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ABSTRACT 27 

 28 

The development of sequencing technologies has promoted the survey of genome-wide 29 

chromatin accessibility at single-cell resolution; however, comprehensive analysis of 30 

single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility 31 

pattern-based epigenomic clustering (APEC) method, which classifies each individual cell 32 

by groups of accessible regions with synergistic signal patterns termed “accessons”. By 33 

integrating with other analytical tools, this python-based APEC package greatly improves 34 

the accuracy of unsupervised single-cell clustering for many different public data sets. 35 

APEC also predicts gene expressions, identifies significant differential enriched motifs, 36 

discovers super enhancers, and projects pseudotime trajectories. Furthermore, we 37 

adopted a fluorescent tagmentation-based single-cell ATAC-seq technique (ftATAC-seq) 38 

to investigated the per cell regulome dynamics of mouse thymocytes. Associated with 39 

ftATAC-seq, APEC revealed a detailed epigenomic heterogeneity of thymocytes, 40 

characterized the developmental trajectory and predicted the regulators that control the 41 

stages of maturation process. Overall, this work illustrates a powerful approach to study 42 

single-cell epigenomic heterogeneity and regulome dynamics. 43 

  44 
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INTRODUCTION 45 

 46 

As a technique for probing genome-wide chromatin accessibility in a small number of cells 47 

in vivo, the assay for transposase-accessible chromatin with high-throughput sequencing 48 

(ATAC-seq) has been widely applied to investigate the cellular regulomes of many 49 

important biological processes 1, such as hematopoietic stem cell (HSC) differentiation 2, 50 

embryonic development 3, neuronal activity and regeneration 4,5, tumor cell metastasis6, 51 

and patient responses to anticancer drug treatment 7. Recently, several experimental 52 

schemes have been developed to capture chromatin accessibility at single-cell/nucleus 53 

resolution, i.e., single-cell ATAC-seq (scATAC-seq) 8, single-nucleus ATAC-seq (snATAC-54 

seq) 9,10, and single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq) 11,12, which 55 

significantly extended researchers’ ability to uncover cell-to-cell epigenetic variation and 56 

other fundamental mechanisms that generate heterogeneity from identical DNA 57 

sequences. By contrast, the in-depth analysis of single-cell chromatin accessibility profiles 58 

for this purpose remains a challenge. Numerous efficient algorithms have been developed 59 

to accurately normalize, cluster and visualize cells from single-cell transcriptome 60 

sequencing profiles, including but not limited to Seurat 13, SC3 14, SIMLR 15, and SCANPY 61 

16. However, most of these algorithms are not directly compatible with a single-cell ATAC-62 

seq dataset, for which the signal matrix is much sparser. To characterize scATAC-seq 63 

data, the Greenleaf lab developed an algorithm named chromVAR 17, which aggregates 64 

mapped reads at accessible sites based on annotated motifs of known transcription 65 

factors (TFs) and thus projects the sparse per accessible peak per cell matrix to a bias-66 

corrected deviation per motif per cell matrix and significantly stabilizes the data matrix for 67 

downstream clustering analysis. Other mathematical tools, such as the latent semantic 68 

indexing (LSI) 11,12, Cicero 18, cisTopic 19, and SnapATAC 20 have also been applied to 69 

process single-cell/nucleus ATAC-seq data 10,12. However, great challenges still remain 70 

for current algorithms to precisely cluster large number of cells and predict gene 71 

expressions from single cell chromatin accessibility profiles. Therefore, a refined algorithm 72 

is needed to better categorize cell subgroups with minor differences, thereby providing a 73 

deeper mechanistic understanding of single-cell epigenetic heterogeneity and regulation. 74 

Here, we introduce a new single-cell chromatin accessibility analysis toolkit named 75 

APEC (accessibility pattern-based epigenomic clustering), which combines peaks with the 76 

same signal fluctuation among all single cells into peak groups, termed "accessons", and 77 

converts the original sparse cell-peak matrix to a much denser cell-accesson matrix for 78 
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cell type categorization (Fig. 1a). In contrast to previous methods, this accesson-based 79 

reduction scheme naturally groups synergistic accessible regions genome-wide together 80 

without a priori knowledge of genetic information (such as TF motifs or genomic distance) 81 

and provides an efficient, accurate, robust and rapid cell clustering from single-cell ATAC-82 

seq profiles. APEC was also integrated into a head-to-toe program package that has been 83 

made available on GitHub (https://github.com/QuKunLab/APEC). 84 

 85 

 86 

RESULTS 87 

 88 

Accesson-based algorithm improves single-cell clustering 89 

 90 

To test the performance of APEC, we first obtained data from previous publications 91 

that performed scATAC-seq on a variety of cell types with known identity during 92 

hematopoietic stem cell (HSC) differentiation 21 as a gold standard. Compared to other 93 

state-of-the-art single cell chromatin accessibility analysis methods, this new accesson-94 

based algorithm can clearly cluster cells into their corresponding identities according to 95 

the Adjusted Rand Index (ARI) (Fig. 1b & c). Here, we adopted the Louvain clustering 96 

algorithm for all the methods, and assumed that the number of cell types was unknown to 97 

ensure that the clustering analysis was unsupervised. To calculate ARI values, we ignored 98 

all “unknown” cells, and sampled the tunable parameter (e.g., accesson number in APEC, 99 

random seed in cisTopic, etc.) multiple times for each tool (see Methods). On average, 100 

67% of cells were correctly classified by APEC with ARI=0.483/0.552 (using matrices 101 

normalized by Z-score or probability, respectively), while cisTopic was the second most 102 

accurate method to predict cell identities (average ARI=0.392/0.418) (Supplementary 103 

Table 1). 104 

Moreover, APEC identified 3 sub-clusters of CMP cells that were not discovered 105 

by any other algorithms, namely CMP1, CMP2 and CMP-MEP (Fig. 1d). CMP1 cells are 106 

early stage of CMPs that enriched TFs associated with stem cell self-renewal, such as Erg 107 

22; CMP2 cells are enriched with CTCF motif, suggesting that these cells are at the fate 108 

decision stage with CTCF associated chromatin remodeling 23; CMP-MEP cells are 109 

considered as MEP committed CMPs, and are strongly enriched with crucial regulators 110 

for MEP differentiation, such as GATA1 24. However, these 3 CMP sub-clusters were not 111 

as clearly distinguishable and cells were more scattered on the tSNE maps generated by 112 
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other methods (Supplementary Fig. 1). More details about the distribution of these 3 sub-113 

clusters of CMP cells on the development trajectory will be discussed later in the section 114 

of pseudotime prediction.  115 

 116 

Figure 1. The accesson matrix constructed from the sparse fragment count matrix improved 117 
the clustering of scATAC-seq data. (a) Step-by-step workflow of APEC. Peaks were grouped 118 
into accessons by their accessibility pattern among cells with the K nearest neighbors (KNN) 119 
method. (b) t-Distributed Stochastic Neighbor Embedding (tSNE) diagrams of the hematopoietic 120 
single cells dataset based on the dimension-transformed matrices from different algorithms, i.e., 121 
APEC: accesson matrix; cisTopic: topic matrix; LSI: LSI matrix; chromVAR: bias-corrected 122 
deviation matrix; Cicero: aggregated model matrix. The cells are FACS-indexed human 123 
hematopoietic cells, including HSCs (hematopoietic stem cells), MPPs (multipotent progenitors), 124 
LMPPs (lymphoid-primed multipotential progenitors), CMPs (common myeloid progenitors), CLPs 125 
(common lymphoid progenitors), pDCs (plasmacytoid dendritic cells), GMPs (granulocyte-126 
macrophage progenitors), MEPs (megakaryocyte-erythroid progenitors), and UNK (unknown type) 127 
cells. (c) The ARI (Adjusted Rand Index) values for the clustering of the human hematopoietic cells 128 
by different algorithms. Same as the two normalization methods applied in cisTopic, we normalized 129 
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the accesson matrix in APEC based on probability (P) and z-score (Z). Center line, median; box 130 
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (d) Three CMP 131 
subtypes identified in APEC and the motifs enriched in each cell subtype.  132 

 133 

To further confirm the superiority of APEC, we performed the same comparison 134 

analysis with another scATAC-seq dataset on three distinct cell types, namely, lymphoid-135 

primed multipotent progenitors (LMPPs), monocytes, and HL-60 lymphoblastoid cells 136 

(HL60), and four similar cell types, namely, blast cells and leukemic stem cells (LSCs) 137 

from two acute myeloid leukemia (AML) patients 17. We found that both APEC and cisTopic 138 

were tied for best to classify these cells (Supplementary Fig. 2a). Interestingly, APEC, 139 

cisTopic and LSI were all capable of almost perfectly separating the three distinct cell 140 

types (LMPPs, monocytes, and HL60), with ARI = 1.000/0.988, 0.987/0.987 and 0.969, 141 

respectively. However, in terms of clustering the four similar cell types from AML patients, 142 

APEC (average ARI=0.575/0.564) outperformed other tools (Supplementary Fig. 2b), 143 

suggesting that APEC was the most sensitive among all the tools. Since each method can 144 

generate varying numbers of clusters depending on the parameters used, we 145 

benchmarked the performance of all the methods using ARI across a wide range of 146 

tunable parameters to ensure the reliability of their predictions (Supplementary Fig. 2c, 147 

Supplementary Table 2). To further test the robustness of APEC at low sequencing depth, 148 

we randomly selected reads from the raw data and calculated the ARI values for each 149 

down-sampled data. APEC exhibits better performance at sequencing depths as low as 150 

20% of the original data (Supplementary Fig. 2d), confirming the sensitivity of the algorithm. 151 

Compare with chromVAR, the contribution of the minor differences between similar 152 

cells is aggregated in accessons but diluted in motifs. For example, APEC identified 153 

prominent super-enhancers around the genes N4BP1 25 and GPHN 26 in the LSC cells 154 

from AML patient 1 (P1-LSC) but not the other cell types (Supplementary Fig. 3a & b). 155 

These two loci were also confirmed as super enhancers by ROSE 27 (the top 2 candidates 156 

in Supplementary Table 3). We noticed that all peaks in these super-enhancers were 157 

classified into one accesson that was critical for distinguishing P1-LSCs from P2-LSCs, 158 

P1-blast cells and P2-blast cells. However, these peaks were distributed in multiple TF 159 

motifs, which significantly diluted the contributions of the minor differences 160 

(Supplementary Fig. 3c & d).  161 

In contrast to Cicero, which aggregates peaks based on their cis-co-accessibilities 162 

networks (CCAN) within a certain range of genomic distance 18, APEC combine synergistic 163 

peaks genome-wide. Take the human hematopoietic cells dataset as an example, 600 164 
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accessons were built from the 54,212 peaks, and each accesson contained ~40 peaks 165 

(median number) compare with ~4 peaks in each CCAN (Supplementary Fig. 4a & b). The 166 

average distance between peaks in a same accesson is ~50 million base pairs (compared 167 

with ~0.2 million bps from CCAN), and over 57% of accessons contain peaks from more 168 

than 15 different chromosomes. From the same dataset, Cicero identified 732,306 pairs 169 

of site links from 25,102 peaks, and information from the remaining peaks were simply 170 

discarded. APEC identified more than 9.2 million pairs of site links from all the 54,212 171 

peaks, within which only 3080 site links were identified by both methods (Supplementary 172 

Fig. 4c), therefore, APEC and Cicero are two completely different approaches. 173 

Furthermore, Buenrostro et al. showed that the covariation of the accessible sites across 174 

all the cells may reflect the spatial distance between the corresponding peaks 8. By 175 

integrating the chromatin conformation profiles from Hi-C experiments with the scATAC-176 

seq profile for the same cells, we found that peaks in the same accesson are spatially 177 

much closer to each other than randomly selected peaks (Supplementary Fig. 5a, P-178 

value<10-7), suggesting that they may belong to the same topologically associated 179 

domains (TADs) (Supplementary Fig. 5b). 180 

Speed and scalability are now extremely important for single-cell analytical tools 181 

due to the rapid growth in the number of cells sequenced in each experiment. We 182 

benchmarked APEC and all the other tools based on a random sampling of the mouse in 183 

vivo single-cell chromatin accessibility atlas dataset 28, which contains 81,173 high quality 184 

cells. Taking into account of all the 436,206 peaks, it took APEC 310 min to cluster 80,000 185 

cells with 1 CPU thread (Supplementary Fig. 5c). We also randomly select 100,000 peaks 186 

from the entire dataset to test the computer time spent by these tools (Supplementary Fig. 187 

5d). In addition, APEC is very stable for a wide range of parameter values used in the 188 

algorithm, such as the number of accessons, nearest neighbors and principle components 189 

(Supplementary Fig. 5e-g). 190 

 191 

APEC is applicable to other single-cell chromatin detection techniques 192 

 193 

To evaluate the compatibility and performance of APEC with other single-cell 194 

chromatin accessibility detection techniques, such as snATAC-seq 10, transcript-indexed 195 

scATAC-seq 29 and sciATAC-seq 11, APEC was also tested with the data sets generated 196 

by those experiments. For example, APEC discovered 14 cell subpopulations in adult 197 

mouse forebrain snATAC-seq data 10, including four clusters of excitatory neurons (EX1-198 
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5), five groups of inhibitory neurons (IN1-5), astroglia cells (AC1&2), oligodendrocyte cells 199 

(OC), and microglial cells (MG; Fig. 2a & b). To quantify gene expression level, we defined 200 

a gene’s score as the average signal of the peaks close to its TSS region (Fig. 2c; see 201 

Methods). With that, we identified 5 excitatory subpopulations and 5 distinct inhibitory 202 

subpopulations, and all the cell groups were clearly distinguished from each other by 203 

hierarchical clustering (Fig. 2d). In contrast, more than 29.7% (946 out of 3034) of cells 204 

were unable to be correctly assigned into any subpopulation of interest in previous study10. 205 

Besides, scores for several marker genes such as Neurod6 and Aldh1l1 were not available 206 

in Cicero and cisTopic, respectively, making it difficult to identify the corresponding cell 207 

clusters (i.e. c0~c2 in Supplementary Fig. 6a & b). The SnapATAC algorithms however, 208 

mis-clustered the AC1/2 with excitatory neurons in the correlation matrix (Supplementary 209 

Fig. 6c). On the other hand, the motif enrichment analysis module in APEC identified cell 210 

type-specific regulators that are also consistent with previous publications 10. For example, 211 

the NEUROD1 and OLIG2 motifs were generally enriched on excitatory clusters 212 

(EX1\2\3\5); the MEF2C motif was more enriched on EX1/3/4/5; the motifs of MEIS2 and 213 

DLX2 were differentially enriched on different subtypes of inhibitory neurons (IN3 and 214 

IN2/4, respectively); and the NOTO, SOX2, and ETS1 motifs were enriched on the AC1, 215 

OC, and MG clusters, respectively (Fig. 2e). These results confirm that APEC can 216 

distinguish and categorize single cells with great sensitivity and reliability. 217 
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 218 

Figure 2. APEC improved the cell type classification of adult mouse forebrain snATAC-seq 219 
data. (a) A tSNE diagram demonstrates the APEC clustering of forebrain cells. (b) Hierarchical 220 
clustering of the cell-cell correlation matrix. The side bar denotes cell clusters from APEC. (c) 221 
Average scores of the marker genes for each cell cluster generated by the method mentioned in 222 
the data source paper 10, and normalized by the standard score (z-score). The top row lists the 223 
number of cells in each cluster. (d) Hierarchical clustering of the cluster-cluster correlation matrix. 224 
(e) Differential enrichments of cell type-specific motifs in each cluster. (f, g) Fisher’s exact test 225 
between the differential genes of the excitatory (EX) and inhibitory (IN) neurons from snATAC-seq 226 
and the signature genes of the excitatory (Excl) and inhibitory (Int) neurons defined in inDrops-227 
seq30. The heatmaps show the –log(P-value) normalized by calculating the z-scores through each 228 
row and column. 229 

 230 

Since single-cell transcriptome analysis is also capable to identify novel cell 231 

subpopulations, it is critical to anchor the cell types identified from scATAC-seq to those 232 

from scRNA-seq. Hrvatin et al. identified multiple excitatory and inhibitory neuronal 233 
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subtypes in the mouse visual cortex using single cell inDrops sequencing30 and provided 234 

top 20 signature genes that distinguished these cell subtypes. However, due to the 235 

sparseness of snATAC-seq matrix, scores of many signature genes were not strong 236 

enough to distinguish the cell sub-clusters. To overcome this, we developed a gene sets 237 

overlap algorithm to associate cell clusters from scATAC-seq and scRNA-seq profiles (see 238 

Methods). We found that sub-cluster EX1~5 and IN1~5 in snATAC-seq can nicely 239 

correspond to the neuron subtypes classified by Hrvatin et al (Fig. 2f-g). These results 240 

highlight the potential advantages of the accesson-based approach for the integrative 241 

analysis of scATAC-seq and scRNA-seq data. 242 

 243 

APEC constructs a pseudotime trajectory that predicts cell differentiation lineage 244 

 245 

Cells are not static but dynamic entities, and they have a history, particularly a 246 

developmental history. Although single-cell experiments often profile a momentary 247 

snapshot, a number of remarkable computational algorithms have been developed to 248 

pseudo-order cells based on the different points they were assumed to occupy in a 249 

trajectory, thereby leveraging biological asynchrony 31,32. For instance, Monocle 32,33 250 

constructs the minimum spanning tree, and Wishbone 34 and SPRING 35 construct the 251 

nearest neighbor graph from single-cell transcriptome profiles. These tools have been 252 

widely used to depict neurogenesis 36, hematopoiesis 37,38 and reprogramming 39. APEC 253 

integrates the Monocle algorithm into the accesson-based method and enables 254 

pseudotime prediction from scATAC-seq data 21 and was applied to investigate HSC 255 

differentiation linages (Fig. 3a). Principal component analysis (PCA) of the accesson 256 

matrix revealed multiple stages of the lineage during HSC differentiation (Fig. 3b) and was 257 

consistent with previous publications 2,21. After utilizing the Monocle package, APEC 258 

provided more precise pathways from HSCs to the differentiated cell types (Fig. 3c). In 259 

addition to the differentiation pathways to MEP cells through the CMP state and to CLP 260 

cells through the LMPP state, MPP cells may differentiate into GMP cells through two 261 

distinct trajectories: Path A through the CMP state and Path B through the LMPP state, 262 

which is consistent with the composite model of HSC and blood lineage commitment40. 263 

Notably, pDCs from bone marrow are CD34+ (Supplementary Fig. 7), indicative of 264 

precursors of pDCs. APEC suggested that pDC precursors were derived from CLP cells 265 

on the pseudotime trajectory (Fig. 3c), which also agrees with previous reports 41. 266 

Furthermore, APEC incorporated the chromVAR algorithm to determine the regulatory 267 
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mechanisms during HSC differentiation by evaluating the deviation of each TF along the 268 

single-cell trajectory. As expected, the HOX motif is highly enriched in the accessible sites 269 

of HSCs/MPP cells, as are the GATA1, CEBPB and TCF4 motifs, which exhibit gradients 270 

that increase along the erythroid, myeloid and lymphoid differentiation pathways, 271 

respectively 21 (Fig. 3d). We also noticed that the TF regulatory strategies of the two paths 272 

from MPP towards GMP cells were very different. In addition, the 3 CMP sub-clusters 273 

identified in Figure 1 were differentially distributed along the developmental trajectory (Fig. 274 

3e). CMP1 cells that close to HSCs and MPPs are early stage CMPs; CMP2 cells are 275 

distributed in both the GMP and MEP branches; CMP-MEP cells are MEP committed 276 

CMPs and are dominantly distributed in the MEP differentiation branch. The distributions 277 

of these CMP sub-clusters are also consistent with the functions of their enriched motifs 278 

mentioned in the first section (Fig. 1d) 22-24. Finally, we generated a hematopoiesis tree 279 

based on the APEC analysis (Fig. 3f). 280 
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 281 

Figure 3. APEC constructed a differentiation pathway from scATAC-seq data from human 282 
hematopoietic cells. (a) The pseudotime trajectory construction scheme based on the accesson 283 
matrix and Monocle. (b) Principal component analysis (PCA) of the accesson matrix for human 284 
hematopoietic cells. The first principal component is not shown here because it was highly 285 
correlated with sequencing depth 21. HSC, hematopoietic stem cell; MPP, multipotent progenitor; 286 
LMPP, lymphoid-primed multipotential progenitor; CMP, common myeloid progenitor; CLP, 287 
common lymphoid progenitor; pDC, plasmacytoid dendritic cell; GMP, granulocyte-macrophage 288 
progenitor; MEP, megakaryocyte-erythroid progenitor. (c) Pseudotime trajectory for the same data 289 
constructed by applying Monocle on the accesson matrix. Paths A and B represent different 290 
pathways for GMP cell differentiation. (d) The deviations of significant differential motifs (HOXA9, 291 
GATA1, CEBPB, and TCF4) plotted on the pseudotime trajectory. (e) Distributions of the CMP sub-292 
clusters on the trajectory. (f) Modified schematic of human hematopoietic differentiation. 293 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 294 

Furthermore, we benchmarked the performance of APEC and of all the other tools 295 

in constructing a pseudotime trajectory from the scATAC-seq profile on the same dataset. 296 

We found that (1) when the raw peak count matrix was invoked into Monocle, almost none 297 

developmental pathways were constructed (Supplementary Fig. 8a), suggesting that the 298 

peak aggregation step in APEC greatly improves the pseudotime estimation; (2) APEC + 299 

Monocle provides the most precise pathways from HSCs to differentiated cells, compared 300 

to other methods, including cisTopic, SnapATAC, LSI, Cicero, and chromVAR 301 

(Supplementary Fig. 8b-f); and (3) when we applied other pseudotime trajectory 302 

construction methods, such as SPRING 35, after APEC, a similar though less clear cell 303 

differentiation diagram was also obtained, suggesting the reliability of our prediction 304 

(Supplementary Fig. 8g). 305 

 306 

APEC reveals the single-cell regulatory heterogeneity of thymocytes 307 

 308 

T cells generated in the thymus play a critical role in the adaptive immune system, 309 

and the development of thymocytes can be divided into 3 main stages based on the 310 

expression of the surface markers CD4 and CD8, namely, CD4 CD8 double-negative (DN), 311 

CD4 CD8 double-positive (DP) and CD4 or CD8 single-positive (CD4SP or CD8SP, 312 

respectively) stages42. However, due to technical limitations, our genome-wide 313 

understanding of thymocyte development at single-cell resolution remains unclear. 314 

Typically, more than 80% of thymocytes stay in the DP stage in the thymus, whereas DN 315 

cells account for only approximately 3% of the thymocyte population. To eliminate the 316 

impacts of great differences in proportion, we developed a fluorescent tagmentation- and 317 

FACS-sorting-based scATAC-seq strategy (ftATAC-seq), which combined the advantages 318 

of ATAC-see 43 and Pi-ATAC-seq 44 to manipulate the desired number of target cells by 319 

indexed sorting (Fig. 4a). Tn5 transposomes were fluorescently labeled in each cell to 320 

evaluate the tagmentation efficiency so that cells with low ATAC signals could be gated 321 

out easily (Fig. 4b, Supplementary Fig. 9a). With ftATAC-seq, we acquired high-quality 322 

chromatin accessibility data for 352 index-sorted DN, DP, CD4SP, and CD8SP single cells 323 

and 352 mixed thymocytes (Supplementary Fig. 9b-d). Correlation analysis with the 324 

published bulk ATACs-eq data of thymocytes 45 indicates that the cells we sorted in 325 

ftATAC-seq were correctly labeled (Supplementary Fig. 9e). We then applied APEC on 326 

this dataset to investigate the chromatin accessibility divergence during developmental 327 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


process and to reveal refined regulome heterogeneity of mouse thymocytes at single-cell 328 

resolution. Taking into account of all the 130685 peaks called from the raw sequencing 329 

data, APEC aggregated 600 accessons and successfully assigned over 82% of index-330 

sorted DN, DP, CD4SP and CD8SP cells into the correct subpopulations (Fig. 4c & 4d). 331 

As expected, the majority of randomly sorted and mixed thymocytes were classified into 332 

DP subtypes based on hierarchical clustering of cell-cell correlation matrix, which was 333 

consistent with the cellular subtype proportions in the thymus. APEC further classified all 334 

thymocytes into 11 subpopulations, including 2 DN, 6 DP, 1 CD4SP, 2 CD8SP, suggesting 335 

that extensive epigenetic heterogeneity exists among cells with the same CD4 and CD8 336 

surface markers (Fig. 4e). For instance, there are four main subtypes of DN cells, 337 

according to the expression of the surface markers CD44 and CD2546, while two clusters 338 

were identified in ftATAC-seq. The accessibility signals around the Il2ra (Cd25) and Cd44 339 

gene loci demonstrated that DN.A1 comprised CD44+CD25- and CD44+CD25+ DN 340 

subtypes (DN1 and DN2), and DN.A2 cells comprised CD44-CD25+ and CD44-CD25- 341 

subtypes (DN3 and DN4), suggesting significant chromatin changes between DN2 and 342 

DN3 cell development (Fig. 4f). 343 

 344 
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 345 

Figure 4. APEC accurately identified cell subtypes based on scATAC-seq data from Mus 346 
musculus thymocytes. (a) Experimental workflow of the fluorescent tagmentation- and FACS-347 
sorting-based scATAC-seq strategy (ftATAC-seq). (b) Indexed sorting of double-negative (DN), 348 
double-positive (DP), CD4+ single-positive (CD4SP), and CD8+ single-positive (CD8SP) cells with 349 
strong tagmentation signals. (c) The tSNE of thymocyte single-cell ftATAC-seq data based on the 350 
accesson matrix, in which the cells are labeled by the sorting index. (d) Hierarchical clustering of 351 
the cell-cell correlation matrix. On the sidebar, each cell was colored by the sorting index. (e) The 352 
accesson-based Louvain method clustered thymocytes into 11 subtypes. DN.A1 (dark green) & A2 353 
(light green), double-negative clusters; DP.A1~A5 and DPsel.A, double-positive clusters; CD8.A1 354 
(dark blue) & A2 (light blue), CD8+ single-positive clusters; CD4.A (purple), CD4+ single-positive 355 
cluster. (f) Average fragment counts of two DN clusters around the marker genes Cd44 and Il2ra. 356 
(g) Differential enrichment of the motifs Runx, Tcf, Rorc, and Nfkb in the cell clusters. (h) Z-score 357 
of the Fisher exact test -log(p-value) of the common differential genes between the cell clusters 358 
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from different experiments. The row and column clusters were identified by data from single-cell 359 
transcriptome (SMART-seq) and chromatin accessibility (ftATAC-seq) analysis respectively. 360 

 361 

Many TFs have been reported to be essential in regulating thymocyte development, 362 

and we found that their motifs were remarkably enriched at different stages during the 363 

process (Fig. 4g). For instance, Runx3 is well known for regulating CD8SP cells 47, and 364 

we observed significant enrichment of the RUNX motif on DN cells and a group of CD8SP 365 

cells. Similarly, the TCF 48,49, RORC 50 and NFkB 51 family in regulating the corresponding 366 

stages during this process. More enriched TF motifs in each cell subpopulation were also 367 

observed, suggesting significant regulatory divergence in thymocytes (Supplementary Fig. 368 

10). Interestingly, two clusters of CD8SP cells appear to be differentially regulated based 369 

on motif analysis, in which CD8.A1 cells are closer to DP cells, while CD8.A2 cells are 370 

more distant at the chromatin level, suggesting that CD8.A2 cells are more mature CD8SP 371 

cells, and CD8.A1 cells are in a transitional state between DP and SP cells. 372 

APEC is capable of integrating single-cell transcriptional and epigenetic 373 

information by scoring gene sets of interest based on their nearby peaks from scATAC-374 

seq, thereby converting the chromatin accessibility signals to values that are comparable 375 

to gene expression profiles (see Methods). To test the performance of this integrative 376 

analysis approach and to evaluate the accuracy of thymocyte classification by APEC, we 377 

assayed the transcriptomes of single thymocytes and obtained 357 high-quality scRNA-378 

seq profiles using the SMART-seq2 protocol 52. Unsupervised analysis of gene expression 379 

profiles clustered these thymocytes into 13 groups in Seurat 13 (Supplementary Fig. 11a 380 

& b), and each subpopulation was identified based on known feature genes 381 

(Supplementary Fig. 11c & d). We then adopted fisher’s exact test on the shared 382 

differential genes in cell clusters identified from scATAC-seq and scRNA-seq profiles (see 383 

Methods), and observed a strong correlation between the subtypes identified from the 384 

transcriptome and those from chromatin accessibility (Fig. 4h), confirming the reliability 385 

and stability of cellular classification using APEC. 386 

 387 

APEC reconstructs the thymocyte developmental trajectory  388 

 389 

APEC is capable of constructing a pseudotime trajectory and then predicting the 390 

cell differentiation lineage from a “snapshot” of single-cell epigenomes (Fig. 3). We applied 391 

APEC to recapitulate the developmental trajectory and thereby reveal the single-cell 392 

regulatory dynamics during the maturation of thymocytes. Pseudotime analysis based on 393 
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single-cell ATAC-seq data shaped thymocytes into 5 developing stages (Fig. 5a, 394 

Supplementary Fig. 12a & b), where most of the cells in stages 1, 2, 4, and 5 were DN, 395 

DP, CD8SP and CD4SP cells, respectively. APEC also identified a transitional stage 3, 396 

which was mainly consisted of last stages of DP cells. Besides Monocle, a similar 397 

developmental pathways can also be constructed by SPRING 35 based on the accesson 398 

matrix (Supplementary Fig. 12c). Interestingly, the pseudotime trajectory suggests three 399 

developmental pathways for this process, one of which started with stage 1 (DN) and 400 

ended in stage 2 (DP), and the other two of which started with stage 1 (DN), went through 401 

a transitional stage 3 and then bifurcated into stage 4 (CD8SP) and 5 (CD4SP). The 402 

predicted developmental trajectory could also be confirmed by the gene expression of 403 

surface markers, such as Cd4, Cd8, Runx3 and Ccr7 (Fig. 5b). To evaluate the gene 404 

ontology (GO) enrichments over the entire process, we implemented an accesson-based 405 

GO module in APEC, which highlights the significance of the association between cells 406 

and biological function (Fig. 5c). For instance, T cells selections, including β-selection, 407 

positive selection and negative selection, are initiated in the late DN stage. Consistent with 408 

this process, we observed a strong “T cell selection” GO term on the trajectory path after 409 

DN.A1 (Supplementary Fig. 12d). Since TCR signals are essential for T cell selection, we 410 

also observed the “T cell activation” GO term accompanied by “T cell selection”. 411 

Meanwhile, the signal for regulation of protein binding was found decreased at SP stages, 412 

indicating the necessity of weak TCR signal for the survival of SP T cells during negative 413 

selection. 414 

 415 
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 416 

Figure 5. APEC depicted the developmental pathways of Mus musculus thymocytes by 417 
pseudotime analysis. (a) Pseudotime trajectory based on the accesson matrix of thymocyte 418 
ftATAC-seq data. Cell colors were defined by the developmental stages along pseudotime. Pie 419 
charts show the proportion of cell clusters at each stage. (b) APEC scores of important marker 420 
genes (Cd8a, Cd4, Runx3, and Ccr7) along each branch of the pseudotime trajectory. (c) Weighted 421 
scores of important functional GO terms along each branch of the pseudotime trajectory. (d) 422 
Enrichment of specific motifs searched from the differential accessons of each cell subtype. (e) On 423 
the stage 2 branch, the cell number distribution of clusters DP.A1~A5 along pseudotime (upper 424 
panel) and the intensity of marker accessons of DP.A1 and DP.A3/4/5 (lower right panel) with top 425 
enriched GO terms with significance (lower left panel). 426 

 427 

To further uncover the regulatory mechanism underlying this developmental 428 

process, APEC was implemented to identify stage-specific enriched TFs along the 429 

trajectory and pinpoint the “pseudotime” at which the regulation occurs. In addition to the 430 

well-studied TFs mentioned above (Fig. 4g), APEC also identified Zeb1 53, Ctcf 54 and Id4 431 
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as potential stage-specific regulators (Fig. 5d). Interestingly, the Id4 motif enriched on DP 432 

cells was also reported to regulate apoptosis in other cell types 55,56. Associated with the 433 

fact that the vast majority of DP thymocytes die because of a failure of positive selection 434 

57, we hypothesize that stage 2 may be the path towards DP cell apoptosis. We then 435 

checked the distribution of DP cells along the stage 2 trajectory and found that most DP.A1 436 

cells were scattered in “early” stage 2, and they were enriched with GO terms such as “T 437 

cell selection”, “cell activation” and “differentiation” (Fig. 5e, Supplementary Fig. 12e). 438 

However, most DP.A3/4/5 cells were distributed at the end of stage 2, and their principle 439 

accessons were enriched with GO terms such as “apoptosis” and “chromatin modification”. 440 

Although it is believed that more than 95% of DP thymocytes die during positive selection, 441 

only a small proportion of apoptotic cells could be detected in a snapshot of the thymus, 442 

which in our data are the cells at the end of stage 2. By comparing the number of cells 443 

near stage 3 with all the cells in stage 2, we estimated that ~3-5% of cells would survive 444 

positive selection, which is consistent with the findings reported in previous publications 445 

58,59. Our data suggest that before entering the final apoptotic stage, DP thymocytes under 446 

selection could have already been under apoptotic stress at the chromatin level, which 447 

explains why DP cells are more susceptible to apoptosis than other thymocyte subtypes 448 

60. 449 

 450 

DISCUSSION 451 

 452 

Here, we introduced an accesson-based algorithm for single-cell chromatin 453 

accessibility analysis. Without relying on any prior information (such as bulk sequencing 454 

data or known cell types), this approach generated more refined cell groups with reliable 455 

biological functions and properties. Integrating the new algorithm with all necessary 456 

chromatin sequencing data processing tools, APEC provides a comprehensive solution 457 

for transforming raw experimental single-cell data into final visualized results. In addition 458 

to improving the clustering of subtle cell subtypes, APEC is also capable of locating 459 

potential specific super-enhancers, searching enriched motifs, estimating gene activities, 460 

and constructing time-dependent cell developmental trajectories, and it is compatible with 461 

many existing single-cell accessibility datasets. Compared with all the other state-of-the-462 

art single cell chromatin accessibility analysis methods, APEC clearly shows superiority in 463 

correctly predicting cell identities and precisely constructing developmental trajectories, 464 

and provides new biological insights. APEC is also very robust and stable and is scalable 465 
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to clustering a large number of cells using limited computational resources. Despite these 466 

advantages, the biological implications of accessons are still obscure, especially for those 467 

that involve only a small number of peaks. Although we noticed peaks in the same 468 

accesson may belong to the same TADs, further investigations are still required to fully 469 

uncover the biology that underlies accessons.  470 

To evaluate the performance of this approach in the context of the immune system, 471 

we adopted APEC with scATAC-seq technology to investigate the regulome dynamics of 472 

the thymic development process. Coordinated with essential cell surface markers, APEC 473 

provided a much more in-depth classification of thymocytes than the conventional DN, DP, 474 

CD4SP and CD8SP stages based on single-cell chromatin status. By reconstructing the 475 

developmental pseudotime trajectory, APEC discovered a transitional stage before 476 

thymocytes bifurcate into CD4SP and CD8SP cells and inferred that one of the stages 477 

leads to cell apoptosis. Considering that more than 95% of DP cells undergo apoptosis as 478 

a programmed cell death process, our data suggested that before DP cells enter the final 479 

apoptotic state, there would already be some intracellular changes towards apoptosis at 480 

the chromatin level. However, further studies are still needed to fully understand the 481 

regulatory mechanism of this process. 482 

 483 

  484 
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METHODS 485 

 486 

ftATAC-seq on mouse thymocytes 487 

Alexa fluor 488-labeled adaptor oligonucleotides were synthesized at Sangon Biotech as 488 

follows: Tn5ME, 5’-[phos]CTGTCTCTTATACACATCT-3’; AF488-R1, 5’-AF488- 489 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’; and AF488-R2, 5’-AF488-490 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’. Then, 50 μM of AF488-491 

R1/Tn5ME and AF488-R2/Tn5ME were denatured separately in TE buffer (Qiagen) at 492 

95 °C for 5 min and cooled down to 22 °C at 0.1 °C/s. AF488-labeled adaptors were 493 

assembled onto Robust Tn5 transposase (Robustnique) according to the user manual to 494 

form fluorescent transposomes. 495 

Thymus tissues isolated from 6- to 8-week-old male mice were gently ground in 1 mL of 496 

RPMI-1640. Thymocytes in a single-cell suspension were counted after passing through 497 

a 40 μm nylon mesh. A total of 1 × 106 thymocytes were stained with PerCP-Cy5.5-anti-498 

CD45, PE-anti-CD8a and APC-Cy7-anti-CD4 antibodies (Biolegend) and then fixed in 1× 499 

PBS containing 1% methanal at room temperature for 5 min. After washing twice with 1× 500 

PBS, the cells were counted again. A total of 1 × 105 fixed cells were resuspended in 40 501 

μL of 1× TD buffer (5 mM Tris-HCl, pH 8.0, 5 mM MgCl2 , and 10% DMF) containing 0.1% 502 

NP-40. Then, 10 μL of fluorescent transposomes were added and mixed gently. 503 

Fluorescent tagmentation was conducted at 55 °C for 30 min and stopped by adding 200 504 

µL of 100 mM EDTA directly to the reaction mixture. The cells were loaded on a Sony 505 

SH800S sorter, and single cells of the CD45+/AF488-Tn5hi population were index-sorted 506 

into each well of 384-well plates. The 384-well plates used to acquire sorted cells were 507 

loaded with 2 µL of release buffer (50 mM EDTA, 0.02% SDS) before use. After sorting, 508 

the cells in the wells were incubated for 1 min. Plates that were not processed immediately 509 

were preserved at -80 °C. 510 

To prepare a single-cell ATAC-seq library, plates containing fluorescently tagmented cells 511 

were incubated at 55 °C for 30 min. Then, 4.2 μL of PCR round 1 buffer (1 μL of 100 μM 512 

MgCl2, 3 μL of 2× I-5 PCR mix [MCLAB], and 0.1 μL each of 10 μM R1 and R2 primers) 513 

were added to each well, followed by PCR: 72 °C for 10 min; 98 °C for 3 min; 10 cycles of 514 

98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min; 72 °C for 3 min; and holding at 4 °C. 515 

Thereafter, each well received 4 µL of PCR round 2 buffer (2 μL of I-5 PCR Mix, 0.5 μL 516 

each of Ad1 and barcoded Ad2 primers, and 1 μL of ddH2O), and final PCR amplification 517 

was carried out: 98 °C for 3 min; 12 cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C for 518 
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1 min; 72 °C for 3 min; and holding at 4 °C. Wells containing different Ad2 barcodes were 519 

collected together and purified with a QIAquick PCR purification kit (Qiagen). Libraries 520 

were sequenced on an Illumina HiSeq X Ten system. 521 

 522 

SMART-seq on thymocytes 523 

Thymocytes were stained and sorted directly into 384-well plates without fixation. SMART-524 

seq was performed as described with some modifications 61. Reverse transcription and 525 

the template-switch reaction were performed at 50 °C for 1 hr with Maxima H Minus 526 

Reverse Transcriptase (Thermo Fisher); for library construction, 0.5-1 ng of cDNA was 527 

fragmented with 0.05 μL of Robust Tn5 transposome in 20 μL of TD buffer at 55 °C for 10 528 

min, then purified with 0.8× VAHTS DNA Clean Beads (Vazyme Biotech), followed by PCR 529 

amplification with Ad1 and barcoded Ad2 primers and purification with 0.6× VAHTS DNA 530 

Clean Beads. Libraries were sequenced on an Illumina HiSeq X Ten system. 531 

 532 

Data source 533 

All experimental raw data used in this paper are available online. The single-cell data for 534 

mouse thymocytes captured by the ftATAC-seq experiment can be obtained from the 535 

Genome Sequence Archive at BIG Data Center with the accession number CRA001267 536 

and is available via http://bigd.big.ac.cn/gsa/s/yp1164Et. Other published data sets used 537 

in this study are available from NIH GEO: (1) scATAC-seq data for LSCs and leukemic 538 

blast cells from patients SU070 and SU353, LMPP cells, and monocytes from GSE74310 539 

2; (2) scATAC-seq data for HL-60 cells from GSE65360 8; and (3) scATAC-seq data for 540 

hematopoietic development (HSCs, MPPs, CMPs, LMPPs, GMPs, EMPs, CLPs and 541 

pDCs) from GSE96772 21. (4) APEC is also compatible with a preprocessed fragment 542 

count matrix from the snATAC-seq data for the forebrain of adult mice (p56) from 543 

GSE100033 10. (5) The computational efficiency of APEC and other methods was tested 544 

using data from the single-cell atlas of mouse chromatin accessibility (sciATAC-seq) from 545 

GSE111586 28. (6) The scATAC-seq (GSE65360 8) and Hi-C (GSE63525 62) data of 546 

GM12878 cells were used to generate the spatial correlation of peaks in the same or in 547 

different accessons. 548 

 549 

Preparing the fragment count matrix from the raw data 550 

APEC adopted the general mapping, alignment, peak calling and motif searching 551 

procedures to process the scATAC-seq data from ATAC-pipe 63. We also implemented 552 
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the python script in ATAC-pipe 63 to trim the adapters in the raw data (in paired-end fastq 553 

format files for each single-cell sample). APEC used BOWTIE2 to map the trimmed 554 

sequencing data to the corresponding genome index and used PICARD for the sorting, 555 

duplicate removal, and fragment length counting of the aligned data.  556 

Unlike several previous methods that call peaks from bulk ATAC-seq data or 557 

aggregated cell populations according to cell type 20,21,64, the APEC pipeline calls peaks 558 

from the merged single-cell profiles of all cells using MACS2 to ensure that the entire 559 

analysis is unsupervised. We then ranked and filtered out the low quality peaks based on 560 

the false discovery rate (Q-value). Genomic locations of the peaks were annotated by 561 

HOMER, and motifs searched by FIMO. APEC calculates the number of fragments and 562 

the percent of reads mapped to the TSS region (±2000 BP) for each cell, and filters out 563 

high quality cells for downstream analysis. All required files for the hg19 and mm10 564 

assembly have been integrated into the pipeline. If users want to process data from other 565 

species, they can also download corresponding reference files from the UCSC website. 566 

By combining existing tools, APEC made it possible to finish all of the above data 567 

processing steps by one command line, and generate a fragment count matrix for 568 

subsequent cell clustering and differential analysis. APEC has been made available on 569 

GitHub (https://github.com/QuKunLab/APEC). 570 

 571 

Accesson-based clustering algorithm 572 

We define accesson as a set of peaks with similar accessibility patterns across all single 573 

cells, similar to the definition of gene module for RNA-seq data. After preprocessing, a 574 

filtered fragment count matrix B is obtained, and APEC groups peaks to construct 575 

accessons and then performs cell clustering analysis as follows: 576 

(1) Normalization of the fragment count matrix. Each matrix element 𝐵𝑖𝑗 represents the 577 

number of raw reads in cell 𝑖 and peak 𝑗, and element 𝐵𝑖𝑗 was then normalized by the 578 

total number of reads in each cell 𝑖, as if there are 10,000 reads in each cell. 579 

𝐵′𝑖𝑗 = 𝑙𝑜𝑔2 (
𝐵𝑖𝑗 × 10000

∑ 𝐵𝑖𝑗′𝑗′
+ 1) 580 

(2) Constructing accessons. The top 40 principal components of the normalized matrix 581 

were used to construct the connectivity matrix (Cpeak) of peaks by the K-nearest-582 

neighbor (KNN) method with K=10. The grouping of peaks is insensitive to the 583 

number of principal components and the number of nearest neighbors, so it is usually 584 

not necessary to change these two parameters for different data sets. Based on the 585 
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matrix Cpeak, all peaks were grouped by agglomerative clustering with Euclidean 586 

distance and Ward linkage method, and the sum of one peak group was an accesson. 587 

For most data sets, we recommend setting the number of accessons to a value 588 

between 500 and 1500, and the default was set to 600, however the cell clustering 589 

result is not sensitive to the choice of accesson number within this range. We then 590 

built the accesson count matrix M by summing the fragment count of all peaks in one 591 

accesson. Thus, each column of matrix M is an accesson, each row is a cell, and 592 

each element represents the cumulative fragment count of each accesson in each 593 

cell. The accesson matrix was then normalized by calculating the z-score or 594 

probability of the fragment count for each row (i.e., each cell) to generate normalized 595 

matrix Ma for the next step of cell clustering. 596 

(3) Cell clustering. From the normalized accesson matrix Ma, APEC established the 597 

connectivity matrix by computing the k-neighbor graph of all cells. Since the Louvain 598 

algorithm was proven to be a reliable single-cell clustering method in Seurat 13 and 599 

Scanpy 16, we adopted it in APEC to automatically predict the number of clusters from 600 

the connectivity matrix and defined each Louvain community as a cell cluster. APEC 601 

uses the Louvain algorithm to predict cluster number to ensure that the clustering 602 

analysis is unsupervised and then performs cell clustering as default. Meanwhile, if 603 

users want to artificially define the number of cell clusters, APEC can also perform 604 

KNN clustering on the connectivity matrix. 605 

(4) Compare the performance of APEC with that of other methods on cells with known 606 

identity. To investigate the accuracy of the cell clusters predicted by different 607 

algorithms, we used the ARI value, which evaluates the similarity of clustering results 608 

with all known types of cells 14. The ARI value can be calculated as follows: 609 

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗

2
) − ∑ (
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 610 

where 𝑛𝑖𝑗 is the element from the contingency matrix (i.e. the number of type i cells 611 

that were classified into cluster j), 𝑎𝑖  and 𝑏𝑗  are the sums of the 𝑖 th row and 𝑗 th 612 

column, respectively, and (
𝑥

𝑦) denotes a binomial coefficient. A higher ARI value 613 

indicates more accurate classification of cell types. 614 

(5) Characteristics of accesson. The peaks of a same accesson can be distant from each 615 

other on the genome, and sometimes even on multiple chromosomes. The average 616 
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number of peaks per accesson depends on the total number of peaks in the dataset 617 

and the number of accessons set in the program (default 600). Usually the total 618 

number of peaks can vary between ~40,000-150,000 depending on the total number 619 

of cells and the sequencing depth for each cell, thereby the average number of peaks 620 

per accesson is around ~60-250. Beside, we chose the top 40 principle components 621 

(PCs) of the normalized matrix to construct the connectivity matrix since the first 3~5 622 

PCs are usually not sufficient to capture the detailed features of a single cell dataset, 623 

as described in Seurat and many other single cell analysis tools. Although default 624 

values were chosen to provide better clustering results based on analysis of multiple 625 

datasets, users can adjust these parameters as needed. 626 

 627 

Sampling of accesson number 628 

To test if the APEC clustering result is sensitive to the choice of accesson numbers, we 629 

sampled 100 different accesson numbers from 500 to 1500 in steps of 10 and clustered 630 

the cells of each dataset 100 times (Fig. 1c and Supplementary Fig. 2c). APEC generated 631 

stable clustering results in terms of the average ARI on these datasets, with a wide range 632 

of different accesson numbers (Supplementary Fig. 5e). We used 600 as the default 633 

number of accessons in APEC. 634 

 635 

Parameter settings for other algorithms 636 

To quantify the cell clustering performance of APEC, we compared APEC with other state-637 

of-the-art single-cell epigenomic algorithms on the same datasets with gold standards, 638 

including cisTopic 19, LSI 11,12, chromVAR 17 and Cicero 18. Since most of them have no 639 

cell clustering algorithm within their original codes, we applied the Louvain clustering 640 

algorithm on their transformed matrices to fairly compare their performance. We adopted 641 

the default settings of these tools for most of the comparisons in this paper, except for 642 

some parameters that were manually defined as necessary, such as the random seed in 643 

cisTopic, the number of top components in LSI, and the peak aggregation distance in 644 

Cicero. Therefore, we sampled these parameters multiple times to obtain the average ARI 645 

and ratio of correctly classified cells of the clustering results for each tool (Fig. 1c and 646 

Supplementary Fig. 2c), just as we sampled the accesson number for APEC. We set the 647 

same parameters for all the datasets as follows: 648 

(1) cisTopic. The scanning range of the topic number was set to [10, 40], the number 649 

of parallel CPUs was set to 5, and the random seed was sampled 100 times from 650 
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100 to 600 in steps of 5. We kept the topic matrices normalized by z-score and 651 

probability and provided the performances based on both normalization methods. 652 

We then applied the Louvain algorithm as we did in APEC to cluster cells from the 653 

normalized topic matrix generated by cisTopic.  654 

(2) SnapATAC. As SnapATAC uses a mapping procedure totally different with other 655 

tools, we adopt it with default parameters (binsize=5k) to build its own fragment 656 

count matrix from the merged bam file. We called the function “runJDA” with 657 

“bin.cov.zscore.lower=-2, bin.cov.zscore.upper=2, pc.num=50, norm.method 658 

=’normOVE’, max.var=5000, do.par=TRUE, ncell.chunk=1000, num.cores=1, 659 

seed.use=10, tmp.folder=tempdir()”. We then called the function “runKNN” and 660 

sampled the number of principal components from 20 to 40 (step-size=2), and the 661 

number of nearest neighbors from 10 to 20 (step-size=1). Therefore, we sampled 662 

a total of 100 times (10×10) to calculate the ARI values. Finally, we called the 663 

function “runCluster” with “louvain.lib=’leiden’, seed.use=10, resolution=1”. 664 

(3) LSI. We performed truncated SVD (singular value decomposition) analysis on the 665 

TF-IDF (term frequency-inverse document frequency) matrix and chose 𝑁𝑆𝑉𝐷 top 666 

components to generate the LSI matrix. 𝑁𝑆𝑉𝐷 was sampled 6 times from 6 to 11. 667 

The first component was ignored since it is always related to read depth, and the 668 

LSI scores were capped at ±1.5. Then, we used the Louvain algorithm to cluster 669 

the cells of the LSI-processed matrix.  670 

(4) chromVAR. The number of background iterations was set to 50, and the number 671 

of parallel CPUs was set to 1. We then used the Louvain algorithm to cluster cells 672 

based on the bias corrected deviation matrix generated by chromVAR.  673 

(5) Cicero. The genome window was set to 500k BPs, the normalization method was 674 

set to “log”, the number of sample regions was set to 100, the number of 675 

dimensions was set to 40, and the peak aggregation distance was sampled at 20 676 

values from 1k to 20k BPs in steps of 1k BPs. Then, we used the Louvain algorithm 677 

to cluster cells based on the aggregated model matrix generated by Cicero.  678 

To test the robustness of each algorithm, we randomly sampled 20%~90% of the raw 679 

sequence reads from the dataset of AML cells and 3 cell lines (LMPP, HL60 and monocyte) 680 

and calculated the ARI accordingly. This random sampling experiment was performed 50 681 

times for each method and average ARIs were reported (Supplementary Fig. 2d). The 682 

manually defined parameters for each method were set to: APEC, 600 accessons; 683 
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cisTopic, random seed 100; SnapATAC, 20 PCs and 15 nearest neighbors; LSI, top 2-6 684 

principle components; Cicero, 10k BPs aggregation distance. 685 

 686 

Gene scores and differential analysis 687 

APEC scores a gene by the peaks around its TSS region, which is similar to the algorithm 688 

used by Preissl et al. 10. We calculate the average read counts of all peaks around a gene’s 689 

TSS (±20000 BP by default) as its raw score (𝑆𝑖𝑗 for cell 𝑖 and gene 𝑗), then define the 690 

gene expression by normalizing the raw score by (𝑆′𝑖𝑗 = 𝑆𝑖𝑗 ∗ 10000 ∑ 𝑆𝑖𝑗𝑖⁄ ), making it in a 691 

range comparable to the gene expression from scRNA-seq data. After scoring genes, 692 

APEC uses the Student’s t-test to estimate the significance of each genes between cell 693 

clusters and therefore obtained a list of differential genes filtered by P-values and fold 694 

changes. We also tested the gene scoring algorithms of other tools such as Cicero, 695 

cisTopic, and SnapATAC, and the parameters set in those algorithms were the same as 696 

described in the previous section. For scATAC-seq with very sparse signals, APEC first 697 

search for differential accessons between cell clusters, and extracted all the peaks in the 698 

differential accessons. APEC then defines genes close to these peaks (±20000 BP around 699 

TSS) as the differential genes.  700 

 701 

Association of cell clusters from scATAC-seq and scRNA-seq data  702 

To determine the association between cell clusters from the epigenomics and 703 

transcriptomic sequencing, we calculated the P-values of Fisher’s exact test of the 704 

differential/non-differential genes between each pair of cell clusters from scATAC-seq and 705 

scRNA-seq data. For example, for cell cluster 𝑎 from ftATAC-seq and cell cluster 𝑏 from 706 

SMART-seq (Fig. 4h), if the number of consensus differential genes in both cluster 𝑎 and 707 

𝑏 is G11, and the number of differential genes in either cluster 𝑎 (or cluster 𝑏) is G12 (or 708 

G21), and the number of all the other genes is G22, then the 2×2 matrix G can be directly 709 

used for Fisher’s exact test to evaluate the P-valuie 𝐴𝑎𝑏 between cluster 𝑎 and 𝑏. After 710 

constructing a matrix A filled with −log(𝐴𝑎𝑏) for ftATAC-seq cluster 𝑎 and SMART-seq 711 

cluster 𝑏 , we calculated the z-score for each row and column of A to determine the 712 

correlation between cell clusters from different sequencing experiments. Same algorithm 713 

was also used to show the correspondence between the cell sub-clusters (EX1~5 and 714 

IN1~5) generated from snATAC-seq data and the cell subtypes identified from inDrops-715 

seq data (Fig. 2f & g). 716 

 717 
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Potential super-enhancers 718 

Here, we defined a super-enhancer as a long continuous genomic area containing many 719 

accessible regions and have the same accessibility pattern in different cells. The 720 

accesson-based algorithm can group most peaks in one super-enhancer to one accesson 721 

since they always present the same accessibility pattern between cells. APEC identified 722 

super-enhancers by counting the number of peaks in a 1 million BP genomic area that 723 

belong to a same accesson. It also requires that the percentage of the putative peaks in 724 

one super-enhancer is one of the highest among all genomic areas (P-value<0.01). The 725 

pipeline can also aggregate bam files by cell types/clusters and convert them to BigWig 726 

format for users to upload to the UCSC genome browser for visualization. ROSE 27 was 727 

used to confirm the super enhancers called from APEC, with command line “python  728 

ROSE_main.py -g hg19 -i top_filtered_peaks.gff -r P1-LSC.bam -s 12500 -t 2500 -o P1-729 

LSC-SuperEnhancer” applied to the merged bam files of all the P1-LSC cells. 730 

 731 

Spatial correlation of peaks in the same accesson 732 

To test whether peaks in the same accesson are closer in space, we integrated the Hi-C 733 

62 data (GSE63525) and scATAC-seq 8 data (GSE65360) on GM12878 cells. The spatial 734 

correlation of different windows, both intra- and inter-chromosomal, can be directly 735 

extracted by Juicer 65. The Pearson's correlation matrix of the intra-chromosomal or inter-736 

chromosomal windows can be calculated from the corresponding observed/expected 737 

matrix. We constructed 600 accessons by grouping peaks in the GM12878 scATAC-seq 738 

data in APEC, and removed the accessons that contained more than 1000 peaks or less 739 

than 5 peaks. The width of the window was set to 500k BPs, and peaks were then 740 

assigned to each window. Next, we collected Hi-C correlations between windows that 741 

contained peaks in the same accesson, termed “Accesson” correlations. For comparison, 742 

we also shuffled all peaks in different accessons to make fake accessons and re-collected 743 

the Hi-C correlations between windows that contained peaks in each fake accesson, 744 

termed “Shuffled” correlations. Meanwhile, we also collected Hi-C correlations between 745 

windows that contained no peaks, termed “Non-accesson” correlations. We made 746 

boxplots for these three types of correlations for intra-chromosomal and inter-747 

chromosomal peaks and found that co-accessible peaks are spatially closer to each other 748 

than random peaks. 749 

 750 

Pseudotime trajectory constructed by APEC 751 
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As a tool to simulate the time-dependent variation of gene expression and the cell 752 

development pathway, Monocle has been widely used for the analysis of single-cell RNA-753 

seq experiments 32,66. APEC reduced the dimension of the accesson count matrix M by 754 

PCA, and then performed pseudotime analysis using the Monocle program. For complex 755 

datasets, it is necessary to limit the number of principal components, since too many 756 

features will cause too many branches on the pseudotime trajectory, and makes it difficult 757 

for a user to identify the biological significance of each branch. For the hematopoietic 758 

single cell data and thymocyte data, we used the top 5 principal components of the 759 

accesson matrix to construct the developmental and differentiation trajectories.  760 

 761 

Pseudotime trajectory constructed by other algorithms 762 

To check whether other algorithms can provide solutions to construct cell developmental 763 

pathways, we combined their transformed count matrix with Monocle to build the 764 

pseudotime trajectory from scATAC-seq data. A similar preprocessing method was 765 

applied to ensure the fairness of the comparison: 766 

(1)  Raw fragment count matrix. We normalized the raw count matrix B exactly as in 767 

the first step of APEC, i.e., 𝐵′𝑖𝑗 = 𝑙𝑜𝑔2 (
𝐵𝑖𝑗×10000

∑ 𝐵𝑖𝑗′𝑗′
+ 1), and performed PCA analysis 768 

on the normalized matrix B’. Only the top 5 PCs were subjected to Monocle to 769 

construct the trajectory. 770 

(2)  cisTopic. The topic matrix generated by cisTopic was normalized by making the 771 

sum of each row the same (i.e., the probability). Then, we performed PCA analysis 772 

on the normalized topic matrix and subjected the top 5 PCs to Monocle to build the 773 

trajectory. 774 

(3)  SnapATAC. We run PCA analysis on the normalized fragment count matrix 775 

generated by SnapATAC, and subjected the top 5 PCs to Monocle to build the 776 

trajectory. 777 

(4)  LSI. We chose the 2nd~6th principle components of the SVD transformation of 778 

the LSI matrix and subjected them to Monocle to construct the trajectory. As the 779 

dimensions had been reduced by the LSI method, we skipped the PCA analysis. 780 

(5)  ChromVAR. After the PCA analysis of the bias corrected deviation matrix 781 

generated by chromVAR, the top 5 PCs were combined with Monocle to construct 782 

the trajectory. 783 
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(6)  Cicero. We performed PCA analysis on the aggregated matrix generated by 784 

Cicero and used the top 5 PCs in Monocle to build the trajectory. 785 

In addition, to confirm the reliability of the APEC + Monocle prediction of the 786 

developmental pathway, we applied another pseudotime trajectory constructing method, 787 

SPRING 35, to the accesson count matrix M from APEC to reconstruct the pathways for 788 

the hematopoietic differentiation dataset and thymocyte developmental dataset. We 789 

performed PCA analysis of the accesson matrix M and subjected the top 5 PCs to SPRING 790 

to generate the trajectories. The number of edges per node in SPRING was set to 5. 791 

 792 

Parameter settings for each dataset 793 

In the quality control (QC) step, cells are filtered by two constraints: the percentage of the 794 

fragments in peaks (𝑃𝑓) and the total number of valid fragments (𝑁𝑓). However, there is no 795 

fixed cutoff for these two parameters since the quality of different cell types and/or 796 

experiment batches are completely different. The total number of peaks is usually limited 797 

to approximately 50000 to reduce computer time, but we recommend using all peaks if the 798 

users want to obtain better cell clusters. (1) For the data set from hematopoietic cells, the 799 

-log(Q-value) threshold of high-quality peaks was set to 35 to retain 54212 peaks, and the 800 

cutoff values of 𝑃𝑓 and 𝑁𝑓 were 0.1 and 1000, respectively. (2) For the scATAC-seq data 801 

on the two types of cells from 2 AML patients (P1-LSC, P1-Blast, P2-LSC, P2-Blast), the 802 

threshold of -log(Q-value) was set to 5 to retain 38683 high-quality peaks for subsequent 803 

processing. When LMPPs, HL60 and monocytes were added to this dataset with the AML 804 

cells, the threshold of -log(Q-value) was set to 8 to retain 42139 peaks. In the QC step, 805 

we set the 𝑃𝑓 cutoff to 0.05 and the 𝑁𝑓 cutoff to 800. (3) For the snATAC-seq data from 806 

the adult mouse forebrain, all peaks and the raw count matrix obtained from the original 807 

data source were adopted in the analysis. (4) For the ftATAC-seq data from thymocytes, 808 

all 130685 peaks called by MACS2 were reserved for the fragment count matrix (Q-809 

value<0.05), and we retained cells with 𝑃𝑓 >0.2 and 𝑁𝑓 >2000. 810 

 811 

SMART-seq data analysis with Seurat 812 

For the analysis of SMART-seq data from mouse thymocytes, we employed STAR 813 

(version 2.5.2a) with the ratio of mismatches to mapped length 814 

(outFilterMismatchNoverLmax) less than or equal to 0.05, translated output alignments 815 

into transcript coordinates (i.e., quantMode TranscriptomeSAM) for mapping 67 and used 816 
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RSEM 68 to calculate the TPM of genes. For QC, we excluded cells in which fewer than 817 

2000 genes were detected and genes that were expressed in only 3 or fewer cells. Seurat 818 

filtered cells with several specific parameters to limit the number of genes detected in each 819 

cell to 2000~6000 and the proportion of mitochondrial genes in each cell was set to less 820 

than 0.4 (i.e., low.thresholds=c(2000, Inf), high.thresholds=c(6000, 0.4)). Additionally, the 821 

top 12 principal components were used for dimension reduction with a resolution of 3.2 822 

(dims.use =1:12, resolution=3.2), followed by cell clustering and differential expressed 823 

gene analysis 69. 824 

 825 

GO term analysis of cells along pseudotime trajectory 826 

We defined the functional characteristics of each accesson by the GO terms and motifs 827 

enriched on its peaks. The GO terms of an accesson were obtained by submitting all of 828 

its peaks to the GREAT website 70. The negative logarithm of the P-value of each GO term 829 

in each accesson was filled into a (GO terms) × (accessons) matrix L. The significance of 830 

each GO term on each cell was evaluated by the product of the matrix L and the accesson 831 

count matrix M, i.e. 832 

𝐺𝑂𝑖𝑗 = ∑ 𝐿𝑖𝑘 ∙ 𝑀𝑘𝑗

𝑘

 833 

where 𝑖 is the 𝑖th GO term, 𝑗 is the 𝑗th cell, and 𝑘 is the 𝑘th accesson. Then we calculated 834 

the z-score for each row of this product matrix, and plotted the z-score as the GO-term 835 

score on the trajectory diagram. 836 

 837 

Motif enrichment of cells along pseudotime trajectory 838 

To assess the motif enrichment of the accessons, we used the Centrimo tool of the MEME 839 

suite 71 to search for the enriched motifs for the peaks of each accesson and applied the 840 

same algorithm as to the GO term score to obtain the motif score. The negative logarithm 841 

of the E-value (product of adjusted P-value and motif number) 71 of each motif in each 842 

accesson was used to construct a (motifs) × (accessons) matrix F. The enrichment of each 843 

motif on each cell was evaluated by the product of the matrix F and the accesson count 844 

matrix M, i.e., 845 

𝑀𝑜𝑡𝑖𝑓𝑖𝑗 = ∑ 𝐹𝑖𝑘 ∙ 𝑀𝑘𝑗

𝑘

 846 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/646331doi: bioRxiv preprint 

https://doi.org/10.1101/646331
http://creativecommons.org/licenses/by-nc-nd/4.0/


where 𝑖 is the 𝑖th motif, 𝑗 is the 𝑗th cell, and 𝑘 is the 𝑘th accesson. Then, we calculated 847 

the z-score for each row of this product matrix and plotted the z-score as the motif score 848 

on the trajectory diagram. 849 

 850 

 851 

DATA AND CODE AVAILABILITY 852 

Mouse thymocytes ftATAC-seq data can be obtained from the Genome Sequence Archive 853 

at BIG Data Center with the accession number CRA001267 and is available via 854 

http://bigd.big.ac.cn/gsa/s/yp1164Et. Other published data sets used in this study are 855 

available from NIH GEO with accession numbers GSE74310 2, GSE65360 8, GSE96772 856 

21, GSE100033 10, GSE111586 28, and GSE63525 62. APEC pipeline can be downloaded 857 

from the GitHub website  (https://github.com/QuKunLab/APEC). 858 
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Supplementary Figures 1055 

 1056 

Supplementary Fig. 1. The 3 subtypes of CMP cells in the tSNE maps generated by other 1057 

methods. 1058 
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 1060 

 1061 

Supplementary Fig. 2. Clustering performance of the dimension-transformed matrices 1062 

generated by different algorithms. (a) The tSNE diagrams of the cells from AML patients 1063 

and three distinct cell lines (LMPP, monocyte and HL60). Different algorithms provided 1064 

different dimension-transformed matrices for tSNE analysis, i.e., APEC: accesson matrix; 1065 

cisTopic: topic matrix; LSI: LSI matrix; chromVAR: bias corrected deviation matrix; Cicero: 1066 

aggregated model matrix. The table below the diagrams contains the average ARI of the 1067 

cell clustering results for each algorithm. (b) The tSNE diagrams and ARI table for the 1068 

leukemic stem cells (LSCs) and blast cells from 2 different AML patients only, as in (a). (c) 1069 
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Box-plots showing the ARI values for the clustering of the blast and LSC cells from two 1070 

AML patients. We sampled different tunable parameters for different algorithms. APEC: 1071 

the accesson number; cisTopic: the random seed; SnapATAC:  the number of principal 1072 

components and the number of nearest neighbors; LSI: the number of top SVD 1073 

components; Cicero: the peak aggregation distance; chromVAR: no sampling. Z-score 1074 

and probability denote different methods of normalizing the dimension-transformed 1075 

matrices. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 1076 

interquartile range; points, outliers. (d) The average ARI values calculated by down-1077 

sampling 50 times from the raw data of the AML cells and three cell lines for each method. 1078 

The X-axis represents the percentage of down-sampled sequencing reads. Shaded error 1079 

band: 95% confidence interval. 1080 
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 1082 

Supplementary Fig. 3. Super-enhancers predicted by APEC for the scATAC-seq data of 1083 

cells from AML patients. (a, b) The genome browser track shows the aggregated scATAC-1084 
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seq signal of the super-enhancer of P1-LSC cells upstream of N4BP1 (a) and GPHN (b). 1085 

(c, d) The motifs associated with peaks in the super-enhancer upstream of N4BP1 (c) and 1086 

GPHN (d). 1087 
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 1089 

Supplementary Fig. 4. Comparison of the peak grouping algorithms used by APEC and 1090 

Cicero on the hematopoietic dataset. (a) The characteristics of accessons in APEC. Left 1091 

panel: distribution of peaks in each accesson; middle panel: genomic distances of peaks 1092 

belong to the same accesson; right panel: number of chromosomes with peaks belong to 1093 

the same accesson. (b) The characteristics of CCAN (defined by Cicero), as in (a). (c) 1094 

Site links discovered by APEC and Cicero. 1095 
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 1097 

Supplementary Fig. 5. Biological insights of the accesson and stability and scalability 1098 

analysis of APEC. (a) Box plot showing the average spatial distance between peaks in the 1099 

same accesson (from scATAC-seq) versus randomly shuffled peaks versus non-1100 

accessible genomic regions. Spatial distance was estimated from chromosome 1101 

conformation capture (Hi-C) technology. Both Hi-C and scATAC-seq data were generated 1102 

from the same cell line GM12878. Upper panel: intra-chromosomal correlation of windows 1103 

in the Hi-C data; Lower panel: inter-chromosomal correlation of windows in the Hi-C data. 1104 

Accesson: The correlation between two windows that contain peaks in the same accesson; 1105 

Shuffled: The correlation calculated by randomly shuffling peaks in each accesson; Non-1106 

accesson: The correlation between two windows that contain no peaks. Center line, 1107 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 1108 

outliers. (b) The Hi-C profile of windows between chr1:500,000-21,500,000. The black 1109 

bars below the Hi-C track denote peaks in the same accesson from APEC. Dotted boxes 1110 
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indicate examples of peaks in the same accesson that are distant in genomic position but 1111 

close in space. (c, d) The computing time required for different algorithms to cluster cell 1112 

numbers from 10,000 to 80,000 with all peaks (c) and 100,000 peaks (d). The data were 1113 

sampled from the single-cell atlas of in vivo mammalian chromatin accessibility. CisTopic 1114 

was performed using 8 CPU threads and all the other tools with 1 CPU thread. (e-g) The 1115 

ARI values of the clustering results that used different numbers of accessons (e), nearest 1116 

neighbors (f), and principle components (g). The dataset includes the cells from two AML 1117 

patients and three cell lines. Default values are noted in red. 1118 

 1119 
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 1121 

Supplementary Fig. 6. (a) The clustering and cell-type classification of the mouse 1122 

forebrain dataset by Cicero. Upper panel: cell clusters obtained by Cicero, illustrated in 1123 

the tSNE diagram. Middle panel: the z-scores of the average gene scores of cell clusters, 1124 

obtained by Cicero. Lower panel: the hierarchical clustering of the Pearson correlations 1125 

between cell clusters identified by Cicero. (b, c) The clustering and cell-type classification 1126 

of the same dataset by cisTopic and SnapATAC respectively, as in (a).  1127 

 1128 
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 1130 

 1131 

Supplementary Fig. 7. UCSC genome browser track diagram of the normalized fragment 1132 

count around gene CD34 for each hematopoietic cell type. 1133 
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 1135 

Supplementary Fig. 8. Cell differentiation trajectories of the human hematopoietic 1136 

dataset constructed by different algorithms. (a-f) The pseudotime trajectories constructed 1137 

by the combination of Monocle and the raw peak count matrix, the topic matrix from 1138 

cisTopic, the normalized count matrix from SnapATAC, the LSI matrix, the aggregated 1139 

model matrix from Cicero, and the bias corrected deviation matrix from chromVAR, 1140 

respectively. (g) The pseudotime trajectory constructed by the combination of SPRING 1141 

and the accesson matrix from APEC. 1142 
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 1144 

Supplementary Fig. 9. (a) Gating strategy of the mouse thymocytes in ftATAC-seq. (b-d) 1145 

Quality control diagrams for the mouse thymocyte data, including reads numbers and 1146 

percentage of fragments in peaks for each cell (b), average count of scATAC-seq 1147 

insertions around TSS regions (c), and statistical distribution of fragment lengths (d). (e) 1148 

The z-score of correlation between the cell types from ftATAC-seq and bulk ATAC-seq 1149 

data. 1150 
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 1152 

Supplementary Fig. 10. Selected significant motifs enriched in different thymocyte 1153 

subtypes obtained by the APEC algorithm.  1154 
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 1156 

Supplementary Fig. 11. Single-cell transcriptome analysis of Mus musculus thymocytes 1157 

from SMART-seq. (a) tSNE diagram of the single-cell expression matrix of Mus musculus 1158 

thymocytes, labeled by the FACS index of each cell. (b) Louvain clustering of the same 1159 

single-cell dataset obtained by Seurat. The cell types of these clusters were classified by 1160 

the expression of corresponding marker genes. (c) Important marker genes were 1161 

differentially expressed in different cell clusters. (d) Heatmap of the expressions of all 1162 

genes significantly differentially expressed between cell clusters. The top color bar used 1163 

the same scheme described in (b) to render cells of different clusters. 1164 
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 1166 

Supplementary Fig. 12. Developmental characteristics of single-cell samples captured 1167 

by APEC. (a, b) Pseudotime trajectory of scATAC-seq data from Mus musculus 1168 

thymocytes labeled with the FACS index and APEC cluster index. (c) Pseudotime 1169 

trajectory constructed by applying SPRING to the accesson matrix. The colors of cells 1170 

denote their stages in the APEC trajectory results. (d) Z-scores of the -log(P-value) of the 1171 

GO terms along the pseudotime trajectory of stage 1 cells. (e) Logarithm of the P-value of 1172 

GO terms searched from peaks in accessons ac1~ac7, which are the marker accessons 1173 

of cluster DP. A1 and DP. A3/4/5 of thymocytes. 1174 
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