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Abstract 
Genetic interactions, such as synthetic lethal effects, can now be systematically identified in 
cancer cell lines using high-throughput genetic perturbation screens. Despite this advance, 
few genetic interactions have been reproduced across multiple studies and many appear 
highly context-specific. Understanding which genetic interactions are robust in the face of the 
molecular heterogeneity observed in tumours and what factors influence this robustness 
could streamline the identification of therapeutic targets. Here, we develop a computational 
approach to identify robust genetic interactions that can be reproduced across independent 
experiments and across non-overlapping cell line panels. We used this approach to evaluate 
>140,000 potential genetic interactions involving cancer driver genes and identified 1,520 
that are significant in at least one study but only 220 that reproduce across multiple studies. 
Analysis of these interactions demonstrated that: (i) oncogene addiction effects are more 
robust than oncogene-related synthetic lethal effects; and (ii) robust genetic interactions in 
cancer are enriched for gene pairs whose protein products physically interact. This suggests 
that protein-protein interactions can be used not only to understand the mechanistic basis of 
genetic interaction effects, but also to prioritise robust targets for further development. To 
explore the utility of this approach, we used a protein-protein interaction network to guide the 
search for robust synthetic lethal interactions associated with passenger gene alterations 
and validated two novel robust synthetic lethalities. 

Introduction 
Large-scale tumour genome sequencing efforts have provided us with a compendium of 
driver genes that are recurrently altered in human cancers(Vogelstein et al., 2013). In some 
cases, these genetic alterations have been associated with altered sensitivity to targeted 
therapies. Examples of targeted therapies already in clinical use include approaches that 
exploit oncogene addictions, such as the increased sensitivity of BRAF mutant melanomas 
to BRAF inhibitors(Chapman et al., 2011), and approaches that exploit non-oncogene 
addiction/synthetic lethality, such as the sensitivity of BRCA1/2 mutant ovarian or breast 
cancers to PARP inhibitors(Lord and Ashworth, 2017). An ongoing challenge is to associate 
the presence of other driver gene alterations with sensitivity to existing therapeutic 
agents(Barretina et al., 2012; Iorio et al., 2016) or to identify candidate therapeutic targets 
whose inhibition may provide therapeutic benefit to patients with specific mutations. Towards 
this end, multiple groups have performed large-scale loss-of-function genetic perturbation 
screens in panels of tumour cell lines to identify vulnerabilities that are associated with the 
presence or absence of specific driver gene mutations (i.e. genetic interactions)(Behan et 
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al., 2019; Campbell et al., 2016; Marcotte et al., 2016; McDonald et al., 2017; Meyers et al., 
2017; Tsherniak et al., 2017). Others have performed screens in ‘isogenic’ cell line pairs that 
differ only by the presence of a specific oncogenic alteration(Martin et al., 2017; Steckel et 
al., 2012). Despite these large-scale efforts, very few genetic interactions have been 
identified in more than one study (recently reviewed(Ryan et al., 2018)). Even in the case of 
cancer driver genes subjected to multiple screens, such as KRAS, few genetic interactions 
have been identified in more than one screen(Downward, 2015). This lack of reproducibility 
may be due to technical issues, e.g. false positives and false negatives due to inefficient 
gene targeting reagents(Kaelin, 2012), and/or real biological issues, such as the context 
specificity of genetic interactions(Henkel et al., 2019; Ryan et al., 2018). We refer to those 
genetic interactions that can be reproduced across multiple screens and across distinct cell 
line contexts as robust genetic interactions. Given that tumours exhibit considerable 
molecular heterogeneity both within and between patients there is a real need to: (i) identify 
robust genetic interactions that can be reproduced across heterogeneous cell line panels, 
reasoning that these reproducible effects will be more likely to be robust in the face of the 
molecular heterogeneity seen in human cancers; (ii) prioritise these robust genetic 
interactions for further therapeutic development; and (iii) understand the characteristics of 
robust genetic interactions in cancer as a means to predict new therapeutic targets. 
 
To achieve this, we developed, and describe here, a computational approach that leverages 
large-scale cell line panel screens to identify those genetic interactions that can be 
reproducibly identified across multiple independent experiments. We found that for all 
oncogenes studied, the most significant reproducible dependency identified was an 
oncogene-addiction rather than a synthetic lethal effect. Excluding oncogene addictions, we 
found 220 reproducible genetic interactions. In investigating the nature of these robust 
genetic interactions, we found that they are significantly enriched among gene pairs whose 
protein products physically interact. This suggests that incorporating prior knowledge of 
protein-protein interactions may be a useful approach to guide the selection of reproducible 
“hits” from genetic screens as candidates worth considering as therapeutic targets in cancer. 
We demonstrate the utility of the approach in identifying robust synthetic lethal interactions 
from chemogenetic screens and in identifying synthetic lethal interactions associated with 
‘passenger’ gene alterations. 

Results 

A “discovery and validation” approach to the analysis of loss-of-function 
screens identifies reproducible genetic dependencies 
We first wished to identify genetic interactions that could be independently reproduced 
across multiple distinct loss-of-function screens. To do this, we obtained gene sensitivity 
scores from four large-scale loss-of-function screens in panels of tumour cell lines, including 
two shRNA screens (DRIVE(McDonald et al., 2017), DEPMAP(Tsherniak et al., 2017)) and 
two CRISPR-Cas9 mutagenesis screens (AVANA(Meyers et al., 2017), SCORE(Behan et 
al., 2019)). We harmonised the cell line names across all studies, so they could be 
compared with each other and also with genotypic data (Barretina et al., 2012; Iorio et al., 
2016)(Fig. 1a). In total, 917 tumour cell lines were screened in at least one loss-of-function 
study. Only 50 of these cell lines were common to all four studies while 407 cell lines were 
included in only a single study (Fig. 1b). It is the partially overlapping nature of the screens 
that motivated the subsequent approach we took for our analysis. We used a ‘discovery set’ 
and ‘validation set’ approach to identifying genetic interactions across multiple screens - first 
identifying associations between driver gene alterations and gene inhibition sensitivity in the 
discovery study and then testing the discovered dependency in the validation study (Fig. 1c). 
However, to ensure that any reproducibility observed was not merely due to cell lines 
common to both datasets, we first removed cell lines from the validation dataset if they were  
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Figure 1. Identifying robust genetic interactions using partially overlapping loss-of-
function screens. a) Workflow showing the integration of four different loss-of-function 
screen datasets. b) Venn diagram showing the overlap of cell lines between the four 
datasets analysed in this study. c) Workflow showing how robust genetic interactions are 
identified using discovery and validation sets. 
 
present in the discovery dataset (Fig. 1c). For example, when using DEPMAP as the 
discovery dataset and AVANA as the validation dataset, we performed the validation 
analysis on the subset of cell lines that were present in AVANA but not in DEPMAP. In doing 
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so, we ensured that any genetic interactions  discovered were reproducible across different 
screening platforms (either distinct gene inhibition approaches, i.e. shRNA vs CRISPR, or 
distinct shRNA/CRISPR libraries) and also robust to the molecular heterogeneity seen 
across different cell line panels. 
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Figure 2. Discovered and validated genetic dependencies. a) Scatterplot showing the 
genetic dependencies identified across all datasets. Each individual point represents a gene 
pair, the x-axis shows the common language effect size, and the y-axis shows the -log10 p-
value from the discovery dataset. Selected gene pairs are highlighted – the driver gene is 
listed first, followed by the associated dependency. Each gene pair may have been tested in 
multiple discovery studies, only the interaction with the most significant discovery p-value is 
shown. Scatterplots for individual studies are presented in Supplemental Fig. S1. b) Tukey 
boxplots showing examples of robust genetic dependencies, including an increased 
resistance of TP53 mutant tumour cell lines to MDM4 inhibition and increased sensitivity of 
NRAS mutant tumour cell lines to NRAS inhibition. In each box plot the top and bottom of the 
box represents the third and first quartiles and the box band represents the median; 
whiskers extend to 1.5 times the interquartile distance from the box. WT = wild type, ALT = 
altered. Throughout blue is used to indicate increased sensitivity (synthetic lethality or 
oncogene addiction), yellow to indicate resistance to inhibition of the target gene. c) Boxplots 
showing examples of genetic dependencies discovered but not validated, including an 
increased resistance of TP53 mutant cancers to CENPF inhibition and increased sensitivity 
of NRAS mutant tumour cell lines to ERP44 inhibition. 
 
Similar to our previous work(Bridgett et al., 2017; Campbell et al., 2016) we integrated copy 
number profiles and exome sequencing data to annotate all cell lines according to whether 
or not they featured likely functional alterations in any one of a panel of cancer driver 
genes(Vogelstein et al., 2013) (see Methods, Supplemental Table S1). We then identified 
associations between driver gene alterations and sensitivity to the inhibition of specific genes 
using a multiple regression model that included tissue type as a covariate to reduce the 
possibility of confounding by tissue type (see Methods). We focused this analysis on 
‘selectively lethal’ genes - i.e. those genes whose inhibition killed some, but not all cell lines 
(Methods, Supplemental Table S1). We analysed each pair of screens in turn and 
considered a genetic dependency to be reproducible if it was validated in at least one 
discovery/validation pair. Using this approach, we tested 142,477 potential genetic 
dependencies and identified 1,530 dependencies that were significant in at least one screen 
(Fig. 2a, Supplemental Fig. S1). Of these 1,530 dependencies, 229 could be validated in a 
second screen (Supplemental Table S3, Fig. 2a). For example, in the AVANA dataset TP53 
mutation was associated with resistance to inhibition of both MDM4 and CENPF, but only 
the association with MDM4 could be validated in a second dataset (Fig. 2b, 2c). Similarly, in 
the DEPMAP dataset NRAS mutation was associated with increased sensitivity to the 
inhibition of both NRAS itself and ERP44, but only the sensitivity to inhibition of NRAS could 
be validated in a second dataset (Fig. 2b, 2c).  
 
Of the reproducible genetic dependencies nine were ‘self vs. self’ associations, where the 
alteration of a gene was associated with sensitivity to its own inhibition. The majority of these 
‘self vs. self’ associations were oncogene addiction effects, such as the increased sensitivity 
of NRAS mutant cell lines to NRAS inhibition (Fig. 2b). Similarly, we identified robust 
oncogene addictions involving the CTNNB1 (β-Catenin), KRAS, EGFR, BRAF, ERBB2 and 
PIK3CA oncogenes (Fig. 3a, 3b, Supplemental Fig. S2b). For EGFR and CTNNB1, the only 
identified robust dependency was an oncogene addiction effect. For all other oncogenes 
there were additional robust dependencies identified, but in all cases the most significant 
reproducible dependency was an oncogene addiction (Supplemental Fig. S2a). These 
observations suggest that for most oncogenes the oncogene addiction effect might be more 
robust than any oncogene-related synthetic lethal effects.  
 
We also identified two examples of ‘self vs. self’ dependencies involving tumour 
suppressors -TP53 (aka p53) and CDKN2A (aka p16/p14arf) (Supplemental Fig. S2c). 
This type of relationship has previously been reported for TP53: TP53 inhibition appears to  
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Figure 3. Identified robust genetic interactions. a) Dot plot showing the robust genetic 
dependencies identified for oncogenes. Each coloured circle indicates a robust genetic 
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dependency, scaled according to the number of dataset pairs it was validated in. The most 
significant genetic dependency (lowest FDR in a validation set) for each driver gene is 
labelled. Oncogenes are sorted by the number of robust dependencies and the total number 
of robust genetic dependencies for each driver gene is shown in parentheses. b) Example of 
a validated oncogene addiction – ERBB2 amplified cells are sensitive to ERBB2 inhibition. 
Left shows the discovery dataset (SCORE) and right shows the validation dataset (AVANA). 
c) Dot plot showing the robust genetic interactions identified for all driver genes. Each 
coloured circle indicates a robust genetic interaction, scaled according to the number of 
dataset pairs it was validated in. The most significant genetic interaction (lowest FDR in a 
validation set) for each driver gene is labelled. Drivers are sorted by the number of robust 
interactions and the total number of robust genetic interactions for each driver gene is shown 
in parentheses. TP53 (132 robust genetic interactions) has been excluded for clarity, as 
have all self-self dependencies. d) Examples of known genetic interactions identified from 
the integrated analysis, including an increased sensitivity of PTEN mutant tumour cell lines 
to PIK3CB inhibition and increased resistance of TP53 mutant tumour cell lines to MDM2 
inhibition. Top row shows the data used to discover the interactions (DEPMAP dataset) while 
the bottom row shows the data used to validate the interactions (AVANA dataset with cell 
lines from DEPMAP excluded). e) Synthetic lethal interactions involving paralog pairs. Top 
row shows the data used to discover the interactions (DRIVE dataset) while the bottom row 
shows the data used to validate the interactions (AVANA dataset with cell lines from DRIVE 
excluded). 
 
offer a growth advantage to TP53 wild type cells but not to TP53 mutant cells(Giacomelli et 
al., 2018). Consequently, we observed an association between TP53 status and sensitivity 
to TP53 inhibition. Similar effects were seen for CDKN2A (Supplemental Fig. S2c). These 
‘self vs. self’ dependencies, in particular the oncogene addictions, serve as evidence that our 
approach could identify well characterised genetic associations. However, as our primary 
interest was in genetic interactions between different genes, we excluded ‘self vs. self’ 
interactions from further analysis, leaving us with 220 robust genetic interactions (Fig. 3c). 

Many robust genetic interactions reflect known pathway structure 
Many of the reproducible genetic interactions we identified have been previously reported, 
including both sensitivity relationships, such as increased sensitivity of PTEN mutant cell 
lines to inhibition of the phosphoinositide 3-kinase-coding gene PIK3CB(Wee et al., 2008), 
and resistance relationships, such as an increased resistance of TP53 mutant cell lines to 
MDM2 inhibition (Fig. 3d). 
 
Amongst the set of 220 robust genetic interactions, we identified two previously reported 
‘paralog lethalities’ – synthetic lethal relationships between duplicate genes (paralogs) 
(Helming et al., 2014; Hoffman et al., 2014; Oike et al., 2013) (Fig. 3e). We found a robust 
association between mutation of the tumour suppressor ARID1A and sensitivity to inhibition 
of its paralog ARID1B (Helming et al., 2014) and also an association between mutation of 
SMARCA4 and sensitivity to inhibition of its paralog SMARCA2 (Hoffman et al., 2014; Oike 
et al., 2013). Both pairs of genes (ARID1A/ARID1B and SMARCA4/SMARCA2) encode 
components of the larger SWI/SNF complex(Wilson and Roberts, 2011). 
 
Some of the robust genetic dependencies could be readily interpreted using known pathway 
structures. For instance, many of the robust dependencies associated with the oncogene 
BRAF could be interpreted in terms of BRAF’s role in the MAPK pathway. BRAF mutation 
was associated with increased sensitivity to inhibition of its downstream effectors MEK 
(MAP2K1) and ERK (MAPK1), and increased resistance to inhibition of the alternative RAF 
isoform gene CRAF (RAF1) and the MAPK regulator PTPN11 (Fig. 4a, 4b)(Hill et al., 2019). 
BRAF mutation was also associated with increased sensitivity to inhibition of PEA15,  
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Figure 4. Robust genetic interactions involving RB1 and BRAF recapitulate pathway 
relationships. a) Simplified RAS/RAF/MEK/ERK pathway diagram. Protein names (e.g. 
MEK) are shown inside nodes, while associated gene names are shown adjacent (e.g. 
MAP2K1). Nodes are coloured according to their association with BRAF mutation - blue 
indicates increased sensitivity of BRAF mutant cell lines, yellow indicates increased 
resistance.  Selected robust genetic interactions are shown in boxplots below. b) Boxplots 
showing selected genetic interactions associated with BRAF mutation. c) Simplified Rb 
pathway diagram, highlighting robust genetic interactions involved in the Rb pathway. d) 
Boxplots showing selected genetic interactions associated with RB1 alteration 
 
presumably a result of the requirement of PEA15 for ERK dimerisation and signalling activity 
(Formstecher et al., 2001; Herrero et al., 2015). 
 
Mutation or deletion of the tumour suppressor RB1 (Retinoblastoma 1, Rb) was associated 
with increased sensitivity or resistance to inhibition of multiple Rb pathway members (Fig. 
4c, 4d). We found that RB1 loss was reproducibly associated with resistance to inhibition of 
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its negative regulators CDK4 and CDK6, consistent both with the known Rb pathway 
structure and with preclinical data suggesting that RB1 mutation confers resistance to 
CDK4/6 inhibitors(Asghar et al., 2015; O’Leary et al., 2018). Rb is a negative regulator of 
multiple E2F transcription factors, and we found that RB1 loss was reproducibly associated 
with increased sensitivity to both E2F1 and E2F3 inhibition (Figure 4c, 4d). RB1 loss was 
also associated with robust sensitivity to SKP2, a binding partner of Rb(Ji et al., 2004) first 
identified as an RB1 synthetic lethal partner in retinoblastoma(Xu et al., 2014) and more 
recently as a highly penetrant RB1 synthetic lethal partner in triple negative breast 
cancer(Brough et al., 2018) (Fig. 4c, 4d). Finally, RB1 loss was reproducibly associated with 
increased sensitivity to inhibition of Cyclin Dependent Kinase 2 (CDK2), suggesting that it 
may be a useful biomarker for CDK2-specific inhibitors(Tadesse et al., 2018).   

Robust genetic interactions are enriched in protein-protein interaction pairs 
In seeking to understand what particular characteristics robust genetic interactions might 
have, we noted that many of the robust genetic interactions we identified involved gene pairs 
whose protein products operate in the same pathway (e.g. the Rb pathway) or protein 
complex (e.g. SWI/SNF) suggesting that genetic interactions between gene pairs whose 
protein products physically interact may be more robust than other genetic interactions. To 
test this hypothesis, we compared the robust genetic interactions we identified with protein-
protein interactions from the STRING protein-protein interaction database(Szklarczyk et al., 
2015). We found that, when considering the set of all gene pairs tested, gene pairs whose 
protein products physically interact were more likely to be identified as significant genetic 
interactors in at least one dataset (Fig. 5a) (Odds Ratio (OR) = 4.0, p<2x10-16, Fisher’s Exact 
test). Furthermore, of the genetic interactions identified as significant in at least one dataset, 
those that are supported by a protein-protein interaction were significantly more likely to be 
reproduced in a second dataset (Fig. 5a) (OR = 3.9, p<1x10-13). We therefore concluded that 
protein-protein interaction pairs are more likely to be significant hits in one dataset and even 
more likely to be reproduced across multiple datasets, suggesting this might be a feature of 
robust genetic interaction effects. 
 
We noted that a large number (n = 132) of robust genetic interactions involved TP53, 
presumably as a result of the high number of TP53 mutant tumour cell lines in the datasets 
(and its high mutation frequency in human cancer) and the associated increased statistical 
power to detect TP53-related genetic interactions. We therefore considered whether the 
significant number of TP53-related genetic interactions in our dataset could confound our 
analyses, especially as TP53 is also associated with a disproportionately high number of 
protein interactions (>1700 medium confidence interactors in the STRING database alone, 
compared to a median of 37 medium confidence interactions across all proteins). However, 
even after excluding genetic interactions involving TP53, the observation that robust genetic 
interactions were enriched in protein-protein interaction pairs was still evident (Fig. 5b); 
known protein interaction pairs were more likely to be identified as significant genetic 
interactions in one screen (OR = 3.8, p<2x10-16) and among the significant genetic 
interactions discovered in one screen, those involving protein-protein interaction pairs were 
more likely to be reproduced in a validation screen (OR = 9.3, p<2x10-16). The same effects 
were observed when considering genetic interactions observed at different false-discovery 
rate (FDR) thresholds (Supplemental Fig. S3a and 3b) and using different sources of 
protein-protein interaction data (Supplemental Fig. S3c and 3d, Supplemental Table 
S4)(Alanis-Lobato et al., 2017; Chatr-aryamontri et al., 2014). 
 
The increased reproducibility of genetic interactions associated with protein-protein 
interactions across different genetic perturbation screen datasets could have two distinct 
causes - increased reproducibility across distinct technologies or libraries (e.g. 
CRISPR/shRNA) or increased reproducibility/robustness of genetic interactions in cell line  
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Figure 5. Robust genetic interactions are enriched in protein-protein interaction pairs. 
a) Barchart showing the percentage of protein-protein interacting pairs observed among 
different groups of gene pairs. The groups represent all gene pairs tested, gene pairs found 
to be significantly interacting in at least one screen (FDR < 20%), and gene pairs found to 
reproducibly interact across multiple screens (i.e. a discovery and validation screen). Stars 
(*) indicate significant differences between groups, all significant at P<0.001 using Fisher’s 
Exact Test. Odds ratios and p-values are provided in Supplemental Table S4. b) As a but 
with interactions associated with TP53 removed. c) As b but here the discovery and 
validation sets contain the same cell lines screened in different studies (e.g. ‘AVANA ∩ 
DEPMAP’ as discovery and ‘DEPMAP ∩ AVANA’ as validation). Consequently, 
reproducibility here means ‘technical reproducibility’ using different screening platforms. d) 
Similar to b but here the discovery and validation sets contain single datasets partitioned into 
non-overlapping cell line sets (e.g. ‘AVANA \ DEPMAP’ as discovery and ‘AVANA ∩ 
DEPMAP’ as validation). Consequently, reproducibility here means ‘genetic robustness’ - the 
same association between gene pairs is observed across distinct genetic backgrounds. 
 
panels with distinct molecular backgrounds. To test the former possibility, we repeated our 
discovery/validation approach but focused on the set of cell lines that were common to 
different genetic perturbation screen datasets. Using this approach, the molecular 
backgrounds (i.e. cell lines) tested were the same, but the screening approach or library 
used differed. Upon doing this, we found that genetic interactions between gene pairs whose 
protein products physically interact were significantly more reproducible across studies (Fig. 
5c, OR=6.1 and p<2x10-10 when compared to discovered genetic interactions) (Supplemental 
Table S4). To test reproducibility using the same screening approach across molecularly 
distinct cell lines, we artificially split individual datasets into non-overlapping discovery and 
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validation sets of cell lines.  Again, we found that genetic interactions between gene pairs 
whose protein products physically interact were more reproducible across distinct cell line 
panels (Fig. 5d, OR=8.0 and p<1x10-12 when compared to discovered genetic interactions) 
(Supplemental Table S4). We therefore concluded that genetic interactions supported by 
protein-protein interactions were more reproducible across different screening approaches 
and across distinct cell line contexts, suggesting that these interactions are, overall, more 
robust. 

Prioritising robust synthetic lethal interactions from chemogenetic screens 

 
Figure 6. Reproducible ATR synthetic lethal interactions are enriched in ATR protein-
protein interaction partners. a) Workflow - synthetic lethal interactions from CRISPR-Cas9 
screens in three cell lines (Wang et al, 2018) were compared to identify reproducible 
synthetic lethal partners. These genes were then compared with known ATR protein-protein 
interaction partners from the STRING database. b) Bar chart showing the percentage of 
ATR protein interaction partners observed in different groups of genes. Genes are grouped 
according to whether they were identified as an ATR synthetic lethal partner in 0, 1, 2, or 3 
cell line screens. Comparisons between all pairs of groups are significant at P<0.001 
(Fisher’s exact test) except for the comparison between genes that were hits in 2 and 3 cell 
lines (P=0.06). 
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As an alternative to genetic perturbation screening in large cell line panels, genetic 
interactions can also be identified using chemogenetic screens, where loss-of-function 
screens are performed in the presence and absence of specific small molecule inhibitors 
whose targets are relatively well defined. Based on the observations made earlier, we 
hypothesised that genetic interactions identified in chemogenetic screens that involved 
genes whose protein products physically interact with the target of the inhibitor should both 
be more likely to be identified as genetic interaction partners in one screen and also more 
likely to be reproduced across multiple screens (i.e. to be more robust). To test this 
hypothesis, we analysed the results of a recent chemogenetic screen performed to identify 
genes whose loss is synthetic lethal with ATR inhibition(Wang et al., 2018). In this study, 
genome-wide CRISPR-Cas9 screens in three cell lines from different histologies (breast, 
kidney, colon) were used to identify genes whose inhibition is selectively essential in the 
presence of a small molecule ATR kinase inhibitor(Vendetti et al., 2015; Wang et al., 
2018)(Fig. 6a).  
 
As predicted, we found that protein interaction partners of ATR are more likely than random 
genes to be identified as a significant synthetic lethal interactor of ATR in at least one cell 
line (Figure 6b). Furthermore, we found that among the synthetic lethal interactions identified 
in at least one cell line, those involving known ATR protein interaction partners were 
significantly more likely to be reproduced in a second or even third cell line (Fig. 6b). This 
suggests that, of the candidate genes identified in one screen, those that encode protein-
protein interaction partners of ATR are significantly more likely to validate in additional 
contexts than genes with no known functional relationship to ATR. 

Prioritising robust synthetic lethal interactions involving passenger gene 
alterations 
In addition to alterations of cancer driver genes, tumour cells typically harbour genetic 
alterations of large numbers of ‘passenger’ genes. Although these genes may not facilitate 
tumourigenesis or promote cancer cell growth, their alteration may still impart genetic 
vulnerabilities upon tumour cells. Indeed, multiple synthetic lethal interactions have been 
identified involving passenger genes that exhibit recurrent copy number loss in cancer cells 
due to their chromosomal proximity to tumour suppressor genes lost via loss-of-
heterozygosity(Kryukov et al., 2016; Marjon et al., 2016; Mavrakis et al., 2016; Muller et al., 
2012, 2015). The space of genetic interactions to test involving passenger gene alterations 
is much larger than that involving driver genes, as nearly every gene in the genome is either 
mutated or deleted in some cancer context. In addition, passenger genes are typically 
altered at frequencies lower than for driver genes and therefore the statistical power to 
identify genetic interactions associated with their alteration is somewhat reduced.  With 
these issues in mind, we reasoned that protein-protein interaction maps might help narrow 
the search space considerably and thus reduce the burden of multiple hypothesis testing. 
For all passenger genes that were recurrently lost in at least ten tumour cell lines, either 
through homozygous deletion or loss-of-function mutation, we searched for genetic 
interactions with their protein-protein interaction partners using the same discovery and 
validation approach previously used for driver genes. In total we tested 47,781 interactions 
involving 2,972 passenger genes and 2,149 selectively lethal genes. To perform an all-
against-all test without filtering based on protein-protein interactions would have required 
more than six million tests, significantly increasing the burden of multiple-hypothesis testing. 
At an FDR of 20% we found 11 robust genetic interactions involving passenger gene 
alterations (Supplemental Table S6). Three of these interactions involve genes frequently 
deleted with the tumour suppressor CDKN2A (CDKN2B and MTAP) and mirror known 
associations with CDKN2A. A further two genetic interactions involve a single chromosomal 
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Figure 7. Robust synthetic lethalities associated with passenger gene loss a) Boxplots 
showing the association between VPS4B loss and VPS4A sensitivity in the discovery 
dataset (DRIVE) and two validation datasets (AVANA and SCORE). b) Mean viability of 
HAP1 cells treated with siRNA smartpools targeting VPS4A or VPS4B. Individual data points 
are shown as black dots. Data are normalized within each cell line such that the mean 
viability of cells treated with a negative control (non-targeting scrambled siRNA) is equal to 1 
and the mean viability treated with a positive control (siRNA smartpool targeting the broadly 
essential PLK1 gene) is equal to 0. P-values from two-sided heteroscedastic T-tests. c) 
Boxplots showing the association between DDX17 loss and DDX5 sensitivity in the 
discovery dataset (AVANA) and the validation dataset (DRIVE). d) Mean viability of HAP1 
cells treated with siRNA smartpools targeting DDX5 or DDX17, normalization and statistics 
as per c 
 
region (19p21.3) containing two interferon genes (IFNB1 and IFNW1) which are frequently 
deleted together and consequently these two interactions really represent a single 
association (an increased sensitivity to thrombopoietin receptor MPL). Of the six remaining 
genetic interactions identified, four represent examples of paralog lethalities – loss of one 
member of a paralog pair is associated with increased sensitivity to the inhibition of the other 
member. RPL22 loss was associated with increased sensitivity to its paralog RPL22L1, 
TIMM17B with its paralog TIMM17A, DDX17 with its paralog DDX5, and VPS4B with its 
paralog VPS4A. We selected two of these robust synthetic lethal interactions for further 
validation – VPS4B/VPS4A and DDX17/DDX5. VPS4A and VPS4B are highly sequence 
similar whole genome duplicates with protein sequence identity of 81%. Both proteins can 
form a complex with the Vacuolar protein sorting-associated protein VTA1(Huttlin et al., 
2017) and are involved in endosomal trafficking. VPS4B is located at 18q21 and is frequently 
deleted with the tumour suppressor SMAD4, explaining the relatively high frequency of loss 
of VPS4B in cancer. Previous analysis of the DRIVE shRNA dataset identified an 
association between VPS4B copy number loss and VPS4A sensitivity(McDonald et al., 
2017). Here we find evidence of this association in two additional datasets – AVANA and 

a
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SCORE (Fig. 7a). Although this association is robust, it does not establish a causal link 
between VPS4B loss and VPS4A sensitivity. Indeed, there are 39 protein-coding genes on 
chromosome 18 located between SMAD4 and VPS4B, any one of which could cause 
sensitivity to VPS4A inhibition. To verify that VPS4B is the cause of VPS4A sensitivity we 
transfected isogenic knockouts of either VPS4A and VPS4B with siRNA smartpools targeting 
either VPS4A or VPS4B and found that, consistent with a negative genetic interaction 
between the two genes, compared to wildtype parental cells VPS4A knockout cells were 
sensitive to siRNA targeting VPS4B and VPS4B knockout cells were sensitive to siRNA 
targeting VPS4A (Fig 7b, Supplemental Table S7).  
 
Like VPS4A and VPS4B, DDX5 and DDX17 are widely conserved highly sequence similar 
whole genome duplicates (protein sequence identity 69%). They are DEAD box family RNA 
helicases that have multiple roles in both transcription and splicing; they act as coregulators 
for multiple transcription factors and also function as components of the spliceosome 
(Dardenne et al., 2014; Fuller-Pace, 2013).  A direct protein-protein interaction between the 
two genes has also been reported (Hegele et al., 2012; Huttlin et al., 2017). DDX17 is 
located at 22q12 in close proximity to the tumour suppressor MYH9, potentially explaining its 
recurrent deletion in tumour cell lines. We identified an association between DDX17 loss and 
DDX5 sensitivity in the AVANA CRISPR dataset and validated this association in the DRIVE 
shRNA dataset (Fig 7c). As with VPS4A/VPS4B, to verify that DDX17 loss is the cause of 
DDX5 sensitivity we transfected isogenic knockouts of either DDX17 and DDX5 with siRNA 
smartpools targeting either DDX5 or DDX17. We found that, consistent with a negative 
genetic interaction between the two genes, compared to wildtype parental cells DDX17 
knockout cells were sensitive to siRNA targeting DDX5 and DDX5 knockout cells were 
sensitive to siRNA targeting DDX17 (Fig 7d, Supplemental Table S7).  

Discussion 
 
While the reproducibility of pharmacogenomic screens in cancer cell lines has been much 
discussed(Cancer Cell Line Encyclopedia Consortium and Genomics of Drug Sensitivity in 
Cancer Consortium, 2015; Haibe-Kains et al., 2013; Niepel et al., 2019), relatively little 
attention has been paid to the reproducibility of results from large-scale genetic screens in 
cell lines. Analyses of the pharmacogenomic screen datasets have primarily focused on 
reproducibility in a very strict sense - i.e. quantifying the extent to which the same drug elicits 
the same response in the same cell line when assayed across different sites(Niepel et al., 
2019). In some cases these analyses have been extended to quantify the extent to which the 
same associations between biomarkers and drugs can be observed across the same cell 
line panels assayed in different experiments(Cancer Cell Line Encyclopedia Consortium and 
Genomics of Drug Sensitivity in Cancer Consortium, 2015). Here we were interested in 
reproducibility in a much broader sense and sought to identify genetic interactions that could 
be reproduced both across distinct experiments and across distinct cell line panels, i.e. 
interactions that are robust to genetic and molecular heterogeneity. We developed an 
approach to identify these robust genetic interactions and used it to identify a set of 220 
robust genetic interactions associated with cancer driver genes. We found that these robust 
genetic interactions are enriched among gene pairs whose protein products physically 
interact, suggesting a means by which we might prioritise the most promising candidates 
from screens for follow on studies. 
 
We do not claim that our set of robust genetic interactions is comprehensive, as there are 
many reasons that real robust genetic interactions may not be identified by our approach. 
There are many driver genes that we have not included in our analysis because they are 
infrequently mutated in the datasets studied. Consequently, we can report no interactions for 
these genes. We have also focussed only on identifying interactions associated with 
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mutation or copy number changes. There are likely to be dependencies associated with 
altered gene/protein expression that will be missed by this approach. Furthermore, for the 
genes that we do analyse, it is likely that some real interactions are not detected due to a 
lack of statistical power. Finally, of the dependencies identified in a discovery screen but 
absent in a validation screen, false negatives due to reagents with poor gene targeting ability 
likely play a significant role(Kaelin, 2012). 
 
We have exclusively focussed on identifying dependencies that are evident across panels of 
cell lines from multiple cancer types (‘pan-cancer dependencies’). It is likely that there are 
robust dependencies only evident within specific cancer types, but it is difficult to use our 
approach to identify them due to the restricted number of cell lines available for each cancer 
type. Even with a relatively common mutation (e.g. KRAS mutation in non-small cell lung 
cancer) it is challenging to partition the available cell lines into distinct discovery and 
validation sets while maintaining statistical power to identify potential dependencies. This 
issue may be alleviated by efforts to create large numbers of new tumour cell lines(Boehm 
and Golub, 2015) or through using isogenic models for discovery and cell line panels for 
validation(Ryan et al., 2018). 
 
Many published synthetic lethal screens have focussed on identifying new drug targets for 
‘undruggable’ oncogenes such as MYC and RAS (reviewed in (Cermelli et al., 2014) and 
(Downward, 2015) respectively). The rationale for such studies is that the oncogene 
addiction itself cannot be exploited directly and consequently a synthetic lethal approach is 
needed. However, here we found that for all oncogenes studied the most significant 
reproducible dependency identified was an oncogene addiction (Fig. 3a). This suggests that 
any synthetic lethal interactions that are identified for oncogenes will likely be of a smaller 
effect size or operate in a more restricted context than the oncogene addiction itself. 
Previous work has suggested this to be true of KRAS(McDonald et al., 2017) but here we 
find that it appears to be a general property of all oncogenes studied. This implies that 
wherever possible, direct targeting of oncogenes might be more therapeutically effective 
than exploiting oncogene-related synthetic lethal effects 
 
Our approach to identify robust genetic dependencies involving cancer driver genes is 
unbiased in the sense that we did not incorporate prior knowledge of functional relationships 
to identify candidate gene pairs to test. Nonetheless, many of the robust synthetic lethalities 
identified reflect known biology. In particular, for each of the well-studied tumour suppressors 
ARID1A, SMARCA4 and PTEN the most significant robust synthetic lethal interaction we 
identified has previously been reported in the literature. For ARID1A, its known synthetic 
lethal partner ARID1B was the only robust candidate interaction identified while for PTEN 
and SMARCA4 their established synthetic lethal partners (PIK3CB and SMARCA2 
respectively) are the most significant robust hits by a large margin (Fig. 3c). As with 
oncogenes, this suggests that if novel single gene vulnerabilities for these drivers are to be 
discovered, they may have a smaller effect size or operate in a more restricted setting.    
 
Previous work has shown that genetic interactions between gene pairs whose protein 
products physically interact are more highly conserved across species(Roguev et al., 2008; 
Ryan et al., 2012; Srivas et al., 2016). Our analysis here suggests that the same principles 
may be used to identify genetic interactions conserved across genetically heterogeneous 
tumour cell lines. Although we have not tested them here, other features predictive of 
between-species conservation may also be predictive of robustness to genetic 
heterogeneity(Ryan et al., 2012; Srivas et al., 2016). Our set of robust genetic interactions 
may serve as the starting point for such analyses and may also serve as a training set for 
computational approaches to predict synthetic lethality(Jerby-Arnon et al., 2014).  
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Our results suggest that knowledge of protein-protein interactions could be used to improve 
the design and analysis of loss-of-function screens for synthetic lethal interactions. We have 
demonstrated the utility of incorporating such prior knowledge for identifying robust synthetic 
lethal interactions from genome-wide chemogenetic screens. We have also demonstrated 
that protein-protein interactions can aid the identification of genetic interactions associated 
with passenger gene alterations, where statistical power is limited due to relatively infrequent 
alterations and the number of potential interactions to test is enormous.  An alternative to 
these approaches, where knowledge of protein-protein interactions is used after the screen 
has already been performed, would be to screen target libraries for specific driver genes 
based on their known protein interaction partners. Regardless of the approach used to 
identify candidate synthetic lethal interactions in a large-scale screen, our results suggest 
that candidates supported by a protein-protein interaction should be prioritised for follow on 
study as they are more likely to be robust to the genetic heterogeneity observed in tumour 
cells.  
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Methods 
 
All data analysis was performed using Python 3.7, Pandas 0.24(McKinney, 2011) and 
StatsModels 0.9.0(Seabold and Perktold, 2010). 

Loss of function screens 
Different scoring systems have been developed for calculating ‘gene level’ dependency 
scores from loss-of-function screens performed with multiple gene targeting reagents per 
gene (i.e. shRNAs or gRNAs). For the analysis of all loss-of-function screens we used the 
original authors’ own preferred approaches. CERES dependency scores(Meyers et al., 
2017) for AVANA (release 18Q4) were obtained from the DepMap portal 
(https://depmap.org/portal/download/), while DEMETER v2 gene dependency scores for the 
DEPMAP shRNA screen(Tsherniak et al., 2017) were obtained from the same resource. For 
the DEPMAP screen, some genes were only screened in a subset of cell lines and these 
were excluded from all analyses. Quantile normalized CRISPRcleaned(Iorio et al., 2018) 
depletion log fold changes for Project SCORE(Behan et al., 2019) were obtained from the 
Project SCORE database (https://score.depmap.sanger.ac.uk/). ATARIS(Shao et al., 2013) 
scores for the DRIVE dataset(McDonald et al., 2017) were obtained from the authors. 28 of 
the 398 cell lines screened in DRIVE had missing gene scores for ~25% of genes screened 
and these cell lines were excluded from further analysis. All screens were mapped to a 
common cell line name format (that followed by the Cancer Cell Line 
Encyclopaedia(Barretina et al., 2012)) using the Cell Model Passports resource where 
appropriate(van der Meer et al., 2019). 

Identifying selectively lethal genes 
Similar to previous work(McDonald et al., 2017; Tsherniak et al., 2017), to reduce the burden 
of multiple hypothesis testing we focused our analysis on genes whose inhibition appeared 
to cause growth defects in subsets of the cancer cell lines screened. That is, rather than 
testing for associations with genes whose inhibition was always lethal or never lethal, we 
focused our analyses on genes that could be associated with distinct sensitive and resistant 
cell line cohorts. We first identified a set of ‘selectively lethal’ genes using the Avana 
dataset(Meyers et al., 2017) - those with a gene dependency score <-0.6 in at least 10 cell 
lines but no more than 259 cell lines (half of the screened cell lines). We augmented this with 
a list of 65 ‘outlier genes’ identified by the authors of the DRIVE study as having a skewed 
distribution suggesting distinct sensitive and resistant cohorts(McDonald et al., 2017). Finally 
from the combined list we removed genes known to be commonly essential in cancer cell 
lines(Hart et al., 2017). This resulted in a set of 2,470 selectively lethal genes (Supplemental 
Table S1) which were used for all association analyses. 

Identifying gene alterations from copy number and exome profiling 
For all cell lines we obtained sequencing data (CCLE_DepMap_18q3_maf_20180718.txt) 
and copy number profiles (public_18Q3_gene_cn_v2.csv) from the DepMap portal. These 
datasets contain integrated genotyping data from both the Cancer Cell Line Encyclopedia 
and GDSC resources(Barretina et al., 2012; Cancer Cell Line Encyclopedia Consortium and 
Genomics of Drug Sensitivity in Cancer Consortium, 2015; Iorio et al., 2016). We used this 
to identify likely functional alterations in a panel of cancer driver genes(Vogelstein et al., 
2013) restricting our analysis to those genes that were subject to targeted sequencing as 
part of the Cancer Cell Line Encyclopedia(Barretina et al., 2012).  
  
For most oncogenes we considered the gene to be functionally altered if it contained a 
protein altering mutation at a residue that is recurrently altered in either the COSMIC 
database or the Cancer Genome Atlas. For a small number of oncogenes (ERBB2, CCND1, 
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MDM2, MDM4) we considered them to be functionally altered only if they were amplified. For 
all tumour suppressors we considered all protein-coding mutations and homozygous 
deletions to be functional alterations. The matrix of functional alterations to driver genes is 
presented in Supplemental Table S2. 
 
To identify loss-of-function alterations to passenger genes, a similar pipeline was used. 
However the driver genes from Vogelstein et al(Vogelstein et al., 2013) were excluded from 
analysis and only clear loss-of-function alterations were considered to be functional. The 
matrix of gene loss in passenger genes is presented in Supplemental Table S5. 

Identifying genetic dependencies in individual datasets 
We wished to identify associations between driver gene mutations and gene sensitivity 
scores that were not confounded by tissue specific gene sensitivity effects (e.g. SOX10 
sensitivity scores can be naively associated with BRAF mutational status because SOX10 is 
essential in melanoma cell lines and BRAF mutation is common in melanoma).  Thus, we 
wished to model gene sensitivity after first accounting for tissue type. To this end, 
associations between individual driver genes and gene sensitivity scores were identified 
using an ANOVA model that incorporated both tissue type and mutational status as 
covariates, similar to the method previously developed for identifying pharmacogenomic 
interactions in cancer cell line panels(Cokelaer et al., 2018; Iorio et al., 2016). As recent 
work(Behan et al., 2019) has highlighted that some dependencies (e.g. WRN) can be 
associated with microsatellite instability rather than individual driver genes, we also 
incorporated microsatellite instability(Ghandi et al., 2019) as a covariate in our model. The 
model had the form ‘gene_X_sensitivity ~ MSI_status + C(Tissue) + driver_gene_Y_status’ 
and was used to test the association between each recurrently mutated driver gene Y and all 
gene sensitivity scores X assayed in a given dataset. Driver genes were included in this 
analysis if they were functionally altered in at least five cell lines in the dataset being 
analysed. Correction for multiple hypothesis testing was performed using the Benjamini and 
Hochberg false discovery rate(Benjamini and Hochberg, 1995). 

Identifying genetic dependencies common to multiple datasets 
When comparing a pair of datasets, we used one dataset as a discovery dataset and a 
second as a validation set, as outlined in Figure 1C. The discovery analysis was limited to 
the set of interactions that could be tested in both datasets, i.e. associations between the set 
of sensitivity scores for genes screened in both studies and the set of driver genes 
recurrently altered in both studies. An initial set of genetic interactions was identified in the 
discovery dataset at a specific FDR threshold and these associations were then tested in the 
validation set. We considered interactions to be reproduced in the validation dataset if: (1) 
the FDR was less than the threshold; (2) the uncorrected p-value was < 0.05 and; (3) the 
sign of the association (sensitivity / resistance) was the same in both discovery and 
validation set. A FDR of 0.2 was used for all analysis presented in the main text but 
additional FDR thresholds (0.1, 0.3) were tested to ensure that all findings were robust to the 
exact choice of FDR (Supplemental Fig. S2).  

Protein-protein interactions 
Protein-protein interactions were obtained from STRING v10.5 (Szklarczyk et al., 2015), 
BIOGRID 3.5.170 (Chatr-aryamontri et al., 2014) and from HIPPIE v2.0(Alanis-Lobato et al., 
2017). Results in the main text make use of medium confidence STRING interactions 
(STRING integrated score >0.4). However, to ensure robustness to the thresholds shown, all 
analyses were repeated for the full set of HIPPIE interactions and the full set of BioGRID 
interactions (Supplemental Fig. S2). 
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siRNA experiments 
 
HAP1 cell lines were obtained from Horizon Discovery: HAP1_WT (C631), HAP1_VPS4A_ 
KO (HZGHC004623c005), HAP1_VPS4B_KO (HZGHC006889c011), HAP1_DDX5_KO 
(HZGHC006136c012) and HAP1_DDX17_KO(HZGHC007221c009). Cells were cultured in 
IMDM (10-016-CV; Corning) supplemented with 10% FBS (10270-106; Thermo Fisher 
Scientific). ON-TARGETplus siRNA SMARTpools targeting VPS4A (L-013092-00-0005), 
VPS4B (L-013119-00-0005), DDX5 (L-003774-00-0005), DDX17 (L-013450-01-0005), PLK1 
(L-003290-00-0005) and a non-targeting scramble control (D-001810-10-20) were obtained 
from Dharmacon. HAP1 cells were seeded to a density of 5000 cells per well of a 96-well 
plate and 5nM siRNA was transfected with Lipofectamine 3000 (L3000015; Thermo Fisher 
Scientific) in Opti-MEM I Reduced Serum Medium (31985070; Thermo Fisher Scientific). 
Cell viability was measured 72 hours after siRNA transfection using CellTiter-Glo 
Luminescent Cell Viability Assay (G7570; Promega). The 96 well plates were read using a 
SpectraMax® M3 Microplate Reader (Molecular devices). Viability effects for each siRNA 
targeting each gene X in each cell line y were normalised using the following formula: 
 

NormalisedViability (siRNA_Xy) = 1 - (siCTRLy - siRNA_Xy) / (siCTRLy - siPLK1y) 
 
where siCTRLy is the average of 3 measurements of non-targeting scramble control in cell 
line y and siPLK1y is the average of 3 measurements of an siRNA smartpool targeting PLK1 
in cell line y. Raw and normalised viability data are in Supplemental Table S7. 
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Supplemental Figures 

 
Supplemental Figure S1. Discovered and validated genetic dependencies for 
individual datasets. a) Scatterplot showing the genetic dependencies identified in the 
SCORE dataset. Each individual point represents a gene pair, the x-axis shows the common 
language effect size, and the y-axis shows the -log10 p-value from the discovery dataset. b) 
Scatterplot for DEPMAP dataset. c) Scatterplot for DRIVE dataset. d) Scatterplot for AVANA 
dataset. 
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Supplemental Figure S2. Reproducible genetic dependencies include oncogene 
addictions. a) Dot plot showing the reproducible genetic dependencies identified. Each 
coloured circle indicates a reproducible genetic dependency, scaled according to the number 
of dataset pairs it was validated in. The most significant genetic dependency (lowest FDR in 
a validation set) for each driver gene is labelled. Instances where the most significant 
dependency is a ‘self vs self’ dependency are highlighted in red. Drivers are sorted by the 
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number of validated dependencies and the total number of reproduced genetic 
dependencies for each driver gene is shown in parentheses. b) Boxplots showing oncogene 
addictions, where the alteration of an oncogene is associated with increased sensitivity to its 
inhibition. c) Boxplots showing tumour suppressor genes whose inhibition provides a growth 
advantage to cells that have no genetic alteration of those genes.   
 
 

 
 
Supplemental Figure S3. Robust genetic interactions are enriched in protein-protein 
interaction pairs at different thresholds and using different databases a) Barchart 
showing the percentage of protein-protein interacting pairs observed among different groups 
of gene pairs. The groups represent all gene pairs tested, gene pairs found to be 
significantly interacting in at least one screen (FDR < 10%), and gene pairs found to 
reproducibly interact across multiple screens (i.e. a discovery and validation screen). Stars 
(*) indicate significant differences between groups, all significant at P<0.001 using Fisher’s 
Exact Test. Due to the high percentage of protein-protein interaction pairs among the 
reproducible hits at this FDR, the y-axis uses a different maximum value to all other charts. 
b) Same as a but with interactions identified at an FDR of 30% c) Similar to main text Fig. 4b 
but here the protein-protein interaction pairs are obtained from the HIPPIE database d) 
Similar to main text Fig. 4b but here the protein-protein interaction pairs are obtained from 
the BioGRID database. 
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Supplemental Tables 
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