1	Mastitis risk effect on the economic consequences of paratuberculosis control in dairy
2	cattle: A stochastic modeling study
3	L. J. Verteramo Chiu [*] , L. W. Tauer [†] , Y.T. Gröhn [*] , R. L. Smith ^{‡1}
4	Short Title: Modeling effect of mastitis on economics of paratuberculosis control in dairy
5	* Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary
6	Medicine, Ithaca, NY 14850, USA
7	[†] Charles H. Dyson School of Applied Economics and Management, Cornell SC Johnson Business
8	College, Cornell University, Ithaca, NY 14850, USA
9	[‡] Department of Pathobiology, University of Illinois, College of Veterinary Medicine, Urbana, IL 61802,
10	USA
11	
12	¹ Corresponding author at: VM BSB 2627, Department of Pathobiology, University of Illinois
13	College of Veterinary Medicine, Urbana, IL 61802, USA. Tel: +1 217 300 1428; E-mail:
14	<u>rlsdvm@illinois.edu</u>
15	

17 ABSTRACT

The benefits and efficacy of control programs for herds infected with Mycobacterium avium 18 subsp. paratuberculosis (MAP) have been investigated under various contexts. However, most 19 20 previous research investigated paratuberculosis control programs in isolation, without modeling the potential association with other dairy diseases. This paper evaluated the benefits of MAP 21 22 control programs when the herd is also affected by mastitis, a common disease causing the largest losses in dairy production. The effect of typically suggested MAP controls were estimated 23 under the assumption that MAP infection increased the rate of clinical mastitis. We evaluated 24 25 one hundred twenty three control strategies comprising various combinations of testing, culling, and hygiene, and found that the association of paratuberculosis with mastitis alters the ranking of 26 27 specific MAP control programs, but only slightly alters the cost-effectiveness of particular MAP control components, as measured by the distribution of net present value of a representative U.S. 28 dairy operation. In particular, although testing and culling for MAP resulted in a reduction in 29 30 MAP incidence, that control led to lower net present value (NPV) per cow. When testing was used, ELISA was more cost-effective than alternative testing regimes, especially if mastitis was 31 explicitly modeled as more likely in MAP-infected animals, but ELISA testing was only 32 33 significantly associated with higher NPV if mastitis was not included in the model at all. Additional hygiene was associated with a lower NPV per cow, although it lowered MAP 34 prevalence. Overall, the addition of an increased risk of mastitis in MAP-infected animals did not 35 change model recommendations as much as failing to consider mastitis at all. 36 **Key Words:** paratuberculosis; economic model; disease control; mastitis 37

38 1. INTRODUCTION

2

39	Paratuberculosis, or Johne's Disease, is a chronic intestinal disease of ruminants caused by
40	infection with Mycobacterium avium subsp. paratuberculosis (MAP). Animals are usually
41	infected at a young age, with a variable and often extended latent period [1]. Infected animals
42	have lower milk production [2–9], decreased reproductive performance in later stages of disease
43	[6,10–12], and are often culled early [5,13]. It is difficult to control MAP in dairy herds; many
44	tests have poor diagnostic sensitivity [14], MAP persists in the environment for long periods of
45	time [15], paratuberculosis symptoms are slow to develop [16], and the available vaccines are
46	limited in distribution due to their cross-reaction with tuberculosis diagnostics [17].
47	The debate over the economically optimal control method for MAP results from a wide range of
48	models and assumptions. Some studies have found test and culling to be consistently cost-
49	effective [18,19], while others have found that cost-efficacy of test and cull required subsidized
50	testing costs [20] or only culling of animals with decreased milk production during MAP latency
51	[21]. Simulation models have identified cost-effective programs, such as quarterly serum
52	enzyme-linked immunosorbent assay (ELISA) testing [22], quarterly milk ELISA testing [23],
53	risk-based testing accompanied by infection control [24], vaccination or infection control [25],
54	testing in series with ELISA and quantitative polymerase chain reaction (qPCR) [26], and
55	annual fecal culture accompanied by infection control [27]. Massaro et al. [28] found that a more
56	sensitive ELISA test could be cost-effective in US dairy herds. Others have found that hygiene
57	improvement was effective in decreasing transmission rate [25,29], especially in combination
58	with testing and culling [1,30]. Our previous work found that some MAP control programs were
59	not significantly better than no control, and that some managerial practices can produce better
60	results than some testing and culling controls (Smith et al., 2017; Verteramo Chiu et al., 2018).

One factor that none of these studies addressed is the role of MAP infection in susceptibility to 61 other infections. For example, higher mastitis incidence has been found in MAP positive farms in 62 two different studies [32,33], and Rossi et al. [34] found that MAP-infected animals had 63 significantly higher rates of clinical mastitis. As clinical mastitis is one of the most economically 64 important diseases of dairy herds, a positive association between MAP infection and mastitis 65 66 could greatly increase the cost-effectiveness of MAP and mastitis control. Even with no association, controlling for either disease may have spillover effects on the other disease. 67 The goal of this research is to examine the economic consequences of paratuberculosis in US 68 69 dairy herds and the benefits of 123 specific control strategies involving various combinations of hygiene levels, types of testing, and decisions on culling, while accounting for the rise in mastitis 70 cases associated with paratuberculosis infection. 71

72 2. MATERIALS AND METHODS

The infection and testing model (Figure 1) has been previously described [35], and used for an 73 economic analysis of MAP [31]. This is a continuous-time model, simulated over 5 years after a 74 burn-in of 50 years using values representative of US dairy herds. Details are available in the 75 supplemental material (S1). Briefly, calves may be born susceptible or infected via vertical 76 transmission. Susceptible calves may be infected by contact with transiently-shedding infected 77 calves or with shedding adults. All calves age into heifers; susceptible heifers may be infected by 78 79 contact with shedding adults, while infected heifers are assumed to be latently infected. All 80 heifers age into adults. Adults infected as calves or heifers may have progressing infections, resulting in fast transition from latency, through a low-shedding phase, to high shedding and 81 82 clinical disease. However, some adults infected as calves or heifers and all adults infected by contact with shedding adults experience non-progressing infections, which remain in latency for 83

a longer period of time and only enter the low-shedding phase. All animals may be culled or die,

based on an age-appropriate mortality/culling rate.

86

Figure 1. Schematic of model for *Mycobacterium avium* subsp. *paratuberculosis* in a
commercial dairy herd

89

90 The economic model tracks the daily milk production of all animals in the herd and calculates 91 the net value of the herd as the value of the milk produced plus the value of any culled animals 92 sold, minus the cost of producing milk, the cost of raising calves, the cost of raising heifers, and 93 the cost of MAP testing.

94 2.1 Mastitis Risk and Milk Production

The risk of first clinical mastitis (**CM**) case, and the incidence of CM, has been found to be associated with MAP infection status in cows [34], possibly due to the immune system being affected by MAP. Clinical mastitis risk was assumed to be constant for all cows; although clinical mastitis risk is known to increase with parity, this model was not age-stratified, thereby averaging out clinical mastitis risk among all animals. Annualized risk of CM by all causes was calculated from Bar et al. [36] by averaging the monthly risk over a 10 month lactation and across the first 4 lactations, then adding the total monthly risk, *annualrisk* = 10 *

102 $\sum_{p=1}^{4} \frac{\sum_{m=1}^{10} \frac{r^{isk}p,m}{10}}{4}$. The range of possible values was identified by adding up the monthly risk for 103 each lactation individually $(\sum_{m=1}^{10} risk_{p,m})$. Due to the lack of data to support modeling of 104 secondary CM cases or subclinical mastitis, these events were not modeled.

In order to determine if the effect of CM on milk production would be exacerbated by MAP 105 status, we statistically analyzed milk production in animals with well-defined MAP infection 106 status as described previously [9]. Briefly, we conducted a linear regression analysis to assess the 107 effect of MAP progression (defined as progressing, non-progressing, or test-negative, where 108 progressing animals had at least one high-positive test result) and current MAP status (defined as 109 test-negative, latent, low-shedding, or high-shedding). In this analysis, a dichotomous term was 110 added to indicate whether an animal had experienced a CM event in the previous 30 days. In the 111 previous study, the linear score (log10 of the somatic cell count) was included to control for 112 subclinical and clinical mastitis; in this analysis, that variable was not included to avoid 113 collinearity with the CM variable. 114

115 2.2 Model Simulation

The model was simulated under 3 different assumptions: CM association with MAP (MA), no 116 CM association with MAP (NMA), and no CM at all (NM). In the MA scenario, the rate of CM 117 cases was assumed to be related to MAP status. The hazard ratios from the Cox proportional 118 hazards model for MAP positive vs. negative animals [34], controlling for parity, were used to 119 inflate the CM risk for MAP positive animals. In the NMA scenario, the rate of CM cases was 120 assumed to be unchanged by MAP status. In the NM scenario, it was assumed that CM cases 121 were excluded in the model. In the MA and NMA scenarios, CM occurred in susceptible adults 122 at rate ψ , the annualized risk, and in MAP infected adults at rate $\xi_I \psi$, where ξ_I is the hazard ratio 123 1.89 [34]. 124

Upon the occurrence of a CM case, the following actions occurred: 1) remove the milk lost due to CM, q_{mast} , from the period's milk production; 2) add the cost of treating CM, t_{mast} , to the 127 period's cost; 3) determine if the CM case resulted in mortality. Clinical mastitis mortality was

assumed to be μ_m . It was assumed that no voluntary culling occurred due to a first case of CM.

129 The net present value (*NPV*) of each scenario was calculated as

130
$$NPV = \sum_{t} \frac{\kappa(t)}{(1+r)^{t}} + \frac{\kappa(T)}{r(1+r)^{T+1}}$$
(2)

131 where, *t* is time in years, $\kappa(t)$ is the value of the herd in year *t*, *r* is the discount rate, and T is the 132 final time period. The second term represents a terminal wealth term, the NPV of the last year 133 cash flow continuing into perpetuity, to account for the value of the herd going forward past the 134 terminal year of T. Herds were simulated for 5 years, which is considered a realistic planning 135 window for commercial dairy herds.

136 *2.3 Determining Stochastic Dominance*

Ranking of control programs by the distribution of NPV from 100 iterations of a five year period 137 was performed using first and second-order dominance [37]. First-order and second-order 138 139 stochastic dominance are methods of determining preference for an activity with variable (stochastic) results; a dominant strategy by either method is to be preferred to its comparator. First-140 order stochastic dominance is relevant for decision makers who prefer more wealth to less wealth 141 (increasing utility function), and second-order stochastic dominance is relevant for decision 142 makers who in addition to preferring more to less wealth are also risk averse (increasing and 143 concave utility function). 144

Briefly, if NPV_A is the cumulative distribution function of the NPV of control strategy A and NPV_B is the cumulative distribution function of the NPV of control strategy B, first-order dominance of strategy A states that

148
$$P(NPV_A \ge x) \ge P(NPV_B \ge x)$$
(3)

149 for all possible values of x (the range of simulated NPV values for a farm in a given scenario)

and with a strict inequality for at least one value of x.

151 Likewise, second-order dominance of strategy A states that

152
$$AUC(NPV_A)[0:x] < AUC(NPV_B)[0:x]$$
(4)

for all possible values of x (as in equation 3), where AUC(i)[0:x] is the area under the curve of the cumulative distribution function of distribution *i* from 0 to x.

155 2.4 Analyzing Dominance Results

Each of the 123 control strategies comprises four components: hygiene level, test used, test frequency, and which animals are culled (Supplemental Information S2). To estimate the effect of each of these components on dominance, we estimated a linear regression of the proportion of dominated strategies under SOSD on each of the strategies' components, measured by dummy variables. The econometric model has the following form,

161
$$Y_i = \alpha + \beta_i^H H_i + \beta_i^T T_i + \beta_i^C C_i + \beta_i^F F_i + \varepsilon_i$$
(4)

Where *Y* is the proportion that strategy *i* SOSD the other strategies, where the value of *Y* ranges from 0 to 1. *H* is an n x 2 matrix of hygiene level indicators (standard and high hygiene), *T* is an n x 4 matrix of test indicator (FC, ELISA, PCR, and hypothetical testing of calves with FC), *C* is an n x 2 matrix of culling policy (cull all test positive, and cull all high shedders), *F* is an n x 4 matrix of frequency of testing (annual, biannual, continuous annual, continuous biannual). Parameter α is the intercept term, which includes the effects of moderate hygiene, and culling after 2 positive tests. Parameters β^H , β^T , β^C , β^F are vectors to be estimated for each of the

169	components of the strategies. This regression is conducted separately for each of the three
170	mastitis assumptions and assumes additive linear effects only. To determine which factors are
171	most associated with changes in the NPV, this analysis was repeated using the difference
172	between the NPV of a particular iteration and the NPV of no control from the same starting
173	condition, expressed as an amount per cow, as the Y. Each of these analyses was repeated for
174	each of the mastitis assumptions (NM, NMA, and MA) and the fitted coefficients were
175	compared. The analysis was repeated at two different herd sizes (100 and 1000) and two
176	different initial MAP prevalence levels (7% and 20%), but results will focus on the 1000-head

herd with 20% initial prevalence.

178 2.5 Sensitivity Analysis

Global sensitivity analysis was performed using optimized Latin Hypercube sampling via the *lhs* 179 package [39] with 500 parameter sets. For each parameter set, a 1000 head herd was simulated 100 180 times from the same randomly drawn initial population values under three generalized culling 181 strategies (none, cull all positive adults, and cull all positive calves) with and without improved 182 hygiene. Impact of parameters on NPV was determined using the Pearson's rank correlation 183 coefficient. All parameters used are shown in Tables 1-3. Where variability in parameters was not 184 provided by the source, parameters were varied by $\pm 10\%$ for the sensitivity analysis. Where 185 variability in parameters was available, parameters were varied over their interquartile ranges. 186 Testing parameters were varied over the range of the interquartile ranges of all tests, and hygiene 187 parameters were varied over the range of the possible additional hygiene levels. Parameters were 188 considered significantly related to NPV at the level of $\alpha = 0.05$ with Bonferroni's correction. 189

Table 1. Biological parameters and interquartile ranges (IQR) used in a model of *Mycobacterium avium* subsp. *paratuberculosis* and clinical mastitis co-infection in a dairy herd.

	1 1	<u> </u>	
Par.	Description	Value (IQR) Source	

μ_l	removal rate of calves (/year)	0.09 (0.08-0.1)	[40]
μ_2	removal rate of heifers (/year)	0.01 (0.008-0.015)	[40]
μ_3	removal rate of adults (/year)	0.35 (0.3-0.4)	[40]
$\mu_{b,base}$	birth rate of female calves (/adult/year)	0.45 (0.4-0.5)	[40]
$\mu_{b,H}$	birth rate of high shedding dams (/adult/year)	0.15 (0.1-0.45)	[11]
γ_E	proportion of calves of latent animals infected at birth	0.01 (0-0.04)	[40]
γ_{L}, γ_{H}	proportion of calves of shedding animals infected at birth	0.04 (0.01-0.08)	[40]
ρ_1, ρ_2	aging rate (/year)	1 (0.8-1.2)	Assumed
η	proportion of infected heifers becoming progressing adults	0.335 (0.5-1)	[40]
$\dot{\varphi}$	transition rate from transient shedding to latent (/year)	2 (0.8-3)	[40]
σ_L	transition rate from latent to low shedding, low path (/year)	0.53 (0.44-0.67)	[35]
σ_{H}	transition rate from latent to low shedding, high path (/year)	21.5 (1.75-40)	[35]
v_H	transition rate from low to high shedding, high path (/year)	1.08 (0.75-1.94)	[35]
α	clinical disease-related culling rate (/year)	0.67 (0.5-0.8)	[11]
β	transmission coefficient for 7% and 20% initial prevalence	0.001, 0.003 (0.0023-	calculated
,	(/year) in a 1000-head herd	0.0012)	
e_{β}	proportional transmission effect due to improved and	0.6, 0.98	[41,42]
Ρ	moderately improved hygiene	(0.6-0.98)	[43]
ψ	risk of clinical mastitis (/year)	0.27 (0.12-0.42)	[36]
ξ _I	hazard ratio for clinical mastitis in infected cows	1.89 (1.53-2.33)	[34]
μ_m	risk of mortality during clinical mastitis	0.0175 (0.01-0.02)	[36]

192

Table 2. Testing parameters and interquartile ranges (IQR) used in a model of *Mycobacterium avium* subsp. *paratuberculosis* infection in a dairy herd.

Par.	Description	Value (IQR)	Source
Se_{H}^{E}	Sensitivity of ELISA for high-shedders	0.78 (0.68-0.86)	[44,45]
Se_{H}^{K}	Sensitivity of KELA for high-shedders	0.31 (0.11-0.67)	[46]
$Se_{\scriptscriptstyle L}^{\scriptscriptstyle E}$	Sensitivity of ELISA for low-shedders	0.24 (0.19-0.30)	[44,45]
$Se_{\scriptscriptstyle H}^{\scriptscriptstyle FC}$	Sensitivity of FC for high-shedders	0.9 (0.75-1)	[47]
Se_L^{FC}	Sensitivity of FC for low-shedders	0.5 (0.25-0.75)	[48]
Se_{H}^{P}	Sensitivity of PCR for high-shedders	0.84 (0.77-0.90)	[44,49,50]
Se^Q_H	Sensitivity of qPCR for high-shedders	0.737 (0.49-0.90)	[26]
Se_L^P	Sensitivity of PCR for low-shedders	0.47 (0.41-0.54)	[44,49,50]
Sp^{E}	Specificity of ELISA	0.97 (0.91-0.99)	[48,51–53]
Sp_{H}^{K}	Specificity of KELA for high-shedders	0.997 (0.952-0.999)	[46]
Sp^{F}	Specificity of FC	0.98 (0.92-1)	[52,53]
Sp^{P}	Specificity of PCR	0.94 (0.87-1)	[49,52]
Sp_{H}^{Q}	Specificity of qPCR for high-shedders	0.943 (0.80-0.99)	[26]
Se_C	Sensitivity of calf testing	0.5 (0.25-0.75)	assumed
Sp_C	Specificity of calf testing	0.98 (0.92-1)	assumed
δ_C	Culling rate of test-positive calves	$Se_CT_1 + (1-Sp_C)S_1$	calculated
δ_L	Culling rate of low-positive adults	$Se_L(L_P+L_N)+(1-Sp)(E_P+E_N+S_3)$	calculated
δ_H	Culling rate of high-positive adults	$Se_HH+(1-Sp)(E_P+E_N+S_3)$	calculated

195

Table 3. Economic parameters and inter-quartile ranges (IQR) used in a model of

197 *Mycobacterium avium* subsp. *paratuberculosis* and mastitis co-infection in dairy herds.

Cost	Description	Value (IQR)	Reference
prev	prevalence of MAP infection in purchased cows	0.094 (0.077-0.111)	[54]
C_{FC}	cost of fecal culture test per animal	\$36 (\$25-\$42)	[55–58]
C_E	cost of ELISA test per animal	\$6 (\$4-\$8)	[55–59]
C_P	cost of PCR test per animal	\$32 (\$32-40)	[55–59]
$\omega_{hyg,mod}$	Annual cost of implementing moderate hygiene per adult (clean milk)	\$35.54	[21]
$\omega_{hyg,large}$	Annual cost of implementing improved hygiene per adult (clean milk, separate calving pens, separate housing)	\$49.64	[21]
C_{cow}	Daily operating cost per kg milk produced	\$0.35 (0.33-0.37)	[60]
C_{heifer}	Daily operating cost of raising a calf/heifer	\$2.995 (2.662-3.403)	[61]
P_{cow}	Cull-cow price per kg	\$1.9671 (1.7292-2.31)	[62]
P_{milk}	Milk price per kg	\$0.444 (0.394-0.482)	[62]
P_{sale}	Sale price of replacement heifer	\$2232 (2000-2500)	[61]
Q_{cull}	Average cull cow weight	680.4 kg (660-700)	[63]
$Q_{milk,S}$	Average daily milk production per uninfected cow	32.62 kg (25.45-42.73)	[9]
$Q_{\it milk,EN}$	Average daily milk production per latent cow (non-progressing)	32.17 kg (24.09-42.73)	[9]
$Q_{\it milk,LN}$	Average daily milk production per low-shedding cow (non-progressing)	30.94 kg (24.09-42.73)	[9]
$Q_{milk,EP}$	Average daily milk production per latent cow (progressing)	33.12 kg (22.27-39.09)	[9]
$Q_{milk,LP}$	Average daily milk production per low-shedding cow (progressing)	29.13 kg (22.27-39.09)	[9]
$Q_{milk,H}$	Average daily milk production per high-shedding cow	22.17 kg (12.27-32.27)	[9]
ψ_H	Proportional adjustment in cull weight for high-shedding cows	0.9 (0.75-1)	assumed
t _{mast}	Treatment cost per clinical mastitis case	\$50 (35.50-73.50)	[36]
q_{mast}	Milk loss per clinical mastitis case	90.3 kg (64-183)	[64]
r	Discount rate	0.02 (0.01-0.08)	assumed

198

199 **3. RESULTS**

200 3.1 Milk Production Results

201 There were 31,583 monthly milk observations available for analysis, of which 537 occurred

within a month of a CM event. Of those, 424 were in test-negative individuals, 97 were in non-

progressing animals (85 latent, 12 low-shedding), and 16 were in progressing animals (14 latent,

204 2 low-shedding). Adding a variable indicating a recent CM did not improve the fit of the model

including an interaction between MAP progression and status (BIC=216,536 with the term and

BIC=216,527 without the term), so milk loss in animals with both MAP infection and CM was simulated to be additive.

208 3.2 Model Results

209 For simplicity, we will present rankings of only 13 potential control options, and the results of

SOSD only, as SOSD implies FOSD. The base for comparison is no MAP control. If testing is

used, we assume that it will be based on the serum enzyme-linked immunosorbent assay

(ELISA) test, administered to all animals either annually or biannually. Animals may be culled

after any positive test, only after a test result indicating a high-positive response, or only after the

second positive test result. Additionally, the farm may choose to continue ELISA testing after 5

negative whole-herd tests, or to discontinue testing after the 5th negative whole-herd test.

216 Model results for this subset of control options are shown in Table 4 for a 1,000 head herd with

217 20% initial shedding prevalence under CM association with MAP (MA), no CM association with

218 MAP (NMA), and no CM at all (NM); results for other initial herd sizes and initial shedding

219 prevalence are generally similar, and are shown in Supplemental Table S3. The model predicted

that all control programs would decrease the median true infection prevalence of

221 paratuberculosis over 5 years, and most would decrease the median shedding prevalence (Figure

222 2).

223	Table 4. ELISA-based testing strategies and their NPV distribution and number of second-order
224	dominated strategies for each mastitis scenario. Results are for a 20% initial MAP prevalence in
225	a 1,000 head herd.

	Mastitis Association (MA)		No Mastitis Association (NMA)		No Mastitis (NM)	
	median NPV (range), x10 ⁶	SOSD	median NPV (range), x10 ⁶	SOSD	median NPV (range), x10 ⁶	SOSD
No control	20.36 (16.76,23.63)	5	20.55 (16.99,23.85)	11	21.08 (14.59,26.41)	1
Annual ELISA, cull all	17.97 (13.44,21.79)	0	18.29 (12.74,22.02)	0	18.4 (10.95,23.13)	0

Annual ELISA,	20.25	2	20.15	1	20.5	2
cull high	(15.97,24.97)		(15.21,23.74)		(16.07,24.86)	
Annual ELISA,	19.85	4	19.75	1	20.28	3
cull after 2	(17.14,23.82)		(15.52,24.48)		(17.22,23.36)	
Biannual ELISA,	19.95	2	19.96	3	20.58	1
cull all	(16.74,24.52)		(16.92,23.39)		(15.72,24.79)	
Biannual ELISA,	19.77	1	19.84	1	20.43	2
cull high	(16.18,23.43)		(16.33,23.13)		(16.59,23.12)	
Biannual ELISA,	19.69	1	20.43	5	20.11	2
cull after 2	(16.53,22.88)		(16.35,23.76)		(16.33,24.7)	
Cont. annual	19.94	6	20.13	2	20.45	3
ELISA, cull all	(16.69,23.82)		(15.92,24.22)		(16.19,24.51)	
Cont. annual	20.40	6	20.56	5	20.57	8
ELISA, cull high	(16.65,23.66)		(16.06,23.69)		(17.43,24.02)	
Cont. annual	20.17	4	20.46	6	20.55	6
ELISA, cull after 2	(16.69,23.79)		(16.76,24.22)		(16.95,24.85)	
Cont. biannual	20.02	4	19.89	1	20.14	1
ELISA, cull all	(17.53,24.17)		(16.52,23.81)		(15.9,23.58)	
Cont. biannual	20.16	3	20.02	1	20.41	6
ELISA, cull high	(16.35,23.74)		(16.17,24.6)		(17.62,24.56)	
Cont. biannual	20.21	1	20.20	3	20.05	1
ELISA, cull after 2	(15.48,23.64)		(15.84,24.22)		(16.7,23.99)	
COOD 1 1	6 4 4 7 6 6	41 1 2	(1) 1	1 1		

SOSD is the number of strategies (of the 13 presented) second-order dominated.

227

Figure 2. Predicted change in shedding prevalence of paratuberculosis infection after 5 years of

control in a 1,000 cow herd with a median initial prevalence of 20%.

230

231 3.3 Stochastic Dominance Results

232 Regression results for the econometric model of SOSD rank for each of the CM scenarios and

233 MAP prevalence are shown in Figure 3 and Table 5, using results of all 123 control

combinations (S2). All six regressions have a similar set of significant variables, but their effects

can be different across herds. Not testing was consistently significantly worse than annual

testing, with the exception being in a herd with low initial prevalence and assuming NMA.

237 Biannual testing was not significantly different from annual testing in most scenarios.

238 Continuing to test after 5 negative whole-herd tests was significantly better than discontinuing

239	testing. ELISA testing wa	as significantly better than F	C or testing calves in the MA and NM

- scenarios, but not in the NMA scenario. However, in the NMA scenario with high initial
- 241 prevalence, FC and PCR were significantly worse than testing calves. High levels of hygiene
- were significantly worse than standard in all cases, and moderate levels of hygiene were
- significantly worse than standard in most cases.

244

- Figure 3. Coefficients from multivariable linear regressions for the overall second-order stochastic
- dominance rank (1=best, 123=worst) of MAP control programs, separated by herd size, initial
- shedding prevalence, and assumption about relationship between MAP and clinical mastitis (MA:
- 248 mastitis association; NMA: no mastitis association; NM: no mastitis). Central bar is estimate, box
- shows 95% confidence interval around estimate.

250

Table 5. Linear regression results of the proportion of dominated strategies under SOSD on

strategy characteristics on all initial herds. Constant term includes the effects of annual

continuous testing of calves, culling animals after one positive test, and standard hygiene. Model
 assumes additive linear effects.

		Mastitis Association Scenario (MA)		No Mastitis Association Scenario (NMA)		No Mastitis Scenario (NM)	
		20%	7%	20%	7%	20%	7%
Constant		42.8	38.8	41.7	53.7	39.1	39
		(33.7,51.9)	(29.8,47.8)	(34.1,49.3)	(47,60.4)	(30.1,48.2)	(30.4,47.5)
Test	Biannual	1.6	1.7	4.8	-2.6	3	5
frequency		(-3.2,6.5)	(-3.1,6.5)	(0.7, 8.8)	(-6.2,1)	(-1.9,7.8)	(0.4,9.5)
	None	44.1	46.4	26.4	8.9	46.7	45.6
		(26.5,61.7)	(29.1,63.7)	(11.8,41)	(-4,21.8)	(29.2,64.2)	(29.1,62.1)
Test discon	tinued	31.5	32.3	17.7	8.9	32.7	33.5
after 5 neg	ative WHT	(26.6,36.4)	(27.5,37.1)	(13.6,21.7)	(5.3,12.5)	(27.9,37.6)	(28.9,38.1)
Test type	FC	4.5	9	8.8	-0.4	4.3	5.7
		(-5.1,14.1)	(-0.5,18.5)	(0.8,16.8)	(-7.5,6.6)	(-5.3,13.8)	(-3.3,14.7)
	ELISA	-16.3	-11.7	1.5	-4	-14.7	-18
		(-25.9,-6.6)	(-21.2,-2.2)	(-6.5,9.5)	(-11.1,3.1)	(-24.3,-5.2)	(-27,-9)
	PCR	-3.5	2.5	8.4	1.3	1.7	-5
		(-13.1,6.1)	(-7, 11.9)	(0.4,16.4)	(-5.8, 8.3)	(-7.9, 11.3)	(-14, 4.1)

Culled	high	-3.2	-4.3	-5.1	-3.3	-1.9	2
after	positive	(-9.5,3)	(-10.5,1.9)	(-10.3,0.2)	(-8,1.3)	(-8.1,4.4)	(-3.9,7.9)
	second	-0.8	-6.8	-7.5	-3.2	-2.6	0.6
	positive	(-7.1,5.5)	(-13,-0.5)	(-12.7,-2.3)	(-7.9,1.4)	(-8.8,3.7)	(-5.4,6.5)
Hygiene	Moderate	4.1	7.4	6.3	12	7.8	3.9
		(-1.8,10)	(1.5,13.2)	(1.4,11.2)	(7.6,16.3)	(1.9,13.7)	(-1.7,9.4)
	High	18.8	19	14.4	11.8	16.8	18.5
		(12.9,24.7)	(13.1,24.8)	(9.5,19.3)	(7.5,16.2)	(10.9,22.7)	(12.9,24)

255 Values in bold were associated with significantly worse SOSD ranking, while those in italics

256 were associated with significantly better SOSD ranking.

257

Regression results for the econometric model of NPV for each of the CM scenarios and herds are 258 shown in Figure 4. Biannual testing was significantly associated with a lower NPV compared to 259 not testing, as was annual testing in almost all cases. Use of an ELISA test was significantly 260 261 associated with a higher NPV than other test choices. Moderate or high hygiene levels were significantly associated with a lower NPV than standard hygiene. In a large herd, culling only 262 high positive cows or after the second positive test was significantly associated with a slightly 263 264 higher NPV; this relationship was not seen in small herds. There were few differences in coefficient values across CM scenarios. 265 266 Figure 4. Coefficients from multivariable linear regressions for change in NPV per cow by 267 268 adding MAP control programs, separated by herd size, initial shedding prevalence, and 269 assumption about relationship between MAP and clinical mastitis (MA: mastitis association;

270 NMA: no mastitis association; NM: no mastitis). Central bar is estimate, box shows 95%

confidence interval around estimate.

272

273 3.4 Sensitivity Analysis Results

274	The partial rank correlation coefficients of all significantly correlated parameters from the global
275	sensitivity analysis are shown in Figure 5. Most scenarios had the same parameters consistently
276	related with NPV, primarily economic and production-related parameters. The risk of clinical
277	mastitis was significantly related to NPV in all scenarios.
278	

Figure 5. Partial rank correlation coefficients (PRCC) from a global sensitivity analysis on net
present value over 5 years of paratuberculosis control, assuming an association between mastitis
incidence and MAP infection.

282

283 **4. DISCUSSION**

284 This research shows that consideration of interacting disease systems does not importantly 285 change the results of an economic analysis of disease control. Adding an increased rate of CM 286 among infected animals to an economic model of paratuberculosis control only slightly changed the ranking of control programs. Specifically, failing to include CM in the model resulted in a 287 weaker preference for standard hygiene alone. Including CM but not its association with 288 289 paratuberculosis resulted in a stronger preference for standard hygiene alone, biannual ELISA testing and culling adults after 2 positive tests, and continuous ELISA with the same culling 290 policy. Culling for paratuberculosis should in theory have the side benefit of partially controlling 291 292 for CM. However, the inclusion of an association between CM and paratuberculosis did not change the overall conclusions of this economic model. This is likely due to two factors: the high 293 cost of MAP control and the relatively small size of the impact of MAP on mastitis. 294

We believe that the high cost of MAP control is the reason that few control strategies have been 295 shown to economically dominate no control. If the cost of implementing testing or hygiene, not 296 including costs related to culling of animals, were removed from the NPV, the distributions are 297 somewhat similar for many control programs (Supplemental Figure, S5). However, the cost of 298 these programs is high (Supplemental Table, S4): over a 5 year period, in a 1,000-head herd, the 299 300 discounted cost of testing all adults annually via ELISA was calculated at \$16,148. Testing all adult cows biannually using fecal culture or PCR was more than an order of magnitude higher. 301 These numbers do not include the costs of culling test-positive animals, or the lower income due 302 303 to smaller milking herd sizes after test-based culling in closed herds, each of which would raise the cost of control even more. 304

Previous studies have disagreed as to the cost-effectiveness of testing for MAP. While some models suggest that test and cull programs are effective at reducing the prevalence of MAP [30], others suggest that they are not sufficient to control MAP by themselves [23,65]. Our work here has shown that they are capable of decreasing the shedding prevalence of MAP, but are unlikely to be cost-effective. The exception would be ELISA testing, which others have also found to be potentially cost-effective [28]. This is likely due to the low cost and fast turn-around time for ELISA results.

We found here that hygiene was not cost-effective by any measure, and that this was unrelated to the relationship between MAP and mastitis. We had hypothesized that expensive control programs such as hygiene improvement (estimated here to cost a 1,000-head herd between \$95,652 and \$133,600 over a five year period) would become cost-effective as their effect on other pathogens was considered. The hygiene changes made to improve MAP control, however, are unlikely to directly impact CM incidence. While other models have suggested that hygiene

17

changes are indeed cost-effective [29], these may be assuming a lower base hygiene level than
our simulated herds. There also may be more benefits from hygiene improvement over a longer
time frame than the 5 years used here.

321 Our model did not show a strong effect of paratuberculosis association with CM on economically optimal control. The global sensitivity analysis also showed that the hazard ratio for CM 322 323 incidence in MAP-infected animals was not significantly associated with NPV. Likely, this is because the association between paratuberculosis and CM is so small in a practical sense. The 324 325 hazard ratio for first CM cases among MAP-infected animals is 1.89 (IQR: 1.53-2.33). However, 326 with an annualized rate of 0.27 CM cases/animal/year, this translates into an annual average of 27 extra cases of CM in a 1,000 head herd with 20% MAP infection prevalence. Given a cost per 327 case of CM of \$90, not counting mortality, the additional cost to the herd is approximately 328 \$2,500. Discounted over a 5 year simulation period, that results in a total cost of \$11,655 due to 329 additional CM cases. This is less than the cost of the least expensive MAP control program 330 331 (annual ELISA testing), and, as no program can immediately eliminate MAP in the herd, not all of the potential cost from the increased CM cases would be avoided by implementing control. 332 One large limitation of this model was the lack of age stratification, resulting in the necessary 333 simplification of constant clinical mastitis risk. It is known that clinical mastitis risk increases 334 with parity [66] and changes throughout the lactation [36]. However, accounting for age and 335 lactation stage in a compartmental model would cause the model to become intractable. For more 336 realistic modeling frameworks, it becomes necessary to transition to a more computationally 337 demanding modeling system, such as the agent-based model presented in Verteramo Chiu et al. 338 339 [67].

340	Regardless of the effects of MAP associations with CM, some overall preferences were
341	determined. On average, continuing to test and cull after 5 negative whole-herd tests was always
342	preferred. ELISA was the best-ranked test, followed by no testing. Standard hygiene was always
343	preferred, with increasing hygiene levels associated with economically worse-ranked programs.
344	5. CONCLUSION
345	We have found that, in the setting of a typical commercial US dairy, the addition of clinical
346	mastitis to a model for MAP control only slightly changed the ranking of individual control
347	programs, but did not greatly change the overall cost-effectiveness of components of MAP
348	control. These suggest that only testing by ELISA may be cost-effective.
349	
350	6. ACKNOWLEDGEMENTS
351	The authors gratefully acknowledge funding provided by the National Institute of Food and
352	Agriculture of the United States Department of Agriculture through NIFA Award No. 2014-
353	67015-2240 as part of the joint USDA-NSF-NIH-BBSRC-BSF Ecology and Evolution of
354	Infectious Diseases program. The funding sources played no role in the research.
355	
356	7. REFERENCES
357	1. Marcé C, Ezanno P, Weber MF, Seegers H, Pfeiffer DU, Fourichon C. Modeling within-
358	herd transmission of Mycobacterium avium subspecies paratuberculosis in dairy cattle: a
359	review. J Dairy Sci. Elsevier; 2010;93: 4455-70. doi:10.3168/jds.2010-3139
360	2. Kudahl AB, Nielsen SS, Sørensen JT. Relationship between antibodies against

19

361		Mycobacterium avium subsp. paratuberculosi s in milk and shape of lactation curves. Prev
362		Vet Med. 2004;62: 119-134. doi:10.1016/j.prevetmed.2003.11.008
363	3.	Aly SS, Anderson RJ, Adaska JM, Jiang J, Gardner IA. Association between
364		Mycobacterium avium subspecies paratuberculosis infection and milk production in two
365		California dairies. J Dairy Sci. Elsevier; 2010;93: 1030-40. doi:10.3168/jds.2009-2611
366	4.	Nielsen SS, Krogh MA, Enevoldsen C. Time to the occurrence of a decline in milk
367		production in cows with various paratuberculosis antibody profiles. J Dairy Sci. Elsevier;
368		2009;92: 149-55. doi:10.3168/jds.2008-1488
369	5.	Lombard JE, Garry FB, McCluskey BJ, Wagner BA. Risk of removal and effects on milk
370		production associated with paratuberculosis status in dairy cows. J Am Vet Med Assoc.
371		2005;227: 1975-1981. doi:10.2460/javma.2005.227.1975
372	6.	Raizman EA, Fetrow JP, Wells SJ, Godden SM, Oakes MJ, Vazquez G. The association
373		between Mycobacterium avium subsp. paratuberculosis fecal shedding or clinical Johne's
374		disease and lactation performance on two Minnesota, USA dairy farms. Prev Vet Med.
375		2007;78: 179-195. doi:10.1016/j.prevetmed.2006.10.006
376	7.	Gonda MG, Chang YM, Shook GE, Collins MT, Kirkpatrick BW. Effect of
377		Mycobacterium paratuberculosis infection on production, reproduction, and health traits in
378		US Holsteins. Prev Vet Med. 2007;80: 103-119. doi:10.1016/j.prevetmed.2007.01.011
379	8.	Sorge US, Lissemore KD, Godkin A, Hendrick SH, Wells SJ, Kelton DF. Associations
380		between paratuberculosis milk ELISA result, milk production, and breed in Canadian
381		dairy cows. J Dairy Sci. 2011;94: 754–761.
382	9.	Smith RL, Gröhn YT, Pradhan AK, Whitlock RH, Kessel JS Van, Smith JM, et al. The

383		effects of progressing and nonprogressing Mycobacterium avium ssp . paratuberculosis
384		infection on milk production in dairy cows. J Dairy Sci. American Dairy Science
385		Association; 2016;99: 1383–1390. doi:10.3168/jds.2015-9822
386	10.	Vanleeuwen JA, Haddad JP, Dohoo IR, Keefe GP, Tiwari A, Tremblay R. Associations
387		between reproductive performance and seropositivity for bovine leukemia virus, bovine
388		viral-diarrhea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora
389		caninum in Canadian dairy cows. Prev Vet Med. Elsevier B.V.; 2010;94: 54-64.
390		doi:10.1016/j.prevetmed.2009.11.012
391	11.	Smith RL, Strawderman RL, Schukken YH, Wells SJ, Pradhan AK, Espejo LA, et al. The
392		effect of Johne's disease status on reproduction and culling in dairy cattle. J Dairy Sci.
393		2010;93: 3513–3524.
394	12.	Marcé C, Beaudeau F, Bareille N, Seegers H, Fourichon C. Higher non-return rate
395		
555		associated with Mycobacterium avium subspecies paratuberculosis infection at early stage
396		in Holstein dairy cows. Theriogenology. 2009;71: 807–16.
396	13.	in Holstein dairy cows. Theriogenology. 2009;71: 807–16.
396 397	13.	in Holstein dairy cows. Theriogenology. 2009;71: 807–16. doi:10.1016/j.theriogenology.2008.10.017
396 397 398	13.	in Holstein dairy cows. Theriogenology. 2009;71: 807–16. doi:10.1016/j.theriogenology.2008.10.017 Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of
396 397 398 399	13.	in Holstein dairy cows. Theriogenology. 2009;71: 807–16. doi:10.1016/j.theriogenology.2008.10.017 Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium
396 397 398 399 400	13.	 in Holstein dairy cows. Theriogenology. 2009;71: 807–16. doi:10.1016/j.theriogenology.2008.10.017 Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in
396 397 398 399 400 401	13.	 in Holstein dairy cows. Theriogenology. 2009;71: 807–16. doi:10.1016/j.theriogenology.2008.10.017 Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces. Vet Microbiol. 2005;109: 147–158.

405 <i>paratuberculosis</i> infection. Transbound Emerg Di	s. 2017	';65:	125 - 148.
--	---------	-------	------------

- doi:10.1111/tbed.12723 406
- 15. Moravkova M, Babak V, Kralova a, Pavlik I, Slana I. Culture and quantitative IS900 407
- Real-time PCR-based analysis of the persistence of Mycobacterium avium subsp. 408
- paratuberculosis in a controlled dairy cow farm environment. Appl Environ Microbiol. 409
- 410 2012;78: 6608. doi:10.1128/AEM.01264-12
- 411 16. Ferrouillet C, Wells SJ, Hartmann WL, Godden SM, Carrier J. Decrease of Johne's
- disease prevalence and incidence in six Minnesota, USA, dairy cattle herds on a long-term 412
- management program. PrevVetMed. 2009;88: 128-137. 413
- Garcia AB, Shalloo L. Invited review : The economic impact and control of 414 17.
- paratuberculosis in cattle. J Dairy Sci. American Dairy Science Association; 2015;98: 1-415 21. doi:10.3168/jds.2014-9241 416
- 417 18. Pillars RB, Grooms DL, Wolf CA, Kaneene JB. Economic evaluation of Johne's disease control programs implemented in Michigan dairy farms. Prev Vet Med. 2009;90: 223-418
- 232. 419

424

- 19. Radia D, Bond K, Limon G, van Winden S, Guitian J. Relationship between periparturient 420 management, prevalence of MAP and preventable economic losses in UK dairy herds. Vet 421 Rec. 2013;173: 343-+. doi:10.1136/vr.101408 422
- 20. Groenendaal H, Wolf CA. Farm-level economic analysis of the US national Johne's 423 Disease Demonstration Herd Project. J Am Vet Med Assoc. 2008;233: 1852–1858.
- Wolf R, Clement F, Barkema HW, Orsel K. Economic evaluation of participation in a 21. 425
- voluntary Johne's disease prevention and control program from a farmer's perspective-426

	427	The Alberta Johne's Disease Initiative.	J Dairy	Sci.	Elsevier:	: 2014:97	/: 2822–34
--	-----	---	---------	------	-----------	-----------	------------

- 428 doi:10.3168/jds.2013-7454
- 429 22. Robins J, Bogen S, Francis A, Westhoek A, Kanarek A, Lenhart S, et al. Agent-based
- 430 model for Johne's disease dynamics in a dairy herd. Vet Res. Veterinary Research;
- 431 2015;46: 68. doi:10.1186/s13567-015-0195-y
- 432 23. Kudahl AB, Sørensen JT, Nielsen SS, Østergaard S. Simulated economic effects of
- improving the sensitivity of a diagnostic test in paratuberculosis control. Prev Vet Med.
- 434 2007;78: 118–29. doi:10.1016/j.prevetmed.2006.10.004
- 435 24. Kudahl AB, Nielsen SS, Østergaard S. Economy, efficacy, and feasibility of a risk-based
 436 control program against paratuberculosis. J Dairy Sci. 2008;91: 4599–609.
- 437 doi:10.3168/jds.2008-1257
- 438 25. Groenendaal H, Galligan DT. Economic consequences of control programs for
 439 paratuberculosis in midsize dairy farms in the United States. J Am Vet Med Assoc.
- 440 2003;223: 1757–1763.
- 441 26. Aly SS, Anderson RJ, Whitlock RH, Fyock TL, McAdams SC, Byrem TM, et al. Cost-
- 442 effectiveness of diagnostic strategies to identify Mycobacterium avium subspecies
- 443 paratuberculosis super-shedder cows in a large dairy herd using antibody enzyme-linked
- 444 immunosorbent assays, quantitative real-time polymerase chain reaction, and bacte. J Vet
- 445 Diagnostic Investig. 2012;24: 821–32. doi:10.1177/1040638712452107
- 446 27. Cho J, Tauer LW, Schukken YH, Smith RL, Lu Z, Gröhn YT. Cost Effective Control
- 447 Strategies for Johne's Disease in Dairy Herds. Can J Agric Econ. 2013;61: 583–608.
- 448 doi:10.1111/j.1744-7976.2012.01270.x

449	28.	Massaro T, Lenhart S, Spence M, Drakes C, Yang G, Agusto F, et al. Modeling For Cost
450		Analysis Of Johne's Disease Control Based On EVELISA Testing. J Biol Syst. 2013;21:
451		1340010. doi:10.1142/S021833901340010X
452	29.	Dorshorst NC, Collins MT, Lombard JE. Decision analysis model for paratuberculosis
453		control in commercial dairy herds. Prev Vet Med. Elsevier; 2006;75: 92-122. Available:
454		http://www.sciencedirect.com/science/article/pii/S0167587706000547
455	30.	Konboon M, Bani-yaghoub M, Id POP, Rhee N, Id SA. A nested compartmental model to
456		assess the efficacy of paratuberculosis control measures on U . S . dairy farms. 2018; 1– $$
457		25.
458	31.	Smith RL, Al-Mamun MA, Gröhn YT. Economic consequences of paratuberculosis
459		control in dairy cattle: A stochastic modeling study. Prev Vet Med. Elsevier B.V.;
460		2017;138: 17-27. doi:10.1016/j.prevetmed.2017.01.007
461	32.	Diéguez FJ, Arnaiz I, Sanjuan ML, Vilar MJ, Yus E. Management practices associated
462		with Mycobacterium avium subspecies paratuberculosis infection and the effects of the
463		infection on dairy herds. Vet Rec. 2008;162: 614-617. doi:162/19/614 [pii]
464	33.	Arrazuria R, Arnaiz I, Fouz R, Calvo C, Eiras C, Diaguez F. Association between
465		Mycobacterium avium subsp . paratuberculosis infection and culling in dairy cattle herds
466		Asociación entre la infección por Mycobacterium avium subsp . paratuberculosis y las
467		causas de eliminación en rebaños de ganado lechero. Arch Med Vet. 2008;44: 39-44.
468		doi:10.4067/S0301-732X2014000100006
469	34.	Rossi G, Gröhn YT, Schukken YHYHYH, Smith RL. The effect of Mycobacterium avium
470		subspecies paratuberculosis infection on clinical mastitis occurrence in dairy cows. J

471 Dairy Sci. American Dairy Science Association; 2017;100: 744	6 - /454.
--	-----------

- 472 doi:10.3168/jds.2017-12721
- 473 35. Smith RL, Schukken YH, Gröhn YT. A new compartmental model of Mycobacterium
- 474 avium subsp paratuberculosis infection dynamics in cattle. Prev Vet Med. Elsevier B.V.;
- 475 2015;122: 298–305. doi:10.1016/j.prevetmed.2015.10.008
- 476 36. Bar D, Tauer LW, Bennett GJ, González RN, Hertl JA, Schukken YH, et al. The cost of
- 477 generic clinical mastitis in dairy cows as estimated by using dynamic programming. J
- 478 Dairy Sci. 2008;91: 2205–14. doi:10.3168/jds.2007-0573
- 479 37. Levy H. Stochastic Dominance and Expected Utility : Survey and Analysis. Management
 480 Sci. 1992;38: 555–593.
- 38. Tversky A, Kahneman D. Rational Choice and the Framing of Decisions Author. J Bus.
 1986;59: S251–S278.
- 483 39. Carnell R. lhs: Latin Hypercube Samples [Internet]. 2017. Available: https://cran.r484 project.org/package=lhs
- 485 40. Mitchell RM, Whitlock RH, Gröhn YT, Schukken YH. Back to the real world:
- 486 Connecting models with data. Prev Vet Med. Elsevier B.V.; 2015;118: 215–225.
- 487 doi:10.1016/j.prevetmed.2014.12.009
- 488 41. Collins MT, Eggleston V, Manning EJB. Successful control of Johne's disease in nine
- dairy herds: results of a six-year field trial. J Dairy Sci. Elsevier; 2010;93: 1638–43.
- 490 doi:10.3168/jds.2009-2664
- 491 42. Benedictus A, Mitchell RM, Linde-Widmann M, Sweeney RW, Fyock TL, Schukken YH,

492	et al	Transmission	parameters of My	cohacterium	avium	subspecies	naratuberculosis
492	υt al.	1141151111551011	parameters or wry		avium	Subspecies	

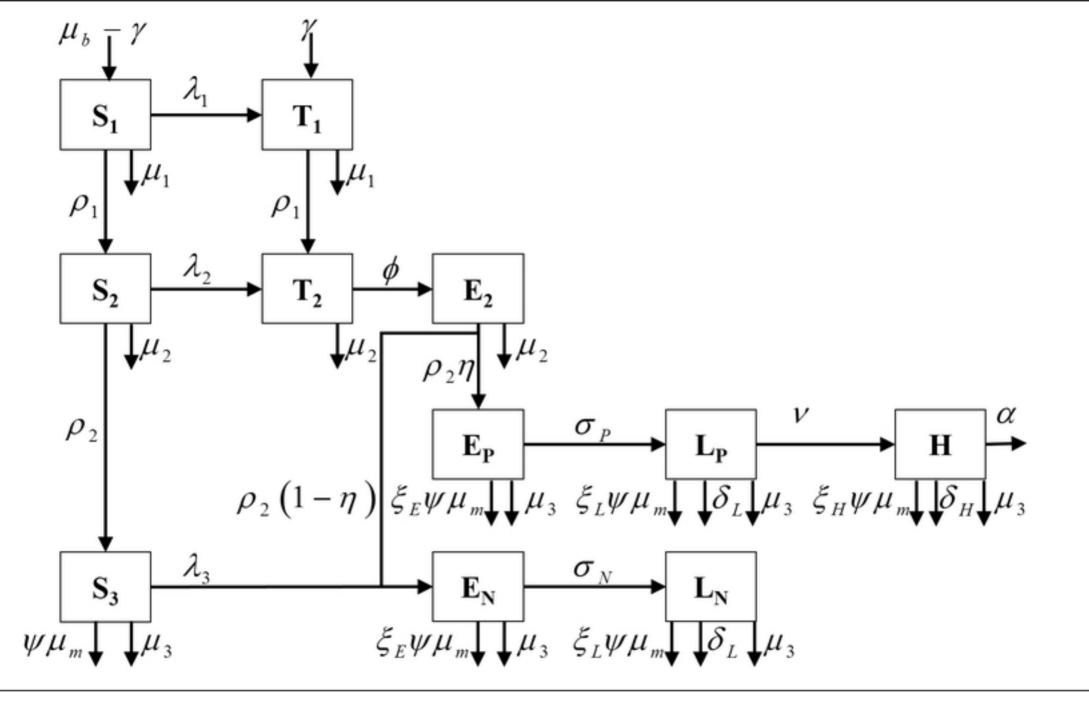
- 493 infections in a dairy herd going through a control program. Prev Vet Med. 2008;83: 215–
- 494 227. doi:10.1016/j.prevetmed.2007.07.008
- 43. Nielsen SS, Toft N. Effect of management practices on paratuberculosis prevalence in
 Danish dairy herds. J Dairy Sci. 2011;94: 1849–1857.
- 497 44. Clark DL, Koziczkowski JJ, Radcliff RP, Carlson RA, Ellingson JLE. Detection of
- 498 Mycobacterium avium subspecies paratuberculosis: comparing fecal culture versus serum
- 499 enzyme-linked immunosorbent assay and direct fecal polymerase chain reaction. J Dairy
- 500 Sci. Elsevier; 2008;91: 2620–7. doi:10.3168/jds.2007-0902
- 501 45. Sweeney RW, Whitlock RH, McAdams SC, Fyock TL. Longitudinal Study of ELISA
- 502 Seroreactivity to Mycobacterium Avium subsp. Paratuberculosis in Infected Cattle and

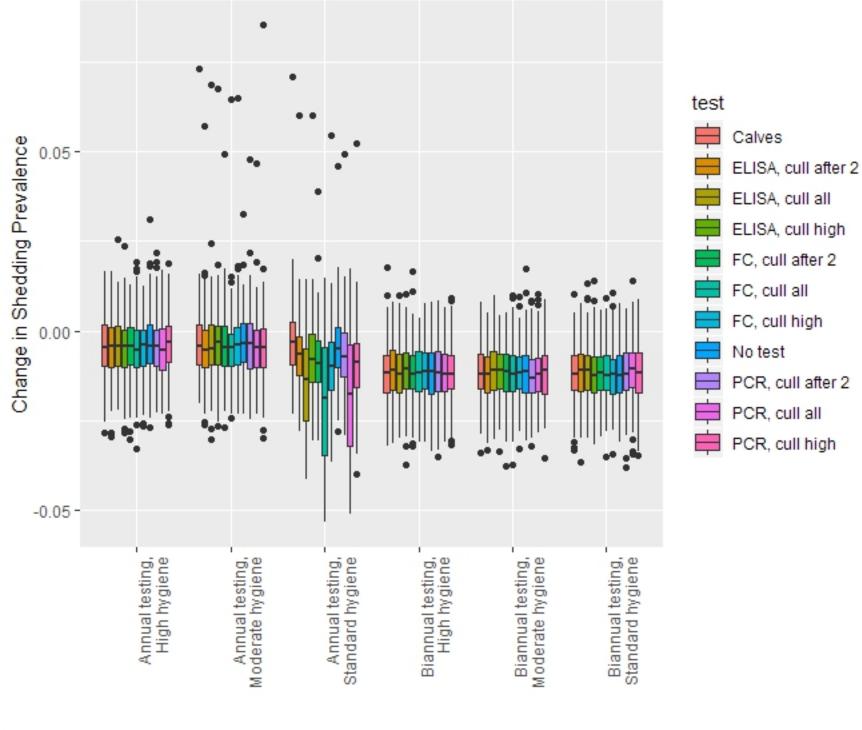
503 Culture-Negative Herd Mates. J Vet Diagnostic Investig. 2006;18: 2–6.

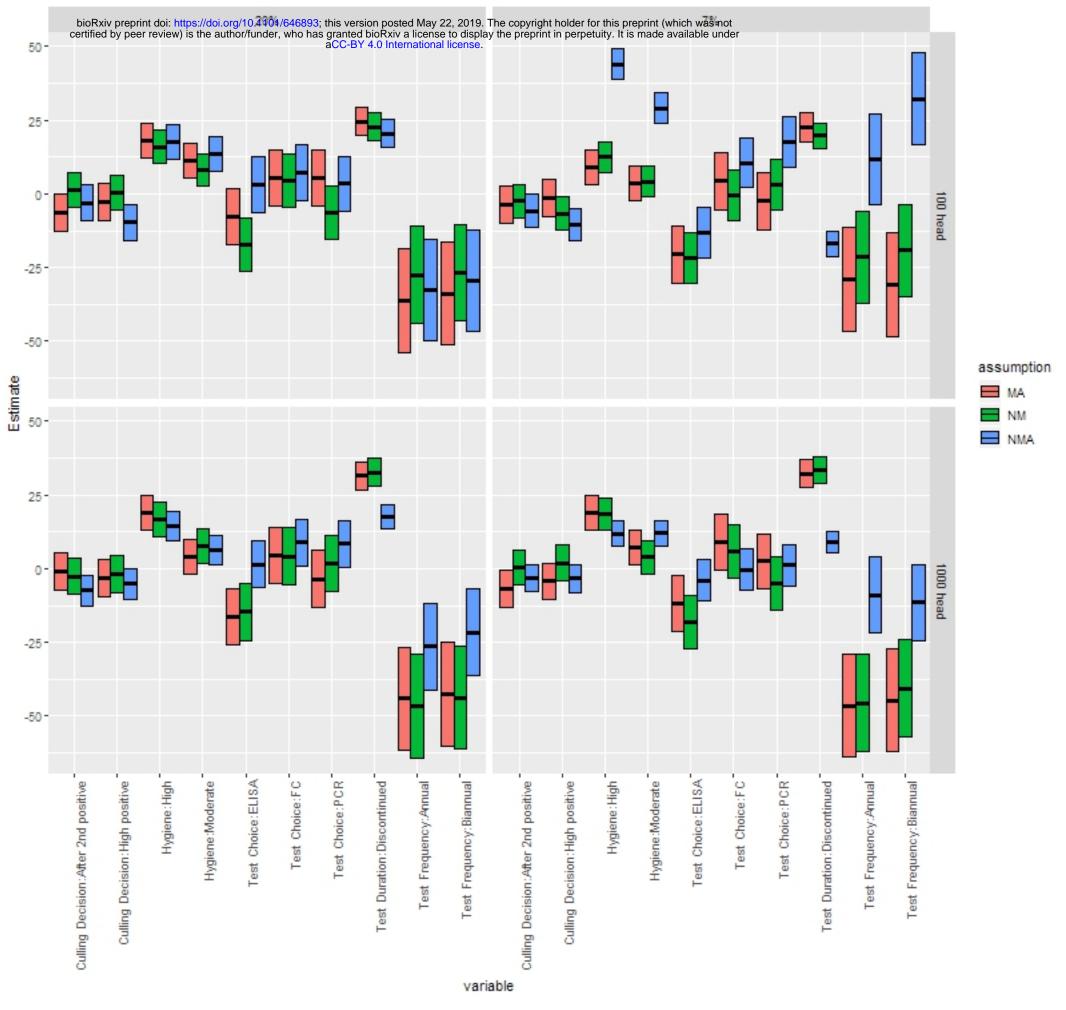
- doi:10.1177/104063870601800102
- 505 46. van Schaik G, Stehman SM, Jacobson RH, Schukken YH, Shin SJ, Lein DH. Cow-level
- evaluation of a kinetics ELISA with multiple cutoff values to detect fecal shedding of
- 507 Mycobacterium avium subspecies paratuberculosis in New York State dairy cows. Prev
- 508 Vet Med. Department of Population Medicine and Diagnostic Sciences, College of
- 509 Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; 2005;72: 221–236.
- 510 doi:10.1016/j.prevetmed.2005.01.019
- 47. Collins MT, Gardner IA, Garry F, Roussel AJ, Wells SJ. Consensus recommendations on
 diagnostic testing for the detection of paratuberculosis in cattle in the United States. J Am
 Vet Med Assoc. 2006;229: 1912–1919. Available:

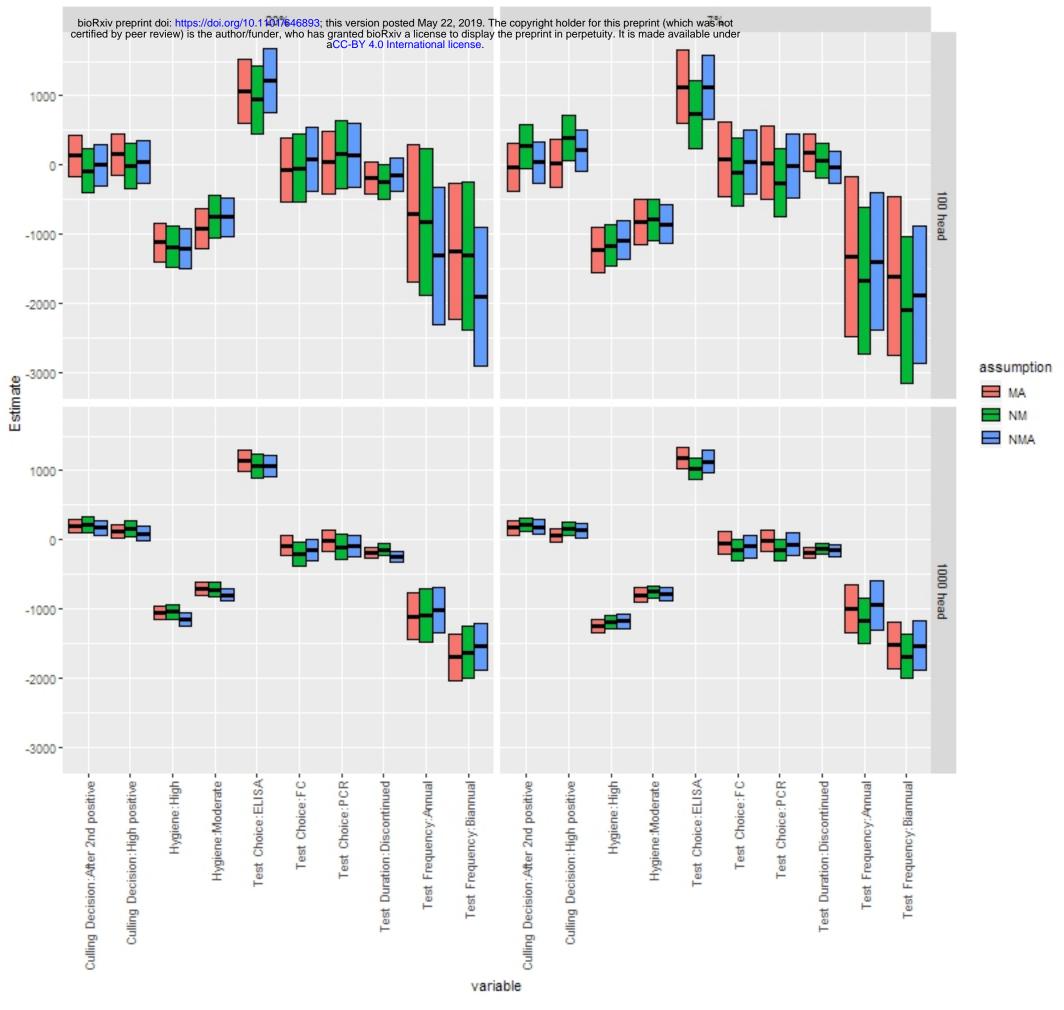
514		http://avmajournals.avma.org/doi/abs/10.2460/javma.229.12.1912
515	48.	Whitlock RH, Wells SJ, Sweeney RW, Van Tiem J. ELISA and fecal culture for
516		paratuberculosis (Johne's disease): sensitivity and specificity of each method. Vet
517		Microbiol. New Bolton Center, University of Pennsylvania, 382 West Street Road,
518		Kennett Square, PA 19348, USA. whitlock@vet.upenn.edu; 2000;77: 387-398. Available:
519		http://www.sciencedirect.com/science/article/pii/S0378113500003242
520	49.	Taddei S, Robbi C, Cesena C, Rossi I, Schiano E, Arrigoni N, et al. Detection of
521		Mycobacterium Avium Subsp. Paratuberculosis in Bovine Fecal Samples: Comparison of
522		Three Polymerase Chain ReactionBased Diagnostic Tests with a Conventional Culture
523		Method. J Vet Diagnostic Investig. 2004;16: 503-508. doi:10.1177/104063870401600603
524	50.	Leite FL, Stokes KD, Robbe-Austerman S, Stabel JR. Comparison of fecal DNA
525		extraction kits for the detection of Mycobacterium avium subsp. paratuberculosis by
526		polymerase chain reaction. J Vet Diagnostic Investig. 2013;25: 27-34.
527		doi:10.1177/1040638712466395
528	51.	Meens E, Rambaud T, Arnaud D. Evaluation of diagnostic tests to classify cattle, in
529		control plans, according to their levels of excretion of Mycobacterium avium
530		Paratuberculosis. 12th International Colloquium on Paratuberculosis. Parma, Italy; 2014.
531		p. P-03.13.
532	52.	Vitale N, Possidente R, D'Errico V, Dondo A, Bergagna S, Barbero R, et al. Estimating
533		diagnostic accuracy of paratuberculosis (PTB) diagnostic test with latent class models.
534		12th International Colloquium on Paratuberculosis. Parma, Italy; 2014. p. P-02.10.
535	53.	Sweeney RW, Gardner IA, Hines MEI, Anderson R, Byrem TM, Collins MT, et al.

536		Comparison of 3 fecal culture, 2 fecal PCR, 2 serum ELISA, and milk ELISA for
537		diagnosis of paratuberculosis in US dairy cattle. 12th International Colloquium on
538		Paratuberculosis. Parma, Italy; 2014. p. P-02.47.
539	54.	Adaska JM, Anderson RJ. Seroprevalence of Johne's-disease infection in dairy cattle in
540		California, USA. Prev Vet Med. California Animal Health and Food Safety Laboratory,
541		Tulare Facility, 18830 Road 112, Tulare, CA 93274, USA. jmadaska@ucdavis.edu;
542		2003;60: 255–261.
543	55.	Cornell University Animal Health Diagnostic Center. Test and Fee Schedule [Internet].
544		2015. Available: https://ahdc.vet.cornell.edu/
545	56.	Collins MT, Manning EJB. Testing Services. In: Johne's Information Center [Internet].
546		2015. Available: http://www.johnes.org/testserv/index.html#tests
547	57.	Besser T. New Strategies for Johne's Disease Testing. In: Washington Animal Disease
548		Diagnostic Lab [Internet]. 2015 [cited 10 Dec 2015]. Available:
549		http://waddl.vetmed.wsu.edu/animal-disease-faq/johne's-testing
550	58.	Tests and Fees. In: Iowa State Veterinary Diagnostic Laboratory [Internet]. 2015 [cited 10
551		Dec 2015]. Available: http://vetmed.iastate.edu/veterinary-diagnostic-laboratory-vdl/tests-
552		and-fees#j
553	59.	Indiana Animal Disease Diagnostic Laboratory. Fee Schedule [Internet]. 2015 [cited 10
554		Dec 2015]. Available: https://www.addl.purdue.edu/TestsFees/ByTest.aspx
555	60.	USDA:ERS. National Milk Cost of Production. In: Milk Cost of Production Estimates
556		[Internet]. 2010 [cited 9 Sep 2015]. Available: http://www.ers.usda.gov/data-
557		products/milk-cost-of-production-estimates.aspx

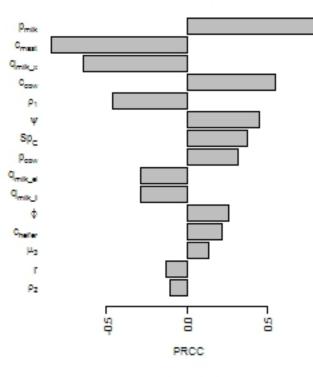

- 558 61. Karszes J. Dairy Replacement Programs : Costs & Analysis 3 rd Quarter 2012. 2014;
- 559 62. USDA:NASS. Quick Stats. In: Quick Stats. 2015.
- 560 63. USDA. Agricultural Prices Summary 2003–2007. In: Agricultural Prices [Internet]. 2008.
- 561 Available: http://usda.mannlib.cornell.edu/MannUsda/view-
- 562 DocumentInfo.do?documentID=1003.
- 563 64. Bar D, Gröhn YT, Bennett GJ, González RN, Hertl JA, Schulte HF, et al. Effect of
- repeated episodes of generic clinical mastitis on milk yield in dairy cows. J Dairy Sci.
- 565 2007;90: 4643–53. doi:10.3168/jds.2007-0145
- 566 65. Groenendaal H, Nielen M, Jalvingh AW, Horst SH, Galligan DT, Hesselink JW. A
- simulation of Johne's disease control. Prev Vet Med. 2002;54: 225–245. Available:
- 568 http://www.sciencedirect.com/science/article/B6TBK-45X2PMN-
- 569 8/2/35a11301cbb515872fab227714a730ec
- 570 66. Breen JE, Green MJ, Bradley AJ. Quarter and cow risk factors associated with the
- 571 occurrence of clinical mastitis in dairy cows in the United Kingdom. J Dairy Sci. Elsevier;
- 572 2009;92: 2551–61. doi:10.3168/jds.2008-1369
- 573 67. Verteramo Chiu LJ, Tauer LW, Al-Mamun MA, Kaniyamattam K, Smith RL, Gröhn YT.
- 574 An agent-based model evaluation of economic control strategies for paratuberculosis in a
- 575 dairy herd. J Dairy Sci. 2018; doi:10.3168/jds.2017-13175

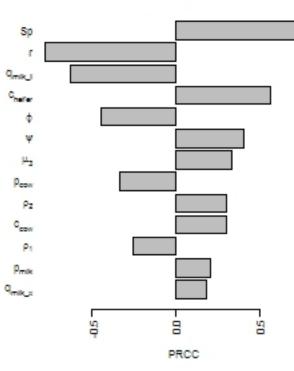

576

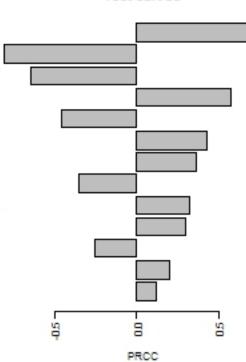

577 Supporting Information Captions

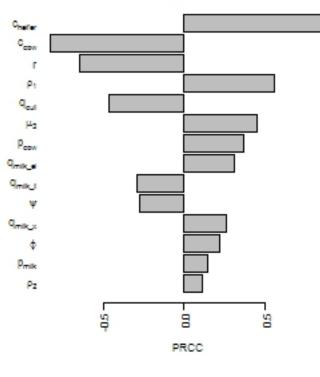

578	S1	Table:	Events,	changes,	and	rates	used f	or	simul	ation	via	Gille	spie's	direct	algo	rithn	1

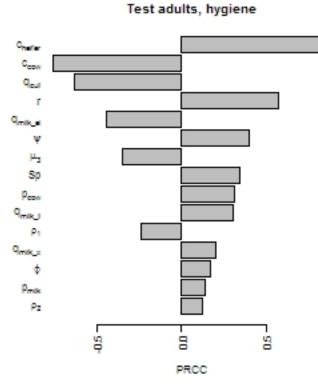
- 579 S2 Table: Paratuberculosis control strategy IDs
- 580 S3 Table: ELISA-based strategies and their NPV distribution and number of dominated
- 581 strategies for each mastitis scenario and herd type.
- 582 S4 Table: Discounted cost of implementing different possible paratuberculosis controls, not
- 583 including culling and replacement costs, over a 5 year period in a 1,000-head dairy
- 584 herd
- 585 S5 Figure: Net Present Value and discounted cost of control for each paratuberculosis
- 586 control strategy over 5 years in a 1,000-head dairy herd with 7% initial
- 587 paratuberculosis prevalence and increased mastitis in paratuberculosis-infected cows











Hygiene

Test calves, hygiene

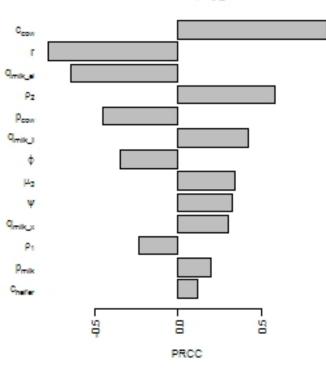


Figure 5

Test adults

Test calves

9_{mik,x}

Г

Qui

 ρ_{z}

Pcow

q_{mik_}

φ

 μ_2

P₁

Ψ

Ccow

Pmik

Cheffer