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Abstract 
 
The interaction between human immunodeficiency virus (HIV) and the antibody 
repertoire (AbR) during chronic infection can provide important information for 
HIV vaccine research, yet has not been well-characterized on a systems level. 
We deeply sequenced the HIV population and the AbR of ten HIV-infected, 
antiretroviral (ART)-naïve individuals, each with 10-20 longitudinal samples 
spanning 4-14 years. Our unbiased sequencing approach identified partitions of 
AbRs showing evidence of interaction with autologous HIV populations. We show 
that these HIV-associated partitions are enriched for the V gene segments of 
known HIV broadly neutralizing antibodies (bnAbs), indicating that the HIV-
responding component of the AbR can be identified via time-series genetic data. 
Despite this evidence for larger-scale AbR/HIV interactions at the sub-population 
level, we found little to no evidence for coevolution. This suggests that 
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coevolution is either rare, or hard to detect, which has important vaccine design 
implications.  
 
Introduction 
 
Since the beginning of the modern pandemic in 1981 (Faria et al., 2014; Gottlieb 
et al., 1981), human immunodeficiency virus (HIV) has been the source of 
incredible scientific scrutiny. While there has been great progress in the 
development of antiretroviral therapy (ART), which can now manage the disease 
indefinitely (albeit only for those who have access to them), a cure remains 
elusive (Stein, Storcksdieck genannt Bonsmann, & Streeck, 2016), and little 
progress has been made toward a preventative vaccine (Trovato, D’Apice, 
Prisco, & De Berardinis, 2018). Prevention efforts have recently made significant 
headway by implementing preexposure prophylaxis (PrEP) to high risk 
individuals. However, in its current form, this strategy has its downsides, such as 
a reliance on daily self-administration, significant financial burden, and health 
side effects (Weinstein, Yang, & Cohen, 2017). Thus, cure and vaccine 
strategies remain the elusive goal for HIV research. Together, the distinct gains 
in treatment, yet relative lack of gains in HIV prevention, has resulted in a 
stalemate of sorts, where instead of HIV being triumphantly eradicated by 
modern science, it has settled into a persistent, yet treatable reality of human life.  
 
The fervent hope for progress is particularly palpable in HIV vaccine research. 
This fervor is mainly fueled by the fact that effective HIV immunity is entirely 
possible and well documented, as a broadly neutralizing humoral immune 
response against HIV occurs naturally in 10-20% of those chronically infected 
(Binley et al., 2008; Hraber et al., 2014; Sather et al., 2009). It seems that while 
humans universally cannot clear an HIV infection, some can develop immunity to 
future infections. Moreover, potent humoral immunity has been associated with 
spontaneous immunological suppression of HIV following disease acquisition in 
the absence of ART (Freund et al., 2017). If a vaccine were to be designed that 
could somehow recapitulate the broad and potent anti-HIV humoral immune 
responses observed in naturally resistant individuals, then effective protective 
immunity may be achievable. While a good deal of progress has been made in 
this avenue of research, it has not yet resulted in an effective vaccine. Among the 
promising discoveries are broadly neutralizing antibodies (bnAbs), which are 
monoclonal antibodies (Abs) that can single-handedly neutralize up to 90% of 
heterologous HIV strains (McCoy & Burton, 2017; X. Wu et al., 2011). To study 
the development of these bnAbs, researchers have utilized a post-hoc deep-
sequencing approach by which a set of primers are developed that will 
preferentially amplify a subset of the antibody repertoire (AbR)—the population of 
antibodies in an organism—that is known to contain a bnAb lineage (Bhiman et 
al., 2015; Liao et al., 2013; X. Wu et al., 2011). The advantage of this approach is 
that one can cut through the incredible noise and complexity of the AbR to focus 
on a particular lineage of importance. However, such approaches miss the 
diversity of Ab lineages interacting with HIV that may have important effects on 
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immunity outcomes. To our knowledge, only (Hoehn et al., 2015) have deeply 
sequenced the AbR in an unbiased fashion in the context of HIV infection, but 
they did not collect paired HIV sequence data to directly study genetic 
interactions. 
 
The common narrative of bnAb development is that they are in a coevolutionary 
arms race (Dawkins & Krebs, 1979) with the autologous HIV population 
(Rantalainen et al., 2018; Zhou, Ton, Morriss, Nguyen, & Fera, 2018). There is 
good reason to suspect that this coevolutionary hypothesis is true: bnAbs tend to 
be quite derived relative to their inferred naïve ancestors (Bhiman et al., 2015), 
they tend to take a long time to develop (years), and there tends to be a time 
dependence on neutralization capabilities (i.e. HIV-neutralizing Abs are more 
likely to neutralize autologous virus from the past, and less likely to neutralize 
contemporaneous or future autologous virus) (Gray et al., 2011; Liao et al., 
2013). However, there is also evidence contrary to the arms race hypothesis: 
bnAbs can arise relatively quickly, and with few mutations (Nicole A. Doria-Rose 
et al., 2014; Goo, Chohan, Nduati, & Overbaugh, 2014; MacLeod et al., 2016; 
Simonich et al., 2016), and superinfections—multiple HIV infections in the same 
individual—don’t necessarily drive further evolution in existing HIV-neutralizing 
Ab lineages, but rather promote the development of de novo HIV-targeting Ab 
lineages (Sheward et al., 2018; Williams et al., 2018). Whereas in a paradigm of 
coevolution, one might expect that novel epitopes introduced by a superinfection 
would spur the development of existing HIV-targeting Ab lineages to evolve 
innovations to regain affinity. Similarly, in the context of malaria infection, 
repeated immunizations with a complex malaria antigen promote the activation of 
de novo naïve Ab lineages, rather than the evolution of already existing malaria-
targeting Abs (Murugan et al., 2018). 
 
A better understanding of the interaction between HIV and the AbR over time 
could shed light on how HIV immunity is achieved. However, longitudinal 
sequence studies of HIV infections tend to either focus on HIV (Feder, 
Kryazhimskiy, & Plotkin, 2014; Fischer et al., 2010; Henn et al., 2012; 
Shankarappa et al., 1999; Zanini et al., 2015) or the AbR (Hoehn et al., 2015; 
Nourmohammad, Otwinowski, Luksza, Mora, & Walczak, 2018; Xueling Wu et 
al., 2015), but not both. To our knowledge, only three studies have deeply 
sequenced the AbR along with the autologous HIV population, but each of these 
studies consisted of a single individual with relatively few time-points (Bhiman et 
al., 2015; Landais et al., 2017; Liao et al., 2013). In this study, we ameliorate this 
dearth of data, and describe in unprecedented detail the genetic interaction 
between these putatively coevolving populations in 10 well-characterized HIV-
infected individuals. 
 
Results 
 
Sequencing HIV env and IGH 
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We collected a total of 119 cryopreserved peripheral blood samples from the 
OPTIONS cohort at the University of California, San Francisco (UCSF). The 
samples all originated from male participants aged 25-48 years old at the 
estimated time of infection in San Francisco, and each participant had 10-20 
longitudinal samples (Table 1, and Figure S1). The samples were all collected 
prior to administration of ART, with the exception of the last time-point of 
participants 1, 2, and 5. We chose to deeply sequence the C2-V3 region of the 
env gene because of its rich history of interactions with Abs, as evidenced by the 
HIV epitope map from Los Alamos National Labs (LANL) (Hatada et al., 2010; 
Ringe et al., 2012; Yusim et al., 2016). Of the 116 ART-naïve samples, we were 
unable to successfully amplify C2-V3 from 12. In 11 of these cases, low viral load 
was the presumed cause for lack of amplification, but the 9th time-point of 
participant 6 was unsuccessful despite high viral load (Figure 1, S2). We were 
also unable to amplify C2-V3 from the 3 ART-exposed samples. While viral load 
measurements were not available for these samples, the presumed cause for our 
inability to amplify C2-V3 was low viral load, given their ART status. The initial 
env sequencing depth ranged from 3,771-101,831 reads per sample, and after 
cleaning the data with several quality control (QC) steps, this ranged from 2,276-
56,914 reads per sample (Figure S3). 
 
We also deeply sequenced the variable region of the immunoglobulin heavy 
chain locus (IGH), the product of which we refer to as the antibody repertoire 
(AbR). The AbR was successfully sequenced in all 119 samples, with the 
exception of the fourth time-point of participant 3. Sequence data was generated 
for this sample, but it exhibited an abrupt clonal expansion of a magnitude that 
was a clear outlier for participant 3, and not seen in any other sample, so it was 
discarded (Figure S4, and 1). Initial AbR sequencing depth ranged from 669,331-
2,669,662 reads per sample, and after QC this ranged from 160,291-552,479 
reads per sample (Figure S5). 
 
Characterizing the HIV population and AbR over time 
 
In order to quantify the broad attributes of the AbR and HIV populations over 
time, we calculated a variety of summary statistics that characterized the genetic 
diversity, divergence, selection, and abundance for each of the populations. 
Selection pressure (positive or negative) in HIV was estimated as 𝑑𝑁/𝑑𝑆 (Nei & 
Gojobori, 1986), and in the AbR was estimated using the Σ values from 
BASELINe (Yaari, Uduman, & Kleinstein, 2012). As others have reported 
(Maldarelli et al., 2013; Zanini et al., 2015), we found that HIV diversity, 
divergence, and selection (𝑑𝑁/𝑑𝑆) all tend to increase with time since estimated 
date of infection, with large perturbations over smaller time-scales (Figures 2, S6, 
and S7). Of note, the high viral load of the first time-point of participant 7 
suggests that the acute viremia phase of early HIV infection was captured. 
Additionally, participant 10 had very low viral load for the first 8 time-points, which 
explains why amplification of HIV env was unsuccessful for these samples. 
Participant 6 exhibited strong evidence for a super-infection occurring between 
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the 1st and 2nd time-points (Figure S8). Super infections are not uncommon with 
HIV (Redd, Quinn, & Tobian, 2013), and will cause a sudden injection of ‘artificial’ 
genetic divergence relative to the initial infecting virus. Thus, we accounted for 
this superinfection when calculating divergence summary statistics for participant 
6 by comparing each sequence to both the initial infection, as well as the 
subsequent superinfection (see Methods). 
 
The trajectories of the AbR summary statistics did not show any obvious 
stereotyped pattern across participants (Figures 3, S9, and S10). However, there 
were a couple data points that suggested interactions with the HIV population: 
the second time-point of participant 7 (0.41 years post infection) showed a large 
increase in selection (in both the framework regions, FWR, and complementarity 
determining regions, CDR), which could be a response to the initial viremia in the 
prior time-point; and the ninth time-point of participant 10 (3.37 years post 
infection) also showed a large increase in selection with a concomitant drop in 
diversity, which could have been a response to the large increase in viral load at 
that time-point. 
 
To increase the accessibility of these data, we created a web application,	
available at https://efryer333.github.io/HIV_AB_CoEvo/, for others to investigate 
this new dataset interactively. It allows users to explore the data by individual 
patient or all patients across various summary statistics including genetic 
diversity, divergence, selection, and abundance for HIV and/or the AbR. 
 
Testing for whole-population level interactions 
 
In order to gauge the effect HIV has on the AbRs of participants, we first pooled 
all the data across participants, and used a regression framework to test if any of 
the AbR summary statistics were significantly correlated with that of the HIV 
population (while controlling for participant-specific effects, see Methods). We 
performed this test in a pairwise fashion on all AbR summary statistics against all 
HIV summary statistics. Similar to Hoehn’s work (Hoehn et al., 2015), we found 
no significant correlation between AbR diversity and viral load, yet we did find a 
modest, statistically significant correlation between AbR and HIV diversity (p= 
0.02, Figure 4 A). While this association was marginally significant—indeed, it 
ceases to be significant after controlling for multiple tests—we found any 
association at the whole-population level surprising, and thus, worth reporting.  
 
It is possible that some participants’ AbRs interact with their autologous HIV 
population more than others, thus we also tested for interactions between 
summary statistics on a participant-by-participant approach. Because the number 
of data points per participant is relatively low, we opted to use a permutation 
based test in order to accurately estimate type 1 error (Ernst, 2004) (see 
Methods). In participant 2, we found that selection (𝑑𝑁/𝑑𝑆) and viral load in the 
HIV population were associated with divergence and selection (FWR) in the AbR, 
respectively (p=0.009 and p=0.0425, Figure 4 B, and C). We also found that in 
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participant 7, viral load and diversity in the HIV population were associated with 
selection (FWR) and divergence in the AbR, respectively (p=0.040 and p=0.040, 
Figure 4 D, and E). All of these associations were positive correlations, with the 
exception of HIV selection (𝑑𝑁/𝑑𝑆) and AbR divergence in participant 2, which 
was anticorrelated. 
 
Together, these data raise the possibility that the effect that HIV has on the AbR 
(and vice versa) is large enough to be observable at the intra- participant, whole 
population level, although more samples would be needed to make definitive 
statements about this. 
 
Identifying partitions of the AbR that interact with HIV 
 
The AbR is an exceedingly complex population consisting of a myriad of Ab 
lineages capable of simultaneously binding and neutralizing a countless number 
of antigenic targets. To identify specific parts of the AbR that may be interacting 
with HIV, we first partitioned the AbR across time based on the germline identity 
of each sequence’s V and J gene segments (Figure S11), and then tested each 
AbR partition for evidence of interactions with the autologous HIV population 
using similar summary statistics as the overall population (see Methods). Using 
an analogous permutation-based test as was used when comparing the overall 
populations, we found significant associations between AbR-partition trajectories 
and HIV trajectories in participants 3, 7, and 8 (Figures S12, S13, and 5). Of 
these associations, AbR-partition frequency tended to be most often associated 
with viral load. For example, participant 7 had a distinct viral load trajectory—
presumably due to acute viremia—and the frequency trajectory of the IGHV4-
31:IGHJ5 AbR partition was positively associated with the unique shape of this 
trajectory (while the diversity of this AbR partition was negatively associated with 
viral load). This suggests a clonal expansion occurred in this AbR-partition in 
response to HIV, which caused an increase in the partition’s frequency with a 
concomitant drop in diversity. Similarly, in participant 8, the frequency trajectory 
of two AbR partitions with the same V gene segment (IGHV6-1:IGHJ5 and 
IGHV6-1:IGHJ4) were positively associated with viral load, suggesting that the 
IGHV6-1 gene segment in this participant may have had a predisposition to 
targeting HIV. In participant 3, the frequency trajectory of the IGHV3-30:IGHJ3 
partition was negatively associated with both non-synonymous divergence and 
selection (𝑑𝑁/𝑑𝑆) in the HIV population, suggesting that escape mutations in HIV 
caused a drop in frequency of the interacting AbR partition. 
 
Validating the HIV-associated AbR partitions 
 
In order to establish that our permutation-based test is in fact identifying AbR 
partitions that had a biological response to HIV infection and was not the result of 
random noise in the data, we sought to compare our results to previous findings 
in the literature. We first used Fisher’s method to compile all the results of our 
permutation-based test into a single score for each V gene segment (see 
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Methods), and then used the database of HIV bnAbs from bNAber (Eroshkin et 
al., 2014) to compare the incidence of known HIV-binding V gene segments in 
the literature, to how well these V gene segments score in our test (Table S1). 
We found that V gene segments that had been shown to bind HIV in the literature 
dataset were associated with significantly higher scores in our permutation-based 
test (p=1.52e-3, Mann-Whitney U test, Figure S14 A, and C). There are two 
reasonable explanations for this: i) these V gene segments have a predisposition 
to bind HIV, or ii) These V gene segments have a predisposition to bind anything 
(due to high endogenous expression, having broad affinity for viruses, or some 
other unknown reason). In order to differentiate between these two possibilities 
we performed a similar test except instead of comparing our results to Abs 
known to target HIV, we compared our results to a literature dataset that we 
previously compiled of Abs that have been shown to bind to influenza (Strauli & 
Hernandez, 2016) (Table S1). Similar to the HIV literature dataset, we found that 
V genes that were well represented in the influenza literature dataset also tended 
to score highly in our permutation-based test (p=7.28e-4, Mann-Whitney U test, 
Figure S14 B, and D). Therefore, while we are likely identifying a biological 
response to HIV, the response may not be specific to HIV.  
 
Testing for coevolution 
 
Coevolution between HIV and a handful of well-known bnAbs has been 
extensively reported (Liao et al., 2013; Rantalainen et al., 2018) and reviewed 
(Bonsignori, Liao, et al., 2017). Coevolution provides an intellectually compelling 
explanation for the development of bnAbs against HIV, however, examples tend 
to be anecdotal and qualitative (likely due to small sample sizes). While we 
cannot be sure that bnAbs exist in our data, we sought to test if coevolution is a 
predominant driver of HIV-targeting Ab development generally. We tested for 
genetic signals of coevolution in our data by first dividing the AbR data of each 
participant into time-course lineages of Abs (Figure 6, S15, and S16). We then 
used MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002) to create a multiple 
sequence alignment (MSA) of each Ab lineage, and compare each of these Ab 
lineage MSAs with a representative MSA of the HIV population overtime using a 
mutual information (MI) statistic (Brandman, Brandman, & Pande, 2012; Gloor, 
Martin, Wahl, & Dunn, 2005; Marino Buslje, Teppa, Di Doménico, Delfino, & 
Nielsen, 2010; Simonetti, Teppa, Chernomoretz, Nielsen, & Marino Buslje, 2013). 
Importantly, we reduced the complexity of the amino acid code to a code of 
‘change’ or ‘no-change’ prior to calculating MI (see Methods).  
 
If coevolution is a common characteristic of HIV-targeting Ab lineages, then we 
might expect that the HIV-associated AbR partitions that we previously identified 
will have abnormally high MI values. Thus, we compared the mean MI values of 
the lineages within all of the HIV-associated AbR partitions (IGHV3-30:IGHJ3 of 
participant 3, IGHV2-70:IGHJ6 of participant 7, IGHV3-15:IGHJ4 of participant 7, 
IGHV4-31:IGHJ5 of participant 7, IGHV6-1:IGHJ4 of participant 8, IGHV6-
1:IGHJ5 of participant 8) to the distribution of mean MI values from the rest of the 
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lineages (Figure 7 A). In addition to mean MI, we also compared the length of 
lineages (i.e. the number of time-points for which a lineage is present in the 
data), because coevolving lineages might be expected to persist in the AbR 
longer than non-coevolving lineages. We found no evidence of coevolution in the 
HIV-associated AbR partitions, with the exception of a single lineage in IGHV6-
1:IGHJ5 of participant 8, which had a mean MI value that was in the 99.55th 
percentile relative to all the Ab lineages in non-HIV-associated AbR partitions. 
We found that this result persisted when comparing to a simulated null 
distribution that controls for uncertainty when assigning lineages across time-
points (Figure 7 B). 
 
Lastly, we test for a global coevolutionary signal, agnostic to whether or not a 
lineage belongs to an HIV-associated partition. To do this we gathered the mean 
MI values across all of the observed lineages within a participant, and then 
compare this distribution to that of the mean MI values from the simulated null 
lineages (Figure 8). If Ab/HIV coevolution were taking place on a large scale, we 
would expect to see a shift towards higher MI values in the observed distribution 
relative to the simulated null. However, we saw no evidence of this, and instead 
saw that, if anything, the simulated null lineages tend to have higher MI values. 
This suggests that if coevolution is taking place at all, it is either a weak force or 
rare in these participants. 
 
Discussion 
 
In this study we have created a large dataset of Ab sequences and HIV 
sequences from 119 longitudinal samples. This is, to our knowledge, the largest 
dataset of its kind. The HIV literature currently encompasses an abundance of 
AbR sequence datasets from HIV+ individuals. However, these datasets primarily 
originate from the amplification of a particular Ab lineage that was known to 
contain an HIV-bnAb, prior to deep sequencing. These ‘biased’ AbR datasets are 
useful to home in on the development of a particularly interesting Ab lineage. 
However, we argue that it is equally important to understand the AbR response 
to HIV infection on a global/systems scale for the following reasons: i) It is just as 
important to understand why an HIV-targeting Ab lineage failed to develop broad 
neutralization ability, as it is to understand why a lineage succeeded in 
developing it. ii) There is increasing evidence that non-neutralizing Ab lineages 
play important roles in viral pathogenesis through Fc-mediated functions (e.g. 
antibody-dependent cellular cytotoxicity (Horwitz et al., 2017; Mayr, Decoville, et 
al., 2017; Mayr, Su, & Moog, 2017). iii) It is quite possible that a significant 
proportion of humans that develop broad immunity to future HIV infections, do so 
in a polyclonal manner (Williams et al., 2018), where broad neutralization depth 
against HIV is achieved via the cooperative action of many Ab lineages, each 
simultaneously targeting different epitopes, or different versions of the same 
epitope. iv) The population dynamics of HIV-bnAbs (in addition to HIV-binding 
Abs in general) are poorly understood. For example, do these Abs persist at high 
or low frequency in the greater population? How does this frequency change over 
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time? What type of selection drives their development (ex: positive, negative, 
balancing, etc.)? These types of questions are difficult, if not impossible to 
answer without understanding the larger population context for which these Ab 
lineages exist. In this study, we have taken the preliminary steps towards 
addressing these types of questions. Specifically, we have developed a statistical 
approach to identify the partitions of the AbR that are likely responding to HIV. 
Once this has been established, questions like those enumerated above can be 
answered. Further, we hope that the sequence datasets we have created here 
will provide a useful resource for others with similar lines of inquiry.  
 
While (Hoehn et al., 2015) found no correlation between AbR diversity and viral 
load in their data, they did not have the means to address other characteristics of 
the HIV population, as they did not include HIV sequence data in their analyses. 
However, they did find that AbR diversity was lower in HIV+ individuals than 
healthy controls. This suggested that HIV may have a broad effect on the AbR, 
yet the details of this effect remained unclear. We have presented a small 
positive correlation between overall AbR and HIV diversity across all our 
samples. A possible scenario that would explain this observation is one where 
AbR diversity is decreased due to clonal expansions in Ab lineages that target 
HIV, which in turn causes a decrease in HIV diversity, due to positive selection 
for escape mutations. Once the HIV population has escaped, its diversity will 
return, and diversity in the AbR will also return because the previous clonal 
expansion will have vanished due to its target having escaped. However, we 
stress that this correlation had nominal significance and should be treated 
cautiously. The AbR is an especially complicated population that is capable of 
simultaneously responding to countless antigens, thus even a fleeting correlation 
with HIV at the whole-population level may be worthy of further follow up studies.  
 
A key first step towards illuminating the global interaction between the AbR and 
an HIV infection is to be able to identify the subset of the AbR that is responding 
to HIV. Similar to our previous work in the context of influenza vaccination 
(Strauli & Hernandez, 2016), we leveraged the time-series nature of our dataset 
to identify partitions of the AbR that seem to be associated with HIV. We 
purposefully made no prior assumptions about what types of interactions we 
might find. For example, the common narrative of HIV-targeting Ab lineages is 
that they are under intense positive selection. Thus, one might have the 
expectation that Ab selection will be positively correlated with HIV selection. 
However, it is also possible that an HIV-targeting Ab lineage is under intense 
negative selection, where there is a preference for amino acids not to change so 
as to not ablate their binding ability, or perhaps to not change a strict structural 
conformation that is required to access an epitope. In this case, one might expect 
Ab selection to be negatively correlated with HIV selection. We therefore 
compared all AbR summary statistics to all HIV summary statistics. This all-by-all 
comparison gave us the privilege of an unbiased approach, yet greatly increased 
the number of tests that were performed, and hence the severity of our multiple-
tests correction. As such, we were only able to identify a handful of AbR 
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partitions that were significantly associated with HIV. This suggests that long-
term interactions between Ab lineages and HIV are rare, and that Ab/HIV 
interactions may be of a more transitory nature, where an antibody binds to HIV, 
then HIV escapes, and then another unrelated Ab binds to the escape mutant, 
and so on. Another possibility is that our test was simply underpowered and had 
many false negatives. One way to ameliorate this would be to first filter AbR 
partitions based on some statistic (e.g. divergence) and then test for associations 
using a different, orthogonal statistic (e.g. diversity). Further, there remains a 
great deal of powerful analyses that could be done with the HIV sequence data. 
In principle, one could divide the HIV population into lineages and test each HIV 
lineage against each AbR partition. This would increase the number of tests, but 
could also illuminate interactions that would be otherwise hidden. 
 
Lastly, we tested for a coevolutionary signal in our data. Coevolution in sequence 
data is notoriously hard to establish (Avila-Herrera & Pollard, 2015), and to our 
knowledge, reports of HIV/Ab coevolution to date have been universally 
qualitative, with little or no statistical analyses (Bhiman et al., 2015; Bonsignori, 
Kreider, et al., 2017; Bonsignori et al., 2016; Nicole A. Doria-Rose et al., 2014; 
Gao et al., 2014; Landais et al., 2017; Liao et al., 2013; MacLeod et al., 2016; 
Rantalainen et al., 2018). When it comes to claims of coevolution, there are two 
sources of uncertainty that we have attempted to account for in this study. i) 
When both the Ab lineage and the putative HIV epitope are under positive 
selection, it is very easy for mutations to be correlated by chance rather than by 
coevolution. ii) There is a huge amount of uncertainty when assigning Abs to 
lineages, especially when trying to link a given Ab sequence to other Ab 
sequences that existed months-years prior. AbRs are incredibly dynamic 
populations with high turnover, and high mutation rates. In a population such as 
this, where de novo lineages are continuously being added, it is important for one 
to account for the possibility that two similar Ab sequences—even if strikingly 
similar—may not be of the same lineage. By creating a simulated null dataset 
from shuffled Ab lineages, we were able to create a null distribution of MI values 
that took both of these confounders into account. After doing this we found no 
global signal for coevolution, yet we did find one isolated Ab lineage in participant 
8 that showed compelling evidence for it. This suggests that while coevolution 
between Ab lineages and HIV is possible, it is likely exceedingly rare and/or hard 
to detect. Given that other sequence datasets of the AbR in the context of HIV 
infection have about the same or fewer time-points than the participants in our 
dataset, we suspect that claims of coevolution in these data would be equally 
hard to make.  
 
Coevolution has been responsible for some of the most remarkable phenotypes 
known (e.g. the cheetah's speed, a flower’s beauty, the strangeness of genitalia 
(Brennan & Prum, 2015)), yet it remains unclear as to how much of a role it plays 
in the development of HIV-targeting Abs. This has important implications for 
vaccine strategies. If coevolution is the predominant force in the development of 
HIV-bnAbs, then a vaccine regimen that mimics the natural evolution of the HIV 
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epitope in vivo would be desired, as this would recapitulate the coevolutionary 
process leading to increased neutralization breadth. However, it is also possible 
that HIV-bnAbs occur as rare, random events. Examples of this include unlikely 
V(D)J recombination events whereby a naïve Ab lineage is created that happens 
to have a predisposition to target a conserved HIV epitope, or a (typically 
diverged) Ab lineage ‘stumbling’ upon broad neutralization breadth by chance. In 
this case, one might desire a vaccine regimen that has a very diverse array of 
HIV epitopes so as to maximize the chances that these rare events occur. This 
approach is supported by the fact that neutralization breadth is positively 
correlated with viral load and HIV diversity (N. A. Doria-Rose et al., 2010; 
Landais et al., 2016; Piantadosi et al., 2009). An interesting future study would be 
to use mathematical modeling (Nourmohammad, Otwinowski, & Plotkin, 2016), 
or simulation frameworks (Murugan et al., 2018) that include the introduction of 
novel naïve Ab lineages into the population, to gain a better understanding of 
which evolutionary parameters (e.g. population size, mutation rate, selection 
strength, population diversity, etc.) in the HIV and AbR populations promote 
coevolution, and which do not. We hope that this study has provided a sound 
example of how to go about formally testing for coevolution in order to 
differentiate between these two possibilities. 
 
Methods 
 
Participant selection and sample processing 
 
Samples were obtained from the OPTIONS cohort at UCSF. All participants 
provided written informed consent, and the study was approved by the UCSF 
Committee on Human Research. Our sole criterion for selecting participants from 
this cohort was to find those with the greatest number of samples available prior 
to the administration of ART. All the participants in this study were men who 
contracted HIV via sexual transmission, with the exception of participant 5, who 
became infected by unknown means (Table 1). Each peripheral blood sample 
was divided into plasma and peripheral blood mononuclear cells (PBMCs) by 
density gradient centrifugation using Ficoll-hypaque. After separation, PBMCs 
and plasma were aliquoted in cryopreservation media, and cryo-preserved in a 
specimen repository. Plasma viral load was measured at each participant visit. 
 
Viral load 
 
In early samples (prior to ~2009), a combination of a branched DNA assay and 
an ultra-sensitive PCR assay from Roche were used to measure HIV load. In 
later samples (post ~2009), the Abbott RealTime HIV-1 Viral Load assay was 
employed to measure load. 
 
Estimated time of infection 
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The time of initial infection was estimated using the following criteria: i) If a 
participant first presents with detectable viral load, but negative enzyme 
immunoassay (EIA) or western blot, and then presents a positive western blot in 
the following visit, then the estimated time of infection is given by 24 days prior to 
the first visit. ii) If a participant first presents with an indeterminate western blot, 
and then a positive western blot following repeat testing, then the estimated time 
of infection is given by 24 days prior to this first test. iii) If participant first presents 
with a positive western blot, and has a documented negative HIV test result 
within at most 180 days prior to first test, then the estimated time of infection is 
calculated as 24 days prior to the midpoint between the first positive test and 
prior negative test. We note that first visit here corresponds to the first visit in the 
OPTIONS study at UCSF, and not the first sample in our study. 
 
C2V3 amplification and ultra-deep sequencing 
 
HIV RNA was isolated from plasma samples using the Maxwell 16 Viral Total 
Nucleic Acid Purification Kit (Promega). cDNA was synthesized using the 
SuperScript III First-Strand Synthesis System (Invitrogen) with a gag-specific 
primer: 5’-GCACTYAAGGCAAGCTTTATTGAGGCTTA-3’. The C2/V3 region 
(~416bp) of HIV env was amplified using a nested PCR approach with Phusion 
High-Fidelity PCR Master Mix (New England Biolabs). The outer primers were: 
5’-ATTACAGTAGAAAAATTCCCCT-3’ and 5’-CAAAGGTATCCTTTGAGCCAAT-
3’. The inner primers were: 5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAACAGGACCAGGATCCA
ATGTCAGCACAGTACAAT-3’ and 5’-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTTAAAGCTTCTGGG
TCCCCTCCTGAG-3’, where the underlined portions indicate the Illumina 
adapter sequence. A unique barcode was added to each amplicon using the 
Nextera XT Index Kit (Illumina) and the barcoded amplicons were mixed to 
generate a sequencing library. Paired-end sequencing (2×300 bp) was 
performed using the Illumina MiSeq instrument and the MiSeq Reagent Kit v3. 
 
IGH amplification and ultra-deep sequencing 
 
Total RNA was extracted from PBMCs using the Qiagen RNeasy Mini Kit. To 
reverse transcribe, amplify IGH encoding RNA, and generate sequencing-ready 
libraries, we used iRepertoire’s long read iR-Profile Kit and followed the 
procedure as described in the accompanying protocol (Wang et al., 2010). 
Paired-end sequencing (2×300 bp) was performed using the Illumina MiSeq 
instrument and the MiSeq Reagent Kit v3. 
 
HIV sequence data QC 
 
Sequences from different samples were de-multiplexed by barcode using the 
internal software on the Illumina machine. We used the software package 
pRESTO (Vander Heiden et al., 2014) to assemble read pairs, remove 
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sequences shorter than 300bp, remove sequences with a mean quality score 
less than 30, mask the primer sequences, and remove sequences that only occur 
once in a given sample. We then use an in house implementation of BLAST 
(Altschul, Gish, Miller, Myers, & Lipman, 1990) to check that each sequence has 
at least 70% identity to at least one HIV subtype env reference sequence, which 
were downloaded from LANL (Foley et al., 2017). In order to check for possible 
contaminations from HIV sequences outside of our study, we again used BLAST 
to map each of our sequences to every env sequence within the LANL database. 
In this case, any of our sequences that had 99% identity or more to any 
sequence within the env database would be deemed a contaminant. We found 
that all the samples from participant 8 in our study had a significant amount of 
identity with sequences derived from patient ID: 9036 in the LANL database. We 
also found that all the samples from our participant 9 had significant identity with 
sequences in the LANL database derived from patient ID: 9018. There are two 
reasonable explanations for this: i) these samples had a large degree of 
contamination, or ii) that our participants 8 and 9 are the same as patients 9036 
and 9018 in the LANL database, respectively. We conclude that the latter is the 
more likely explanation because of the following rationale. This large degree of 
‘contamination’ only occurred in participants 8 and 9, and it occurred in all their 
samples, however, the samples from these participants were processed in 
different batches. These participants’ diversity, and divergence trajectories 
showed a relatively steady increase over time, which would not be consistent 
with contamination (see results). Lastly, patients 9036 and 9018 from the LANL 
database both correspond to the study (Sturdevant et al., 2015) which also 
recruited participants from San Francisco, CA. None of the other samples in our 
study had detectable contamination using this method. 
 
To check for cross contamination of sequences across samples in our study, we 
used a clustering approach. We first reduced the size of the dataset by grouping 
the sequences within each sample that have an edit distance less than or equal 
to 4 (see “Clustering sequences with samples” section below). We then choose 
the sequence within each group (or cluster) that had the highest count to be the 
‘representative sequence’ for that cluster, after which we pooled all the 
representative sequences across all samples and clustered those pooled 
representative sequences using the same clustering algorithm. To identify 
clusters of sequences that were likely cross contaminants we used the following 
criteria: the cluster had to i) have a representative sequence that clustered closer 
with sequences from a different participant than with sequences from the same 
sample, and ii) have a frequency less than 0.001 within its sample. All sequences 
within clusters that satisfied these criteria were removed. This effectively 
identified low frequency sequences that were closer in genetic distance to 
sequences from another participant. Lastly, we used a phylogenetic approach 
(see “Making phylogenetic trees” section below) to i) make phylogenetic trees of 
the representative sequences in each sample, and ii) remove any sequence that 
is more closely related to a representative sequence that was identified as a 
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cross contaminant (as described above) then to the other representative 
sequences in the sample (Figure S17).  
 
Clustering sequences within samples 
 
We use the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970) as 
implemented in the ‘needle’ program from the European Molecular Biology Open 
Software Suite (Rice, Longden, & Bleasby, 2000) to globally align each pair of 
sequences, and calculate the edit distances. Through an in-house algorithm, we 
then grouped sequences into a cluster that had an edit distance less than some 
provided threshold to any other sequence in the cluster. For HIV sequences, this 
threshold was 4; for AbR sequences, this threshold was 6. 
 
Phylogenetic analysis 
 
To make a phylogenetic tree of a group of sequences, we first made multiple 
sequence alignments using MAFFT (Katoh et al., 2002), and then constructed 
phylogenetic trees using FastTree (Price, Dehal, & Arkin, 2010). Visualization 
and analyses of newick formatted files was performed using the ETE toolkit 
(Huerta-Cepas, Serra, & Bork, 2016). 
 
Calculating HIV divergence 
 
We first assigned an HIV reference sequence for each participant by finding the 
most abundant sequence at the first time-point. Because participant 6 showed 
extensive evidence of a super-infection occurring at the second time-point, we 
assigned two reference sequences to participant 6: the most abundant 
sequences from the first and second time-points. We then translated the 
reference sequences as well as all other sequences in the data (see “Translating 
HIV sequences” section below). To find the number of synonymous and non-
synonymous changes for a given query HIV sequence, we first codon aligned it 
to the participant’s reference. For a given codon, we first calculated the number 
of expected non-synonymous and synonymous sites as: 

𝑛 = 𝑓)*
)+,  , and  

𝑠 = 3 − 𝑛 . 
Where 𝑓) gives the proportion of all possible nucleotide changes at codon 
position 𝑖 of the reference sequence that result in an amino acid change. We 
denote 𝑁 and 𝑆 as the sum of 𝑛 and 𝑠 across all codons in a given reference 
sequence. We then counted the number of observed non-synonymous and 
synonymous changes in a given query HIV sequence as 𝑁1 and 𝑆1. If there were 
multiple mutations, we selected the order of mutations that resulted in the least 
amount of amino acid changes as the most parsimonious, and thus most likely. 
The proportion of non-synonymous and synonymous mutations in a given query 
sequence is then, 

𝑝𝑁 = 34
3

 , and 𝑝𝑆 = 54
5

 . 
To estimate non-synonymous and synonymous divergence we then use 
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𝑑𝑁 = −*
6
ln 1 − 6

*
𝑝𝑁  , and 𝑑𝑆 = − *

6
ln 1 − 6

*
𝑝𝑆  

(Nei & Gojobori, 1986). The notation above was heavily borrowed from Richard 
Orton’s blog post (Orton, 2014). Because participant 6 had two reference 
sequences, divergence for a given query sequence was calculated relative to 
both reference sequences, and the lower value was used. 
 
Calculating HIV selection 
 
Selection in a given HIV sequence was estimated by taking the ratio of the non-
synonymous over synonymous divergence values (described above), 𝑑𝑁/𝑑𝑆. 
 
Translating HIV sequences 
 
In order to translate a given query HIV sequence, we first used needle to globally 
align it to the reference HXB2 env sequence (downloaded from LANL). We then 
used this alignment to determine the coding frame of the query sequence. Once 
this was known we translated the query nucleotide sequence using a simple in-
house python script.  
 
Calculating diversity 
 
To estimate diversity in both the HIV population and the AbR we calculated the 
statistic, 𝜋 (Strauli & Hernandez, 2016). In words, 𝜋 is the expected genetic 
distance between two randomly selected sequences from a given sample. 
Mathematically 𝜋 can be expressed as  

𝜋 =
;<∙;>∙?(A<,A>)D

>E<FG
DHG
<EG

I
J

 , 

where 𝑁 gives the total number of unique sequences in the sample, 𝑐) gives the 
count of sequence 𝑖, 𝑀 gives the total counts of sequences in that sample (i.e. 
𝑀 = 𝑐)3

)+, ), and 𝐺(𝑥, 𝑦) gives the genetic distance between sequences 𝑥 and 𝑦. 
We used VSEARCH with the “--allpairs_global” option to globally align all pairs of 
sequences in a sample (Rognes, Flouri, Nichols, Quince, & Mahé, 2016). 
Genetic distance between a pair of sequences was then calculated as the 
percent of mismatches in the alignment.  
 
AbR sequence data QC 
 
As with the HIV data, we used pRESTO to assemble read pairs, remove reads 
less than 300bp, remove reads with a mean Q score less than 20, and remove 
reads that only occur once. We then use IgBLAST (Ye, Ma, Madden, & Ostell, 
2013) to align each sequence to a database of germline immunoglobin genes 
downloaded from the IMGT website (imgt.org) (Giudicelli et al., 2006). After this, 
we used Change-O to annotate each sequence with its most likely V, D, and J 
germline gene-segments, identify the FWRs and CDRs, and to construct the 
likely naïve antibody sequence from the germline gene-segment alignments.  
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Calculating Ab divergence 
 
Divergence in a given Ab sequence was calculated as the number of changes in 
the observed sequence relative to the naïve sequence, divided by the length of 
the sequence. This is excluding the junction region of the sequence, as naïve 
sequence reconstruction of this region is unreliable. 
 
Estimating Ab Selection 
 
We ran the BASELINe program on each individual Ab sequence and used the 
resulting Σ value to estimate selection pressure. For a detailed description of this 
tool see (Yaari et al., 2012). Very briefly, BASELINe compares the observed 
number of mutations in a sequence (relative to its inferred naïve ancestor) to a 
null distribution of the expected number of mutations under no selection. The 
program takes local nucleotide motifs into account when calculating mutation 
probabilities and returns a Σ value that indicates the distance between the 
observed number of mutations and the null distribution. A negative Σ indicates 
fewer mutations than expected (negative selection), and a positive Σ indicates 
more mutations than expected (positive selection). It does this separately for 
different regions of the Ab sequence (i.e. the FWR and CDR). 
 
Creating AbR lineages 
 
To cluster the AbR of a given participant, we first divided it into partitions by 
grouping together all sequences that use the same germline V and J gene-
segments (as annotated by Change-O). We then clustered the sequences within 
a given partition/time-point (see “Clustering sequences within samples” section 
above), with an edit distance threshold of 6 (Figure S18 A). Once clusters were 
delineated, and similar to the clustering of HIV sequences, we assigned the most 
numerous sequence of each cluster as the ‘representative sequence’. We then 
linked clusters, within a given partition, across adjacent time-points using the 
following algorithm: We first found the representative sequence in the previous 
time-point that had the smallest edit distance to a given representative sequence 
in a contemporary time-point. If this edit distance was smaller than 30 (Figure 
S18 B), then the two representative sequences (and the clusters they 
represented) were linked as being part of the same lineage. This process was 
carried out independently in each participant, over each representative 
sequence, and for each adjacent time-point pair (see Figure S19 A). Finally, once 
all lineages were assigned in this manner, any lineage that did not rise above 
0.0001 frequency, in any of the time-points was disregarded. 
 
Simulating null AbR lineages 
 
To simulate random AbR lineages, we began by using our clustered Ab 
sequences within the partitioned AbR data (see “Creating AbR lineages” section 
above). We then carried out an identical procedure as was done to create the 
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observed lineages, with the exception that instead of finding the parent cluster in 
the previous time-point that had the minimum edit distance, a parent cluster was 
randomly chosen from the previous time-point (Figure S19 B). Additionally, in 
order to replicate the aspect of the observed data where each time-point brought 
a certain number of new lineages to the population, we estimated the probability 
of a new lineage as 

𝑟),Q =
𝑙),Q
𝐶),Q

 

where 𝑙),Q gives the number of new lineages, and 𝐶),Q gives the total number of 
clusters in participant, 𝑖, and time-point, 𝑗. For the simulated lineages, we then 
randomly assigned each cluster as being a new lineage (i.e. not having any 
connections with the previous time-point) with probability 𝑟),Q. In order to have a 
null dataset that was sufficiently large, we duplicated the observed, clustered 
data N times and then simulated lineages using this N-fold larger dataset. When 
comparing all lineages to simulated data (i.e. Figure 8), N=10; when comparing 
lineages from particular AbR partitions to simulated data (i.e. Figure 7), N=100. 
 
Linear modeling of population level interactions 
 
We tested for cross-participant, population-wide interactions of summary 
statistics using a linear mixed model approach. We modeled the interaction of a 
pair of summary statistics as 

𝑌),Q = 𝛽) + 𝛽𝑋),Q + 𝜖),Q , 
where 𝑌),Q gives the value of a given HIV summary statistic for the 𝑗th time-point 
of participant 𝑖, 𝑋),Q gives the value of a given AbR summary statistic for the same 
participant/time-point, 𝛽) is a random intercept term to correct for participant 
specific effects, and 𝜖),Q is a random error term that is assumed to be normally 
distributed with a mean of 0. This model was implemented in the R programming 
language using the ‘lmer’ function of the ‘lme4’ package (Bates, Mächler, Bolker, 
& Walker, 2015). We then used a likelihood ratio test to determine if a model with 
𝛽≠0 provided a significantly better fit than a model with 𝛽=0 (p≤0.05). If it did, 
then the given pair of HIV and AbR summary statistics was deemed to be 
interacting.  
 
Trajectory permutation test 
 
We test for associations between a set of AbR trajectories to one or more HIV 
trajectories using a permutation-based test. The AbR and HIV trajectories were 
loaded into memory as matrices where each row is a different trajectory and 
each column is a time-point in chronological order from left to right. We first 
standardize each trajectory by subtracting the mean and dividing by the standard 
deviation. If 𝑣 is a row vector representing a given trajectory, then 𝑣 is 
standardized by 

𝑣Q[ =
\>]^_
`_

 , 
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where 𝜇\ and 𝜎\ give the arithmetic mean and standard deviation of 𝑣, 
respectively. We then calculate the sum of the squared error (SSE) for a given 
AbR trajectory relative to a given HIV trajectory as 

𝑆𝑆𝐸(𝑟[, 𝑣′) = 𝑟Q[ − 𝑣Q[
e

Q∈\g  , 
where 𝑟[ is a standardized HIV trajectory vector. This gives the observed SSE 
values for each AbR/HIV trajectory pair. If either the HIV or AbR trajectories have 
missing values, then these time-points are disregarded in the SSE calculation, 
and a trajectory must have at least 75% of its values defined to be included in the 
test. We then permute the columns of the AbR trajectory matrix many times and 
calculate the SSE values for each permuted AbR trajectory after each 
permutation. This gives our permuted null distribution of SSE values. If an 
observed AbR/HIV trajectory pair have an SSE value that is significantly outside 
of this null distribution, then they are deemed to be significantly associated with 
one another, where significance is appropriately adjusted as based on the 
number of tests. When conducting this test on whole AbR population trajectories 
vs. whole HIV population trajectories (Figure 4 B-E), we performed 100,000 
permutations for each participant. When conducting this test on AbR partition 
trajectories vs. whole HIV population trajectories (Figures 5, S12, and S13) we 
performed 1,000 permutations for each participant. 
 
Comparison against published datasets 
 
To compare the results of our trajectory permutation test to a literature dataset 
we used a Mann-Whitney U test. However, before this could be done, we first 
must combined the results of our permutation-based test across participants. 
When the permutation-based test was employed to identify HIV associated AbR 
partitions, the structure of the results was as follows: each participant had 
hundreds of AbR partitions, and each AbR partition had tens of p values 
associated with it (from comparing each of its summary statistics to each of the 
HIV population summary statistics). In order to combine p values such that there 
was one value associated with one V gene segment, we first pooled the p values 
across all AbR partitions that have a given V gene segment, and across all 
participants. We then used Fisher’s method to arrive at an overall V gene score 
for this pool of p values. If 𝑝 is a vector of p values associated with a given V 
gene segment, then we first combine the p values into one overall p value, 
𝑝1\hijkk, using Fisher’s method: 

𝑐 = −2 ln 𝑝)
m
)+,  , and  

𝑝1\hijkk = Pr	(𝜒e m
e ≤ 𝑐) . 

Where 𝜒e me  is the chi-squared distribution with 2 𝑝  degrees of freedom. Strictly 
speaking, 𝑝1\hijkk will tend to be inflated because not all the p values in 𝑝 are 
independent (ex. AbR partition trajectories that are associated with HIV selection, 
will also tend to be associated HIV non-synonymous divergence). However, 
because this inflation should be the same across V gene segments, and because 
we were not interested in actual significance but rather needed some reasonable 
method for combining p values into an overall score, Fisher’s method should be 
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sufficient. Finally, to avoid 𝑝1\hijkk being interpreted as a significance level, we 
took its log transform to arrive at a V gene score 

𝑉	𝑔𝑒𝑛𝑒	𝑠𝑐𝑜𝑟𝑒 = −log,y 𝑝1\hijkk . 
We then used a Mann-Whitney U test to see if V gene segments that were ‘well 
represented’ in a literature dataset tended to have significantly different 
𝑉	𝑔𝑒𝑛𝑒	𝑠𝑐𝑜𝑟𝑒 values then those that were not ‘well represented’. In the case of 
the dataset of HIV targeting Abs, ‘well representation’ was defined as 
presence/absence (i.e. count ≥ 1). The dataset of influenza targeting Abs was 
relatively large (432 entries), so ‘well representation’ was defined as a count ≥ 10 
(Table S1). 
 
Calculating mutual information (MI) 
 
To measure the amount of association between two sites (columns) in a pair of 
MSAs we first reduced the complexity of the amino acid code by converting it to a 
code of ‘change’ or ‘no-change’. In this case, if a site had an amino acid identity 
that was different than the previous time-point, then it was recorded as a ‘1’ and if 
it was the same, then it was recorded as a ‘0’ (the first time-point is always ‘0’). 
We then used MI to measure the amount of association (coevolution) between 
two columns in a ‘change’, ‘no-change’ alignment. MI is calculated as 

𝑀𝐼 𝑋, 𝑌 = Pr	(𝑥, 𝑦) loge
{|	(},~)

{|	(})∙{|	(~)~∈�}∈�  , 
where 𝑋 and 𝑌 are categorical random variables representing the two different 
columns being compared. 𝑥 and 𝑦 represent particular states of 𝑋 and 𝑌, 
respectively (i.e. ‘1’ or ‘0’ for a change/no-change alignment). Pr(𝑎) is the 
probability that a given random variable (or MSA column) equals the state, 𝑎. If 𝑐 
is a vector that represents a given column of an MSA, then Pr 𝑎  can be 
estimated as 

Pr 𝑎 = ,
;

1, 	𝑐Q = 𝑎
0, 	𝑐Q ≠ 𝑎Q∈; . 

Pr(𝑎, 𝑏) is the joint probability that the random variable representing one MSA 
column equals 𝑎, and simultaneously the random variable representing the other 
MSA column equals 𝑏. If 𝑑 is a vector that represents a given column of the other 
MSA, then Pr(𝑎, 𝑏) can be estimated as 

Pr 𝑎, 𝑏 = ,
;

1, 	𝑐Q = 𝑎, 𝑑Q = 𝑏
0, 	𝑐Q ≠ 𝑎	|	𝑑Q ≠ 𝑏Q∈; . 

 
Correcting for multiple tests 
 
Unless otherwise stated, p values from a given statistical test within a participant 
were corrected for multiple testing using the Benjamini-Hochberg procedure. 
 
Network plots 
 
Networks of lineages were visualized using cytoscape (Shannon et al., 2003). 
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Software 
 
All computer code written for this study is available on GitHub, at 
https://github.com/nbstrauli/abr_hiv_evo. This is accompanied by a flow chart 
which shows each data-processing step with the corresponding name of the 
script that carries it out (Figure S20). 
 
Data availability 
 
All sequence data associated with this study is available at the sequence read 
archive (SRA) under the BioProject ID: PRJNA543982. 
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Tables 
 

 
Table 1. Participant demographics.  
MSM – men who have sex with men. 
* at estimated time of infection 
 
Figures 
 

 
Figure 1. Sampled time-points. 
Depicts the time since infection for each sample, in each of the participants. 
Open circles indicate that the AbR was successfully sequenced, crosses indicate 
that HIV was successfully sequenced, and solid circles indicate that the 
participant was on ART at this time. 
  

ID Age* Date* Gender Ethnicity Exposure Num. Samples
1 30 6/7/98 Male White/European American MSM 20
2 25 2/17/99 Male Asian MSM 17
3 32 7/4/01 Male Hispanic/Latino MSM 10
4 44 8/8/01 Male White/European American MSM 10
5 34 7/20/03 Male Hispanic/Latino Unknown 11
6 25 1/18/05 Male White/European American MSM 10
7 35 6/6/05 Male White/European American MSM 10
8 48 9/3/08 Male White/European American MSM 10
9 33 2/2/09 Male Asian MSM 10
10 31 4/3/09 Male White/European American MSM 10
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Figure 2. HIV summary statistic trajectories foreach participant. 
Each line shows the trajectory of a given summary statistic, in a given participant 
over time. Each participant has a unique color. (A) Diversity. (B) Nonsynonymous 
divergence. (C) Synonymous divergence. (D) Selection. (E) Viral load. 
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Figure 3. AbR summary statistic trajectories foreach participant. 
Each line shows the trajectory of a given summary statistic, in a given participant 
over time. Each participant has a unique color. (A) Diversity. (B) Divergence. (C) 
Selection in the framework region (FWR). (D) Selection in the complementarity 
determining region (CDR). 
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Figure 4. Whole population level associations between AbR and HIV 
summary statistics. 
(A) Scatter plot showing positive correlation between HIV diversity (x-axis) and 
AbR diversity (y-axis). Each point represents a sample with diversity values from 
both the AbR and HIV sequence data. The axes show diversity values after 
participant specific effects have been regressed out. Dashed line shows positive 
relationship between AbR and HIV diversity, as given by our linear regression 
(see Methods). (B-E) Shows associations between summary statistic trajectories 
in AbR (blue) and HIV (red) at the individual participant level. (B) HIV selection 
with AbR Divergence, in participant 2. (C) Viral load with AbR FWR-selection, in 
participant 2. (D) Viral load with AbR FWR-selection, in participant 7. (E) HIV 
diversity with AbR divergence, in participant 7. 
  

−2
0
2

Selection (dN/dS) vs. Divergence

4 6 8 10 12
−1

1
3

Viral Load vs. Selection (FWR)

−2
0
2

Viral Load vs. Selection (FWR)

0 1 2 3 4 5 6
−2.0

0.0
1.5

Diversity vs. Divergence

Estimated Time Since Infection (years)

AbR
HIV

R
es

id
ua

ls
 o

f A
bR

 D
iv

er
si

ty

P
ar

tic
ip

an
t 2

P
ar

tic
ip

an
t 7

A

B

C

D

E

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●●●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

−2

−1

0

1

−2 0 2

patients
●

●

●

●

●

●

●

●

●

●

1
2
3
4
5
6
7
8
9
10

-2 20

0.0

1.0

-1.0

-2

Participant ID

Residuals of HIV Diversity

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/646968doi: bioRxiv preprint 

https://doi.org/10.1101/646968
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 5. Results of permutation-based test to identify HIV-associated AbR 
partitions in participant 8. 
(A) A barplot showing the combined score from the permutation-based test (left 
axis), and the number of significant associations (right axis) for the top 10 AbR 
partitions. AbR partitions were sorted first by the number of significant 
associations, then by their combined score from the permutation-based test 
(ascending, left-right). (B) Heatmaps depicting the significance (-log10(p-value)) 
foreach permutation test within each of the top 10 AbR partitions. Columns 
correspond to summary statistics of the AbR partitions: Div=divergence, 
Pi=diversity, Freq=relative frequency, Sel.C=CDR selection, and Sel.F=FWR 
selection. Rows correspond to summary statistics of the HIV population: HIV 
pi=diversity, HIV dN=nonsynonymous divergence, HIV dS=synonymous 
divergence, HIV dN/dS=selection, and viral load is self-explanatory. The color of 
each element in the heatmaps shows the significance of the association between 
a given AbR partition summary statistic trajectory with a given HIV population 
summary statistic trajectory. (C, D) Shows the AbR partition (blue) and HIV 
population (red) trajectories that were significantly associated. (C) Frequency 
trajectory of the IGHV6-1:IGHJ5 AbR partition with the viral load trajectory of the 
HIV population. (D) Frequency trajectory of the IGHV6-1:IGHJ4 AbR partition 
with the viral load trajectory of the HIV population. 
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Figure 6. AbR lineage structure. 
Illustrates the lineages in AbR partition IGHV6-1:IGHJ5, participant 8. (A) Muller 
plot depicting the relative frequency of each lineage within the partition. Each 
color represents a lineage. If a new lineage arises within the bounds of a 
preexisting lineage, then the new lineage is a daughter of the preexisting, parent 
lineage. Lineages that began earlier in the time-course have colors closer to the 
red side of the spectrum, while lineages that began later in the time-course have 
colors closer to violet. Only lineages that exceeded 0.0001 frequency are 
included in the plot. (B) Network plot. Each node represents a unique sequence. 
Nodes with thicker black borders are the ‘representative sequence’ of their 
sequence-cluster. Nodes of the same color (i.e. same time-point) are linked with 
an edge if they were in the same cluster. Nodes that have different colors are 
linked with an edge if they were assigned to the same lineage. This inter-time-
point linking only occurs between ‘representative sequences’. Taken together, 
each isolated grouping of nodes shows a family of related lineages. 
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Figure 7. Coevolution test for individual lineages. 
Each black dot corresponds to a value for a specific lineage within an HIV-
associated AbR partition, and are jittered across the x-axis. The identifying 
information for the specific HIV-associated partition is given by the column labels 
for the plots (ex. The values for the lineages within the IGHV3-30:IGHJ3 AbR 
partition of participant 3 are found in the left-most column). The colored violin 
plots behind the points represent a given null-comparison for the points, where 
color corresponds to participant. The top row of plots shows the values and null 
distributions for the length of lineages (i.e. how many time-points they were 
present). The bottom row shows the values and null distributions for the mean MI 
of lineages. (A) The null distributions are made up of the values from the lineages 
in AbR partitions that were not HIV-associated. (B) The null distributions are 
made up of the values from the null simulation for each given AbR partition. 
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Figure 8. Global tests for coevolution. 
Each line gives the distribution of mean MI values for a given participant. 
Turquoise colored lines correspond to observed lineages (i.e. lineages inferred 
from the data), and salmon colored lines correspond to lineages from the null 
simulations. Participant 10 is omitted because of limited HIV sequence data. 
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