can also be acquired from the 640	

accessibility score (𝑆3# ) by the same method. To accurately quantify the enrichment of motifs on 641	

each cell, APEC applied the bias-corrected deviation algorithm from chromVAR24; thus, the 642	

chromVAR algorithm has been embedded into the pipeline to facilitate the calculation of the 643	

corrected deviation of the motifs. In this python version of chromVAR, permuted sampling and 644	

background deviation calculation can be run in parallel on multiple processors to reduce the 645	

computer time. The differentially enriched motifs were defined by a fold change >1 in the average 646	

motif deviation between one cluster and another. 647	

Potential super-enhancers. Here, we defined a super-enhancer as a long continuous genomic 648	

area containing many accessible regions and have the same accessibility pattern in different cells. 649	

Many different motifs appear in one super-enhancer, therefore, the motif-based clustering method 650	
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cannot reflect the critical contributions from super-enhancers for cell clustering. However, the 651	

accesson-based algorithm can group most peaks in one super-enhancer to one accesson since 652	

they always present the same accessibility pattern between cells. APEC identified super-653	

enhancers by counting the number of peaks in a 1 million BP genomic area that belong to a same 654	

accesson. It also requires that more than 3/4 of the putative peaks in one super-enhancer be 655	

adjacent on the initial peak list. The pipeline can also aggregate bam files by cell types/clusters 656	

and convert them to BigWig format for users to upload to the UCSC genome browser for 657	

visulization. 658	

Pseudotime trajectory. As a tool to simulate the time-dependent variation of gene expression 659	

and the cell development pathway, Monocle has been widely used for the analysis of single-cell 660	

RNA-seq experiments30, 60. APEC reduced the dimension of the accesson count matrix Ma by 661	

PCA, and then performed pseudotime analysis using the Monocle program. For complex datasets, 662	

it is necessary to limit the number of principal components, since too many features will cause 663	

too many branches on the pseudo-time trajectory, and makes it difficult for a user to identify the 664	

biological significance of each branch. For the hematopoietic single cell data and thymocyte data, 665	

we used the top 5 principal components of the accesson matrix to construct the developmental 666	

and differentiation trajectories.  667	

Parameter settings for each analysis. In the quality control (QC) step, cells are filtered by two 668	

constraints: the percentage of the fragments in peaks (Pf) and the total number of valid fragments 669	

(Nf). However, there is no fixed cutoff for these two parameters since the quality of different cell 670	

types and/or experiment batches are completely different. The total number of peaks is usually 671	

limited to approximately 50000 to reduce computer time, but we recommend using all peaks if the 672	

users want to obtain better cell clusters. (1) For the scATAC-seq data from leukemic cells (P1/P2 673	

LSCs and blast cells, LMPPs, HL60 cells, and monocytes), the threshold of -log(Q-value) was set 674	

to 8 to retain 42139 high-quality peaks for subsequent processing. In the QC step, we set the Pf 675	

cutoff to 0.05 and the Nf cutoff to 800. (2) For the snATAC-seq data from the adult mouse forebrain, 676	

all peaks and the raw count matrix obtained from the original data source were adopted in the 677	

analysis. (3) For the data set from hematopoietic cells, the -log(Q-value) threshold of high-quality 678	

peaks was set to 35 to retain 54212 peaks, and the cutoff values of Pf and Nf were 0.1 and 1000, 679	

respectively. (4) For the ftATAC-seq data from thymocytes, all 130685 peaks called by MACS2 680	

were reserved for the fragment count matrix (Q-value<0.05), and we retained cells with Pf >0.2 681	

and Nf >2000. 682	
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SMART-seq data analysis with Seurat. For the analysis of SMART-seq data from mouse 683	

thymocytes, we employed STAR (version 2.5.2a) with the ratio of mismatches to mapped length 684	

(outFilterMismatchNoverLmax) less than or equal to 0.05, translated output alignments into 685	

transcript coordinates (i.e., quantMode TranscriptomeSAM) for mapping61 (Dobin et al., 2013) and 686	

used RSEM62 (Bo et al., 2011) to calculate the TPM of genes. For QC, we excluded cells in which 687	

fewer than 2000 genes were detected and genes that were expressed in only 3 or fewer cells. 688	

Seurat filtered cells with several specific parameters to limit the number of genes detected in each 689	

cell to 2000~6000 and the proportion of mitochondrial genes in each cell was set to less than 0.4 690	

(i.e., low.thresholds=c(2000,-Inf), high.thresholds=c(6000,0.4)). Additionally, the top 12 principal 691	

components were used for dimension reduction with a resolution of 3.2 (dims.use =1:12, 692	

resolution=3.2), followed by cell clustering and differential expressed gene analysis63. 693	

Association of cell clusters from scATAC-seq and scRNA-seq data. To determine the 694	

association between cell clusters from epigenomics and transcriptome sequencing, we calculated 695	

the P-values of Fisher’s exact test of marker/nonmarker genes between each pair of cell clusters 696	

from scATAC-seq and scRNA-seq data. For example, for cell cluster i from ftATAC-seq and cell 697	

cluster j from SMART-seq, if the number of consensus marker genes in both cluster i and j is G11, 698	

the number of genes that are not markers in either cluster i or j is G22, and the number of markers 699	

in either cluster i (or cluster j) is G12 (or G21), then the 2 by 2 matrix G can be directly used for 700	

Fisher’s exact test to evaluate the P-valuie Aij between cluster i and j. We calculated the logarithm 701	

of matrix A to obtain matrix A’, then calculated the z-score for each row and column of A’ to 702	

determine the correlation of cell clusters from different experiments. 703	

Biological function of accesson. We defined the functional characteristics of each accesson by 704	

the GO terms and motifs enriched on its peaks. The GO terms of an accesson were obtained by 705	

submitting all of its peaks to the GREAT website64. The logarithm of the P-value of each GO term 706	

in each accesson was filled into a (GO terms) × (accessons) matrix L. The significance of each 707	

GO term on each cell was evaluated by the product of the matrix L and the accesson reads count 708	

matrix Ma. Then we calculated the z-score for each row of this product matrix, and plotted the z-709	

score as the GO-term score on the trajectory diagram. To assess the motif enrichment of the 710	

accessons, we used the Centrimo tool of MEME suite65 to search for the enriched motifs for the 711	

peaks of each accesson, and applied the same algorithm as the GO term score to obtain the motif 712	

score. 713	

 714	
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