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Abstract

Motivation: Residue-residue coevolution has been used to elucidate structural information of enzymes.

Networks of coevolution patterns have also been analyzed to discover residues important for the function

of individual enzymes. In this work, we take advantage of the functional importance of coevolving

residues to perform network-based clustering of subsets of enzyme families based on similarities of their

coevolution patterns, or "Coevolution Similarity Networks". The power of these networks in the functional

analysis of sets of enzymes is explored in detail, using Sequence Similarity Networks as a benchmark.

Results: A novel method to produce protein-protein networks showing the similarity between proteins

based on the matches in the patterns of their intra-residue residue coevolution is described. The properties

of these co-evolution similarity networks (CSNs) was then explored, especially in comparison to widely

used sequence similarity networks (SSNs). We focused on the predictive power of CSNs and SSNs

for the annotation of enzyme substrate specificity in the form of Enzyme Commission (EC) numbers

using a label propagation approach. A method for systematically defining the threshold necessary to

produce the optimally predictive CSNs and SSNs is described. Our data shows that, for the two protein

families we analyse, CSNs show higher predictive power for the reannotation of substrate specificity for

previously annotated enzymes retrieved from Swissprot. A topological analysis of both CSNs and SSNs

revealed core similarities in the structure, topology and annotation distribution but also reveals a subset

of nodes and edges that are unique to each network type, highlighting their complementarity. Overall, we

propose CSNs as a new method for analysing the function enzyme families that complements, and offers

advantages to, other network based methods for protein family analysis.

Availability: Source code available on request.

Contact: anil.wipat@ncl.ac.uk

1 Introduction

Performing functional analysis of protein families and classifying

their members is a major challenge in bioinformatics. For example,

assigning functional annotations to enzyme families can lead to a better

understanding of enzyme evolution and enzyme diversity (Baier et al.

(2016)), with applications in areas such as enzyme engineering (Brown and

Babbitt (2014)). Enzymes are also being increasingly used as biocatalysts

in different fields such as the pharmaceutical industry, removing much

of the need for expensive and environmentally-harmful chemical reagents

used in synthesis reactions (Ran et al. (2008)).

However, functional analysis and annotation of enzymes is difficult,

especially the assignment of substrate specificity. Indeed, while the number

of available protein and enzyme sequences has increased exponentially
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2 Sample et al.

thanks to next-generation sequencing, the proportion of sequences which

have known experimental annotation has lagged behind. For example,

UniprotKB is a central hub of proteomic data that is separated into

two subsets: Swiss-Prot, whose entries are manually curated, and

TrEMBL, whose entries are not (Apweiler et al. (2004)). As of the

13/02/2019 release, TrEMBL stores over 140 million sequences, while

Swiss-Prot only contains around 550 thousand (Uniprot Consortium

(2019a,b)). Furthermore, only around 28% of the Swiss-Prot proteins have

experimental evidence at the transcript or protein level, with around 69%

inferred from homology.

Swiss-Prot’s latest release also contains 238,254 entries with "catalytic

activity’ annotation i.e. enzymes with annotated functions. Only 10,921

(4.5%) of these entries have their catalytic activity sections backed up

by the evidence tag "ECO_0000269", which is used by UniprotKB to

indicate annotation that is "manually curated information for which there

is published experimental evidence". Indeed, of Swiss-Prot enzymes,

179,784 (74.5%) have their catalytic activity assigned by what Uniprot

terms "sequence models", which are generated by an automatic annotation

system that uses predictive tools like HAMAP (Lima et al. (2009); Gattiker

et al. (2003)). This system annotates entries by matching them to sets of

template alignments and rules about important sequence features. While

these templates are manually curated and kept up to date, sequence

similarity is ultimately the core metric.

High sequence identity (>40%) has long been proven to be a good

estimator for conserved protein structure and function, but it has significant

drawbacks. The "twilight zone" (20-35 identity) is a well known threshold

where sequence conservation stops being a useful metric for declaring two

proteins as homologous (Rost (1999)). However, two enzymes lying in

this "twilight zone" of uncertainty does not preclude them from being

functionally similar (and vice versa) (Ponting (2017)). For example,

lactonases exhibiting phosphotriesterase activity have been found in

three different superfamilies: amidohydrolases, six-bladed propellers, and

metallo-b-lactamases (Babtie et al. (2010)). Indeed, aligning sequences

of example enzymes from each of these superfamilies (Q97VT7, P27169,

A9CKY2, respectively) onto a multiple sequence alignment (MSA) results

in percent identity values that range from 15.06% to 23.48% - figures

which are far from the 40% threshold usually associated with homology

(Rost (1999)). Clearly, new approaches are required to confirm functional

similarity of proteins with sequence similarity that falls in and below the

twightlight zone.

New approaches such as Sequence Similarity Networks (SSN) have

been shown to be useful for giving a good overview of the functional

diversity of enzyme families and superfamilies (Atkinson et al. (2009);

Gerlt et al. (2015)), techniques that can overcome the aforementioned

drawbacks associated with pure sequence similarity are needed.

Residue-residue coevolution is another useful method for searching

for functional conservation in protein sequence and structure. Two amino

acid residues are said to coevolve if an influential substitution in one

residue is counteracted by a substitution in the other residue (Morcos

et al. (2011)). Under an evolutionary lens, residue-residue coevolution

in a protein can be seen as happening due to the evolutionary pressure

on the protein for retaining functional stability. While residue-residue

coevolution information has mostly been used to infer spatial constraints

for residues for the purposes of tertiary structure prediction (Moult (2005);

Moult et al. (1999); Schaarschmidt et al. (2018)) and for predicting protein-

protein interactions (Pazos et al. (1997); Ovchinnikov et al. (2014)),

patterns of coevolution have also been used in a functional context.

Coevolution patterns are often represented as homogeneous residue-

residue coevolution networks, where networks are proteins, nodes are

residues, while edges between nodes are created if the two residues are

likely to coevolve. Such networks have been successfully used in revealing

functionally important residues (Salinas and Ranganathan (2018); Gloor

et al. (2005); Yeang and Haussler (2007); Lee et al. (2008); Kuipers et al.

(2009); Dwyer et al. (2013); Lee et al. (2012)). With the emergence of

both better and faster methods for computing the coevolution metric on

a larger scale (Hopf and Marks (2017); Ekeberg et al. (2013); Seemayer

et al. (2014); Wang et al. (2017); Schaarschmidt et al. (2018)), it is now

possible to produce better coevolution data for a set of enzymes and build

residue-residue coevolution networks for each of them on a larger scale

than previously possible.

While coevolution data has been used to analyse function in individual

enzymes, to the authors knowledge, there has been little or no use for

single protein co-evolution data as a similarity metric between proteins

in a protein family-wide classification analysis. As coevolution patterns

contain information important to function, the hypothesis explored in this

work is that functionally similar enzymes, specifically in terms of their

substrate specificity will share similar coevolution patterns. To tackle

the aforementioned challenges of sequence similarity-based methods in

functional analysis, we explored how an all-vs-all similarity comparison

of the coevolution patterns of a set of enzymes could be used to perform a

functional analysis of a dataset of coevolution patterns.

We also introduce a method of representing data about functionally

related proteins that we call Coevolution Similarity Networks (CSN).

CSNs are built using the same network logic as SSNs: nodes are proteins,

and edges are made between nodes if their coevolution patterns are similar

enough based on some set threshold.

In this work we show that CSNs can describe the distribution of

functional diversity of a set of enzymes across a network, in terms of

substrate specificity, in a way that groups functionally of similar nodes, in

a similar, but complementary, fashion to SSNs. We compare the CSNs and

SSNs produced for two different annotated enzyme datasets from Swiss-

Prot (transaminases and short-chain dehyrodgenases) in terms of both the

resulting networks that describe the family structure and in their predictive

power in a label propagation experiment for predicting enzyme substrate

specificity. We show that the CSN is able to predict known annotation of

subsrate specifity more specifically than the SSN for these two examples.

Finally also, consider the ability of CSNs to predict promiscious enzymes

and show that CSNs could have role complementary to SSNs in the

prediction of enzymes with multiple substrates.

2 Methods

2.1 The Datasets

To investigate the use of CSNs two enzymes families were used. The

first comprises 241 transaminases, while the second is a set of 142

enzymes from the short-chain dehydrogenases/reductases (SDR) family.

Both datasets were built from Swissprot (Apweiler et al. (2004)). These

datasets were chosen since they are well annotated and relevant to the focus

of this study and were built by searching on Swissprot for prokaryotic

entries that contain the PFAM identifiers for the respective families,

PF00202 for the transaminases and PF00106 for the SDRs (Bateman et al.

(2004)). We refer to these datasets as Trans241 and SDR142 respectively

for the remainder of this work.

The advantage of selecting datasets from Swissprot is that we can

be more confident of their annotation. One important annotation type

most of these entries contain is the Enzyme Commission (EC) number

(Bairoch (2000)). The EC number is a hierarchical classification system

that numerically labels an enzyme with four progressively more specific

levels of functional detail, down to the reported substrate specificity.

An important drawback of EC numbers is that the specificity of an

enzyme might be known, but not have a complete EC number as one for that

substrate has not been curated yet. Also, some complete EC numbers will
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still be hierarchical in nature and correspond to entire classes of enzymes.

For these reasons, we temporarily manually annotated the EC label of

some entries (for example, where the substrate is known and cited in the

Swissprot record), the list of which can be seen in Table S1. Tables S2 and

S3 also contains the EC number distributions for both datasets.

2.2 SSN Construction

For both the Trans241 and SDR142 datasets, we produce SSNs throughout

this work. We perform a global pairwise alignment using Needleman-

Wunsch Needleman and Wunsch (1970) in an all-vs-all fashion, producing

a sequence identity matrix for an entire dataset. This matrix is then used

along with a threshold to build a SSN. We use a rigorous form of SSNs

that require a global alignment algorithm with similarity over the whole

length of the protein, whilst other methods typically used BLAST based

approaches Atkinson et al. (2009).

2.3 Coevolution Preprocessing

We produced the coevolution data for every single protein using CCMpred

(Seemayer et al. (2014)). Specifically, we followed the exact recommended

steps for producing the data (https://github.com/soedinglab/CCMpred/wiki/FAQ).

The result was a coevolution matrix for every individual enzyme in both

datasets.

2.4 Residue-Residue Coevolution Network Construction

For each of the enzymes, the coevolution matrix was represented using

NumPy (Walt et al. (2011)), and then the top N coevolving pairs were

picked. As recommended by CCMPred, the top N pairs for each matrix

where selected. In this work specifically, we picked N to be an arbitrarily

high number to contain a high amount of coevolving pairs based on the

average sequence length of the dataset (600 for the SDR142 dataset and 700

for the Trans241 dataset) . From the coevolving pairs picked, we created

residue-residue coevolution networks for each protein where nodes are

residues and edges are made between the pairs that are said to coevolve.

2.5 Residue-Residue Coevolution Network Mapping

To compare the residue-residue networks, we needed a method of

comparing a coevolving pair in one enzyme to a coevolving pair in another

enzyme, and declaring them to be "equivalent". To do this, we align

the sequences into a MSA to establish the relative position co-evolving

residues. We then assumed that if a coevolving pair of one enzyme

aligns to a coevolving pair from another enzyme, then they are Equivalent

Coevolving Pairs (ECP). We therefore used Clustal-Omega (Sievers et al.

(2011)) to align all the sequences of a set into an MSA i.e. one MSA for

the Trans241 dataset, and one MSA for the SDR142 dataset.

As a result, for each dataset, we create an intermediate single large

alignment network where the nodes represent, collectively, the coevolving

residues of all the residue-residue coevolving networks, and edges are

made between nodes if they align on the MSA i.e. they are ECPs. For

example, if residues 40-60 coevolve in A, and residues 42-62 coevolve in

B, and the two pairs align on the MSA, then the two pairs are ECPs, and

we make an edge between A-40 and B-42, and between A-60 and B-62.

It is important to note that for a given functional protein family some

of the coevolving pairs are expected to be present in the majority of a

families members (de Juan et al. (2013)). Coevolving pairs that are present

in a majority of enzymes in a dataset are therefore uninformative when the

purpose of the analysis is to discriminate function at the specificity level,

where the enzyme class is common to all members under analysis. In these

cases, we filtered out coevolving pairs from the alignment network that

occur in an high proportion of the dataset members. Typically, coevolving

pairs that occur in over 60% of a dataset were removed, as none of the

enzyme substrate specificity classes in either datasets make up that large

of a proportion. However, this parameter is variable and optional.

2.6 Clique-based Residue-Residue Coevolution Network

Comparison

For each residue-residue coevolution network, we computed all the cliques

using NetworkX (Hagberg et al. (2008)). Cliques are a concept in network

theory that describe groups of nodes in a network that are fully connected

among themselves. This is relevant because "in the context of coevolution,

a clique represents a set of residues wherein each residue covaries with all

of the others" Lee et al. (2012). We then produced a square scoring matrix

by matching the cliques of the residue-residue coevolution networks e.g.

if a clique in enzyme A has X coevolving pairs, and all X coevolving pairs

have ECPs in enzyme B, then they are Equivalent Coevolving Cliques

(ECC), and we increment the score between A and B.

|A∩B|
|A|+|B|−|A|∩|B|

(1)

The clique similarity scores were then normalised to values between 0

and 1 by turning them into Jaccard distance scores where A and B are the

cliques of the residue-residue coevolution networks for enzymes A and B

(Equation 1): a score of 0 means no similarity between the networks, while

a score of 1 is an exact similarity between the networks. From these scores,

we produce CSNs where nodes are enzymes and edges are made between

two nodes if their similarity value is above some arbitrary threshold.

2.7 Enzyme Substrate Specificity Prediction Through Label

Propagation

To test the predictive power of the networks in labeling unknown data,

and to analyse how well the networks produced capture the diversity in

substrate specificity of the enzymes in the datasets, we perform a label

propagation experiment on the EC labels of the datasets. We implemented

an algorithm inspired by the work of (Schwikowski et al. (2000)) in their

functional prediction of the yeast protein-protein interaction network. The

following pseudocode was used:

Data: Nodes N, CanonicalLabels CL, MaxLabels M

Result: Dictionary of Predicted EC Labels PL

N, CL, M = initialization();

S, PL = iniRepSubset(CL);

N.remove(S);

count = 0;

while len(N) != 0 AND I != 100000 do

node = sampleOne(N);

neighbourLabels = countNeighbourLabels(node, S, PL);

if neighbourLabels !=null then

S += node;

N.remove(node);

PL[node] = pickTopM(neighbourLabels, M);

end

count +=1;

end

return PL;

The algorithm starts by initialising four variables: the list of nodes

N of some network (either an SSN or a CSN in this case), a dictionary

CL of the canonical EC number annotation taken from Swissprot (one or

more EC number per enzyme of the network), and a max number M of

predicted labels per enzyme. The algorithm outputs a dictionary PL that

will contain the annotation predicted by the algorithm, where keys are

entries and values are the labels.
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Unlike the approach described by Schwikowski and co-workers

(Schwikowski et al. (2000)), an initial semi-random subset S of nodes is

selected, and the dictionary PL with the labels for those nodes is initialised.

S is a representative subset that contains at least one enzyme for each EC

number. The algorithm then remove the nodes of S from N, and then

progressively predicts annotations for the rest of the nodes through label

propagation.

After initialisation, the algorithm iterates through the remaining nodes

one at a time in random order, ranking the labels of a node’s neighbours

based on propensity of the EC number. If the node has annotated

neighbours by that iteration, the node is added to S, is removed from N,

and the top M EC numbers are assigned to the node in dictionary PL. This

is repeated until the size of N reaches zero, or until a maximum amount

of iterations is reached. As this algorithm is stochastic, it is necessary to

perform multiple iterations.

In order to determine the predictive power of this approach when

applied to both SSNs and CSNs, we needed to iterate through the possible

thresholds for both networks. This would let us identify the optimal

threshold for each dataset for each network type, therefore allowing an in-

depth comparison of the two methods based on currently known optimal

conditions.

Specifically, for each threshold ranging from 0.05 to 0.9, we performed

200 iterations of the label propagation algorithm for a MaxLabel value of

2 for both network types. For each threshold, we produced two metrics:

average precision and average recall over the 200 iterations. In our case,

true positives are when the correct annotation is predicted, false positives

are when an incorrect annotation is predicted, and false negatives are

when no annotation is predicted. Specifically, the precision and recall

values produced only take into account nodes not included in the initial

representative subset, and nodes which have complete EC numbers.

It is important to consider what these two metrics represent in terms of

network structure and available labels. Depending on the network structure

drawn by the threshold, a different set of nodes can get labels propagated

to them, and the precision only assesses how correctly the labels were

predicted for that set, no matter how large or small it is. The recall on the

other hand will describe the extent the network could propagate labels, no

matter how correct those propagated labels are. While the best network

will optimise both values, the precision should be handled with caution due

to its larger dependence on the correct labels being known. For example, a

correctly connected but incorrectly labeled promiscuous component will

penalise the precision after label propagation. The recall is less affected

by this problem, as it is more dependent on the overall network structure

rather than the labels in this case. It is able to assess how well a particular

network covers the enzymes, as it would be heavily penalised for leaving

nodes as edgeless.

Therefore, while a balance of both precision and recall is necessary,

more emphasis is given to the recall when picking the optimal threshold.

We plotted the results of the label propagation onto Precision-Recall curves

(Figure 1 in Supplementary Data), and identified the optimal threshold for

SSNs and CSNs from both families by ranking the thresholds by sorting

by F1 score, which is the harmonic mean of both the precision and recall,

and then selecting the threshold with the highest recall.

2.8 SSN and CSN Comparison

Metrics were computed to compare the topology of SSNs and CSNs,

including the number of shared edges, number of network components (i.e.

independent subgraphs) and the number of edgeless nodes. The network

comparisons were carried out at the optimal predictive threshold for both

SSNs and CSNs as determined above. The networks were visualised using

Cytoscape and laid out using the organic layout algorithm (Shannon et al.

(2003)). The networks can be seen in Figures 2 and 3.

Fig. 1. Venn diagrams explaining the comparison of EC coverage between the SSN and

CSN. IN stands for Intersection Network, U-SSN for Unique Sequence Similarity Network,

and U-CSN for Unique Coevolution Similarity Network

2.8.1 SSN and CSN Structural Comparison

The set of edges that are shared by both a SSN and CSN we call Intersection

Network (IN) was computed by overlaying the networks and identifying

common edges between the networks. We also create networks for the

edges unique to the SSN and CSN respectively, which we call Unique-SSN

(U-SSN) and Unique-CSN (U-CSN) (Fig. 1). For each of these networks,

we compute the number of EC labels covered. For the U-SSN and U-

CSNs, we also compute the more specific number of EC labels completely

unique to them, by disregarding EC labels also present in the IN and the

counterpart unique network.

2.8.2 SSN and CSN Functional Comparison

Different network components can have multiple protein clusters

comprising enzymes of different substrate specificities. It is important to be

able to quantify the distribution of EC labels across clusters in the network.

To do this we computed a metric that we refer to as the MaxClust. The

MaxClust is the largest single network component that contains nodes for a

given EC number. More specifically, we computed the size of the MaxClust

for every EC label, indicating substrate specificity, (called MCNumber),

and then we computed the fraction of nodes of that EC label covered by

the MaxClust (called MCFraction). From these two values, we calculate a

metric we call Weighted-Average MaxClust Coverage, or WAMCC. The

WAMCC is calculated for a network and represents how well connected

enzymes of a similar substrate specificity are in a given network. While

this metric does not give details about individual specificity classes across

components, it works as a good comparison metric to see how specificities

differ across the network and how much the two network types agree on

the general network topology.

WAMCC is calculated as follows:

WAMCC =

∑
n

e=1
MCNumbere∗MCFractione

NumEdges

(2)

To perform a comparative analysis between CSNs and SSNs, we also

produce SSNs for both the Trans241 and SDR142 datasets, using the

optimal sequence similarity threshold as determined by the precision-recall

analysis described above.

3 Results

SSNs have been shown to be valuable for the functional analysis and

annotation of enzymes and visual analysis of protein families to reveal

themes and outlines (Atkinson et al. (2009)). Here, we consider the

properties of CSNs with respect to each of these applications. For
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functional annotation we retain a particular focus on the assignment of

enzyme substrate specificity.

3.1 SSNs and CSNs for the prediction and analysis of

enzyme substrate specificity

3.1.1 Computing the optimal threshold for the SSNs and CSNs

As described in the methods section 2.6 optimal thresholds were computed

on a balance of precision and recall. Figure 1 in the Supplementary Data

shows the precision recall graphs for the SSNs and CSNs from each family

with the thresholds indicated.

For the Trans241 dataset, the thresholds are 0.34 and 0.30 for the SSN

and CSN, respectively. For the SDR142 dataset, the thresholds are 0.33

and 0.45 for the SSN and CSN, respectively. The networks with these

thresholds were then considered to be the optimally predictive SSN and

CSN for both families.

3.1.2 Comparison of the substrate annotation power of the SSNs and

CSNs

In order to compare the utility of the SSNs and CSNs for the prediction and

subsequent annotation of enzyme function, especially substrate specificity,

we applied a label propagation approach to the optimally predictive

networks identified above to recover the known specificities of the two

families well characterised enzymes under study.

As can be seen in Table 1, we can see that for the Trans241 dataset, the

SSN has a slightly higher precision, and the CSN a slightly higher recall.

Whilst these difference are small for the network as a whole, they appear

to be significant when the network is considered in detail. We notice that

in some cases the SSN fails to assign substrate specificities where the CSN

succeeds. For the optimally predicted thresholds there are no cases where

the SSN is able to predict substrates that were not identified by the CSN.

For example, we can see in Table 3, for the Trans241 dataset, that the

U-CSN, a smaller network than the U-SSN, includes two EC labelss that

are unique to it, while the U-SSN includes no unique annotations. These

EC numbers are 4.1.1.64 and 2.6.1.111 and in the CSN are assigned to two

proteins (P16932 and B0VH76, respectively) one for each EC number,

but these protein nodes are edgeless in the SSN. We also notice that of the

neamine transaminases (2.6.1.93), of which there are three in Trans241,

only two are connected into a single component in the SSN, while in the

CSN all three are fully connected into a single component(A1, A2, Figure

2). Whilst the the sequence similarity threshold could be lowered to a point

to add these connections to the SSN, it is necessary to lower the threshold

to 29%, which is highly detrimental to the overall predictive accuracy of

the SSN through the introduction of noise in the form of false positive

predictions. This phenomenon shown by the significant reduction in label

propagation precision from 0.934 to 0.851 at this reduced threshold (Figure

1 in Supplementary Data). These results indicate, for this protein family,

for the optimal CSN and SSN threshold, the CSN is able to cover more

of the substrate specificity distribution of the Trans241 dataset without

having to sacrifice better precision.

Table 1. Label Propagation experiment results for the ooptimal SSN and CSN

for both the Trans241 and SDR142 datasets. To produce the precision and

recall metrics, we consider that true positives are when the correct annotation

is predicted, false positives are when an incorrect annotation is predicted, and

false negatives are when no annotation is predicted.

Dataset Trans241 SDR142

Network (Threshold) SSN (0.34) CSN (0.3) SSN (0.33) CSN (0.45)

Precision 0.934 0.918 0.725 0.753

Recall 0.987 0.995 0.973 0.982

Table 2. General network metrics for the optimal SSN and CSN for both the

Trans241 and SDR142 datasets.

Dataset Trans241 SDR142

Network (Threshold) SSN (0.34) CSN (0.30) SSN (0.33) CSN (0.45)

Edge Num 8,605 6,677 725 537

Component Num (- Edgeless) 11 (7) 6 (5) 41 (18) 38 (21)

Edgeless Node Num 4 1 23 17

For the SDR142 dataset, the optimal CSN has a higher precision

and recall than the SSN as shown in table 3. The U-CSN, which is also

smaller than the U-SSN for this family, includes three EC labelss that are

unique to the U-CSN, while the U-SSN includes no unique annotations.

These annotations are 1.1.1.140, 1.1.1.395, and 1.1.1.56, applied to four

proteins (P05707 and P37079, P07914, and P00335, respectively) in

the U-CSN. These proteins are edgeless in the SSN and therefore not

annotated. Lowering the SSN sequence similarity threshold to 30% results

in these enzyme classes are no longer edgeless, but doing so lowers the

precision from 0.725 to 0.62. While more coverage is important, such

a reduction in precision is an indication of noise being introduced, as

the label propagation algorithm is less able to correctly assign specificity.

These data therefore show that the optimal CSN is also a better predictive

structure than the optimal SSN for the SDR142 dataset.

3.2 A comparison of general network and functional

topology between SSNs and CSNs

SSNs and CSNs were produced for both the Trans241 and the SDR142

datasets at thresholds optimal for predictive power as described in the

methods. Table 2 shows some general network statistics for these networks.

CSNs equivalent to SSNs, in terms of maximum number of shared edges

and other networks statistics, as described in the Methods, were also

produced.

The first row of Table 2, shows the numbers of edges in each

network. The optimal SSNs have significantly more edges than the CSN

for both datasets. The second row contains the number of components

(independent subgraphs) in each network. As edgeless nodes technically

count as individual components, but are uninformative, we subtracted the

number of edgeless nodes. The resulting values are shown in parentheses.

Disregarding edgeless nodes, both network possess a similar number of

components indicating that while the SSN and CSN may differ in certain

details, they agree on a core of overall network structures and node

distribution. Finally, the last row of table 2 shows the number of edgeless

nodes in each network. In each comparison, across both datasets, the

CSN has significantly fewer edgeless nodes than the SSN. As the optimal

CSN has significantly less edges than the SSN, the fact that it also has

fewer edgeless nodes could demonstrate a stronger robustness to change

of thresholds.

Table 3 shows the distribution of EC coverage across the components in

the network as measured by the WAMCC value. The WAMCC value was

computed for both the SSN and CSN for both datasets. It is also computed

Table 3. Functional topology metrics for the optimal SSN and CSN for both

the Trans241 and SDR142 datasets. The metrics were also produced for the

network induced by the edges the compared SSN and CSN pairs share, which

we call Intersection Network (IN), and for the edges unique to each network,

which we call Unique-SSN and Unique-CSN (U-SSN and U-CSN).

Trans241 SDR142

Edges Covered ECs (Unique) WAMCC Edges Covered ECs (Unique) WAMCC

SSN 8,605 24 97.915 725 31 58.564

CSN 6,677 24 99.174 537 31 57.955

IN 6,343 18 98.19 429 23 60.783

U-SSN 2262 16 (0) 96.16 296 15 (0) 71.508

U-CSN 334 22 (2) 68.147 108 15 (3) 45.44
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Fig. 2. Visualisation of the optimal SSNs and CSNs for the Trans241 dataset. The top network is the SSN at 0.34 threshold and the bottom left network is the CSN at 0.30 threshold. Nodes

are coloured based on the EC annotation from Swissprot. The A1 and A2 boxes represent the neamine transaminases for the SSN and CSN respectively.

for the different Intersection Networks and Unique Networks. Table 3

also contains the number of EC labels covered by all the aforementioned

networks, including the number of EC labels unique to the Unique

Networks. The SSN and CSN agree on the functional distribution of EC

labels to a large extent. For example, the SSN and CSN of the Trans241

dataset have high WAMCC values of 97.915 and 99.174, respectively.

Their intersection network contains 18 of the total 24 EC labels, which

also represents agreement in overall functional topology. Similarly for the

SDR142 networks, the WAMCC values are 58.564 and 57.955 for the

SSN and CSN, respectvely. Also, 23 of the total 31 EC labels exist in the

intersection network.

3.3 Complementary Analysis of Potential Promiscuity

using SSNs and CSNs

Enzyme promiscuity is mostly unreported on the sequence databases. For

example, most enzymes in SwissProt are annotated with only one EC

number. However, we can still estimate the ability of both network types to

identify potentially novel promiscuous clusters of enzymes. The simplest

indication of potential promiscuity revealed by the networks is a connection

between two enzymes with different EC annotation. In Figure 3, we can

see that the SSN and CSN of the SDR142 dataset share a component (B1

and B2) that is very diverse in EC labels, with four different EC numbers

shared across the 12 nodes, and one incomplete EC (B1 and B2). To

further analyse this component, we examined three specific enzymes from

this component that are annotated with all four EC numbers: Q1R183

(1.1.1.313), Q8U8I2 (1.1.1.276), and P39831 (1.1.1.298;1.1.1.381).

One potential reason for the connection of these three enzymes could be

conservation of their function, increasing the chances of shared substrates,

and therefore promiscuity. We used a tool called EC-BLAST (Rahman

et al. (2014)) to compare the reactions catalysed by these three enzymes,

namely by looking at bond changes and similarity in reaction centers.

EC-BLAST returns the top 100 matches, along with similarity scores

(Tanimoto coefficient) and a p-value. While the EC number 1.1.1.381

unfortunately could not be found on the database, the other three could.

Indeed, the reactions 1.1.1.313, 1.1.1.276, and 1.1.1.298 were found

in each other’s top 100 EC-BLAST matches, with the highest p-value

being 1.4E-02. The similarity scores were 0.76 (1.1.1.313-1.1.1.276), 0.76

(1.1.1.313-1.1.1.298), and 0.89 (1.1.1.276-1.1.1.298). Given these scores,

the amount of evidence showing that edges in both network types correlate

with similar function, and the fact that both the SSN and CSN report

these connections, it could be an indication that these three enzymes are

promiscuous and share much of the reported catalytic diversity.

Another example of potentially novel enzyme promiscuity is the

set of nodes indicated by C1 and C2 in Figure 3, the majority of

which are connected in both the SSN and CSN. Much like the previous
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Fig. 3. Visualisation of the optimal SSNs and CSNs for the SDR142 dataset. The top network is the SSN at 0.33 threshold, the bottom network is the CSN at 0.45 threshold. Nodes are

coloured based on the EC annotation from Swissprot.The B1 and B2 boxes represent the first promiscuous component discussed for the SSN and CSN respectively. The C1 and C2 boxes

represent the second promiscuous component discussed for the SSN and CSN respectively.

example, this component has a high EC number annotation diversity. Three

enzymes in this component are of particular interest: P14697 (1.1.1.36),

P07914 (1.1.1.395), and Q9X6U2 (1.1.1.30).P14697 and P07914 are both

reported to catalyse CoA conjugated substrates: (3R)-hydroxybutanoyl-

CoA (1.1.1.36), and CoA conjugated 3-hydroxy bile acids (1.1.1.395),

respectively. 1.1.1.395 is unfortunately not available on EC-BLAST and

so reaction similarity was not available for P07914. Querying 1.1.1.30

with EC-BLAST showed that 1.1.1.36 is the highest scored match, with

a similarity score for bond changes and reaction centers of 0.98 and a

highly significant p-value of 9.4E-04. Moreover, the substrate catalysed

by Q9X6U2, (R)-3-hydroxybutanoate, is a similar substrate catalysed

by P14697, (3R)-hydroxybutanoyl-CoA (1.1.1.36), difference by the

CoA molecule. These analyses provide strong indications of potential

promiscuity between Q9X6U2 and P14697,together with a potential

relationship between P07914 and P14967 through the conjugation of

CoA. As all three enzymes are part of the same diverse cluster, we can

hypothesise that the relation between the three enzymes is transitive,

resulting in Q9X6U2 potentially sharing catalytic activity with P07914.

Importantly, while P07914 and its EC annotation of 1.1.1.395 is part of the

component in the optimal CSN, as mentioned in section 3.2, this enzyme

is edgeless in the SSN. While experimental data is required to validate

these predictions, it is nonetheless an interesting result.

4 Discussion and Conclusion

SSNs are increasingly finding utility for the visual inspection and function

analysis of protein families. The depiction of the functional relationships

between proteins in a family as a network allows the visualisation and

analysis of trends and groupings within large families (Atkinson et al.

(2009); Gerlt et al. (2015)). Moreover, representation of protein families

as networks makes their data accessible to common graph-based analytical

approaches, metrics and tools, such as cluster analysis. SSNs have been

widely applied to the functional analysis of enzyme protein families where

they can help resolve substructure in the family and be used to assert

functional equivalence.

Here we introduce a new approach for building networks of enzyme

protein families, coevolution similarity networks (CSNs), that also depicts

family structure and functional relationships but is not based directly

on sequence similarity. We propose that since residues that coevolve

do so under evolutionary pressure to maintain stability of structure and

function (Hopf and Marks (2017)), a similarity measure computed on such

residues should provide additional information about the conservation of

protein function to that of global and local sequence similarity. SSNs have

previously been shown to be valuable for functional annotation and protein

family assignment using guilt by association type approaches. In order to

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 24, 2019. ; https://doi.org/10.1101/646539doi: bioRxiv preprint 

https://doi.org/10.1101/646539
http://creativecommons.org/licenses/by-nc-nd/4.0/


✐

✐

“output” — 2019/5/23 — 16:24 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 Sample et al.

investigate the utility of CSNs for the annotation of enzyme function, we

evaluated the predictive power of CSNs for the re-annotation of unlabeled

nodes in a partially annotated dataset. A label propagation algorithm was

used to compare the predictive power of the SSN and CSN in assigning EC

numbers to nodes whose labels were removed for the sake of testing, given

a representative subset. In order to carry out a valid comparison between

our SSNs and CSNs it was necessary to devise a reproducible approach

to computing the weighting threshold for the removal of edges in the

network that resulted in the optimally predictive network. We showed that

the CSNs overall perform bettwe at SSNs for grouping together enzymes

of similar substrate specificity. In summary, while the SSNs and CSNs

are in agreement in a core of the overall network topology, we observed

that the optimised CSNs are more predictive of enzyme substrates than

optimised SSNs.

While CSNs contain novel enzyme functional information, they are

very much complementary to their sequence similarity counterpart. First,

both types of networks agree on large portions of the functional landscape

that is predicted for a set of enzymes. Second, both network types comprise

nodes which indicate proteins, integrating these two sources of information

is as easy as combining their edges into one network. Finally, while the lack

of promiscuity annotation is a problem that goes beyond the comparison

of the SSN and CSN, identification of promiscuity is something the two

network types can compliment each other on. While the latter does seem

more apt for taking into account promiscuity when connecting enzymes,

potentially promiscuous clusters appearing in both network types can give

us more confidence that some cluster is potentially promiscuous. While we

cannot be certain of some of the assumptions made without experimental

data, new avenues for research and identification of promiscuity open

through the CSN’s ability to make these interesting novel connections.

One of the heavy disadvantages of the CSN is that they are less

accessible than SSNs - they are computationally more complex to produce,

and coevolution is a harder metric to interpret directly. Also, CSNs are

a more parametrised network type compared to SSNs. For example,

the residue-residue coevolution networks are built based on picking

the top N pairs most likely to coevolve, where N is currently just

an arbitrary parameter. The filtering step where we disregard residue-

residue coevolution pairs that are common to 60% of enzymes is also

an arbitrary parameter. Optimising these parameters could therefore

potentially improve the method as a whole. Also, the SSNs we produced in

this work are based on pairwise global alignments, while other works have

used metrics like BLAST similarity (Atkinson et al. (2009)) for producing

SSNs.

While this work has focused on substrate specificity on the family

level, future work includes applying CSNs to a metagenome to distinguish

between families in general. Overall, while CSNs seemingly have an

advantage over SSNs for relaying the functional distribution of a set of

enzymes, they can could be used together to perform stronger analyses of

enzyme sets.
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