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Abstract

Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively
few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over
their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced
interplay between transcription, translation, and transcript degradation. As our model system, we em-
ploy bacteriophage T7, whose genome of approximately 60 genes is well annotated and for which there
is a long history of computational models of gene regulation. We expand upon prior modeling work
by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases,
ribosomes, and RNases participating in the transcription, translation, and transcript-degradation pro-
cesses occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage
infection with high throughput gene expression measurements of several strains of bacteriophage T7,
evolved and engineered, we can show that both the dynamic interplay between transcription and tran-
script degradation, and between these two processes and translation, appear to be critical components
of T7 gene regulation. Our results point to a generic gene regulation strategy that may have evolved in
many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the
biological mechanisms at work in both evolved and engineered virus variants.

Introduction

Bacteriophages are widely established model systems in comparative genomics [1], experimental evolution [2],
and synthetic biology [3]. Their rapid replication rates, ease of culturing, and moderately small genome sizes
make them ideal candidates for studies into the evolution of both natural and engineered variants, including
the adaptation of variants with rearranged genomes [4] or modified codon usage [5], parallel evolution [6,7],
adaptation to nonstandard genetic codes [8], or the structural effects of adaptive mutations [9]. One of the
most widely studied bacteriophages is bacteriophage T7, whose genome was first sequenced in 1983 [10]. A
wealth of specific knowledge about T7’s genes, gene regulation, and gene interactions has been accumulated
since [11], and this knowledge has enabled the development of detailed mechanistic models of the viral life
cycle inside a bacterial cell [12–16].

Bacteriophage T7 infects E. coli and rapidly lyses the cell, in as little as 11 minutes at 37 ◦C [10, 17].
In this 11 minute time period, the phage produces 20–40 viable virions from a single E. coli cell [18]. To
produce these virions, the phage must coordinate and assemble nearly 10,000 copies of the major capsid
protein alone (415 per virion) [10]. In accomplishing this high output, T7 generates stable transcripts and
has a genome whose codon usage is optimized for its E. coli host [5]. Given how quickly T7 replicates, one
might assume that transcription and translation would be tightly coupled to produce the correct ratios of
phage proteins. In contrast to this expectation, however, T7 RNA polymerase (the source of most phage
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transcripts), moves at an order of magnitude faster than the translation machinery [19–21]. Thus, the
balance between transcription and translation is not obvious. We ask here how T7 regulates its genes to
ensure appropriate relative ratios of transcripts and proteins. We address this question by combining a
detailed mechanistic model of the viral life cycle with high throughput gene expression data obtained from
evolved and engineered T7 strains.

We specifically test the hypothesis that a key component of gene regulation in phage T7 is targeted
degradation. We analyze RNA-sequencing data from T7 infections [18, 22], combined with proteomics data
where available, and we test various gene regulation mechanisms via a detailed computational simulation
of a phage infection. We detect and analyze a region of the T7 genome that is down-regulated despite an
absence of transcriptional terminators. We then propose and computationally test a directional degradation
mechanism that may explain this pattern of down-regulation. Next, we explore the relationship between
transcripts and proteins during the course of a simulated T7 infection. Lastly, we assess the interaction
between codon usage and promoter strength in the production of the most abundant phage protein, the
major capsid protein. In aggregate, we argue that T7 gene regulation is controlled primarily via the dynamic
interplay of transcription, transcript degradation, and translation.

Results

A brief introduction to T7 biology

The bacteriophage T7 genome contains nearly 60 genes, divided into three classes [10, 11]. Class I consists
of genes transcribed by the host RNA polymerase, including T7 RNA polymerase (RNAP). Classes II and
III are transcribed by T7 RNAP: class II encodes DNA polymerase and proteins associated with genome
replication, and class III encodes structural proteins.

Genes are numbered in the order in which they are encoded in the genome, and all genes are encoded
on the same strand with minimal overlaps [10]. The phage genome contains 17 promoters recognized by T7
RNAP. A single T7 terminator Tφ is located immediately after the major capsid gene, gene 10. In addition
to these regulatory elements affecting transcription, there are 10 known RNase cleavage sites. Because of its
genomic architecture, T7 produces many polycistronic transcripts of varying lengths.

T7 infections proceed rapidly. At 30 ◦C, T7 wild type lyses E. coli cells in approximately 30 minutes [10].
At higher temperatures and with laboratory adapted strains, lysis occurs even more rapidly, as quickly as
11 minutes post infection at 37 ◦C [17]. During the course of infection, T7 shuts down all E. coli gene
expression and degrades both the E. coli genome and its transcripts [11,18].

In this work, we consider five different strains of T7. The bulk of our analysis is performed on strain T761,
a wild-type strain adapted for 20 hours to grow under laboratory conditions at 37 ◦C [5,23]. This strain lyses
E. coli within 11 minutes. Unless otherwise specified, “T7” or “T7 wild type” refers to this strain throughout
this work. To make a comparison to a diverged strain, we additionally collected RNA abundances for the
progenitor of T761, called T7+ [24], grown at 30 ◦C. T761 differs from T7+ in a deletion of nearly 1500 bases
near the beginning of the genome and in several point mutations [5,23]. We also considered three engineered
variants of T761, one with gene 10 codon-deoptimized [5], one with the two promoters φ9 and φ10 upstream
of gene 10 knocked out [22], and one in which both the codon-deoptimization and the promoter knockouts
have been applied [22].

Transcripts degrade during infection

Because of T7’s short infection cycle and the stability of its mRNA transcripts in vitro, prior studies assumed
that the effect of degradation on T7 gene expression was negligible or at least uniform [10, 12, 25]. If no
transcripts degraded during infection, we would expect the distribution of transcript abundances late in the
infection cycle to have two specific features. First, for the genes transcribed ahead of the single terminator
located at the end of gene 10, downstream genes should have higher transcript abundances than upstream
genes, due to the multiple promoters. Second, transcript abundances of genes downstream of the terminator
(i.e., downstream of gene 10 ) should be lower than those of upstream genes. To assess whether T7 transcript
abundances match these expectations, we reanalyzed RNA-sequencing data from a previous study that had
collected T7 RNA abundances at 1, 5, and 9 minutes post infection [18].
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At 1 min post infection, we detected few T7 genes [18]. However, all T7 genes were expressed at 5
and at 9 min (Fig. 1). We found that transcript abundances at 5 min were approximately uniform but
noisy, except for a clear drop downstream of the terminator Tφ (Fig. 1A). By contrast, at 9 min, expression
had shifted from class II to class III genes (Fig. 1B) and displayed much more systematic variation. In
particular, we observed a cluster of class II genes between genes 3.8 and 6.5 that had expression levels lower
than that of upstream genes. This region contains no known terminators. If a terminator were present, we
would expect to see a similarly down-regulated region of genes at 5 min post infection. However, we did not
detect this under-expressed cluster at 5 min (Fig. 1B). Moreover, throughout the class II genes, we observed
relative increases in expression of downstream genes where no promoters were present. In aggregate, these
observations are inconsistent with a model of T7 gene regulation in which transcripts do not degrade, or in
which degradation is uniform.

To further characterize this cluster of unexpectedly down-regulated class II genes, we examined individ-
ually mapped reads in the T7 genome. We found that across the whole genome, raw read counts followed
the same broad pattern as transcript abundances (Fig. 2A). The highest read counts fell within gene 10, and
counts decreased after the terminator Tφ. Again, we observed the down-regulation of a cluster of class II
genes. This down-regulated region contains several regulatory elements, including both RNase cleavage sites
and promoters. We examined four regulatory elements in this region, R3.8/φ3.8 (Fig. 2B) and R6.5/φ6.5
(Fig. 2C). In each case, the transcription start site lies upstream of the RNase cleavage site. In the R3.8
region we saw a sustained decrease in read counts (at least 500bp downstream), but in the R6.5 region we
found the opposite trend. Read counts recovered in fewer than 500bp. We concluded that transcript synthe-
sis alone could not explain these observations, and that RNase cleavage sites may contribute to transcript
degradation.

Lastly, we verified the generality of down-regulation in class II genes by conducting experiments at
30 ◦C, using the progenitor wild type strain T7+. Our aim was to determine if the degradation patterns
we observed in the lab-adapted strain were unique to that strain or instead represented a general feature of
T7 biology. Since lysis occurs after 25–30 minutes at 30 ◦C, we collected samples at 5, 10, 15, 20, and 25
minutes. We then compared an early time point (10 min) to a later time point (25 min). We found the same
expression patterns within class II as we had observed for the lab-adapted strain (Fig. 3). Outside of class II
expression, we observed one major difference in gene 19.5 expression, which was elevated in T7+ but not in
the lab-adapted T761. This gene has unknown function and we do not know why it is so highly expressed in
T7+. Overall, however, we found that the evidence for differential transcript degradation is consistent across
multiple strains of T7 grown under different conditions. Consequently, this degradation pattern is likely a
general feature of T7 gene regulation.

Degradation can produce gene expression patterns similar to that of promoters
and terminators

Motivated by the preliminary evidence for transcript degradation in T7, we next employed a simulation
model to assess how promoters, terminators, and transcript degradation processes can interact to determine
gene expression over time. The simulation software we used, Pinetree, simulates prokaryotic gene expression
with single-nucleotide resolution [26]. Pinetree tracks individual polymerases on DNA and ribosomes on
RNA, and it supports polycistronic transcripts and a variety of competing regulatory mechanisms including
promoter binding, termination, transcript degradation, and variable translation rates due to codon usage.

Pinetree employs a directional model of transcript degradation modeled after observations from E. coli
[27–29]. In E. coli, degradation occurs either from the 5’-end of a newly-synthesized transcript or from
the 5’-end of a transcript recently cleaved by an RNase III ribnuclease [30]. A combination of endo- and
exonucleases degrade transcripts, but the net effect is that transcript degradation is directional—the 5’ end
of a transcript has a shorter lifespan than the 3’ end [31]. In Pinetree, this degradation is simulated via
RNAses that bind to the 5’-end of transcripts and degrade in the 5’-to-3’ direction. While no such 5’-
to-3’ RNase actually exists in E. coli, it approximates the joint effect of several endo- and exo- nucleases
that collectively tend to degrade the 5’-end of the transcript more quickly than the 3’-end [31]. Moreover,
ribosomes compete with RNAses for access to transcripts [31]. Pinetree captures this competition between
ribosomes and RNAses, and it also implements the difference in degradation rate between newly-synthesized
and recently cleaved transcripts [32].
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To test how the interplay between transcription and degradation affects gene regulation, we first studied a
simple toy model. Our aim was to account for two observations in T7: i) increases in downstream transcript
abundances in the absence of promoters, and ii) reduced transcript abundances in downstream genes in
the absence of terminators. We constructed, in silico, a linear plasmid containing three genes of equal
length, for three proteins X, Y, and Z. The plasmid contained a single promoter upstream of gene X and
a single terminator after gene Z (Fig. 4A). We simulated gene expression for 240 seconds in an E. coli -like
cellular environment, with a fixed pool of RNA polymerases. We observed at all time points that transcript
abundances were greatest for gene Z, followed by gene Y and then gene X (Fig. 4B, C, D). Since the
plasmid contained one promoter and one terminator, the simulation produced only tricistronic transcripts.
However, since transcripts degraded directionally, gene X had the lowest expression level, and expression
levels increased from gene X to Y to Z (Fig. 4B, C). These simulation results show that polycistronic
transcripts with directional degradation are sufficient to produce gene expression patterns that mimic the
effects of promoters.

We next introduced an RNase cleavage site and an additional promoter upstream of gene Z into the
linear plasmid simulation (Fig. 5A). This arrangement of RNase cleavage site and promoter is common
in the T7 genome [10]. Adding these two regulatory elements created a dynamic gene expression pattern
in which earlier time points showed the expected ramp of increased gene expression from genes X and Y
to Z (Fig. 5B, C). Later time points, however, showed a different pattern: gene Z transcripts had lower
abundance than did transcripts of genes X and Y (Fig. 5B, D). Thus, the addition of RNase cleavage sites
to the simulation was sufficient for recreating gene expression patterns that mimic terminators at later time
points but not at earlier time points. This trend in gene expression is similar to the trend observed in
experimental transcript data of T7.

Degradation produces transcript ramps and cliffs in simulations of phage T7

After demonstrating that degradation and RNase cleavage sites are sufficient for creating dynamic gene
expression patterns in a three-gene linear plasmid, we next considered whether a simulation of the full T7
genome would reveal similar expression patterns. Again, we used the Pinetree simulator, now to simulate the
full T7 genome both with and without RNase cleavage sites and degradation. We attempted to represent the
T7 genome as accurately as possible, matching the genetic architecture of the reference sequence [10]. We
simulated T7 among cellular resources representative of an E. coli cell. These resources included RNA poly-
merases, ribosomes, and RNases, as well as secondary reactions between synthesized T7 proteins (Methods).
However, we did not explicitly simulate expression of any E. coli genes. The simulation reliably reproduced
the overall patterns of gene expression seen in T7: Class I genes are expressed the earliest but reach on
average the lowest transcript abundances, and class III genes are expressed the latest and reach on average
the highest transcript abundances (Fig. 6).

We next analyzed how measured transcript abundances for individual transcripts late in the infection
(Fig. 7A) compared to their simulated counterparts (Fig. 7B, C). When simulating T7 with neither RNase
cleavage sites nor degradation, we found that the simulation captured the broad expected patterns of gene
expression for the three classes of T7 genes (Fig. 7B). Transcript abundances of downstream genes were higher
than those of upstream genes, except after the terminator Tφ. However, expression in the region of class II
genes between 3.8 and 6.5 differed from expression in our experimental data (Fig. 7A). In our experimental
data, we also observed increases in downstream gene expression where no promoters are present, which
our simulation without degradation did not capture. We refer to these gradually increasing downstream
expression patterns as ramps, and the decrease in downstream expression as cliffs.

To test whether transcript degradation and RNase cleavage sites were sufficient to explain expression
ramps and cliffs, we conducted a set of simulations that included the 10 RNase cleavage sites in the T7
genome and directional transcript degradation (Fig. 7C). In this simulation, we observed gene expression
ramps and cliffs after RNase cleavage sites. Simulated transcript degradation and RNase cleavage sites
created a distribution of transcript abundances more qualitatively similar to our experimental distributions
than a model without degradation.
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Relationship between transcript and protein abundances differs among gene
classes

We also considered the relationship between transcript and protein abundances. T7 RNA polymerase moves
at approximately 230bp/s, while ribosomes only translate at a rate of 30bp/s [33]. This speed difference
means that translation significantly lags transcription, and that transcription and translation are likely
uncoupled in T7 [34]. We assessed this hypothesis by examining the relationship between both protein and
transcript abundances during the course of infection, in experiments and in simulations. Our aim was to
determine how changes in RNA abundances affect protein abundance.

We compared RNA and protein abundances at 5 minutes and at 9 minutes post infection in the lab-
adapted T7 wildtype grown at 37 ◦C (Fig. 8A). We found that at 5 min, class III genes showed a stronger
correlation between RNA and protein abundances than did class II genes (Pearson’s r; class II genes: r =
0.134, p = 0.584; class III genes: r = 0.628, p = 0.00530), and that class II and class III genes clustered
together in transcript–protein space. At 9 minutes, class II and class III expression separated along the
transcript axis, but not along the protein axis (Fig. 8A). Class III genes continued to show a stronger
correlation between transcript and protein abundances than did class II genes (Pearson’s r; class II genes:
r = 0.245, p = 0.299; class III genes: r = 0.700, p = 0.000596). This result suggested that either class
II transcripts degraded or class III transcripts increased between 5 and 9 minutes, and that this change in
transcript abundances was uncoupled from protein production.

Simulations of T7 gene expression yielded correlations of transcripts and proteins within classes II and
III both early (Pearson’s r; class II genes: r = 0.596, p = 2.10 × 10−3; class III genes: r = 0.750, p =
5.80×10−5) and late in the infection (Pearson’s r; class II genes: r = 0.937, p = 1.58×10−11; class III genes:
r = 0.926, p = 2.26 × 10−10) (Fig. 8B). Overall, correlations were too strong in the simulations compared
to the experimental data. This finding suggested that either transcript degradation was too strong in our
simulations, creating a tight coupling of RNA and protein abundances, in particular late in the infection, or
that we were not properly accounting for dynamics in translation.

One important component of translation we did not model is dynamic tRNA pools. In our simulation,
we assume that the availability of charged tRNAs never explicitly limits translation. Some codons are always
translated more quickly than others. However, in living E. coli cells, abundances of charged tRNAs may
change during infection, due to the stress the cells experience during infection, and such changes would affect
codon-specific translation rates [35, 36]. Thus, further work may be needed to extend Pinetree to include a
realistic translation model.

Promoter knockouts and codon deoptimization have antagonistic effects on gene
expression

Finally, we wanted to assess to what extent our T7 simulation generalizes to more complex genome mod-
ifications. We considered two specific modifications for which we had existing experimental data, codon
deoptimization and promoter knockouts [18, 22]. Both of these modifications reduce viral fitness and have
been proposed as viable approaches to viral attenuation. Codon deoptimization is the process of replacing
common codons (relative to the E. coli host genome) with rare codons, to reduce translation rates. It has
been applied to T7 gene 10 [5, 18]. Gene 10 encodes the major capsid protein, the most abundantly ex-
pressed phage protein, and reducing its abundance is expected to reduce phage fitness. Similarly, because
of T7’s genome architecture containing many overlapping open reading frames, it is possible to attenuate
but not kill the virus by knocking out key promoters. Prior work has considered the effects of knocking
out the promoters upstream of genes 9 and 10 (φ9 and φ10), individually and in combination, and also in
combination with codon deoptimization of gene 10 [22].

Reducing the expression of gene 10 by either codon deoptimization or promoter knockout resulted in
significant fitness reduction [5, 22]. Codon deoptimization resulted primarily in a reduction in protein 10
abundance [18, 22], whereas promoter knockout caused a substantial reduction in gene 10 transcript abun-
dance [22]. Surprisingly, when combining the double promoter knockout ∆φ9/10 with codon deoptimization,
fitness was nearly identical to the case of just the promoter knockout [22]. Thus, there were strong dimin-
ishing returns: The combined fitness-reducing effects of the two modifications were weaker than those of the
individual modifications.
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We attempted to recapitulate these result with our simulation, by simulating four different strains of
bacteriophage T7: wildtype, a strain with gene 10 codon-deoptimized (i.e. recoded), a strain with φ10 and φ9
knocked out, and a strain with both modifications. We measured simulated gene 10 protein abundance, which
we then used to approximate fitness (see Methods). We found that our simulation broadly recapitulated the
experimental findings of the individual attenuation strategies, even though it missed specific details (Fig. 9).
In particular, we found that codon deoptimization had a much smaller effect on fitness than promoter
knockout. However, when combining attenuation strategies, the recoding and promoter knockout were nearly
additive in simulations but showed diminishing returns in experiments. This finding suggested that our
model is missing the mechanism responsible for the antagonistic effects of combining attenuation strategies.
In summary, our mechanistic simulations recapitulated the effects of single knockouts, but overestimated the
effect of combining attenuation strategies.

Discussion

Advances in high-throughput RNA sequencing and mass spectrometry-based proteomics have recently al-
lowed for genome-wide measurements of transcript and protein abundances over time in a growing bacte-
riophage T7 [18, 22]. Here, we reanalyzed data collected from these two prior studies, in combination with
newly measured RNA abundances for a non-lab-adapted strain T7+. The T7 genome is split into three
classes [10]. We observed evidence for differential gene regulation among these classes, in both lab-adapted
and non-lab-adapted strains. We also detected a set of down-regulated genes (3.8–6.5 ) within class II. We
hypothesized that targeted transcript degradation caused this down-regulation, and validated this hypothe-
sis using stochastic simulations of bacteriophage T7 gene expression. Our simulations of T7 that included
directional transcript degradation and RNase cleavage sites recapitulated this down-regulated set of genes,
and more broadly gene expression trends not explained by promoters and terminators, whereas our simu-
lations of T7 without transcript degradation failed to capture these regulatory patterns. We next assessed
the relationship between proteins and transcripts in both the experimental data and in silico. Here, we ob-
served evidence for both differential gene expression among the three classes, and differences in correlations
between protein and transcripts. Finally, we recreated several prior viral attenuation experiments [22] in
our simulation. This simulation captured some aspects of the experiments but missed others. In particular,
it could not reproduce the observation that combining different attenuation strategies produces diminishing
fitness effects. In summary, we demonstrate evidence for extensive degradation of the T7 transcriptome.
Moreover, simulations can provide mechanistic insight into these and other experimental findings, but need
further refinements to make highly accurate predictions.

Bacteria use transcript degradation extensively as a strategy for gene regulation [27–32, 37–39]. Degra-
dation helps to tightly couple transcription and translation, such that protein abundances closely match
those of transcripts and bacteria can more quickly respond to changes in their environment. In many cases,
however, specific transcript properties drive differential degradation patterns [30]. In E. coli operons, for
example, secondary structure creates patterns of differential degradation within single polycistronic tran-
scripts [39]. Bacteriophage T7, which infects E. coli, produces almost exclusively polycistronic transcripts,
which are processed by E. coli RNase III at specific cleavage sites [10, 40, 41]. However, T7 can grow in
strains of E. coli lacking RNase III [37], and given the high stability of T7 transcripts [40], the broader role,
if any, of transcript degradation in T7 is unclear. We emphasize that our 5’-to-3’ model of degradation is
an approximation of the effects of multiple endo- and exonucleases in E. coli. In the most common path-
way for transcript degradation, E. coli endonucleases first cleave the transcript in to small fragments, and
then an exonuclease degrades the small fragments in the 3’-to-5’ direction [28]. This first step of cleavage
tends to happen closer to the 5’-end of the transcript than to the 3’-end, and so the 5’-ends of transcripts
generally degrade sooner [31]. Future versions of the Pinetree simulator could explicitly model both of these
steps instead of approximating them with a 5’-to-3’ RNase. Regardless of these minor modeling choices,
our findings suggest that extensive transcript degradation alters the distribution of transcripts in T7. Since
T7 RNA polymerase synthesizes transcripts at a rate approximately 8 times faster than ribosomes translate
them, transcription and translation are largely assumed to be uncoupled in T7 [34]. Controlled degradation
of T7 transcripts may allow T7 to selectively recouple transcription to translation.

Our simulations of T7 gene expression made reasonable predictions for the effects of specific genomic
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modifications. In particular, our simulations predicted that promoter knockout had a much bigger effect on
fitness than codon deoptimization, even if the exact fitness reductions were not accurately predicted. We
note, however, that more quantitatively accurate predictions could be achieved via careful optimization of
the various simulation parameters, which we did not undertake in this work.

Our simulations did not, however, correctly predict the reduced fitness effect of combining promoter
knockout with codon deoptimization. Similarly, our simulations could not explain the weaker correlation
that we observe between protein and transcript abundances in the experimental data. We believe that
both discrepancies may be due to one important shortcoming of Pinetree, namely that it does not explicitly
model tRNA pools. Our current simulations assume that the cell has unlimited protein production resources.
However, we know that the availability of tRNAs plays an important role in translation and will influence the
relative relationship between proteins and transcripts under different growth conditions [42–44]. Given the
short life cycle of a T7 infection, the translation of phage proteins likely becomes limited by the availability
of charged tRNAs. Future versions of Pinetree could explicitly incorporate these tRNA pools, similar to
other stochastic models [43, 45], and parameterize them by either ribosome footprinting or direct tRNA
measurements [46,47]. In either case, the limitations of the current simulation point towards specific biological
mechanisms that may affect T7 RNA and protein expression under certain conditions. Thus, our present
work suggests both future improvements in the simulation and future experimental work.

Our T7 simulator is the next step forward in a long list of computational models of bacteriophage T7.
The first models were simple kinetic models based on differential equations [12,13], and more recently coupled
with flux-balance equations to describe the metabolism of the host [15]. For a recent review of this type
of modeling, see Ref. [16]. Kinetic models can capture complex gene regulatory behavior and exhibit rich
dynamics, but ultimately they are too simplistic to accurately describe gene expression. For example, the
time to first production of a protein tends to be too small in kinetic models, because they don’t accurately
capture the time it takes for a polymerase to process an entire transcript [14]. More realistic models track the
movement of individual polymerases or ribosomes along DNA or RNA, using a stochastic framework. The
first genome-scale model of this type was the stochastic gene expression simulator TABASCO [14], developed
to describe T7 gene expression. TABASCO contains a stepwise transcription model, tracking the movement
of individual polymerases along the phage genome. However, it treats translation via a kinetic model, and it
does not contain a stepwise, directional degradation model. With our simulator Pinetree [26], we have built
on the logic developed for TABASCO and have extended it to include stochastic, stepwise descriptions of
both translation and transcript degradation. Our results here show that this is a viable pathway towards a
realistic and efficient computational model of T7 gene expression.

As both computational modeling and experimental techniques become more sophisticated, we are ap-
proaching a point where models can inform experiments, test mechanistic hypotheses in silico, and make
predictions of gene expression in highly dynamic environments. These advanced models will allow us to
predict mutants with desired phenotypes, design viral genomes that are attenuated and/or display limited
potential for adaptation, and generally unlock new engineering possibilities in synthetic biology.

Methods

RNA-sequencing analysis

We analyzed RNA-sequencing data from E. coli infected with T7 grown at 37 ◦C, and collected at 1, 5,
and 9 minutes after infection [18]. We first created a reference sequence containing both the T7 (NCBI:
NC 001604.1) and E. coli K12 (NCBI: U00096.3) genomes. As described previously [18], we excluded 10B
from our analyses, because it is a readthrough product of gene 10A and most reads that map to 10B will
also map to 10A. To simplify our notation, we refer to genes 10A and 10B jointly as gene 10. We used
HISAT2 to map the reads to our reference genome [48]. We generated raw read counts with BEDtools using
the “multicov” command [49]. Lastly, we removed E. coli reads and converted raw read counts to transcripts
per million (TPM) to get transcript abundance estimates [50]. To visualize individually mapped reads, we
used the BEDtools “genomecov” command [49].

To obtain RNA abundances for the 30 ◦C time course, we isolated RNA from T7+-infected BL21 E. coli
samples; T7+ was added at a multiplicity of infection (MOI) between 2.5 and 5.0 to a 10 mL culture of cells
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growing exponentially at 30 ◦C. At 5, 10, 15, 20, and 25 minutes post-infection, two 2 mL samples of phage-
infected culture were collected and pelleted in a microcentrifuge. RNA isolation, library preparation, and
sequencing were carried out as previously described [18]. In brief, RNA was isolated using Trizol (Invitrogen)
reagent, following the manufacturer’s protocol. Library preparation and sequencing was performed by the
University of Texas Genome Sequencing and Analysis Facility (UT GSAF). RNA samples were analyzed
on an Agilent 2100 BioAnalyzer and libraries were prepared using the NEBNext Ultra II Library Prep Kit
series. Sequencing was conducted on an Illumina HiSeq 2500 (SR50). Subsequent analysis was performed as
described in the preceding paragraph.

Proteomics data

We acquired processed proteomics data from the same study as the RNA-sequencing data [18]. These
data include estimates of protein abundances from the same time points (1, 5, and 9 minutes post-infection),
collected under the same conditions as the RNA-sequencing data. We made no modifications to the previously
used analysis pipeline [18].

Simulation models of three-gene plasmids

We constructed two linear plasmid models from which to simulate gene expression using Pinetree [26]. Each
plasmid contained three genes (X, Y, and Z ), each 150bp in length. We defined a single promoter upstream
of gene X and a single terminator downstream of gene Z. For the second plasmid model, we added a second
promoter immediately upstream of gene Z followed by an RNase cleavage site. We simulated gene expression
for 240s in an E. coli -like environment at a reduced scale. The cell volume was 8 × 10−16 L, with initial
conditions of 10 RNA polymerases and 100 ribosomes. Promoter strengths and rates of transcript cleavage
and degradation were defined arbitrarily. Full parameter files for each simulation are available on GitHub
and are archived on Zenodo (see Code and data availability).

Simulation models of bacteriophage T7

To simulate bacteriophage T7 infecting E. coli, we again used Pinetree [26]. We constructed models with
and without degradation. All models have the same initial conditions and parameters, except where noted
below. Full parameter files for each simulation are available on GitHub and are archived on Zenodo (see
Code and data availability).

Initial conditions and species-level reactions. The Pinetree simulator models transcription and trans-
lation at single-base resolution, but otherwise only supports pooled species-level reactions. These reactions
model molecular species with specific copy numbers. The simulation assumes that the molecular species
interact stochastically as described by the Gillespie algorithm [51]. For our model of T7, most of these
species-level reactions were derived from a prior stochastic model of T7 (Tables 1 and 2) [14]. To more
accurately account for the E. coli cellular resources available to T7 upon infection, we added several re-
actions. These reactions include the degradation of the E. coli genome, production of E. coli transcripts,
and the binding and unbinding of ribosomes to E. coli transcripts. These E. coli transcripts differ from
the T7 transcripts in that they are modeled at the species-level and not at the single-base level. All rate
constants in these additional reactions were defined arbitrarily to conform to experimental transcript and
protein distributions. Our aim was to approximate E. coli genome and transcript degradation and the shift
in ribosomal resources towards the production of T7 proteins.

Each simulation begins with 500bp of the T7 genome already injected into an E. coli cell. The cell has
a volume of 1.1 × 10−15 L. Initially, free E. coli RNA polymerases bind to the early T7 promoters. Once
the T7 RNA Polymerase has been translated, it begins transcribing later T7 genes at 230bp/s and pulls
the remainder of the genome into the cell [20]. We assume that a single phage genome infects a single E.
coli cell. Upon infection, we also assume that the E. coli cell contains 10,000 actively translating ribosomes
(bound ribosome) and 1800 E. coli RNA polymerases (E. coli RNA pol). These quantities were derived from
Kosuri, et al [14]. We do not explicitly model T7 genome replication, and we assume that all gene expression
occurs from a single T7 genome.
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Promoter, terminators, and genome organization. All genes and regulatory elements in our models
of T7 were generated directly from the annotated genome (NCBI: NC 001604.1). We included all genes
except for genes 0.4, 0.5, 0.6A, 0.6B, 5.5-5.7, 4.1, 4B, 10B. These genes were excluded because either they
were not present in the strains of T7 used in our experiments or because of limitations in Pinetree. For
example, Pinetree does not support translational readthrough products such as the minor capsid protein
encoded by gene 10B.

We included all promoters in T7, except for weak promoters near the origin of replication (E. coli
promoters A0 and E6, and T7 promoters φOR and φOL were excluded). Promoter strengths are defined
relative to the strongest promoter, φ10 (Table 3). We derived these relative promoter strengths from a
prior deterministic model of bacteriophage T7 infection [15]. Promoters themselves are defined as 35bp
regions of the genome directly upstream of the transcription start site in the reference genome. This 35bp
length is the footprint of all RNA polymerases. In Pinetree, all promoters must be at least as long as
the footprint of the polymerases that bind to them. Some promoter strengths were modified to better
fit the distribution of transcript abundances observed in our experimental data. For simulations without
degradation, we set the φ10 promoter strength to 1.82 × 107 M−1s−1 [15]. We arbitrarily increased this
rate constant to 1.82× 108 M−1s−1 for simulations with degradation to maintain similar absolute transcript
abundances between simulations with and without degradation. In simulations of promoter knock-out strains,
we set the promoter strengths of the knocked-out promoters to zero.

In bacteriophage T7, gene 3.5 lysozyme facilitates the transition from expression of class II genes to class
III genes [10, 11]. To simulate this transition, we modeled gene 1 T7 RNA polymerase bound to lysozyme
and unbound to lysozyme as separate molecular species. Employing a rate constant from prior stochastic
T7 simulations [14], lysozyme and T7 RNA polymerase bind to form this new gene 1–3.5 complex (Table 2).
These two polymerases have different binding affinities to promoters. For all class II promoters, the 1–3.5
complex binds with a rate constant of 0.5 times that of the rate with only T7 RNA polymerase. During the
simulation, as abundances of lysozyme increase, this differential binding interaction has the effect of shifting
promoter binding preferences from class II to class III.

For the regulation of E. coli RNA polymerase, we defined a set of reactions similar to that of T7 RNA
polymerase regulation (Table 2). Gene 0.7 kinase posphorylates E. coli RNA polymerase, modulating its
binding activity. Gene 2 reacts with E. coli RNA polymerase and deactivates it entirely. Rate constants
for these reactions were derived from Kosuri, et al [14]. Together, these reactions impede the interaction
between E. coli RNA polymerase and the E. coli promoters within the early region of the T7 genome. As
the simulation progresses, transcription from these early promoters becomes negligible.

Ribosome binding sites and translation. Ribosome binding site strengths were derived from a prior
stochastic simulation of T7 [14]. We defined ribosome binding sites as the 30 bp regions immediately upstream
of start codons. Again, this definition is due to a limitation in Pinetree, where the binding site region must be
at least as large as the footprint of the ribosome. Ribosomes move step-wise along the mRNA at an average
rate of 30 bp/s, which can be scaled up or down depending on the position within the transcript. We used
this scaling factor to simulate codon deoptimization. In the simulations of T7 with codon-deoptimized gene
10, we scaled the translation rate of all codons within gene 10 by a factor of 0.2.

Degradation model. We employed a directional model of transcript degradation parameterized by two
different initiation rate constants and a degradation rate. We assumed that transcripts degrade in the 5’-
to-3’ direction. We note that there are no 5’-to-3’ exonucleases in E. coli but that degradation occurs via
several different endo- and exonucleases [28]. On average, however, the 5’-end of transcripts tend to have
a shorter half-life than the 3’-end [31]. To simulate this directional degradation effect in a way that was
computationally tractable, we implemented a 5’-to-3’ exonuclease in Pinetree. Internally, Pinetree appends
an RNase binding site of 10 bp in length to the 5’ end of each newly-synthesized transcript. To represent
RNase cleavage sites, we defined an RNase binding site at each cleavage site. These two types of binding sites
differ in their binding rate constants: We assumed a rate constant of 10−2 s−1 for cleavage sites and 10−5 s−1

for 5’-end sites. Although these absolute rate constants were defined arbitrarily, we assigned a lower rate 5’-
end binding sites because of additional phosphate cleavage steps that occur before degradation begins [27,32].
The binding reaction itself is unimolecular and depends only on the abundance of the transcripts. Once an
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RNase has bound, it degrades transcripts in the 5’-3’ direction at a rate of 20 bp/s, again defined arbitrarily
to approximate the shorter lifespan of the 5’-end of transcripts [31].

Comparing simulations to experiments

The rate constants in our simulations were originally derived from experiments conducted at either 25 ◦C
or 30 ◦C [14, 15]. At these temperatures, T7 has a lysis time of approximately 20–25 minutes [10, 11]. In
contrast, much of the experimental data we analyzed had been collected at 37 ◦C [18], when the phage lyse at
11 minutes. Thus, 9 minutes in our simulations is not directly comparable to 9 minutes in the experimental
data. To compare simulated and experimental gene expression, we selected 500s and 1000s in the simulation
to represent 5 minutes and 9 minutes, respectively, in the experimental data taken at at 37 ◦C.

To calculate simulated fitness in doublings per hour, we made use of a previously published relationship
between intrinsic growth rate (r) and burst size (b) [17]:

r = kC(be−rL − 1),

where k is adsorption rate, C is cell density, and L is lysis time. We assumed lysis time, adsorption rate,
and cell density are all fixed constants. We set L to 12 minutes and arbitrarily set kC to 1. To estimate
burst size, we assumed that all capsid proteins present at 1000s are converted into virions, and that there are
400 copies of the capsid protein per virion. Using these assumptions, we arrived at the following equation
relating the intrinsic growth rate r to simulated capsid protein counts p:

r = (p/400)−12r − 1.

We solved numerically for r numerically using Wolfram Alpha for each of the four simulated conditions:
wildtype, gene 10A recoded, phi9/10 double knockout, and the double knockout combined with the recoding.
We converted intrinsic growth rate r to doublings per hour d using the following equation:

d = log2(e60r).

Lastly, we normalized all fitness values to that of the wildtype.

Code and data availability

All code and processed data used to produce the figures and analyses presented here is available on Github
(https://github.com/benjaminjack/phage_simulation) and is archived on Zenodo (DOI: 10.5281/zen-
odo.2631365). This archive includes specific parameter files for all simulations described in this work. Raw
sequencing reads for the 30 ◦C time course have been submitted to the NCBI Gene Expression Omnibus
under accession number GSE123854.
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Figure 1: Relative transcript abundances across the T7 genome at 5 minutes and 9 minutes post infection.
Each colored bar represents one gene, and genes are arranged from left to right in the order in which they
appear in the T7 genome. Dashed vertical lines indicate RNAse cleavage sites R3.8, R4.7, R6.5, and R13,
respectively. Solid vertical lines indicate the terminator Tφ. (A) Gene expression at 5 minutes post infection.
Classes II and III show similar patterns of expression. (B) Gene expression at 9 minutes post infection, just
before lysis. Class III show higher expression compared to class II. Transcript abundance levels decrease
between genes 3.8 and 6.5. No terminators are present in this genomic region, suggesting that extensive
transcript degradation produces the sudden drop-off in transcript abundance.
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Figure 2: RNA-sequencing genome coverage map of bacteriophage T7, 9 minutes after infection. Each bar
represents the number of reads that map to that specific position in the genome. (A) A coverage map of the
entire 40kb T7 genome. The solid vertical line represents Tφ, the terminator located downstream of gene 10.
Mapped reads decrease downstream of this terminator. (B) The region of the genome surrounding RNase
cleavage site R3.8. Mapped reads decrease downstream of the cleavage site. The solid vertical line represents
the transcription start site from promoter φ3.8 and the dashed vertical line represents the cleavage site.
(C) The region of the genome surrounding RNase cleavage site R6.5. Here, mapped reads sharply increase
downstream of φ6.5 and R6.5. The solid vertical line represents the transcription start site for φ6.5 and the
dashed vertical line represents the cleavage site.
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Figure 3: Relative transcript abundances across the T7 genome from T7+, a strain that has not been adapted
to laboratory conditions. Samples were taken at 10 minutes and 25 minutes post infection and at 30 ◦C
(compared to 37 ◦C in prior experiments). Each colored bar represents one gene, and genes are arranged
from left to right in the order in which they appear in the T7 genome. Dashed vertical lines indicate RNAse
cleavage sites R3.8, R4.7, R6.5, and R13, respectively. Solid vertical lines indicate the terminator Tφ. (A)
Gene expression at 10 minutes post infection. Classes I and II show higher expression levels than class III. (B)
Gene expression at 25 minutes post infection, just before lysis. Class III shows higher expression compared
to class II. Gene 19.5 has the highest overall expression. Transcript abundance levels decrease between genes
3.8 and 6.5. No terminators are present after gene 3.8, suggesting that extensive transcript degradation
produces the sudden drop-off in transcript abundance. Although cultured at a different temperature and with
a different strain of T7, both the 30 ◦C and the 37 ◦C experiment show the same region of down-regulated
class II genes.
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Figure 4: Simulation of transcription and transcript degradation for a plasmid containing three genes of equal
length. (A) The plasmid contains a single promoter upstream of gene X, generating polycistronic transcripts
that contain all three genes. RNAses degrade transcripts from the 5’-to-3’ direction. (B) Transcript abun-
dances over time during a 240s simulation. (C) Transcript abundances at 100s. (D) Transcript abundances
at 240s. As the simulation progresses, directional degradation reduces abundances of genes encoded closer
to the 5’-end of the transcript.
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Figure 5: Simulation of gene expression for a three-gene plasmid containing two promoters and an RNase
cleavage site. (A) Promoters are encoded upstream of genes X and Z (represented by arrows). An RNase
cleavage site (dashed line) is encoded upstream of gene Z, and downstream of the promoter (arrow). Degra-
dation proceeds in the 5’-to-3’ direction from the 5’-end of the transcript and from the RNase cleavage site.
(B) Transcript abundances over time during a 240s simulation. Transcript abundances for gene Z are higher
than other genes initially, but over time gene Z transcripts degrade more quickly than gene Y and gene Y
transcripts become most abundant. (C) Transcript abundances at 100s. (D) Transcript abundances at 240s.
An internal RNase cleavage site near a promoter in the plasmid creates dynamic gene expression patterns.
Initially, the stronger promoter upstream of Z creates more transcripts than X and Y, until it begins to reach
equilibrium with degradation due to the RNase cleavage site. Degradation at the cleavage site is stronger
than at the 5’ end of the transcript, so transcripts of X and Y continue to increase to abundances higher
than that of Z.
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Figure 6: Transcript abundances show differential gene expression over time in a simulated T7 infection.
The simulation includes transcript degradation and RNase cleavage sites. Class I genes are expressed first,
followed by class II and then class III genes.
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Figure 7: Simulations of T7 that include internal RNase cleavage sites and transcript degradation create
transcript abundance distributions that resemble experimental distributions. Each colored bar represents
one gene, and genes are arranged from left to right in the order in which they appear in the T7 genome. The
solid vertical line represents the terminator Tφ and the dashed lines represent RNase cleavage sites R3.8,
R4.7, R6.5, and R13, respectively. (A) Distribution of experimental transcript abundances of bacteriophage
T7, 9 minutes after infection. (B) Distribution of simulated transcript abundances, 1000s simulation time
after infection, without RNase cleavage sites or degradation. We observe no reduction in gene expression
between genes 3.8 and 6.5. (C) Distribution of simulated transcript abundances, 1000s simulation time
after infection, from a simulation that includes RNAse cleavage sites and transcript degradation. The region
between R3.8 and R6.5 shows lower transcript abundances than are seen for upstream genes. This expression
pattern is similar to that of the experimental observations. Including directional degradation and RNase
cleavage sites in a simulation of T7 are sufficient to reproduce patterns of reduced gene expression between
genes 3.8 and 6.5 from experimental data.

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/647024doi: bioRxiv preprint 

https://doi.org/10.1101/647024
http://creativecommons.org/licenses/by/4.0/


5 minutes 9 minutes

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−3

−2

−1

−3

−2

−1

log10(relative transcript abundance)

lo
g1

0(
re

la
tiv

e 
pr

ot
ei

n 
ab

un
da

nc
e)

class I
class II
class III

A

500 1000

−3.0 −2.5 −2.0 −1.5 −1.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−2.5

−2.0

−1.5

−1.0

−2.5

−2.0

−1.5

−1.0

log10(simulated transcript abundance)

lo
g1

0(
si

m
ul

at
ed

 p
ro

te
in

 a
bu

nd
an

ce
)

class I
class II
class III

B

Figure 8: The relationship between protein and transcript abundances changes during the course of a T7
infection, both in experiments and in simulations. (A) Protein and transcript abundances from experiments
at 5 and 9 minutes after infection. Correlations between protein and transcripts change between 5 minutes
(Pearson’s r; class II genes: r = 0.134, p = 0.584; class III genes: r = 0.628, p = 0.00530) and 9 minutes
(class II genes: r = 0.245, p = 0.299; class III genes: r = 0.700, p = 0.000596). (B) Simulated protein
and transcript abundances at 500s (Pearson’s r; class II genes: r = 0.596, p = 2.10 × 10−3; class III genes:
r = 0.750, p = 5.80 × 10−5) and 1000s (class II genes: r = 0.937, p = 1.58 × 10−11; class III genes:
r = 0.926, p = 2.26 × 10−10) after infection. As in the experimental distributions, we observe two distinct
classes of gene expression. The simulation captures changes in the relationship between protein, but shows
proteins and transcripts as more strongly correlated than they are in the experimental observations. In
the simulations, either transcript abundances are too high or protein abundances too low relative to the
experimental observations.
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Figure 9: Predicted and experimental fitness of four different strains of T7, a wildtype strain, a strain
in which gene 10 has been recoded to use non-preferred codons, a strain with the promoters φ9 and φ10
knocked out, and a strain with both the promoter knockouts and codon deoptimization. Fitness is shown
relative to the wildtype strain. Simulations were conducted with transcript degradation. In the simulations,
the recoding and promoter knockout reduced fitness by 5.4% and 20.6%, respectively, relative to wildtype.
Combining these two modifications created a 25.3% reduction in fitness, nearly identical to the reduction
expected from combining the individual effects (24.9%). By contrast, in the experiments the recoding and
promoter knockout reduced fitness by 13.2% and 33.3%, respectively, but the genome with both modifications
had a fitness reduction nearly identical to the promoter knockout alone, 34.6%. This difference suggests that
our model does not fully capture the antagonistic effects of mixing attenuation strategies.
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Table 1: Molecular species in simulations of bacteriophage T7 gene expression.
species name description speed footprint init. count
ribosome Free E. coli ribosome. 30b/s 30b 0
bound ribosome Bound E. coli ribosome. — — 10000
E. coli genome Fragment of E. coli genome. — — 0
E. coli pol E. coli RNA polymerase. 45b/s 35b 0
E. coli pol-p Phosphorylated E. coli RNA poly-

merase.
45b/s 35b 0

E. coli transcript E. coli transcript of average length. — — 0
degraded transcript E. coli transcript of average length. — — 0
bound E. coli pol E. coli RNA polymerase bound to

genome.
— — 1800

bound E. coli pol-p Phosphorylated E. coli RNA poly-
merase bound to genome.

— — 0

E. coli pol-2 E. coli RNA polymerase bound to T7
gp2.

— — 0

E. coli pol-2-p Phosphorylated E. coli RNA poly-
merase bound to T7 gp2.

— — 0

protein kinase-0.7 T7 protein kinase, gp0.7. — — 0
gp-2 T7 gp2. — — 0
lysozyme-3.5 T7 lysozyme, gp3.5. — — 0
RNAPol-3.5 T7 RNA polymerase bound to T7

gp3.5.
230b/s 35b 0

RNAPol-1 T7 RNA polymerase, gp1. 230b/s 35b 0

Table 2: Species-level reactions and rate constants used in simulations of bacteriophage T7 gene expression.
reaction rate constant
ribosome + E. coli transcript → bound ribosome 106 M−1s−1

bound ribosome → ribosome + E. coli transcript 4× 10−2 s−1

E. coli transcript → degraded transcript 1.925× 10−3 s−1

E. coli pol + E. coli genome → bound E. coli pol 107 M−1s−1

E. coli pol-p + E. coli genome → bound E. coli pol-p 3× 106 M−1s−1

bound E. coli pol → E. coli transcript + E. coli genome + E. coli pol 4× 10−2 s−1

bound E. coli pol-p → E. coli transcript + E. coli genome + E. coli pol-p 4× 10−2 s−1
∗protein kinase-0.7 + E. coli pol → protein kinase-0.7 + E. coli pol-p 3.8× 107 M−1s−1
∗protein kinase-0.7 + E. coli pol-2 → protein kinase-0.7 + E. coli pol-2-p 3.8× 107 M−1s−1
∗gp-2 + E. coli pol → E. coli pol-2 3.8× 107 M−1s−1
∗gp-2 + E. coli pol-p → E. coli pol-2-p 3.8× 107 M−1s−1
∗E. coli pol-2 → gp-2 + E. coli pol 1.1 s−1
∗E. coli pol-2-p → gp-2 + E. coli pol-p 1.1 s−1
∗lysozyme-3.5 + RNAPol-1 → RNAPol-3.5 3.8× 109 M−1s−1
∗RNAPol-3.5 → lysozyme-3.5 + RNAPol-1 3.5 s−1

∗ Derived from Kosuri, et al [14].

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/647024doi: bioRxiv preprint 

https://doi.org/10.1101/647024
http://creativecommons.org/licenses/by/4.0/


Table 3: Promoter strengths in simulations of T7 gene expression. These are promoter strengths for E.
coli polymerases that are unposphorylated and unbound to gp2, and for T7 RNA polymerase unbound to
lysozyme.

promoter strength
E. coli promoter A1 105 M−1s−1

E. coli promoter A2 105 M−1s−1

E. coli promoter A3 105 M−1s−1

E. coli promoter B 104 M−1s−1

E. coli promoter C 104 M−1s−1

φ1.1A 0.01∗

φ1.1B 0.01∗

φ1.3 0.01∗

φ1.5 0.01∗

φ1.6 0.01∗

φ2.5 0.01∗

φ3.8 0.01∗

φ4C 0.01∗

φ4.3 0.01∗

φ4.7 0.01∗

φ6.5 0.05∗

φ9 0.01∗

φ10 1.82× 107 (1.82× 108)† M−1s−1

φ13 0.1∗

∗ Promoter strength relative to phi10.
† Promoter strength for simulations with degradation, which was increased so that absolute transcript abundances
were comparable among simulations with and without degradation.
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