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Abstract 17 

Intestinal microbiome, comprising the whole microbiota, their genes and genomes living in the human 18 

gut have significant roles in promoting health or disease status. As many studies showed so far, 19 

identifying the bacterial components of the microbiome can reveal important biomarkers to help in 20 

the disease comprehension to a further adequate treatment. However, the human nature is quite 21 

variable considering the genetic components associated with life styles, directly reflecting on the gut 22 

microbiome. Thus, it is extremely important to know the populational microbiome background in 23 

order to draw conclusions regarding the health and disease conditions. Also, methodological best 24 

practices and knowledge about the methods being used are essential for the results quality and 25 

applicability with clinical relevance. In this way, we standardized the sample collection and processing 26 

methods used for the Probiome assay, a test developed to identify the Brazilian bacteriome from stool 27 

samples. EncodeTools Metabarcode pipeline of analysis was developed to obtain the best result from 28 

the samples. This pipeline uses the information of amplicon single variants (ASVs) in 100% identical 29 

oligotype clusters, and performs a de novo taxonomical assignment based on similarity for unknown 30 

sequences. To better comprehend the results obtained in Probiome assays, is essential to know the 31 

intestinal bacteriome diversity of Brazilians. Thus, we applied the standardized methods herein 32 

developed and began characterizing our populational data to allow a better understanding of the 33 

Brazilian bacteriome profiles and how they can be related to other microbiome studies. 34 
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 2 

Introduction 35 

 36 

 The human body hosts a diverse microbial community composed by bacteria, fungi, virus, and 37 

small eukaryotes that along with their genes and genomes comprise the human microbiome. All this 38 

microbial living in our bodies, mainly in our intestine, serves as a source of genetic and metabolic 39 

diversity. Most of our gut microbiota is composed of bacteria [1,2] and their diversity influence the 40 

human health by playing a role in the digestive, neurological, or immunological systems disorders  41 

[3–5]. Two larger projects made significant contributions in the understanding of the healthy 42 

microbiota and their host, the Metagenomics of the Human Intestinal Tract (MetaHIT) [1] and the 43 

Human Microbiome Project (HMP) [6,7] . More recently, the American Gut project also contributed 44 

to the knowledge of intestinal microbiome profiles from populations in the United States, United 45 

Kingdom and Australia [8]. These microbiome projects, along with several others conducted around 46 

the world, have the primary goal of understanding the dynamics and variations in the human intestinal 47 

microbiome to characterize it regarding health and disease conditions. 48 

 The intestinal microbiome varies widely among individuals, also fluctuating over human 49 

development and time. These variations increase the complexity of the human microbiome 50 

comprehension, becoming more challenging to define what is a healthy status for a population and an 51 

individual [9]. Additionally, each population has its particularities regarding their genetic background, 52 

physiology, lifestyle, nutrition, and habits that can influence the microbiota [10,11]. A recent study 53 

published with Chinese populations revealed that geography has a substantial interference with 54 

microbiome profiles, hampering the universal application of microbiota-associated disease models 55 

that were developed based on specific populations [12]. Thus, it is extremely relevant to have 56 

microbiome information about the specific target population to allow conclusions regarding their 57 

health and disease conditions. 58 

 All these research studies were fundamental to improve the knowledge regarding microbiome 59 

characterization along with the technical and biological challenges that must be addressed and 60 

controlled in the best possible ways [13]. The experimental reproducibility is critical, giving the 61 

potential of clinical application for the obtained results. Moreover, adequate sample collection and 62 

storage is a requirement for maintaining the original microbial composition, since the improper 63 

storage can allow selective microorganisms to overgrow leading to microbial profile biases and 64 

consequently misleading the interpretation of the results [14,15]. Several efforts have also been made 65 

to address variations and standardize DNA extraction, amplicon 16S rRNA gene sequencing, and 66 

bioinformatics analysis, as done by the Microbiome Quality Control (MBQC) project consortium [16]. 67 

Moreover, usage of amplicon sequence variants (ASVs), the exact DNA sequence read, instead of the 68 
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OTU picking (generally clustering sequences at 97% similarity) improves the resolution for 69 

microbiome results [13,17,18].  70 

 In this paper, we present an end-to-end assessment of a human intestinal bacteriome analysis 71 

for Brazilian populations, covering all the process from sample storage, amplicon library preparation, 72 

high-throughput DNA sequencing, and bioinformatics analysis. We introduced a new pipeline of 73 

analysis: EncodeTools Metabarcode, and generated 16S rRNA amplicon data for fecal samples of the 74 

Brazilian subjects to begin an understanding of the bacteriome compositional patterns in such a 75 

diverse population whose gut microbiome profiles are yet to be characterized. 76 

 77 

Material and Methods 78 

 79 

Sample collection and processing 80 

 Stool samples were collected using the Probiome kit (BiomeHub, Brazil) which includes a 81 

sanitary seat cover capable of retaining the stool and allows the proper sample collection with a sterile 82 

flocked swab - 520CS01 (Copan, USA) or 25-3606-H BT (Puritan, USA). The swabs have a 83 

breakpoint that allows the swab tip containing the collected sample to be inserted into a provided 84 

microtube with 1ml of fecal stabilization solution - ZSample (BiomeHub, Brazil). Each subject can 85 

take the entire kit home and perform the fecal sample collection individually. The samples were 86 

homogenized by microtube inversion and then forwarded to BiomeHub laboratory (Florianopolis, 87 

Brazil) for sample processing within 30 days after collection. In the laboratory, DNA was extracted 88 

from the preserved stool using the DNeasy PowerSoil Kit (QIAGEN, Germany) according to the 89 

manufacturer instructions. At each batch of DNA extraction, a negative control was included (CNE). 90 

A set of 206 stool samples that used the above collection and processing methods were randomly 91 

selected from the mischaracterized BiomeHub database. No possible correlations or associations with 92 

the fecal donors can be made from this bacterial sequences or any data included in this study. These 93 

samples, collected and anonymously processed as described above, along 2018, represent a Brazilian 94 

populational diverse subset comprising 65.4% female and 34.5% male from various geographical 95 

locations.  96 

 97 

Experimental subsets for sample storage, ZSample stability and DNA extraction tests 98 

 ZSample stability solution and stool sample preservation at room temperature were evaluated 99 

along 30 days. A single stool specimen was self-collected by an anonymous donor in seventeen 100 

replicates and stored in ZSample Probiome tubes to be analyzed at T0 (maximum of two hours after 101 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2020. ; https://doi.org/10.1101/646349doi: bioRxiv preprint 

https://doi.org/10.1101/646349
http://creativecommons.org/licenses/by-nd/4.0/


 4 

collection), T15 (15 days after sample collection) and T30 (30 days after collection). Five of the 102 

replicates were analyzed in T0, and six replicates were analyzed at each T15 and T30. 103 

 Additionally, batch effects for the ZSample lot production in stool sample preservation was 104 

evaluated along four batches of the solution produced at 0, 2, 9 and 18 months before the stool sample 105 

collection. Twenty-four replicates of a fecal sample from an anonymous donor were collected using 106 

the four solution lots listed above. For each lot, six replicates were obtained, three of them were 107 

processed in T0 (maximum of two hours after collection) and the other three in T30 (30 days after 108 

collection). All samples remained at room temperature in ZSample solution during the 30-day storage. 109 

Furthermore, these fecal samples collected and stored in ZSample were inoculated in a general culture 110 

media (PCA - plate count agar) and incubated at 35ºC for three days, to evaluate cellular bacterial 111 

viability. 112 

 DNA extraction of fecal samples stored in ZSample was further tested in four different 113 

methods: DNeasy PowerSoil kit, DNeasy PowerSoil Pro kit, DNeasy PowerSoil Pro modified and 114 

QIAamp PowerFecal DNA kit, all from QIAGEN, Germany. In DNeasy PowerSoil Pro modified its 115 

original bead beating tubes with zirconium beads were replaced for the traditional PowerSoil silica 116 

bead tubes. Fecal samples were donated by five anonymous subjects, and processed with four 117 

experimental replicates for each extraction kit, in a total of 80 samples. 118 

 119 

DNA library preparation and sequencing 120 

 The 16S rRNA amplicon sequencing libraries were prepared using the V3/V4 primers (341F 121 

CCTACGGGRSGCAGCAG and 806R GGACTACHVGGGTWTCTAAT) [19,20] in a two-step 122 

PCR protocol. The first PCR was performed with V3/V4 universal primers containing a partial 123 

Illumina adaptor, based on TruSeq structure adapter (Illumina, USA) that allows a second PCR with 124 

the indexing sequences similar to procedures described previously [21]. Here, we add unique dual-125 

indexes per sample in the second PCR.  Two microliters of individual stool sample DNA were used 126 

as input in each first PCR reaction. The PCR reactions were carried out using Platinum Taq 127 

(Invitrogen, USA) with the conditions: 95°C for 5 min, 25 cycles of 95°C for 45s, 55°C for 30s and 128 

72°C for 45s and a final extension of 72°C for 2 min for PCR 1. In PCR 2 the conditions were 95°C 129 

for 5 min, 10 cycles of 95°C for 45s, 66°C for 30s and 72°C for 45s and a final extension of 72°C for 130 

2 min. All PCR reactions were performed in triplicates. The final PCR reactions were cleaned up using 131 

AMPureXP beads (Beckman Coulter, USA) and samples were pooled in the sequencing libraries for 132 

quantification. At each batch of PCR, a negative reaction control was included (CNR). The DNA 133 

concentration of the libraries was estimated with Picogreen dsDNA assays (Invitrogen, USA), and 134 

then the pooled libraries were diluted for accurate qPCR quantification using KAPA Library 135 
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Quantification Kit for Illumina platforms (KAPA Biosystems, MA). The libraries pools were adjusted 136 

to a final concentration of 11.5 pM (for V2 kits) or 18 pM (for V3 kits) and sequenced in a MiSeq 137 

system (Illumina, USA), using the standard Illumina primers provided in the manufacturer kit. Single-138 

end 300 cycle runs were performed using V2x300, V2x300 Micro, V2x500 or V3x600 sequencing 139 

kits (Illumina, USA), always generating 283bp size amplicons suitable for analysis. Coverage of 140 

50,000 reads was set to each sample sequenced.  141 

 142 

Bioinformatics analysis - EncodeTools Metabarcode pipeline 143 

 The sequenced reads obtained were processed using EncodeTools Metabarcode pipeline 144 

(BiomeHub, Brazil) a bioinformatics pipeline developed in-house and described below. Illumina 145 

FASTQ files were quality filtered and the primers were trimmed to yield a resulting read of 283bp. 146 

Only one mismatch is allowed in the primer sequences and the whole read is discarded if this criterion 147 

is not met. Sequenced reads smaller than expected or with remaining Illumina sequence adapter were 148 

discarded. After this initial quality assessment, identical read sequences (100% identity) were grouped 149 

into oligotypes and analyzed with Deblur package [22] to remove possible erroneous reads. After, 150 

VSEARCH [23] was used to remove chimeric amplicon reads. The oligotype clusterization with 100% 151 

identity provides a higher resolution for the amplicon sequencing variants (ASVs), also called sub-152 

OTUs (sOTUs) [13] - herein denoted as oligotypes. An additional filter was implemented to remove 153 

oligotypes below the frequency cutoff of 0.2% in the final sample counts, i.e., given a library size of 154 

1,000 reads, oligotypes with less than two reads were filtered out. We also implemented a negative 155 

control filter, as in each processing batch we have negative controls for the DNA extraction and PCR. 156 

If any oligotypes were observed in the negative controls, they are checked against the samples and 157 

automatically removed from the sample results if present. The remaining oligotypes in the samples 158 

were used for taxonomic assignment with the BLAST tool [24] against a reference genome database. 159 

This database was constructed with complete and draft bacterial genomes, focused on clinically 160 

relevant bacteria, obtained from NCBI and in-house genome sequencings. It is composed of 11,750 161 

sequences comprising 1,843 different bacterial taxonomies. Taxonomy was assigned to each oligotype 162 

using a lowest common ancestor (LCA) algorithm. If more than one reference can be assigned to the 163 

same oligotype with equivalent similarity and coverage metrics (e.g. two distinct species mapped to 164 

oligotype “A” with 100% identity and 100% coverage), the EncodeTools Metabarcode Taxonomy 165 

Assignment algorithm leads the taxonomy to the lowest level of possible unambiguous resolution 166 

(genus, family, order, class, phylum or kingdom), according to the similarity thresholds previously 167 

established previously [25]. The bacterial profile obtained at the end of the pipeline is shown in 168 

taxonomy proportions for the analyzed sample. 169 
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 170 

Experimental subsets for robustness, sensibility and specificity of the EncodeTools Metabarcode 171 

pipeline 172 

 EncodeTools Metabarcode pipeline was tested and calibrated using internal data generated on 173 

diverse hospital microbiome DNA samples obtained and processed as previously described [26].  174 

Eight different microbiome samples were evaluated (A-H). Seven of them (A-G) were diverse 175 

environmental swab samples and one was an artificial microbial community - mock (sample-H) - 176 

composed of: Acinetobacter baumanii, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, 177 

Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica and 178 

Staphylococcus aureus. The 16S rRNA amplicon library preparation for these eight different samples 179 

(A-H) was processed as described above in a total of 28 replicates per sample. These libraries 180 

replicates were prepared by three different operators in three separated MiSeq runs, totalizing 224 181 

sample assays along with 22 negative controls. Eleven amplicon library replicates were prepared for 182 

each of the eight samples by a single operator for an intra-run technical reproducibility test and 183 

sequenced in a single V2x300 Illumina MiSeq run. Inter-run technical reproducibility test was done 184 

re-sequencing these eleven replicates amplicon libraries in a V3x600 Illumina MiSeq run. All 185 

sequencing runs were a single-end of 300 cycles. Then, two additional operators prepared the same 186 

amplicon libraries for the eight samples, in triplicates, for inter-run repeatability and robustness. These 187 

libraries were sequenced in two separated V2x300 Illumina MiSeq runs, one for each operator's 188 

library. All data generated were compared and used to evaluate the reproducibility, repeatability, 189 

sensibility and specificity for our amplicon library preparation along with DNA sequencing, and the 190 

EncodeTools Metabarcode pipeline of analysis. 191 

 192 

Data comparison and diversity analysis 193 

 The results from all samples were integrated into an oligotype table (analogous to OTU table), 194 

whose rows are samples and columns are oligotypes. For each oligotype, taxonomic lineage was 195 

computed. A typical data analysis input was comprised of oligotype, taxonomy, and metadata tables. 196 

The raw sequences were used to construct phylogenetic trees using FastTree 2.1 [27] and these were 197 

used to calculate weighted UniFrac [28] distances when suitable. Further analyzes were conducted 198 

inside the R statistical software environment (R version 3.6.0), using the Phyloseq package [29].  199 

DESeq2, EdgeR, and metagenomeSeq packages were used for differential abundance analyses [30–200 

32]. Nonparametric comparisons included Kruskal-Wallis and Wilcoxon tests as implemented in base 201 

R and in coin R package, respectively [33]. Other R packages used in this study are listed in 202 

Supplementary Table 1. 203 
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 7 

 Alpha-diversity was computed using the plot_richness function from the Phyloseq R package 204 

with default parameters. Note that Phyloseq by default calculates the Simpson Diversity Index as 1 - 205 

D. Here, we transform the value back to D = ∑ 𝑝#$ i
2 (pi is the proportional abundance for the ith 206 

taxonomy). Beta-diversity used proportion-normalized abundances as noted by [34] and [35]. Bray-207 

Curtis Dissimilarity and weighted UniFrac were both calculated using Phyloseq’s distance function. 208 

Correlation coefficients between sample groups used mean taxonomy proportions within each group.  209 

 Differential abundance analysis was performed using four distinct methods, all of which using 210 

the above cited packages with default options unless stated otherwise: DESeq2 and EdgeR were used 211 

to fit Negative Binomial models with relative log expression scaling [30,31,35]; metagenomeSeq 212 

applied a zero-inflated log-normal model with cumulative-sum scaling [32]; finally, rarefaction (with 213 

Phyloseq) was also applied followed by exact Wilcoxon-Mann-Whitney test, as implemented in the 214 

Coin R package, as this is a very traditional method, even though it has been characterized by its lack 215 

of power [34,35]. Rather than accepting the significance calls from all methods or arbitrarily choosing 216 

one of them, here we considered as significantly differentiated those taxa that were detected by at least 217 

two distinct methods simultaneously. Effect sizes were reported as fold-changes in the log2 scale (log2 218 

FC) for all but the Wilcoxon-Mann-Whitney method, whose effect size estimates were computed as 219 

Zscore/√𝑁 for sample size N. P-value correction for multiple comparisons was performed using the 220 

Benjamini-Hochberg procedure. 221 

 222 

Results  223 

 224 

Stool sample storage for bacteriome analysis 225 

  To validate our ZSample storage solution concerning the bacterial composition maintenance 226 

in fecal samples, we analyzed replicated samples stored at T0, T15 and T30 days. After DNA 227 

extraction and amplicon sequencing, we evaluated the bacterial profile from these samples through 228 

diversity and correlation analysis. Alpha and beta diversities showed no significant differences for the 229 

bacterial genera detected across sample storage times (Figures 1A and 1B). Additionally, high 230 

correlations were observed among bacterial profiles from all time points (Pearson and spearman's > 231 

0.92) (Figure 1C). Figures 1D and 1E show the bacterial relative abundance profiles across the 232 

replicated samples analyzed in T0, T15 and T30. Some variations could be observed; however, they 233 

were no more related to the storage time than with inter-replicates variation. The overall diversity and 234 

relative abundance of each bacterial genus detected remained equivalent in all the samples across the 235 

storage time. Data for correlations and bacterial abundance for other taxonomy levels (phylum, family 236 
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 8 

and species) can be seen in Supplementary Figure 1. Taken together, these results indicate that 237 

ZSample properly maintains the original bacterial profile in samples stored at room temperature for 238 

at least 30 days. Moreover, no bacterial cellular viability was detected in the sample cultivation tests 239 

that were performed aerobically to resemble more closely how the samples are stored and manipulated 240 

along with the processes. 241 

 As an additional validation step, we evaluated the batch effects of different ZSample lot 242 

productions in the bacterial profiles obtained in T0 or after 30 days (T30) of room temperature storage. 243 

High correlations (Pearson and Spearman's > 0.94) were obtained for bacterial genera comparisons 244 

between storage in T0 and T30 (Figure 2A), and also for lots produced with differences in fabrication 245 

date of up to 18 months (Pearson and Spearman's > 0.89) (Figure 2B). More detailed correlations 246 

considering other taxonomy levels as phylum, family and species are shown in Supplementary Figure 247 

2. No significant of bacterial gain or loss due to the storage was observed in the data analyzed. 248 

Although relative abundances for bacterial phylum, family, genus or species demonstrate that the 249 
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Figure 1. Fecal sample storage and bacterial profile along 30 days. Data presented in this figure is for bacterial genera analyzed after T0, T15 and T30 storage days in
ZSample. (A) Shannon and InvSimpson alpha diversity analysis were performed with no significant differences among T0, T15 and T30 (Kruskal-Wallis p>0.05).
Wilcoxon lacks of significance (p>0.05) is also showed above boxplots for pairwise comparisons between T0xT15, T15xT30 and T0xT30. (B) Beta diversities (Bray-curtis
and Weighted UniFrac) didn't show any specific sample grouping or deviation related to the storage time. (C) A correlation analysis was performed between T0-T15 and
T0-30 showing values > 0.92 for Pearson (r2) and Spearman (r) coefficients. (D) Genera abundances along the sample storage demonstrate some inter-replicate variations
higher than the storage time variation itself. (E) The proportional abundances for genera detected along the storage time in each replicate are shown. This also demonstrates
the process reproducibility along different replicates and time.
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bacterial profile in the samples have some replicate variations, these were not correlated with the 250 

ZSampe production batch (Figure 2C). 251 

  252 

 In addition to sample storage, DNA extraction from fecal samples in ZSample was evaluated 253 

for four different methods (Supplementary Figure 3). We observed higher correlations and similar 254 

diversities for the bacterial profiles obtained with DNeasy PowerSoil, DNeasy PowerSoil Pro 255 

modified and QIAamp PowerFecal DNA kit. The recently launched DNeasy PowerSoil Pro kit 256 

recovers a higher amount of DNA on average, showing an increased abundance of Firmicutes with 257 

reduced Bacteroidetes, Proteobacteria and Verrucomicrobia (Supplementary figure 3). Moreover, no 258 

differences related to ZSample solution in the different methods of DNA extraction were observed. 259 

 260 

Phylum Family Genus Species

Figure 2. ZSample batch effects in fecal sample storage. Four ZSample lot production (0 - produced in the processing
day -, 2, 9 and 18 months of difference from the manufacturing time) were evaluated. (A) A correlation analysis showed
equivalent results (Pearson - r2 and Spearman - r coefficients) for the lot solution batches along the time of storage T0-
T30, and (B) among different lot production batches. (C) Bacterial abundances analyzed for phylum, family, genus and
species in each production lot. The relative abundance levels are maintained regardless of the solution batch. Lot
variations are in the same scale as the intra-replicates variations.

A

B

C
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High throughput amplicon sequencing robustness and analysis using EncodeTools Metabarcode 261 

pipeline 262 

 Even with the possible variations intrinsic of the method and process, the 16S rRNA amplicon 263 

approach must be highly reproducible. Based on this, we performed repeatability and reproducibility 264 

(robustness) tests to evaluate our method bias and variations in amplicon library preparation along 265 

with the bioinformatics analysis. For the intra-run technical reproducibility test (Supplementary 266 

Figures 4A-C) compared to the inter-run reproducibility tests (Supplementary Figures 4D-F) high 267 

correlations were obtained, with lower variations in samples alpha and beta-diversities. The overall 268 

within-sample correlations for the results obtained with the three different operators can be seen in 269 

Figure 3A. Considering all the library and sequencing process variation, different operators, reagents' 270 

lots, plastics and laboratory equipment (e.g. thermocyclers and pipettes) the Pearson and Spearman 271 

correlation indices showed considerably high values, mainly above 0.9 for all samples. Alpha diversity 272 

for the three independent batches of amplicon library preparations and sequencing, performed by three 273 

different operators, showed equivalent indexes (Figure 3B). Beta diversity analysis also demonstrated 274 

sample-related grouping patterns, which indicates within-sample distances were consistently smaller 275 

than between-sample distances (Figure 3C). Negative controls showed a small number of sequenced 276 

reads (from 10 to 45), with different and random profiles, while the samples themselves presented 277 

from 1,882 to 47,528 reads with consistent bacterial pattern among the replicates. 278 

 All the analyses presented in this paper were performed using the EncodeTools Metabarcode 279 

pipeline, as described in methods. Besides providing more reliable taxonomic classification due to the 280 

LCA feature, this pipeline allows us to access the oligotypes present in a given sample that 281 

corresponds to the real amplicon sequence variants (ASVs), and are independent of taxonomic 282 

assignment. Oligotype information provides a higher-resolution view of the sample diversity and its 283 

DNA sequence composition, so we used that approach to evaluate both our pipeline (EncodeTools 284 

Metabarcode) and the robustness of our amplicon library preparation method. As observed in Figure 285 

3 and Supplementary Figure 4, satisfactory correlations and small within-sample variability were 286 

observed for the conjunction of experimental methods and the bioinformatics pipeline. To further 287 

characterize the latter in terms of sensitivity and specificity, we also extended the analysis to a 288 

bacterial mock as described below. 289 

 Specificity and sensibility of the EncodeTools Metabarcode pipeline were measured using the 290 

bacterial mock results (sample - H) along with the robustness assays. 88.2 ± 2.7% sensitivity and 291 

100% specificity for species level was achieved, given the possible resolution of taxonomical 292 

assignment for some 16S rRNA sequences (Supplementary Figure 5). Meanwhile, 99.3 ± 2.7% 293 
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sensibility and 100% specificity was achieved for the genus level. At family level, the sensibility and 294 

specificity reached 100%. 295 

 296 

 The EncodeTools Metabarcode pipeline generates as output an out_metabarcode 297 

(Supplementary Table 2). In this table, we can verify all the oligotypes identified in the analysis, the 298 

total number of reads for each oligotype, and the taxonomic assignment given to each oligotype - 299 
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Bray-Curtis DissimilarityWeighted Unifrac

Sample group

A

B

C

Sample group

Sample group

Figure 3. Method reproducibility for DNA library preparation, sequencing and analysis. Eight different DNA
sample libraries (A-H) processed in replicates by three different operators and sequenced in three different sequencing
runs (Seq234, Seq237, Seq238) all of which analyzed with the EncodeTool metabarcode pipeline. (A) Intra-replicates
variations were assessed through correlation analysis demonstrating satisfactory results, with Pearson >0.9 and Spearman
>0.8. (B) Alpha diversity indexes, Shannon and InvSimpson, obtained for replicates in each sample set were compared in
parallel, showing very small differences throughout the results. (C) Beta-diversity analysis using weighted UniFrac and
Bray-curtis dissimilarity, showed that each sample bacterial profile remains clustered together, confirming that variations
observed in replicates are less relevant than the original bacterial composition from the different samples.
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along with their assigned taxonomic lineage (kingdom, phylum, class, order, family, genus and 300 

species). This lineage path stops at the last level in which the oligotype could be classified. For 301 

example, several Enterobacteria can only be classified at the family level due to the high similarity 302 

among their 16S rRNA gene sequences. When the EncodeTools pipeline matches an oligotype with 303 

two or more identical reference sequences, belonging to different species, genus or other higher 304 

taxonomy level, the oligotype taxonomic assignment is set for the last common level (ancestor) in the 305 

taxonomic path. For instance, if an oligotype could not be resolved at the species level, giving its 306 

sequence similarity with two or more species, it probably will be classified at the genus or family 307 

level. The out_metabarcode table shows us what are these taxonomies, their identities, and their 308 

similarities in the analysis. The read sequence for each oligotype can also be visualized in this table, 309 

along with a list of samples in which that given exact sequence was found. 310 

  311 

Brazilian bacteriome profile 312 

 The experimental procedures and analyses evaluated in this paper were applied to a subset of 313 

over 200 random fecal samples from the Brazilian population. A total of 8,654,114 reads were 314 

obtained with an average of 42,010 reads by sample and 2,080 unique oligotypes ranging from 10 to 315 

451,065 reads in the global result. The number of bacterial oligotypes for each sample varied mostly 316 

between 30 to 90 (Figure 4A) well approximating a Gaussian distribution (Shapiro-Wilk, P = 0.596) 317 

in the populational subset evaluated. On average, taxonomic assignment through the EncodeTools 318 

Metabarcode pipeline could be obtained for 98.93% of the reads at the bacterial kingdom level, 319 

97.25% at phylum, 91.82% at family, 81.85% at genus, and 59.35% at the species level (Figure 4B). 320 

In this sample subset, phylum, family and genus distributions did not present a Gaussian pattern 321 

(Shapiro-Wilk, P <0.01) (Figures 4C, 4D, 4E and 4F) while species are more normally distributed 322 

(Shapiro-Wilk, P= 0.145). 323 

 Regarding the taxonomic assignment, Bacteroidetes and Firmicutes are the most abundant 324 

phyla detected in the Brazilian samples with a median abundance values near to 50% (Figure 4G), 325 

followed by phyla Proteobacteria, Verrucomicrobia or Actinobacteria, being the lasts, detected in 326 

much lower abundances. In consequence, the most abundant families, genera and species are 327 

dominated by taxonomies from Bacteroidetes and Firmicutes phyla.  328 

 Families Bacteroidaceae, Ruminococcaceae, Lachnospiraceae and Eubacteriaceae are the 329 

most abundant families (Figure 4H). Prevotellaceae is also abundant, though its distribution showed 330 

relatively lower median and strong positive-skewness, i.e., many high-abundance outliers. 331 

Bacteroides was the most abundant genera detected, followed by Faecalibacterium, Eubacteria and 332 

Roseburia (Figure 4I). At the species level, considering the taxonomies that could be reliably resolved 333 
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by the EncodeTools pipeline (reflecting ~59.35% of the sequenced reads), Faecalibacterium 334 

prausnitzii is the most abundant species detected in this sample subset (Figure 4J), followed by 335 

Bacteroides vulgatus, Bacteroides uniformis, Eubacterium rectale and Allistipes putrenidis. Large 336 

amounts of Bacteroides could not be classified at the species level. 337 

  338 

 Diversity analysis were performed to visualize how these bacterial profiles are distributed in 339 

the populational subset evaluated. Alpha diversity indexes (Chao1, Shannon, Simpson and 340 

InvSimpson) were calculated for the samples oligotypes (Figure 5A). Chao1 was the only index with 341 

a normal distribution (Shapiro-Wilk, P= 0.596). Other indexes did not show a Gaussian distribution; 342 

however, they are skewed for some common ranges. The same alpha diversity analysis was performed 343 

for phylum, family, genus and species (Supplementary Figures 6A-D). However, all of them presented 344 

lower diversity indexes, as expected due to oligotype clustering in higher taxonomic ranks, reducing 345 

Taxonomy % Classified* Average of classified 
reads by sample*

Kingdom 98.93% 41,560.00

Phylum 97.25% 40,855.00

Family 91.82% 38,574.00

Genus 81.85% 34,384.00

Species 59.35% 24,933.00

*Average for the 206 stool samples

G

H

I

J

C

D

E

F

A

B

Figure 4. Bacterial profile for the Brazilian fecal microbiome. Over 200 fecal samples from a mischaracterized population were evaluated. (A) EncodeTools
Metabarcode pipeline showed an oligotype frequency distribution along the samples with more frequent values among 30-90 oligotypes by subject. (B) Each
sequenced sample yielded approximately 41,500 reads and the EncodeTools Metabarcode Taxonomy Assignment algorithm could attribute phylum taxonomy for an
average of 98.93% sample reads. 81.85% of the sequenced reads could be identified at genus level and 59.35% at species level, representing an average of 24,933
reads classified. (C-F) Populational distribution of taxonomic assignments in phylum, family, genus and species. Most frequently a subject has between 3 and 4
bacterial phyla, 10 to 15 bacterial families, 10 to 20 bacterial genera, and 12 to 22 bacterial species. Most abundant bacteria for each taxonomy level (G) phylum,
(H), family, (I) genus and (J) species are shown accordingly with their populational median distribution.
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the number of taxonomies to account for the analysis. None of these presented Gaussian distribution, 346 

except for Chao1 at species level (Supplementary Figure 6D).  347 

 348 

 The beta diversity analyses, using both Bray-Curtis dissimilarity and phylogenetic similarity 349 

Weighted UniFrac, were performed for the samples' oligotypes. PCoA plots showed that samples were 350 

widely dispersed, without specific sample subgroups. In Figure 5B, alpha diversity indexes (Shannon 351 

and InvSimpson) didn't seems to explain any significant pattern of sample distribution among the 352 

population subset. However, the PCoA arrangement, considering the first two Principal Coordinates 353 

(PC's) for both methods, seems to be guided by the two most abundant phyla in the samples: 354 

Bacteroidetes and Firmicutes. Samples with higher abundance of Bacteroidetes have smaller amounts 355 

of Firmicutes and samples with less Bacteroidetes have more abundant oligotypes attributed to 356 

Firmicutes (Figures 5C-F). Less abundant phyla have more homogeneous low abundance distribution 357 

among samples (Figures 5G-L). Lower taxonomic levels (family, genus and species) seem to be less 358 

A B

C

D

E

F

G

H

I

J

K

L

Figure 5. Brazilian bacteriome diversity analysis with oligotype sequences. (A) Alpha-diversity Chao1, Shannon, Simpson and InvSimpson indexes distribution for
the data were analyzed. Only Chao1 index approximates to a Gaussian distribution (Shapiro-Wilk 0.59), however other alpha diversity indexes showed pretty narrow
skewed data distribution. (B) PCoA plots for Bray-Curtis and weighted UniFrac showed a lack of correlation regarding alpha-diversity Shannon and InvSimpson
distributions. (C-L) Bray-Curtis dissimilarity and weighted UniFrac PCoA plots colored by phylum abundance distribution. Most abundant phyla Bacteroidetes (C-D) and
Firmicutes (E-F) have marked distributions among all the samples analyzed. Three major groups could be seen, samples higher in Firmicutes (that are lower in
Bacteroidetes), samples lower in Bacteroidetes (higher in Firmicutes) and samples with equivalent amounts of both phyla. Other less abundant phyla (G-H)
Proteobacteria, (I-J) Verrucomicrobia and (K-L) Actinobacteria doesn't seem to contribute to the populational distribution observed in the beta-diversity analysis.
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correlated with the overall beta-diversity arrangements, at least when considering the first two PCs. 359 

Still, some small groupings can be observed for samples with higher amounts of Bacteroidaceae, 360 

Ruminococcaceae, Prevotellaceae, Bacteroides, Faecalibacterium, Faecalibacterium prausnitzii and 361 

Bacteroides vulgatus (Supplementary Figure 6). Other abundance-driven grouping tendencies can be 362 

observed in the PCoAs shown in Supplementary Figure 6. However, further analyses are required to 363 

establish specific correlations between certain taxonomies and possible enterotypes/bacteriome 364 

profiles.  365 

 Finally, 30 negative controls of DNA extraction (CNE) were analyzed along with 44 negative 366 

PCR reaction controls (CNR). This control analysis, performed at each sequencing batch, allows us 367 

to detect deviations in the process that could invalidate the sample results. Here, the oligotype numbers 368 

as well as the total reads per library obtained for control samples were notably low, which yielded 369 

completely different alpha and beta diversity profiles (Supplementary Figure 7). Thus, no significant 370 

batch contamination from reagents was detected and the process is capable of reliably representing 371 

the original bacteriome samples’ compositions. 372 

 373 

Discussion 374 

 375 

 In this paper, we present an end-to-end assessment of the methodologies that we developed to 376 

analyze the bacterial composition of the intestinal microbiome. First, we created a sample collection 377 

kit, Probiome, that people can easily take home and use to collect a small amount of fecal sample with 378 

a sterile swab and store it at room temperature using a tube containing a stabilizing solution to deliver 379 

it to the laboratory within 30 days after sample collection. Then the laboratory performed the 380 

following procedures: DNA sample extraction and 16S rRNA amplicon sequencing to access the 381 

sample bacterial composition through a bioinformatics - EncodeTools Metabarcode pipeline. All these 382 

processes were evaluated to account for processing variabilities and reproducibility of the obtained 383 

results. 384 

 A very high load of microorganisms populates our gut. From the moment of sample collection 385 

to the DNA extraction, the bacterial profile can suffer dramatic changes caused by sample degradation 386 

or even microorganisms overgrowth. It may favor the detection of some microorganisms over another 387 

(e.g., aerobes x anaerobes). Thus, adequate sample storage is necessary until proceeding to the DNA 388 

extraction to preserve the real bacterial profile in the samples [14,15,36]. Although immediately 389 

freezing seems to be the best choice [36]  it is not feasible in large-scale populational studies. Some 390 

storage solutions have already been evaluated like RNAlater, OMINIgene-gut, Norgen, Shield, Tris-391 

EDTA, ethanol 70%, 90% or 95% and FTA cards [14,15,36–38]. Generally, these studies evaluated 392 
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the sample preservation at the short term, from two to seven days, and reported that OMNI, ethanol 393 

95%, Norgen and FTA cards were the best preservation alternatives. However, only OMNI and 394 

Norgen were shown to impairs bacterial growth in the sample, while RNAlater should be avoided 395 

given its poor DNA recovery and alterations in bacterial taxa recovered [14,36,38–40]. Only one of 396 

these studies performed a long-term survey of sample preservation at room temperature for eight 397 

weeks, showing that OMNIgene-gut, FTA cards and ethanol 95% were the best preservatives with 398 

very minimal variations, comparable to technical replicates variations [14]. Another long-term study 399 

evaluated 5-year samples stored in RNAlater and frozen at -80 ºC. However, these samples remained 400 

6-17 days at room temperature before freezing [41] so this study did not account for the alterations in 401 

the microbial profile caused by the room temperature storage during a considerably long period - 402 

which is critical given the previous research warnings to avoid RNAlater. Based on all this knowledge, 403 

together with the high costs of solutions like OMNI or Norgen and the need for an accessible fecal 404 

collection kit in Brazil, we developed our storage solution, ZSample. It was tested regarding bacterial 405 

inactivation and profile maintenance for 30 days at room temperature. Variations in the bacterial 406 

profile related to different lot productions of the solution were not detected either. 407 

 After sample collection, the storage lasts until the DNA extraction process, which obtain the 408 

microbial genetic information of the sample. This is also an intensive subject of investigation, since 409 

different DNA extraction methods can lead to different microbial profiles. Even though subject's 410 

differences are known to be one of the greatest sources of variability for human microbiome data, 411 

some DNA extraction methods yield more variations than others [16,42–45]. We detected significant 412 

variations in the bacterial profile recovered by DNeasy PowerSoil Pro kit. These variations may be 413 

attributed to the bead-beating with the zirconium beads during the lysis process. To the best of our 414 

knowledge, DNeasy PowerSoil and QIAamp PowerFecal DNA represent the most used kits in 415 

microbiome research studies. Hence, aiming to keep consistency with the microbiome profiles 416 

reported in the literature, we continued the use of PowerSoil Kit. Nonetheless, it remains to be 417 

confirmed which DNA extraction kit yields the most reliable results, i.e., the one which most closely 418 

resembles the original samples’ bacterial composition. 419 

 Besides sample storage and DNA extraction, the DNA library preparation for high-throughput 420 

sequencing could also have a greater impact on the assessment of the results. In general, there are two 421 

main approaches used to assess the gut microbial diversity: a metabarcode analysis, such as 16S rRNA 422 

gene for bacterial identification and compositional analysis, and metagenomics approaches which, in 423 

addition to bacterial identification, can reveal other microorganisms such as fungi, viruses or 424 

eukaryotes, as well as their interaction networks through genes and metabolism inferences. Both 425 

methodologies are valid and should be applied in accordance with the expected results. To perform a 426 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2020. ; https://doi.org/10.1101/646349doi: bioRxiv preprint 

https://doi.org/10.1101/646349
http://creativecommons.org/licenses/by-nd/4.0/


 17 

high-level community profiling, 16S rRNA marker gene is most indicated, whereas to perform 427 

functional profiling, metagenomics must be used [13]. Additionally, previous research as the MetaHIT 428 

project demonstrated that human intestinal microbiome is composed mainly of bacteria, more than 429 

90% of the intestinal DNA recovered was bacterial-related [2]. Also, it was shown that 16S rRNA 430 

amplicon sequencing recovers more bacterial diversity than shotgun based metagenomics [46]. Thus, 431 

16S rRNA marker gene amplicons are best suited for our analysis and expected results, being the 432 

method of choice for this study. 433 

 We evaluated the reproducibility of our amplicon library preparation performing several 434 

replicates and including variables such as different operators, equipment, reagents and dates of 435 

processing. These assays were also used to test our pipeline of analysis (EncodeTools Metabarcode) 436 

justifying the higher number of replicates performed and a bacterial mock sample with known 437 

composition. The EncodeTools Metabarcode pipeline was developed to provide more reliable results, 438 

assessing single variations from the sequences with greater confidence and improved taxonomic 439 

assignment.  440 

 The analysis of amplicon sequencing variants (ASVs), grouped into oligotypes composed by 441 

sequences with 100% similarity, is the main feature that improves the 16S rRNA gene bacterial 442 

profiling [13,17]. We already use this approach of reads clustering since 2014, for hospital 443 

microbiome surveillances using 16S rRNA gene high-throughput sequencing [26]. Currently, new 444 

bioinformatics tools are available to assist in the accuracy of obtained sequence reads, as the denoising 445 

procedures based on software packages like Deblur and DADA2 [18,22,47]. These pipelines help in 446 

the detection of sequencing artifacts and erroneous reads, giving a more reliable result regarding 447 

oligotypes that may vary by only one nucleotide, as well as being more useful in the detection of real 448 

variations among samples [22].   449 

 In the EncodeTools Metabarcode pipeline, we implemented a de novo taxonomic assignment, 450 

based on similarity [25], which can classify most of oligotypes at least to the phylum level. Thus, 451 

associating our EncodeTools metabarcode pipeline with the 283bp - 16S rRNA V3/V4 oligotypes and 452 

a de novo taxonomic classification, we can obtain high-quality, highly-reproducible results. Regarding 453 

taxonomic assignment, using a read length of 283bp provides a great improvement for taxonomy 454 

resolution at several ranks, including at species level. This approach seems to perform even better 455 

than some metagenomics approaches in which only 52.8% of the fragments could be assigned to genus 456 

and 80% to phylum - while still reporting bacterial dominance within intestinal microbiome [2].   457 

 The inclusion of negative controls along the process is also important to assess possible 458 

contaminations that may occur in the DNA extraction, PCR amplification, sequencing or even in the 459 

bioinformatics pipeline, as previously reported [16,48,49]. Contaminations with some bacterial DNA 460 
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is ubiquitous among DNA extraction kits and laboratory reagents [48], being more relevant for 461 

microbial detection in low-biomass samples [50]. In general, we detected very low number of reads 462 

in negative controls, with an average of only four oligotypes and highly random bacterial profiles. In 463 

each experimental batch, these contaminations must be evaluated to understand the magnitude of their 464 

impact on the results, whether they can be filtered from some samples or even if they invalidate the 465 

entire result. EncodeTools Metabarcode pipeline has this filtering options embedded in its code to 466 

evaluate negative controls from each experimental batch. 467 

 The procedures described here were applied to a batch of more than 200 fecal samples 468 

collected from the Brazilian population. So far, there were no reports for the microbial diversity of the 469 

Brazilian gut microbiome, thus we presented a first general overview of this profile for bacterial 470 

abundance and distribution. The Brazilian fecal microbiome samples have a consistent distribution of 471 

oligotypes, phylum, family, genus and species along the population analyzed, often approximating 472 

Gaussian distributions. Alpha and beta diversities have similar distributions to those reported by other 473 

studies [51] , in which the main populational dissimilarities are guided by the most abundant phyla. 474 

Generally, most of the studies published so far showed that the human intestinal microbiome is mainly 475 

composed by Bacteroidetes and Firmicutes phyla [2,3,5–7,9,52], as we observed here. The Brazilian 476 

microbiome profile shown here should be further investigated with stratified metadata to better 477 

understand patterns and microbial diversities related to populational geography, diet, age, sex, and 478 

several other possibly associated/confounding factors. Brazilians compose a very diverse and 479 

geographically distributed population. Deep characterization of their microbiome profiles is necessary 480 

if we want to better comprehend the applicability of the information derived from other populational 481 

studies [8,12,53].  482 

 In conclusion, we provided an end-to-end assessment of microbiome sample processing and 483 

analysis, as well as its applications to the study of the Brazilian fecal bacteriome. Using an effective 484 

sample collection method, with a standardized sample processing, DNA sequencing and 485 

bioinformatics analysis, we achieved highly reliable results. One of the major gains of the 486 

methodology herein presented is the bioinformatics pipeline in which oligotypes represent the pure 487 

sample diversity, free of biased taxonomic assignment for generalist groupings as in OTU picking  488 

[13,22,54,55]. OTUs are known to underestimate sample diversity. However, sOTUs, ASVs or 489 

oligotypes approaches overcome this issue, and even empower 16S rRNA studies to reveal more 490 

bacterial diversity than shotgun metagenomics [46,56]. In addition to the oligotype approach, we also 491 

gain phylogenetic resolution by sequencing a larger fragment that most studies do, which improves 492 

taxonomical assignment in fecal sample characterizations. Using these methodologies, larger sample 493 
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cohorts should be analyzed for Brazilian population and more detailed comparative studies and meta-494 

analyses must increase the knowledge about the intestinal microbiome of such a diverse population.  495 
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