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Abstract: 

 

The development of sequencing technologies has promoted the survey of genome-wide 

chromatin accessibility at single-cell resolution; however, comprehensive analysis of single-cell 

epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based 

epigenomic clustering (APEC) method, which classifies each individual cell by groups of 

accessible regions with synergistic signal patterns termed “accessons”. By integrating with other 

analytical tools, this python-based APEC package greatly improves the accuracy of unsupervised 

single-cell clustering for many different public data sets. APEC also predicts gene expressions, 

identifies significant differential enriched motifs, discovers super enhancers, and projects 

pseudotime trajectories. Furthermore, we adopted a fluorescent tagmentation-based single-cell 

ATAC-seq technique (ftATAC-seq) to investigated the per cell regulome dynamics of mouse 

thymocytes. Associated with ftATAC-seq, APEC revealed a detailed epigenomic heterogeneity of 

thymocytes, characterized the developmental trajectory and predicted the regulators that control 

the stages of maturation process. Overall, this work illustrates a powerful approach to study 

single-cell epigenomic heterogeneity and regulome dynamics. 
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INTRODUCTION 

 

As a technique for probing genome-wide chromatin accessibility in a small number of cells 

in vivo, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-

seq) has been widely applied to investigate the cellular regulomes of many important biological 

processes1, such as hematopoietic stem cell (HSC) differentiation2, embryonic development3, 

neuronal activity and regeneration4, 5, tumor cell metastasis6, and patient responses to anticancer 

drug treatment7. Recently, several experimental schemes have been developed to capture 

chromatin accessibility at single-cell/nucleus resolution, i.e., single-cell ATAC-seq (scATAC-seq)8, 

single-nucleus ATAC-seq (snATAC-seq)9, 10, and single-cell combinatorial indexing ATAC-seq 

(sci-ATAC-seq)11, 12, which significantly extended researchers’ ability to uncover cell-to-cell 

epigenetic variation and other fundamental mechanisms that generate heterogeneity from 

identical DNA sequences. By contrast, the in-depth analysis of single-cell chromatin accessibility 

profiles for this purpose remains a challenge. Numerous efficient algorithms have been developed 

to accurately normalize, cluster and visualize cells from single-cell transcriptome sequencing 

profiles, including but not limited to Seurat13, SC314, SIMLR15, and SCANPY16. However, most of 

these algorithms are not directly compatible with a single-cell ATAC-seq dataset, for which the 

signal matrix is much sparser. To characterize scATAC-seq data, the Greenleaf lab developed an 

algorithm named chromVAR17, which aggregates mapped reads at accessible sites based on 

annotated motifs of known transcription factors (TFs) and thus projects the sparse per accessible 

peak per cell matrix to a bias-corrected deviation per motif per cell matrix and significantly 

stabilizes the data matrix for downstream clustering analysis. Other mathematical tools, such as 

the latent semantic indexing (LSI)11, 12, Cicero18, and cisTopic19 have also been applied to process 

single-cell/nucleus ATAC-seq data10, 12. However, great challenges still remain for current 

algorithms to accurately cluster large number of cells and precisely predict gene expressions from 

single cell chromatin accessibility profiles. Therefore, a refined algorithm is urgently needed to 

better categorize cell subgroups with minor differences, thereby providing a deeper mechanistic 

understanding of single-cell epigenetic heterogeneity and regulation. 

 

 

RESULTS 

 

Accesson-based algorithm improves single-cell clustering 
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Here, we introduce a new single-cell chromatin accessibility analysis toolkit named APEC 

(accessibility pattern-based epigenomic clustering), which combines peaks with the same signal 

fluctuation among all single cells into peak groups, termed "accessons", and converts the original 

sparse cell-peak matrix to a much denser cell-accesson matrix for cell type categorization (Fig. 

1a). In contrast to previous methods (e.g., chromVAR17, LSI11, 12, Cicero18, and cisTopic19), this 

accesson-based reduction scheme naturally groups synergistic accessible regions genome-wide 

together without a priori knowledge of genetic information (such as TF motifs or genomic distance) 

and provides more efficient, accurate, robust and rapid cell clustering from single-cell ATAC-seq 

profiles. More conveniently, APEC integrates all necessary procedures, from raw sequence 

trimming, alignment, and quality control (Supplementary Fig. 1) to cell clustering, motif enrichment, 

and pseudotime trajectory prediction into a head-to-toe program package that has been made 

available on GitHub (https://github.com/QuKunLab/APEC). 

To test the performance of APEC, we first obtained data from previous publications that 

performed scATAC-seq on a variety of cell types with known identity during hematopoietic stem 

cell (HSC) differentiation20 as a gold standard. Compared to other state-of-the-art single cell 

chromatin accessibility analysis methods such as chromVAR17, 21, LSI11, 12, Cicero18 and cisTopic19, 

this new accesson-based algorithm more precisely and clearly clustered cells into their 

corresponding identities according to the Adjusted Rand Index (ARI) (Fig. 1b-c). On average, 67% 

of cells were correctly classified by APEC with ARI=0.480/0.522 (normalized by Z-score or 

probability, respectively). CisTopic was the second most accurate method to predict cell identities 

(ARI=0.392/0.418), and correctly classified ~56% of cells. However, given 5 times more CPU 

threads, the cisTopic algorithm was still 15-50 times slower than other methods. Moreover, APEC 

identified 3 sub-clusters of CMP cells that were not discovered by any other algorithms, namely 

CMP1, CMP2 and CMP-MEP (Fig. 1d). CMP1 cells are early stage of CMPs that enriched TFs 

associated with stem cell self-renewal, such as Erg22; CMP2 cells are enriched with CTCF motif, 

suggesting that these cells are at the fate decision stage with CTCF associated chromatin 

remodeling23; CMP-MEP cells are considered as MEP committed CMPs, and are strongly 

enriched with crucial regulators for MEP differentiation, such as GATA124. More details about the 

distribution of these 3 sub-clusters of CMP cells on the development trajectory will be discussed 

later in the section of pseudotime prediction. Another advantage of APEC over all the other tools 

is the capability to precisely evaluate gene expressions from single cell chromatin accessibility 

information. For instance, genes FOXO125, CEBPA26, CD8627, IKZF128,GFI1B29, and AQP130 are 

well studied marker genes for HSC, GMP, CLP, and MEP cells respectively, and were also 

predicted exclusivity highly expressed in the correct cell types by APEC (Fig. 1e). On the contrary, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


although cisTopic and Cicero can also assess gene expression, they both failed to present the 

enrichment of these genes in the corresponding cell types (Supplementary Fig. 2).  

To further confirm the superiority of APEC, we performed the same comparison analysis 

with another scATAC-seq dataset on three distinct cell types, namely, lymphoid-primed 

multipotent progenitors (LMPPs), monocytes, and HL-60 lymphoblastoid cells (HL60), and four 

similar cell types, namely, blast cells and leukemic stem cells (LSCs) from two acute myeloid 

leukemia (AML) patients17. Again, we see that APEC outperformed all the other tools in cell 

clustering with an overall ARI=0.770/0.763 (Supplementary Fig. 3a). Interestingly, APEC, cisTopic 

and LSI were all capable of almost perfectly separating the three distinct cell types (LMPPs, 

monocytes, and HL60), with ARI = 1.000/0.994, 0.987/0.987 and 0.969, respectively, while the 

other two Cicero (ARI=0.917) and chromVAR (ARI=0.705) were not as good. However, in terms 

of clustering the four similar cell types from AML patients, APEC (ARI=0.572/0.551, 80% of cells 

correctly classified) clearly outperformed cisTopic (ARI=0.477/0.497, 61% of cells correctly 

classified) and LSI (ARI=0.382, 53% of cells correctly classified) (Supplementary Fig. 3b), 

suggesting that APEC was the most sensitive among all the tools. Since each method can 

generate varying numbers of clusters depending on the parameters used, we benchmarked the 

performance of all the methods using ARI across a wide range of parameters to ensure the 

reliability of their predictions (Supplementary Fig. 3c-d). To further test the robustness of APEC 

at low sequencing depth, we randomly selected reads from the raw data and calculated the ARI 

values for each down-sampled data. APEC exhibits better performance at sequencing depths as 

low as 20% of the original data (Supplementary Fig. 3e), confirming the sensitivity of the algorithm. 

Compare with chromVAR, the contribution of the minor differences between similar cells 

is aggregated in accessons but diluted in motifs. For example, APEC identified prominent super-

enhancers around the E3 ligase inhibitor gene N4BP131 and the MLL fusion gene GPHN32 in the 

LSC cells from AML patient 1 (P1-LSC) but not in the other cell types (Supplementary Fig. 4a-b). 

We noticed that all peaks in these super-enhancers were classified into one accesson that was 

critical for distinguishing P1-LSCs from P2-LSCs, P1-blast cells and P2-blast cells. However, 

these peaks were distributed in multiple TF motifs, which significantly diluted the contributions of 

the minor differences (Supplementary Fig. 4c-d). In contrast to Cicero, which aggregates peaks 

based on their cis-co-accessibilities networks (CCAN) within a certain range of genomic 

distance18, APEC combine synergistic peaks genome-wide. Take the human hematopoietic cells 

dataset as an example, 600 accessons were built from the 54,212 peaks, and each accesson 

contained ~40 peaks (median number) compare with ~4 peaks in each CCAN (Supplementary 

Fig. 5a~b). The average distance between peaks in a same accesson is ~50 million base pairs 
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(compared with ~0.2 million bps from CCAN), and over 57% of accessons contain peaks from 

more than 15 different chromosomes. From the same dataset, Cicero identified 732,306 pairs of 

site links from 25,102 peaks, and information from the remaining peaks were simply discarded. 

APEC identified more than 9.2 million pairs of site links from all the 54,212 peaks, within which 

only 3080 site links were identified by both methods (Supplementary Fig. 5c), therefore, APEC 

and Cicero are two completely different approaches. Furthermore, Buenrostro et al. showed that 

the covariation of the accessible sites across all the cells may reflect the spatial distance between 

the corresponding peaks8. By integrating the chromatin conformation profiles from Hi-C 

experiments with the scATAC-seq profile for the same cells, we found that peaks in the same 

accesson are spatially much closer to each other than randomly selected peaks (Supplementary 

Fig. 6a, P-value<10-7), suggesting that they may belong to the same topologically associated 

domains (TADs) (Supplementary Fig. 6b). 

Speed and scalability are now extremely important for single-cell analytical tools due to 

the rapid growth in the number of cells sequenced in each experiment. We benchmarked APEC 

and all the other tools based on a random sampling of the mouse in vivo single-cell chromatin 

accessibility atlas dataset33, which contains 81,173 high quality cells. Taking into account of all 

the 436,206 peaks, it took APEC 310 min to cluster 80,000 cells with 1 CPU thread, ~9 times 

faster than chromVAR and ~8 times slower than LSI (Fig. 1f). CisTopic took 5,000 min to 

categorize 20,000 cells using 5 CPU threads, and we estimated it might take 30 days to finish 

clustering 80,000 cells if no parallel computing is applied. On the other hand, Cicero led to memory 

overflow to cluster 40,000 cells (on 512 GM RAM computer). Therefore, neither cisTopic nor 

Cicero may be applicable to analyze large scale datasets using limited computing resources. We 

also randomly select 100,000 peaks from the entire dataset to test the performance of these tools 

where similar conclusions can be obtained (Supplementary Fig. 6c). In addition, APEC is very 

stable for a wide range of parameter values used in the algorithm, such as the number of 

accessons, nearest neighbors and principle components (Supplementary Fig. 6d-f). 

 

APEC is applicable to multiple single-cell chromatin detection techniques 

 

To evaluate the compatibility and performance of APEC with other single-cell chromatin 

accessibility detection techniques, such as snATAC-seq10, transcript-indexed scATAC-seq34 and 

sciATAC-seq11, APEC was also tested with the data sets generated by those experiments. For 

example, APEC discovered 13 cell subpopulations in adult mouse forebrain snATAC-seq data10, 

including four clusters of excitatory neurons ( EX1-4), five groups of inhibitory neurons ( IN1-5), 
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astroglia cells (AC1&2), oligodendrocyte cells (OC), and microglial cells (MG; Fig. 2a-b), defined 

by the chromatin accessibilities at the loci of cell type-specific genes (Fig. 2c). Compared to 

published results10, APEC identified 4 rather than 3 excitatory subpopulations and 5 rather than 

2 distinct inhibitory subpopulations, and all the cell groups were clearly distinguished from each 

other by hierarchical clustering (Fig. 2d). The motif enrichment analysis module in APEC identified 

cell type-specific regulators that are also consistent with previous publications10. For example, the 

NEUROD1 and OLIG2 motifs were generally enriched on excitatory clusters (EX1\3\4); the 

MEF2C motif was more enriched on EX1/2 and the left part of EX3 than other excitatory neurons; 

the motifs of MEIS2 and DLX2 were differentially enriched on two subtypes of inhibitory neurons 

(IN2 and IN4, respectively); and the NOTO, SOX2, and ETS1 motifs were enriched on the AC1, 

OC, and MG clusters, respectively (Fig. 2e). These results confirm that APEC is capable of 

identifying cell subtype-specific regulators.  

Since single-cell transcriptome analysis is also capable to identify novel cell 

subpopulations, it is critical to anchor the cell types identified from scATAC-seq to those from 

scRNA-seq. Hrvatin et al. identified dozens of excitatory and inhibitory neuronal subtypes in the 

mouse visual cortex using single cell inDrops sequencing35 and provided tens of signature genes 

that distinguished these cell types. Interestingly, the accessons that represent these signature 

genes were also distinctly enriched at corresponding clusters of neurons. For example, Enpp2 is 

a marker gene for cluster Excl23 defined in the inDrops-seq data, and accessons represent this 

gene were also enriched in the EX1 cluster in snATAC-seq, suggesting an anchor between EX1 

and Excl23 (Fig. 2f, Supplementary Fig. 7a). Cluster EX1 in scATAC-seq also matched with 

Excl5_3 in inDrops-seq (marked by Deptor and Fam3c). Similarly, cluster EX2 matched with Excl4 

(marked by Rorb and Tshz1), EX3 matched with Excl5_1 (marked by Bmp3), and EX4 matched 

with Excl6 (marked by Col5a1, Foxp2 and Pcp4). The same method also works to anchor 

inhibitory neurons, as the IN1 cells in the snATAC-seq data corresponded to the Int_Vip and 

Int_Npy clusters in the inDrops-seq data (marked by Vip and Npy). Cluster IN2 matched with 

Int_Cck (marked by Cck), IN3 matched with Int_Pv (marked by Pvalb), IN4 matched with 

Int_Sst_2 (marked by Crhbp), and IN5 matched with Int_Sst_1 (marked by Lypd6b) (Fig. 2g, 

Supplementary Fig. 7b). These results highlight the potential advantages of the accesson-based 

approach for the integrative analysis of scATAC-seq and scRNA-seq data. 

In addition, due to the sparser fragment count matrix (~1200 reads per cell), more than 

29.7% (946 out of 3034) of cells were previously unable to be correctly assigned into any 

subpopulation of interest10, but APEC successfully categorized all cells into their corresponding 
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subtypes, confirming its high sensitivity. In contrast, cisTopic identified 5 EX, 5 IN, 2 AC, 2 OC 

and 1 MG clusters, however 11% of cells in clusters C0~C2 cannot be clearly classified, and it 

mis-clustered AC1 and AC2 in the heatmap (Supplementary Fig. 8a). LSI identified 5 EX, 3 IN, 2 

AC, 1 OC and 1 MG cell clusters, but failed to classify 13% of cells in the C0 cluster 

(Supplementary Fig. 8b). Cicero was also applied to cluster these cells, however since it failed to 

predict the activities of several critical genes (e.g., Neurod6, C1qb and Ctss), the algorithm was 

not able to distinguish 20% of cells in clusters C0~C2 (Supplementary Fig. 8c). ChromVAR 

generated 11 cell clusters, but it mis-clustered AC and EX4 with inhibitory neurons 

(Supplementary Fig. 8d). These results confirm that APEC can better distinguish and categorize 

single cells with great sensitivity and reliability. 

 

APEC constructs a pseudotime trajectory that predicts cell differentiation lineage 

 

Cells are not static but dynamic entities, and they have a history, particularly a 

developmental history. Although single-cell experiments often profile a momentary snapshot, a 

number of remarkable computational algorithms have been developed to pseudo-order cells 

based on the different points they were assumed to occupy in a trajectory, thereby leveraging 

biological asynchrony36, 37. For instance, Monocle37, 38 constructs the minimum spanning tree, and 

Wishbone39 and SPRING40 construct the nearest neighbor graph from single-cell transcriptome 

profiles. These tools have been widely used to depict neurogenesis41, hematopoiesis42, 43 and 

reprogramming44. APEC integrates the Monocle algorithm into the accesson-based method and 

enables pseudotime prediction from scATAC-seq data20 and was applied to investigate HSC 

differentiation linages (Fig. 3a). Principal component analysis (PCA) of the accesson matrix 

revealed multiple stages of the lineage during HSC differentiation (Fig. 3b) and was consistent 

with previous publications2, 20. After utilizing the Monocle package, APEC provided more precise 

pathways from HSCs to the differentiated cell types (Fig. 3c). In addition to the differentiation 

pathways to MEP cells through the CMP state and to CLP cells through the LMPP state, MPP 

cells may differentiate into GMP cells through two distinct trajectories: Path A through the CMP 

state and Path B through the LMPP state, which is consistent with the composite model of HSC 

and blood lineage commitment45. Notably, pDCs from bone marrow are CD34+ (Supplementary 

Fig. 9), indicative of precursors of pDCs. APEC suggested that pDC precursors were derived from 

CLP cells on the pseudotime trajectory (Fig. 3c), which also agrees with previous reports46. 

Furthermore, APEC incorporated the chromVAR algorithm to determine the regulatory 

mechanisms during HSC differentiation by evaluating the deviation of each TF along the single-
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cell trajectory. As expected, the HOX motif is highly enriched in the accessible sites of HSCs/MPP 

cells, as are the GATA1, CEBPB and TCF4 motifs, which exhibit gradients that increase along 

the erythroid, myeloid and lymphoid differentiation pathways, respectively20 (Fig. 3d). We also 

noticed that the TF regulatory strategies of the two paths from MPP towards GMP cells were very 

different. In addition, the 3 CMP sub-clusters identified in Fig. 1 were differentially distributed 

along the developmental trajectory (Fig. 3e). CMP1 cells that close to HSCs and MPPs are early 

stage CMPs; CMP2 cells are distributed in both the GMP and MEP branches; CMP-MEP cells 

are MEP committed CMPs and are dominantly distributed in the MEP differentiation branch. The 

distributions of these CMP sub-clusters are also consistent with the functions of their enriched 

motifs mentioned in the first section (Fig. 1d)22-24. Finally, we generated a hematopoiesis tree 

based on the APEC analysis (Fig. 3f). 

Furthermore, we benchmarked the performance of APEC and of all the other tools in 

constructing a pseudotime trajectory from the scATAC-seq profile on the same dataset. We found 

that (1) when the raw peak count matrix was invoked into Monocle, almost none developmental 

pathways were constructed (Supplementary Fig. 10a), suggesting that the peak aggregation step 

in APEC greatly improves the pseudotime estimation; (2) APEC + Monocle provides the most 

precise pathways from HSCs to differentiated cells, compared to those of other peak aggregation 

methods, such as chromVAR, Cicero, LSI and cisTopic (Supplementary Fig. 10b-e); and (3) when 

we applied other pseudotime trajectory construction methods, such as SPRING40, after APEC, a 

similar though less clear cell differentiation diagram was also obtained, suggesting the reliability 

of our prediction (Supplementary Fig. 10f). 

 

APEC reveals the single-cell regulatory heterogeneity of thymocytes 

 

T cells generated in the thymus play a critical role in the adaptive immune system, and 

the development of thymocytes can be divided into 3 main stages based on the expression of the 

surface markers CD4 and CD8, namely, CD4 CD8 double-negative (DN), CD4 CD8 double-

positive (DP) and CD4 or CD8 single-positive (CD4SP or CD8SP, respectively) stages47. However, 

due to technical limitations, our genome-wide understanding of thymocyte development at single-

cell resolution remains unclear. Typically, more than 80% of thymocytes stay in the DP stage in 

the thymus, whereas DN cells account for only approximately 3% of the thymocyte population. To 

eliminate the impacts of great differences in proportion, we developed a fluorescent tagmentation- 

and FACS-sorting-based scATAC-seq strategy (ftATAC-seq), which combined the advantages of 

ATAC-see48 and Pi-ATAC-seq49 to manipulate the desired number of target cells by indexed 
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sorting (Fig. 4a). Tn5 transposomes were fluorescently labeled in each cell to evaluate the 

tagmentation efficiency so that cells with low ATAC signals could be gated out easily (Fig. 4b, 

Supplementary Fig. 11a). With ftATAC-seq, we acquired high-quality chromatin accessibility data 

for 352 index-sorted DN, DP, CD4SP, and CD8SP single cells and 352 mixed thymocytes 

(Supplementary Fig. 11b-d). Correlation analysis with the published bulk ATACs-eq data of 

thymocytes50 indicates that the cells we sorted in ftATAC-seq were correctly labeled 

(Supplementary Fig. 11e). We then applied APEC on this dataset to investigate the chromatin 

accessibility divergence during developmental process and to reveal refined regulome 

heterogeneity of mouse thymocytes at single-cell resolution. Taking into account of all the 130685 

peaks called from the raw sequencing data, APEC aggregated 600 accessons and successfully 

assigned over 82% of index-sorted DN, DP, CD4SP and CD8SP cells into the correct 

subpopulations (Fig. 4c-d). As expected, the majority of randomly sorted and mixed thymocytes 

were classified into DP subtypes based on hierarchical clustering of cell-cell correlation matrix, 

which was consistent with the cellular subtype proportions in the thymus. APEC further classified 

all thymocytes into 11 subpopulations, including 2 DN, 6 DP, 1 CD4SP, 2 CD8SP, suggesting 

that extensive epigenetic heterogeneity exists among cells with the same CD4 and CD8 surface 

markers (Fig. 4e). For instance, there are four main subtypes of DN cells, according to the 

expression of the surface markers CD44 and CD2551, while two clusters were identified in ftATAC-

seq. The accessibility signals around the Il2ra (Cd25) and Cd44 gene loci demonstrated that 

DN.A1 comprised CD44+CD25- and CD44+CD25+ DN subtypes (DN1 and DN2), and DN.A2 cells 

comprised CD44-CD25+ and CD44-CD25- subtypes (DN3 and DN4), suggesting significant 

chromatin changes between DN2 and DN3 cell development (Fig. 4f). 

Many TFs have been reported to be essential in regulating thymocyte development, and 

we found that their motifs were remarkably enriched at different stages during the process (Fig. 

4g). For instance, Runx3 is well known for regulating CD8SP cells52, and we observed significant 

enrichment of the RUNX motif on DN cells and a group of CD8SP cells. Similarly, the TCF53, 54, 

RORC55 and NFkB56 family in regulating the corresponding stages during this process. More 

enriched TF motifs in each cell subpopulation were also observed, suggesting significant 

regulatory divergence in thymocytes (Supplementary Fig. 12a). Interestingly, two clusters of 

CD8SP cells appear to be differentially regulated based on motif analysis, in which CD8.A1 cells 

are closer to DP cells, while CD8.A2 cells are more distant at the chromatin level, suggesting that 

CD8.A2 cells are more mature CD8SP cells, and CD8.A1 cells are in a transitional state between 

DP and SP cells. 
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APEC is capable of integrating single-cell transcriptional and epigenetic information by 

scoring gene sets of interest based on their nearby peaks from scATAC-seq, thereby converting 

the chromatin accessibility signals to values that are comparable to gene expression profiles (see 

Methods). To test the performance of this integrative analysis approach and to evaluate the 

accuracy of thymocyte classification by APEC, we assayed the transcriptomes of single 

thymocytes and obtained 357 high-quality scRNA-seq profiles using the SMART-seq2 protocol57. 

Unsupervised analysis of gene expression profiles clustered these thymocytes into 13 groups in 

Seurat13 (Supplementary Fig. 13a-b), and each subpopulation was identified based on known 

feature genes (Supplementary Fig. 13c-d). We then adopted fisher’s exact test on the shared 

differential genes in cell clusters identified from scATAC-seq and scRNA-seq profiles (see 

Methods), and observed a strong correlation between the subtypes identified from the 

transcriptome and those from chromatin accessibility (Fig. 4h), confirming the reliability and 

stability of cellular classification using APEC. 

 

APEC reconstructs the thymocyte developmental trajectory  

 

APEC is capable of constructing a pseudotime trajectory and then predicting the cell 

differentiation lineage from a “snapshot” of single-cell epigenomes (Fig. 3). We applied APEC to 

recapitulate the developmental trajectory and thereby reveal the single-cell regulatory dynamics 

during the maturation of thymocytes. Pseudotime analysis based on single-cell ATAC-seq data 

shaped thymocytes into 5 developing stages (Fig. 5a, Supplementary Fig. 14a-b), where most of 

the cells in stages 1, 2, 4, and 5 were DN, DP, CD8SP and CD4SP cells, respectively. APEC also 

identified a transitional stage 3, which was mainly consisted of last stages of DP cells. Besides 

Monocle, a similar developmental pathways can also be constructed by SPRING40 based on the 

accesson matrix (Supplementary Fig 14c). Interestingly, the pseudotime trajectory suggests three 

developmental pathways for this process, one of which started with stage 1 (DN) and ended in 

stage 2 (DP), and the other two of which started with stage 1 (DN), went through a transitional 

stage 3 and then bifurcated into stage 4 (CD8SP) and 5 (CD4SP). The predicted developmental 

trajectory could also be confirmed by the gene expression of surface markers, such as Cd4, Cd8, 

Runx3 and Ccr7 (Fig. 5b). To evaluate the gene ontology (GO) enrichments over the entire 

process, we implemented an accesson-based GO module in APEC, which highlights the 

significance of the association between cells and biological function (Fig. 5c). For instance, T cells 

selections, including β-selection, positive selection and negative selection, are initiated in the late 

DN stage. Consistent with this process, we observed a strong “T cell selection” GO term on the 
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trajectory path after DN.A1 (Supplemental Fig. 14d). Since TCR signals are essential for T cell 

selection, we also observed the “T cell activation” GO term accompanied by “T cell selection”. 

Meanwhile, the signal for regulation of protein binding was found decreased at SP stages, 

indicating the necessity of weak TCR signal for the survival of SP T cells during negative selection. 

To further uncover the regulatory mechanism underlying this developmental process, 

APEC was implemented to identify stage-specific enriched TFs along the trajectory and pinpoint 

the “pseudotime” at which the regulation occurs. In addition to the well-studied TFs mentioned 

above (Fig. 4g, Supplemental Fig. 12a), APEC also identified Zeb158, Ctcf59 and Id4 as potential 

stage-specific regulators (Fig. 5d). Interestingly, the Id4 motif enriched on DP cells was also 

reported to regulate apoptosis in other cell types60, 61. Associated with the fact that the vast 

majority of DP thymocytes die because of a failure of positive selection62, we hypothesize that 

stage 2 may be the path towards DP cell apoptosis. We then checked the distribution of DP cells 

along the stage 2 trajectory and found that most DP.A1 cells were scattered in “early” stage 2, 

and they were enriched with GO terms such as “T cell selection”, “cell activation” and 

“differentiation” (Fig. 5e, Supplementary Fig. 14e). However, most DP.A3/4/5 cells were 

distributed at the end of stage 2, and their principle accessons were enriched with GO terms such 

as “apoptosis” and “chromatin modification”. Although it is believed that more than 95% of DP 

thymocytes die during positive selection, only a small proportion of apoptotic cells could be 

detected in a snapshot of the thymus, which in our data are the cells at the end of stage 2. By 

comparing the number of cells near stage 3 with all the cells in stage 2, we estimated that ~3-5% 

of cells would survive positive selection, which is consistent with the findings reported in previous 

publications63, 64. Our data suggest that before entering the final apoptotic stage, DP thymocytes 

under selection could have already been under apoptotic stress at the chromatin level, which 

explains why DP cells are more susceptible to apoptosis than other thymocyte subtypes65. 

 

DISCUSSION 

 

Here, we introduced an accesson-based algorithm for single-cell chromatin accessibility 

analysis. Without any prior information (such as motifs), this approach generated more refined 

cell groups with reliable biological functions and properties. Integrating the new algorithm with all 

necessary chromatin sequencing data processing tools, APEC provides a comprehensive 

solution for transforming raw experimental single-cell data into final visualized results. In addition 

to improving the clustering of subtle cell subtypes, APEC is also capable of locating potential 

specific super-enhancers, searching enriched motifs, estimating gene activities, and constructing 
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time-dependent cell developmental trajectories, and it is compatible with many existing single-cell 

accessibility datasets. Compared with all the other state-of-the-art single cell chromatin 

accessibility analysis methods, APEC clearly shows superiority in correctly predicting cell 

identities and precisely constructing developmental trajectories, and provides new biological 

insights that no other tools can. APEC is also very robust and stable and is scalable to clustering 

a large number of cells using limited computational resources. Despite these advantages, the 

biological implications of accessons are still obscure, especially for those that involve only a small 

number of peaks. Although we noticed peaks in the same accesson may belong to the same 

TADs, further investigations are still required to fully uncover the biology that underlies accessons. 

Another caveat of APEC is that Monocle can be very sensitive to the input data, and thereby 

pseudotime trajectory predictions from Monocle are better to be confirmed by multiple algorithms 

with similar function. 

To evaluate the performance of this approach in the context of the immune system, we 

adopted APEC with scATAC-seq technology to investigate the regulome dynamics of the thymic 

development process. Coordinated with essential cell surface markers, APEC provided a much 

more in-depth classification of thymocytes than the conventional DN, DP, CD4SP and CD8SP 

stages based on single-cell chromatin status. By reconstructing the developmental pseudotime 

trajectory, APEC discovered a transitional stage before thymocytes bifurcate into CD4SP and 

CD8SP cells and inferred that one of the stages leads to cell apoptosis. Considering that more 

than 95% of DP cells undergo apoptosis as a programmed cell death process, our data suggested 

that before DP cells enter the final apoptotic state, there would already be some intracellular 

changes towards apoptosis at the chromatin level. However, further studies are still needed to 

fully understand the regulatory mechanism of this process. 
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Figure 1. The accesson matrix constructed from the sparse fragment count matrix improved the 

clustering of scATAC-seq data. (a) Step-by-step workflow of APEC. Peaks were grouped into 

accessons by their accessibility pattern among cells with the K nearest neighbors (KNN) method. 

(b) t-Distributed Stochastic Neighbor Embedding (tSNE) diagrams of the hematopoietic single 

cells dataset based on the dimension-transformed matrices from different algorithms, i.e., APEC: 

accesson matrix; cisTopic: topic matrix; LSI: LSI matrix; chromVAR: bias-corrected deviation 

matrix; Cicero: aggregated model matrix. The cells are FACS-indexed human hematopoietic cells, 

including HSCs (hematopoietic stem cells), MPPs (multipotent progenitors), LMPPs (lymphoid-

primed multipotential progenitors), CMPs (common myeloid progenitors), CLPs (common 

lymphoid progenitors), pDCs (plasmacytoid dendritic cells), GMPs (granulocyte-macrophage 

progenitors), MEPs (megakaryocyte-erythroid progenitors), and unknown cells. (c) The average 

ARI (Adjusted Rand Index) scores and computing time for the clustering of the human 

hematopoietic cells by different algorithms. Same as the two normalization methods applied in 

cisTopic, we normalized the accesson matrix in APEC based on probability (P) and z-score (Z). 

CisTopic was performed using 5 CPU threads and all other tools with 1 CPU thread. (d) Three 

CMP subtypes identified in APEC and the motifs enriched in each cell subtype. (e) Gene 

expressions predicted by APEC for all cells. Predicted expressions of marker genes for each cell 

type including FOXO1 (marker for HSC), CEBPA/CD86 (markers for GMP), IKZF1 (marker for 

CLP), and GFI1B/AQP1 (markers for MEP) were shown. (f) The computing time required for 

different algorithms to cluster the data with cell numbers from 10,000 to 80,000, sampled from the 

mouse in vivo single-cell chromatin accessibility atlas dataset. 
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Figure 2. APEC improved the cell type classification of adult mouse forebrain snATAC-seq data. 

(a) A tSNE diagram demonstrates the APEC clustering of forebrain cells. (b) Hierarchical 

clustering of the cell-cell correlation matrix. The side bar denotes cell clusters from APEC. (c) 

Average scores of the marker genes for each cell cluster generated by the method mentioned in 

the data source paper10, and normalized by the standard score (z-score). The top row lists the 

number of cells in each cluster. (d) Hierarchical clustering of the cluster-cluster correlation matrix. 

(e) Differential enrichments of cell type-specific motifs in each cluster. (f, g) Intensities of 

representative accessons of the excitatory (EX) and inhibitory (IN) neuron subtypes from 

snATAC-seq associated with the activities of signature genes of the excitatory (Excl) and 

inhibitory (Int) neuron subtypes defined in inDrops-seq35. 
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Figure 3. APEC constructed a differentiation pathway from scATAC-seq data from human 

hematopoietic cells. (a) The pseudotime trajectory construction scheme based on the accesson 

matrix and Monocle. (b) Principal component analysis (PCA) of the accesson matrix for human 

hematopoietic cells. The first principal component is not shown here because it was highly 

correlated with sequencing depth20. HSC, hematopoietic stem cell; MPP, multipotent progenitor; 

LMPP, lymphoid-primed multipotential progenitor; CMP, common myeloid progenitor; CLP, 

common lymphoid progenitor; pDC, plasmacytoid dendritic cell; GMP, granulocyte-macrophage 

progenitor; MEP, megakaryocyte-erythroid progenitor; unknown, unlabeled cells. (c) Pseudotime 
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trajectory for the same data constructed by applying Monocle on the accesson matrix. Paths A 

and B represent different pathways for GMP cell differentiation. (d) The deviations of significant 

differential motifs (HOXA9, GATA1, CEBPB, and TCF4) plotted on the pseudotime trajectory. (e) 

Distributions of the CMP sub-clusters on the trajectory. (f) Modified schematic of human 

hematopoietic differentiation. 
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Figure 4. APEC accurately identified cell subtypes based on scATAC-seq data from Mus 

musculus thymocytes. (a) Experimental workflow of the fluorescent tagmentation- and FACS-

sorting-based scATAC-seq strategy (ftATAC-seq). (b) Indexed sorting of double-negative (DN), 

double-positive (DP), CD4+ single-positive (CD4SP), and CD8+ single-positive (CD8SP) cells with 

strong tagmentation signals. (c) The tSNE of thymocyte single-cell ftATAC-seq data based on the 

accesson matrix, in which the cells are labeled by the sorting index. (d) Hierarchical clustering of 

the cell-cell correlation matrix. On the sidebar, each cell was colored by the sorting index. (e) The 
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accesson-based Louvain method clustered thymocytes into 11 subtypes. DN.A1 (dark green) & 

A2 (light green), double-negative clusters; DP.A1~A5 and DPsel.A, double-positive clusters; 

CD8.A1 (dark blue) & A2 (light blue), CD8+ single-positive clusters; CD4.A (purple), CD4+ single-

positive cluster. (f) Average fragment counts of two DN clusters around the marker genes Cd44 

and Il2ra. (g) Differential enrichment of the motifs Runx, Tcf, Rorc, and Nfkb in the cell clusters. 

(h) Z-score of the Fisher exact test -log(p-value) of the common differential genes between the 

cell clusters from different experiments. The row and column clusters were identified by data from 

single-cell transcriptome (SMART-seq) and chromatin accessibility (ftATAC-seq) analysis 

respectively. 
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Figure 5. APEC depicted the developmental pathways of Mus musculus thymocytes by 

pseudotime analysis. (a) Pseudotime trajectory based on the accesson matrix of thymocyte 

ftATAC-seq data. Cell colors were defined by the developmental stages along pseudotime. Pie 

charts show the proportion of cell clusters at each stage. (b) APEC scores of important marker 

genes (Cd8a, Cd4, Runx3, and Ccr7) along each branch of the pseudotime trajectory. (c) 

Weighted scores of important functional GO terms along each branch of the pseudotime trajectory. 

(d) Enrichment of specific motifs searched from the differential accessons of each cell subtype. 

(e) On the stage 2 branch, the cell number distribution of clusters DP.A1~A5 along pseudotime 

(upper panel) and the intensity of marker accessons of DP.A1 and DP.A3/4/5 (lower right panel) 

with top enriched GO terms with significance (lower left panel).  
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METHODS 

Mice. C57BL/6 mice were purchased from Beijing Vital River Laboratory Animal Technology and 

maintained under specific pathogen-free conditions until the time of experiments. All mouse 

experiments in this study were reviewed and approved by the Institutional Animal Care and Use 

Committee of the University of Science and Technology of China. 

ftATAC-seq on mouse thymocytes. Alexa fluor 488-labeled adaptor oligonucleotides were 

synthesized at Sangon Biotech as follows: Tn5ME, 5’-[phos]CTGTCTCTTATACACATCT-3’; 

AF488-R1, 5’-AF488- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’; and AF488-R2, 5’-

AF488-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’. Then, 50 μM of AF488-

R1/Tn5ME and AF488-R2/Tn5ME were denatured separately in TE buffer (Qiagen) at 95 °C for 

5 min and cooled down to 22 °C at 0.1 °C/s. AF488-labeled adaptors were assembled onto Robust 

Tn5 transposase (Robustnique) according to the user manual to form fluorescent transposomes. 

Thymus tissues isolated from 6- to 8-week-old male mice were gently ground in 1 mL of RPMI-

1640. Thymocytes in a single-cell suspension were counted after passing through a 40 μm nylon 

mesh. A total of 1 × 106 thymocytes were stained with PerCP-Cy5.5-anti-CD45, PE-anti-CD8a 

and APC-Cy7-anti-CD4 antibodies (Biolegend) and then fixed in 1× PBS containing 1% methanal 

at room temperature for 5 min. After washing twice with 1× PBS, the cells were counted again. A 

total of 1 × 105 fixed cells were resuspended in 40 μL of 1× TD buffer (5 mM Tris-HCl, pH 8.0, 5 

mM MgCl2 , and 10% DMF) containing 0.1% NP-40. Then, 10 μL of fluorescent transposomes 

were added and mixed gently. Fluorescent tagmentation was conducted at 55 °C for 30 min and 

stopped by adding 200 µL of 100 mM EDTA directly to the reaction mixture. The cells were loaded 

on a Sony SH800S sorter, and single cells of the CD45+/AF488-Tn5hi population were index-

sorted into each well of 384-well plates. The 384-well plates used to acquire sorted cells were 

loaded with 2 µL of release buffer (50 mM EDTA, 0.02% SDS) before use. After sorting, the cells 

in the wells were incubated for 1 min. Plates that were not processed immediately were preserved 

at -80 °C. 

To prepare a single-cell ATAC-seq library, plates containing fluorescently tagmented cells were 

incubated at 55 °C for 30 min. Then, 4.2 μL of PCR round 1 buffer (1 μL of 100 μM MgCl2, 3 μL 

of 2× I-5 PCR mix [MCLAB], and 0.1 μL each of 10 μM R1 and R2 primers) were added to each 

well, followed by PCR: 72 °C for 10 min; 98 °C for 3 min; 10 cycles of 98 °C for 10 s, 63 °C for 30 

s and 72 °C for 1 min; 72 °C for 3 min; and holding at 4 °C. Thereafter, each well received 4 µL 

of PCR round 2 buffer (2 μL of I-5 PCR Mix, 0.5 μL each of Ad1 and barcoded Ad2 primers, and 
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1 μL of ddH2O), and final PCR amplification was carried out: 98 °C for 3 min; 12 cycles of 98 °C 

for 10 s, 63 °C for 30 s and 72 °C for 1 min; 72 °C for 3 min; and holding at 4 °C. Wells containing 

different Ad2 barcodes were collected together and purified with a QIAquick PCR purification kit 

(Qiagen). Libraries were sequenced on an Illumina HiSeq X Ten system. 

SMART-seq on thymocytes. Thymocytes were stained and sorted directly into 384-well plates 

without fixation. SMART-seq was performed as described with some modifications67. Reverse 

transcription and the template-switch reaction were performed at 50 °C for 1 hr with Maxima H 

Minus Reverse Transcriptase (Thermo Fisher); for library construction, 0.5-1 ng of cDNA was 

fragmented with 0.05 μL of Robust Tn5 transposome in 20 μL of TD buffer at 55 °C for 10 min, 

then purified with 0.8× VAHTS DNA Clean Beads (Vazyme Biotech), followed by PCR 

amplification with Ad1 and barcoded Ad2 primers and purification with 0.6× VAHTS DNA Clean 

Beads. Libraries were sequenced on an Illumina HiSeq X Ten system. 

Data source. All experimental raw data used in this paper are available online. The single-cell 

data for mouse thymocytes captured by the ftATAC-seq experiment can be obtained from the 

Genome Sequence Archive at BIG Data Center with the accession number CRA001267 and is 

available via http://bigd.big.ac.cn/gsa/s/yp1164Et. Other published data sets used in this study 

are available from NIH GEO: (1) scATAC-seq data for LSCs and leukemic blast cells from patients 

SU070 and SU353, LMPP cells, and monocytes from GSE743102; (2) scATAC-seq data for HL-

60 cells from GSE653608; and (3) scATAC-seq data for hematopoietic development (HSCs, 

MPPs, CMPs, LMPPs, GMPs, EMPs, CLPs and pDCs) from GSE9677220. (4) APEC is also 

compatible with a preprocessed fragment count matrix from the snATAC-seq data for the 

forebrain of adult mice (p56) from GSE10003310. (5) The computational efficiency of APEC and 

other methods was tested using data from the single-cell atlas of mouse chromatin accessibility 

(sciATAC-seq) from GSE11158633. (6) The scATAC-seq (GSE653608) and Hi-C (GSE6352566) 

data of GM12878 cells were used to generate the spatial correlation of peaks in the same or in 

different accessons. 

Preparing the fragment count matrix from the raw data. APEC adopted the general mapping, 

alignment, peak calling and motif searching procedures to process the scATAC-seq data from 

ATAC-pipe68. We also implemented the python script in ATAC-pipe68 to trim the adapters in the 

raw data (in paired-end fastq format files for each single-cell sample). APEC used BOWTIE2 to 

map the trimmed sequencing data to the corresponding genome index and used PICARD for the 

sorting, duplicate removal, and fragment length counting of the aligned data. The pipeline called 

peaks from the merged file of all cells by MACS2, ranked and filtered out the low quality peaks 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on the false discovery rate (Q-value). Genomic locations of the peaks were annotated by 

HOMER, and motifs searched by FIMO. APEC calculates the number of fragments and the 

percent of reads mapped to the TSS region (±2000 BP) for each cell, and filters out high quality 

cells for downstream analysis. All required files for the hg19 and mm10 assembly have been 

integrated into the pipeline. If users want to process data from other species, they can also 

download corresponding reference files from the UCSC website. By combining existing tools, 

APEC made it possible to finish all of the above data processing steps by one command line, and 

generate a fragment count matrix for subsequent cell clustering and differential analysis. APEC 

has been made available on GitHub (https://github.com/QuKunLab/APEC). 

Accesson-based clustering algorithm. We define accesson as a set of peaks with similar 

accessibility patterns across all single cells, similar to the definition of gene module for RNA-seq 

data. After preprocessing, a filtered fragment count matrix B is obtained, and APEC groups peaks 

to construct accessons and then performs cell clustering analysis as follows: 

(1) Normalization of the fragment count matrix. Each matrix element 𝐵𝑖𝑗 represents the number 

of raw reads in cell 𝑖 and peak 𝑗, and element 𝐵𝑖𝑗 was then normalized by the total number 

of reads in each cell 𝑖, as if there are 10,000 reads in each cell. 

𝐵′𝑖𝑗 = 𝑙𝑜𝑔2 (
𝐵𝑖𝑗 × 10000

∑ 𝐵𝑖𝑗′𝑗′
+ 1) 

(2) Constructing accessons. The top 40 principal components of the normalized matrix were 

used to construct the connectivity matrix (Cpeak) of peaks by the K-nearest-neighbor (KNN) 

method with K=10. The grouping of peaks is insensitive to the number of principal 

components and the number of nearest neighbors, so it is usually not necessary to change 

these two parameters for different data sets. Based on the matrix Cpeak, all peaks were 

grouped by agglomerative clustering with Euclidean distance and Ward linkage method, and 

the sum of one peak group was an accesson. For most data sets, we recommend setting the 

number of accessons to a value between 500 and 1500, and the default was set to 600, 

however the cell clustering result is not sensitive to the choice of accesson number within 

this range. We then built the accesson count matrix M by summing the fragment count of all 

peaks in one accesson. Thus, each column of matrix M is an accesson, each row is a cell, 

and each element represents the cumulative fragment count of each accesson in each cell. 

(3) Accesson filtering and normalization. Not all accessons were used for cell clustering, and 

those with low dispersion were filtered out to improve cell clustering. The Gini coefficient69, 70 
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was used to measure the dispersion/inequality of the fragment count numbers of each 

accesson among cells, i.e., 

𝐺𝑖𝑛𝑖𝑗 =
𝑀𝑒𝑎𝑛(|𝑀⃑⃑ 𝑗 ⊗ 𝑀⃑⃑ 𝑗|)

𝑀𝑒𝑎𝑛(𝑀⃑⃑ 𝑗)
, 𝑗 = 1~𝑁𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑛 

where 𝑀⃑⃑ 𝑗  is the 𝑗 th column of the accesson count matrix M. Since the Gini coefficient 

increases with the mean count of the low dispersion accessons, we fitted the Gini coefficients 

and the mean counts of all accessons into a linear equation, i.e., 

𝐺𝑖𝑛𝑖𝑗 = 𝑎 ∙ 𝑀𝑒𝑎𝑛(𝑀⃑⃑ 𝑗) + 𝑏, 𝑗 = 1~𝑁𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑛 

and selected the accessons above the line, i.e., the accessons with high dispersion, from the 

accesson count matrix M. The filtered accesson matrix was then normalized by calculating 

the z-score or probability of the fragment count for each row (i.e., each cell) to generate 

normalized matrix Ma for the next step of cell clustering. 

(4) Cell clustering. From the filtered and normalized accesson matrix Ma, APEC established the 

connectivity matrix by computing the k-neighbor graph of all cells. Since the Louvain 

algorithm was proven to be a reliable single-cell clustering method in Seurat13 and Scanpy16, 

we adopted it in APEC to automatically predict the number of clusters from the connectivity 

matrix and defined each Louvain community as a cell cluster. APEC uses the Louvain 

algorithm to predict cluster number and perform cell clustering as default. Meanwhile, if users 

want to artificially define the number of cell clusters, APEC can also perform KNN clustering 

on the connectivity matrix. 

(5) Compare the performance of APEC with that of other methods on cells with known identity. 

To investigate the accuracy of the cell clusters predicted by different algorithms, we used the 

ARI value, which evaluates the similarity of clustering results with all known types of cells14. 

The ARI value can be calculated as follows: 

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗

2
) − ∑ (

𝑎𝑖

2
)𝑖 ⋅ ∑ (

𝑏𝑗
2
)𝑗 (

𝑛
2
)⁄𝑖𝑗

[∑ (
𝑎𝑖

2
)𝑖 + ∑ (

𝑏𝑗
2
)𝑗 ] 2⁄ − ∑ (

𝑎𝑖

2
)𝑖 ⋅ ∑ (

𝑏𝑗
2
)𝑗 (

𝑛
2
)⁄
 

where 𝑛𝑖𝑗 is the element from the contingency matrix (i.e. the number of type i cells that were 

classified into cluster j), 𝑎𝑖 and 𝑏𝑗 are the sums of the 𝑖th row and 𝑗th column, respectively, 

and (
𝑥

𝑦) denotes a binomial coefficient. The higher the ARI value, the more accurate the 

classification. In addition, we define the largest element of each row in the contingency matrix 

as the “number of correctly classified cells” of the corresponding cell type. The ratio of the 
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correctly classified cells was also used to assess the clustering accuracy. When all cells are 

correctly clustered, this ratio is 1, and if most cells are evenly distributed into all clusters, this 

ratio is close to 0. 

(6) Characteristics of accesson. The peaks of a same accesson can be distant from each other 

on the genome, and sometimes even on multiple chromosomes. The average number of 

peaks per accesson depends on the total number of peaks in the dataset and the number of 

accessons set in the program (default 600). Usually the total number of peaks can vary 

between ~40,000-150,000 depending on the total number of cells and the sequencing depth 

for each cell, thereby the average number of peaks per accesson is around ~60-250. Beside, 

we chose the top 40 principle components (PCs) of the normalized matrix to construct the 

connectivity matrix since the first 3~5 PCs are usually not sufficient to capture the detailed 

features of a single cell dataset, as described in Seurat and many other single cell analysis 

tools. As described on the scikit-learn website (https://scikit-

learn.org/stable/modules/clustering.html), the use of the KNN and then ‘Euclidean’ distance 

and ‘Ward’ linkage methods to build the connectivity matrix between cells and perform the 

agglomerative clustering for the connectivity matrix usually provides better clustering results 

for different types of datasets. Although default values were chosen to provide better 

clustering results based on analysis of multiple datasets, users can adjust these parameters 

as needed. 

 

Sampling of accesson number. To test if the APEC clustering result is sensitive to the choice 

of accesson numbers, we sampled 100 different accesson numbers from 500 to 1500 in steps of 

10 and clustered the cells of each dataset 100 times. APEC generated stable clustering results in 

terms of the average ARI on these datasets, with a wide range of different accesson numbers 

(Supplementary Fig. 4d). We used accesson number = 600 as the default in APEC. 

Parameter settings for other algorithms. To quantify the cell clustering performance of APEC, 

we compared APEC with other state-of-the-art single-cell epigenomic algorithms on the same 

datasets with gold standards, including cisTopic19, LSI11, 12, chromVAR17 and Cicero18. Since most 

of them have no cell clustering algorithm within their original codes, we applied the Louvain 

clustering algorithm on their transformed matrices to fairly compare their performance. We 

adopted the default settings of these tools for most of the comparisons in this paper, except for 

some parameters that were manually defined as necessary, such as the random seed in cisTopic, 

the number of top components in LSI, and the peak aggregation distance in Cicero. Therefore, 
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we sampled these parameters multiple times to obtain the average ARI and ratio of correctly 

classified cells of the clustering results for each tool, just as we sampled the accesson number 

for APEC. We set the same parameters for all the datasets as follows: 

(1) cisTopic. The scanning range of the topic number was set to [10, 40], the number of 

parallel CPUs was set to 5, and the random seed was sampled 100 times from 100 to 600 

in steps of 5. We kept the topic matrices normalized by z-score and probability and 

provided the performances based on both normalization methods. We then applied the 

Louvain algorithm as we did in APEC to cluster cells from the normalized topic matrix 

generated by cisTopic.  

(2) LSI. We performed truncated SVD (singular value decomposition) analysis on the TF-IDF 

(term frequency-inverse document frequency) matrix and chose 𝑁𝑆𝑉𝐷 top components to 

generate the LSI matrix. 𝑁𝑆𝑉𝐷 was sampled 6 times from 6 to 11. The first component was 

ignored since it is always related to read depth, and the LSI scores were capped at ±1.5. 

Then, we used the Louvain algorithm to cluster the cells of the LSI-processed matrix.  

(3) chromVAR. The number of background iterations was set to 50, and the number of parallel 

CPUs was set to 1. We then used the Louvain algorithm to cluster cells based on the bias 

corrected deviation matrix generated by chromVAR.  

(4) Cicero. The genome window was set to 500k BPs, the normalization method was set to 

“log”, the number of sample regions was set to 100, the number of dimensions was set to 

40, and the peak aggregation distance was sampled at 20 values from 1k to 20k BPs in 

steps of 1k BPs. Then, we used the Louvain algorithm to cluster cells based on the 

aggregated model matrix generated by Cicero.  

To test the robustness of each algorithm, we randomly sampled 20%~90% of the raw sequence 

reads from the dataset of AML cells and 3 cell lines (LMPP, HL60 and monocyte) and calculated 

the ARI accordingly. This random sampling experiment was performed 50 times for each method 

and average ARIs were reported. The manually defined parameters for each method were set to: 

APEC, 600 accessons; cisTopic, random seed 100; LSI, top 2-6 principle components; Cicero, 

10k BPs aggregation distance. 

Gene expression predicted by APEC. To evaluate the gene expressions from scATAC-seq data, 

we integrated two gene score assessment algorithms in APEC. The first algorithm is based on 

related accessons. Within a certain genomic distance around a peak i (1 Mbp by default), we 

calculate the odds of the all the nearby peaks (including peak i itself) that belong to the same 

accesson by Fisher’s exact test. If the P value of the test is less than 0.01, we defined the 
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expression of the first downstream gene of peak i as 𝐸 = −𝑙𝑜𝑔10(𝑃𝑖) ∗ 𝑀𝑖, where 𝑀𝑖 is the read 

counts of the accesson that contains peak i. If multiple peaks are located upstream of a gene, 

then the expression of this gene is defined as the average of the 𝐸 values of these peaks. In some 

cases, when the quality of scATAC-seq data is not as good, it is difficult to estimate the 

expressions of many genes by the above algorithm. Therefore, APEC offers another gene 

assessment method, by scoring a gene by the peaks around its TSS region, which is similar to 

the algorithm used by Preissl et al.10. We calculate the average read counts of all peaks around 

a gene’s TSS (±20000 BP) as its raw score (𝑆𝑖𝑗  for cell 𝑖 and gene 𝑗), then define the gene 

expression by normalizing the raw score by (𝑆′𝑖𝑗 = 𝑆𝑖𝑗 ∗ 10000 ∑ 𝑆𝑖𝑗𝑖⁄ ), making it in a range 

comparable to the gene expression from scRNA-seq data. Both the mouse forebrain and the 

human hematopoietic cells datasets were used to compare the performance of gene expressions 

evaluated by APEC and other algorithms such as cisTopic and Cicero, and the parameters set in 

those algorithms were the same as described in the previous section. 

Significant differential peaks, genes and motifs. APEC used the Student’s t-test to estimate 

the significance of the fragment count differences between cell clusters, with P-value and fold 

changes, and one can determine the thresholds to identify significant differential peaks for each 

cluster. The significant differential genes of each cell cluster can also be acquired from the gene 

score (𝑆𝑘̅𝑗 ) by the same method. To accurately quantify the enrichment of motifs on each cell, 

APEC applied the bias-corrected deviation algorithm from chromVAR17; thus, the chromVAR 

algorithm has been embedded into the pipeline to facilitate the calculation of the corrected 

deviation of the motifs. In this python version of chromVAR, permuted sampling and background 

deviation calculation can be run in parallel on multiple processors to reduce the computer time. 

The differentially enriched motifs were defined by an absolute fold change >1 in the average motif 

deviations between one cluster and another. 

Potential super-enhancers. Here, we defined a super-enhancer as a long continuous genomic 

area containing many accessible regions and have the same accessibility pattern in different cells. 

Many different motifs appear in one super-enhancer, therefore, the motif-based clustering method 

cannot reflect the critical contributions from super-enhancers for cell clustering. However, the 

accesson-based algorithm can group most peaks in one super-enhancer to one accesson since 

they always present the same accessibility pattern between cells. APEC identified super-

enhancers by counting the number of peaks in a 1 million BP genomic area that belong to a same 

accesson. It also requires that more than 3/4 of the putative peaks in one super-enhancer be 

adjacent on the initial peak list. The pipeline can also aggregate bam files by cell types/clusters 
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and convert them to BigWig format for users to upload to the UCSC genome browser for 

visualization. 

Spatial correlation of peaks in the same accesson. To test whether peaks in the same 

accesson are closer in space, we integrated the Hi-C66 data (GSE63525) and scATAC-seq8 data 

(GSE65360) on GM12878 cells. The spatial correlation of different windows, both intra- and inter-

chromosomal, can be directly extracted by Juicer71. The Pearson's correlation matrix of the intra-

chromosomal or inter-chromosomal windows can be calculated from the corresponding 

observed/expected matrix. We constructed 600 accessons by grouping peaks in the GM12878 

scATAC-seq data in APEC, and removed the accessons that contained more than 1000 peaks or 

less than 5 peaks. The width of the window was set to 500k BPs, and peaks were then assigned 

to each window. Next, we collected Hi-C correlations between windows that contained peaks in 

the same accesson, termed “Accesson” correlations. For comparison, we also shuffled all peaks 

in different accessons to make fake accessons and re-collected the Hi-C correlations between 

windows that contained peaks in each fake accesson, termed “Shuffled” correlations. Meanwhile, 

we also collected Hi-C correlations between windows that contained no peaks, termed “Non-

accesson” correlations. We made boxplots for these three types of correlations for intra-

chromosomal and inter-chromosomal peaks and found that co-accessible peaks are spatially 

closer to each other than random peaks. 

Pseudotime trajectory constructed by APEC. As a tool to simulate the time-dependent 

variation of gene expression and the cell development pathway, Monocle has been widely used 

for the analysis of single-cell RNA-seq experiments37, 72. APEC reduced the dimension of the 

accesson count matrix M by PCA, and then performed pseudotime analysis using the Monocle 

program. For complex datasets, it is necessary to limit the number of principal components, since 

too many features will cause too many branches on the pseudotime trajectory, and makes it 

difficult for a user to identify the biological significance of each branch. For the hematopoietic 

single cell data and thymocyte data, we used the top 5 principal components of the accesson 

matrix to construct the developmental and differentiation trajectories.  

Pseudotime trajectory constructed by other algorithms. To check whether other algorithms 

can provide solutions to construct cell developmental pathways, we combined their transformed 

count matrix with Monocle to build the pseudotime trajectory from scATAC-seq data. A similar 

preprocessing method was applied to ensure the fairness of the comparison: 
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(1) Raw fragment count matrix. We normalized the raw count matrix B exactly as in the first 

step of APEC, i.e., 𝐵′𝑖𝑗 = 𝑙𝑜𝑔2 (
𝐵𝑖𝑗×10000

∑ 𝐵𝑖𝑗′𝑗′
+ 1) , and performed PCA analysis on the 

normalized matrix B’. Only the top 5 PCs were subjected to Monocle to construct the 

trajectory. 

(2) cisTopic. The topic matrix generated by cisTopic was normalized by making the sum of 

each row the same (i.e., the probability). Then, we performed PCA analysis on the 

normalized topic matrix and subjected the top 5 PCs to Monocle to build the trajectory. 

(3) LSI. We chose the 2nd~6th principle components of the SVD transformation of the LSI 

matrix and subjected them to Monocle to construct the trajectory. 

(4) ChromVAR. After the PCA analysis of the bias corrected deviation matrix generated by 

chromVAR, the top 5 PCs were combined with Monocle to construct the trajectory. 

(5) Cicero. We performed PCA analysis on the aggregated matrix generated by Cicero and 

used the top 5 PCs in Monocle to build the trajectory. 

In addition, to confirm the reliability of the APEC + Monocle prediction of the developmental 

pathway, we applied another pseudotime trajectory constructing method, SPRING40, to the 

accesson count matrix M from APEC to reconstruct the pathways for the hematopoietic 

differentiation dataset and thymocyte developmental dataset. We performed PCA analysis of the 

accesson matrix M and subjected the top 5 PCs to SPRING to generate the trajectories. The 

number of edges per node in SPRING was set to 5. 

Parameter settings for each dataset. In the quality control (QC) step, cells are filtered by two 

constraints: the percentage of the fragments in peaks (𝑃𝑓) and the total number of valid fragments 

(𝑁𝑓). However, there is no fixed cutoff for these two parameters since the quality of different cell 

types and/or experiment batches are completely different. The total number of peaks is usually 

limited to approximately 50000 to reduce computer time, but we recommend using all peaks if the 

users want to obtain better cell clusters. (1) For the data set from hematopoietic cells, the -log(Q-

value) threshold of high-quality peaks was set to 35 to retain 54212 peaks, and the cutoff values 

of 𝑃𝑓 and 𝑁𝑓 were 0.1 and 1000, respectively. (2) For the scATAC-seq data on the two types of 

cells from 2 AML patients (P1-LSC, P1-Blast, P2-LSC, P2-Blast), the threshold of -log(Q-value) 

was set to 5 to retain 38683 high-quality peaks for subsequent processing. When LMPPs, HL60 

and monocytes were added to this dataset with the AML cells, the threshold of -log(Q-value) was 

set to 8 to retain 42139 peaks. In the QC step, we set the 𝑃𝑓 cutoff to 0.05 and the 𝑁𝑓 cutoff to 

800. (3) For the snATAC-seq data from the adult mouse forebrain, all peaks and the raw count 
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matrix obtained from the original data source were adopted in the analysis. (4) For the ftATAC-

seq data from thymocytes, all 130685 peaks called by MACS2 were reserved for the fragment 

count matrix (Q-value<0.05), and we retained cells with 𝑃𝑓 >0.2 and 𝑁𝑓 >2000. 

SMART-seq data analysis with Seurat. For the analysis of SMART-seq data from mouse 

thymocytes, we employed STAR (version 2.5.2a) with the ratio of mismatches to mapped length 

(outFilterMismatchNoverLmax) less than or equal to 0.05, translated output alignments into 

transcript coordinates (i.e., quantMode TranscriptomeSAM) for mapping73 (Dobin et al., 2013) and 

used RSEM74 (Bo et al., 2011) to calculate the TPM of genes. For QC, we excluded cells in which 

fewer than 2000 genes were detected and genes that were expressed in only 3 or fewer cells. 

Seurat filtered cells with several specific parameters to limit the number of genes detected in each 

cell to 2000~6000 and the proportion of mitochondrial genes in each cell was set to less than 0.4 

(i.e., low.thresholds=c(2000, Inf), high.thresholds=c(6000, 0.4)). Additionally, the top 12 principal 

components were used for dimension reduction with a resolution of 3.2 (dims.use =1:12, 

resolution=3.2), followed by cell clustering and differential expressed gene analysis75. 

Association of cell clusters from scATAC-seq and scRNA-seq data. To determine the 

association between cell clusters from the epigenomics and transcriptomic sequencing, we 

calculated the P-values of Fisher’s exact test of marker/non-marker genes between each pair of 

cell clusters from scATAC-seq and scRNA-seq data. For example, for cell cluster 𝑎 from ftATAC-

seq and cell cluster 𝑏 from SMART-seq, if the number of consensus marker genes in both cluster 

𝑎 and 𝑏 is G11, the number of genes that are not markers in either cluster 𝑎 or 𝑏 is G22, and the 

number of markers in only cluster 𝑎 (or cluster 𝑏) is G12 (or G21), then the 2×2 matrix G can be 

directly used for Fisher’s exact test to evaluate the P-valuie 𝐴𝑎𝑏 between cluster 𝑎 and 𝑏. After 

constructing a matrix A filled with the negative logarithm of 𝐴𝑎𝑏  for ftATAC-seq cluster 𝑎 and 

SMART-seq cluster 𝑏, we calculated the z-score for each row and column of A to determine the 

correlation between cell clusters from different sequencing experiments. 

GO term analysis of cells along pseudotime trajectory. We defined the functional 

characteristics of each accesson by the GO terms and motifs enriched on its peaks. The GO 

terms of an accesson were obtained by submitting all of its peaks to the GREAT website76. The 

negative logarithm of the P-value of each GO term in each accesson was filled into a (GO terms) 

× (accessons) matrix L. The significance of each GO term on each cell was evaluated by the 

product of the matrix L and the accesson count matrix M, i.e. 
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𝐺𝑂𝑖𝑗 = ∑𝐿𝑖𝑘 ∙ 𝑀𝑘𝑗

𝑘

 

where 𝑖 is the 𝑖th GO term, 𝑗 is the 𝑗th cell, and 𝑘 is the 𝑘th accesson. Then we calculated the z-

score for each row of this product matrix, and plotted the z-score as the GO-term score on the 

trajectory diagram. 

Motif enrichment of cells along pseudotime trajectory. To assess the motif enrichment of the 

accessons, we used the Centrimo tool of the MEME suite77 to search for the enriched motifs for 

the peaks of each accesson and applied the same algorithm as to the GO term score to obtain 

the motif score. The negative logarithm of the E-value (product of adjusted P-value and motif 

number)77 of each motif in each accesson was used to construct a (motifs) × (accessons) matrix 

F. The enrichment of each motif on each cell was evaluated by the product of the matrix F and 

the accesson count matrix M, i.e., 

𝑀𝑜𝑡𝑖𝑓𝑖𝑗 = ∑𝐹𝑖𝑘 ∙ 𝑀𝑘𝑗

𝑘

 

where 𝑖 is the 𝑖th motif, 𝑗 is the 𝑗th cell, and 𝑘 is the 𝑘th accesson. Then, we calculated the z-

score for each row of this product matrix and plotted the z-score as the motif score on the 

trajectory diagram. 
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Supplementary Figures 

Supplementary Figure 1. Quality control diagrams generated by APEC for the scATAC-seq 

datasets. (a) Number of final mapped reads and percentage of fragments in peaks for each cell 

in the human hematopoietic dataset. (b) Average count of scATAC-seq insertions around TSS 

regions in the same dataset. (c) Statistical distribution of fragment lengths in the same dataset. 

(d-f) Quality control diagrams, as in (a-c), for the blast and LSC cells from two AML patients. (g-

i) Quality control diagrams, as in (a-c), for the cells from AML patients and three cell lines (LMPP, 

HL60 and Monocyte). 

Supplementary Figure 2. Predicted gene expressions from scATAC-seq data of hematopoietic 

cells by cisTopic and Cicero. (a) Expressions of marker genes (FOXO1, CEBPA, CD86, IKZF1, 

GFI1B, and AQP1) evaluated by cisTopic. (b) Expressions of these marker genes evaluated by 

Cicero. 

Supplementary Figure 3. Clustering performance of the dimension-transformed matrices 

generated by different algorithms. (a) The tSNE diagrams of the cells from AML patients and three 

distinct cell lines (LMPP, monocyte and HL60). Different algorithms provided different dimension-

transformed matrices for tSNE analysis, i.e., APEC: accesson matrix; cisTopic: topic matrix; LSI: 

LSI matrix; chromVAR: bias corrected deviation matrix; Cicero: aggregated model matrix. The 

table below the diagrams contains the average ARI of the cell clustering results for each algorithm. 

(b) The tSNE diagrams and ARI table for the leukemic stem cells (LSCs) and blast cells from 2 

different AML patients only, as in (a). (c-d) Box-plots showing the ARI values for the clustering of 

human hematopoietic cells (c) and the blast and LSC cells from two AML patients (d). We sampled 

different parameters for different algorithms. APEC: 100 different accesson numbers from 500 to 

1500 in steps of 10; cisTopic: 100 different random seeds from 100 to 600 in steps of 5; LSI: 6 

different numbers of top SVD components from 6 to 11; Cicero: 20 different genomic distances 

from 1k BPs to 20k BPs in steps of 1k BPs; chromVAR: no sampling. Z-score and probability 

denote different methods of normalizing the dimension-transformed matrices. Center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (e) The 

average ARI values calculated by down-sampling 50 times from the raw data of the AML cells 

and three cell lines for each method. The X-axis represents the percentage of down-sampled 

sequencing reads. Shaded error band: 95% confidence interval. 

Supplementary Figure 4. Super-enhancers predicted by APEC for the scATAC-seq data of cells 

from AML patients. (a-b) The genome browser track shows the aggregated scATAC-seq signal 
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of the super-enhancer of P1-LSC cells upstream of N4BP1 (a) and GPHN (b). (c-d) The motifs 

associated with peaks in the super-enhancer upstream of N4BP1 (c) and GPHN (d). 

Supplementary Figure 5. Comparison of the peak grouping algorithms used by APEC and 

Cicero on the hematopoietic dataset. (a) The characteristics of accessons in APEC. Left panel: 

distribution of peaks in each accesson; middle panel: genomic distance of peaks belong to the 

same accesson; right panel: number of chromosomes with peaks belong to the same accesson. 

(b) The characteristics of CCAN (defined by Cicero), as in (a). (c) Site links discovered by APEC 

and Cicero. 

Supplementary Figure 6. Biological insights of the accesson and stability and scalability analysis 

of APEC. (a) Box plot showing the average spatial distance between peaks in the same accesson 

(from scATAC-seq) versus randomly shuffled peaks versus non-accessible genomic regions. 

Spatial distance was estimated from chromosome conformation capture (Hi-C) technology. Both 

Hi-C and scATAC-seq data were generated from the same cell line GM12878. Left panel: intra-

chromosomal correlation of windows in the Hi-C data; right panel: inter-chromosomal correlation 

of windows in the Hi-C data. Accesson: The correlation between two windows that contain peaks 

in the same accesson; Shuffled: The correlation calculated by randomly shuffling peaks in each 

accesson; Non-accesson: The correlation between two windows that contain no peaks. Center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 

outliers. (b) The Hi-C profile of windows between chr1:500,000-21,500,000. The black bars below 

the Hi-C track denote peaks in the same accesson from APEC. Dotted boxes indicate examples 

of peaks in the same accesson that are distant in genomic position but close in space. (c) The 

computing time required for different algorithms to cluster cell numbers from 10,000 to 80,000 

with peak number=100,000 randomly sampled from the original dataset. The data were sampled 

from the single-cell atlas of in vivo mammalian chromatin accessibility. CisTopic was performed 

using 5 CPU threads and all the other tools with 1 CPU thread. (d-f) The ARI values of the 

clustering results that used different numbers of accessons (d), nearest neighbors (e), and 

principle components (f). The dataset includes the cells from two AML patients and three cell lines. 

Default values are noted in red. 

Supplementary Figure 7. (a-b) Intensity of the accessons associated with signature genes of 

excitatory (Excl) and inhibitory (Int) subtypes. The subtypes listed in parentheses were defined 

by the signature genes in the results from inDrops-seq data35. 
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Supplementary Figure 8. (a) The clustering and cell-type classification of the mouse forebrain 

dataset by cisTopic. Left panel: cell clusters obtained by cisTopic, illustrated in the tSNE diagram. 

Middle panel: the z-scores of the average gene scores obtained from cisTopic clusters. Right 

panel: the hierarchical clustering of the correlations between cell clusters defined by cisTopic. (b-

d) The clustering and cell-type classification of the same dataset by LSI, Cicero and chromVAR 

respectively, as in (a). 

Supplementary Figure 9. UCSC genome browser track diagram of the normalized fragment 

count around gene CD34 for each hematopoietic cell type. 

Supplementary Figure 10. Cell differentiation trajectories of the human hematopoietic dataset 

constructed by different algorithms. (a-e) The pseudotime trajectories constructed by the 

combination of Monocle and the raw peak count matrix, the topic matrix from cisTopic, the LSI 

matrix, the aggregated model matrix from Cicero, and the bias corrected deviation matrix from 

chromVAR, respectively. (f) The pseudotime trajectory constructed by the combination of 

SPRING and the accesson matrix from APEC. 

Supplementary Figure 11. (a) Gating strategy of the mouse thymocytes in ftATAC-seq. (b-d) 

Quality control diagrams for the mouse thymocyte data, similar to Supplementary Fig. (1a-1c). (e) 

The z-score of correlation between the cell types from ftATAC-seq and bulk ATAC-seq data. 

Supplementary Figure 12. (a) Selected significant motifs enriched in different thymocyte 

subtypes obtained by the APEC algorithm.  

Supplementary Figure 13. Single-cell transcriptome analysis of Mus musculus thymocytes from 

SMART-seq. (a) tSNE diagram of the single-cell expression matrix of Mus musculus thymocytes, 

labeled by the FACS index of each cell. (b) Louvain clustering of the same single-cell dataset 

obtained by Seurat. The cell types of these clusters were classified by the expression of 

corresponding marker genes. (c) Important marker genes were differentially expressed in different 

cell clusters. (d) Heatmap of the expressions of all genes significantly differentially expressed 

between cell clusters. The top color bar used the same scheme described in (b) to render cells of 

different clusters. 

Supplementary Figure 14. Developmental characteristics of single-cell samples captured by 

APEC. (a, b) Pseudotime trajectory of scATAC-seq data from Mus musculus thymocytes labeled 

with the FACS index and APEC cluster index. (c) Pseudotime trajectory constructed by applying 

SPRING to the accesson matrix. The colors of cells denote their stages in the APEC trajectory 
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results. (d) Z-scores of the -log(P-value) of the GO terms along the pseudotime trajectory of stage 

1 cells. (e) Logarithm of the P-value of GO terms searched from peaks in accessons ac1~ac7, 

which are the marker accessons of cluster DP. A1 and DP. A3/4/5 of thymocytes. 
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