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Abstract 13 

1. The animal gut is a complex ecosystem containing many interacting species. A major 14 
objective of microbiota research is to identity the scale at which gut taxa shape hosts. 15 
However, most studies focus solely on pairwise interactions and ignore higher-order 16 
interactions involving three or more component taxa. Higher-order interactions 17 
represent non-additive effects that cannot be predicted from first-order or pairwise 18 
interactions. 19 

2. Possible reasons as to why studies of higher higher-order interactions have been 20 
scarce is that many host-associated systems are experimentally intractable, gut 21 
microbiota are prohibitively species rich, and the influence of any given taxon on 22 
hosts is often context-dependent. Furthermore, quantifying emergent effects that 23 
represent higher-order interactions that are not simply the result of lower-order 24 
interactions, present a combinatorial challenge for which there are few well-25 
developed statistical approaches in host-microbiota studies.  26 

3. In this perspective, our goal is to quantify the existence of emerging higher-order 27 
effects and characterize their prevalence in the microbiota. To do so, we adapt a 28 
method from evolutionary genetics used to quantify epistatic effects between 29 
mutations and use it to quantify the effects of higher-order microbial interactions on 30 
host infection risk.  31 

4. We illustrate this approach by applying it to an in silico dataset generated to resemble 32 
a population of hosts with gut-associated microbial communities. We assign each host 33 
a pathogen load, and then determine how emergent interactions between gut taxa 34 
influence this host trait.  35 

5. We find that the effect of higher-order interactions generally increases in magnitude 36 
with the number of species in the gut community. Based on the average magnitude of 37 
interaction for each order, we find that 9th order interactions have the largest non-38 
linear effect on determining host infection risk. 39 

6. Our approach illustrates how incorporating the effects of higher-order interactions 40 
among gut microbiota can be essential for understanding their effects on host 41 
infection risk. We conclude that insofar as higher-order interactions between taxa may 42 
profoundly shape important organismal phenotypes (such as susceptibility to 43 
infection), that they deserve greater attention in microbiome studies.   44 
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 46 

Introduction 47 

Animal guts contain complex microbial communities whose structure and function 48 

depend upon the interactions among microbes and the host. Gut microbiota serve as 49 

key actors in host health, impacting development, metabolism, and pathogen 50 

susceptibility (Brugman et al., 2018). The development of microbe-free (also known as 51 

germ-free) model hosts has made it possible to experimentally study how the 52 

microbiota influences host susceptibility to infection (Goodman et al., 2011; Ridaura et 53 

al., 2013). However, most studies rely on correlations between the relative abundances 54 

of individual bacterial taxa and host infection risk (e.g. pathogen load), ignoring the 55 

potential influence of higher-order interactions between taxa within the community.  56 

The field of complex systems is increasingly interested in understanding the emergent 57 

properties of higher-order interactions between objects (Lambiotte, Rosvall, & Scholtes, 58 

2019a).  Relatedly, a long-standing issue in ecology is to capture the vast diversity of 59 

multispecies species interactions—the unpredictable effects that arise when multiple 60 

species are present in an ecosystem (Hutchinson 1962).  For example, the order of 61 

arrival of species into an ecosystem, and other factors (deterministic or stochastic in 62 

nature) can dictate species composition and the overall behavior of the system 63 

(Saavedra et al., 2017; Uricchio, Daws, Spear, & Mordecai, 2019). This problem has more 64 

recently become the object of inquiry in communities of microbes (Enke et al., 2019; 65 

Mickalide & Kuehn, 2019; Sanchez-Gorostiaga, Baji•, Osborne, Poyatos, & Sanchez, 66 
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2018). Many ecological studies involving complex network structures typically focus on 67 

pair-wise interactions and tend to ignore higher-order effects among three or more 68 

components (Kareiva, 1994; Levine, Bascompte, Adler, & Allesina, 2017; Mayfield & 69 

Stouffer, 2017). For example, in a system with two interacting microbes—A and B—the 70 

addition of a third microbe C may alter the pairwise interaction between A and B in a 71 

non-linear or non-intuitive fashion. This would constitute an emergent higher-order 72 

interaction between A, B and C. This is in contrast to a scenario where the microbe C 73 

interacts with either A or B in isolation, which constitute pairwise interactions with their 74 

own interaction effects. Therefore, quantifying emergent higher-order effects between 75 

microbial taxa is necessary to fully capture the structure and dynamics of biological 76 

systems. 77 

 78 

Higher-order interactions have recently been the object of study in the realm of genetics, 79 

where they are discussed in light of epistasis, or non-linear interactions between genes 80 

and mutations (Mackay & Moore, 2014; Weinreich, Lan, Jaffe, & Heckendorn, 2018a; 81 

Weinreich, Lan, Wylie, & Heckendorn, 2013).  A useful non-technical definition of 82 

epistasis is the “surprise at the phenotype when mutations are combined, given the 83 

constituent mutations’ individual effects (Weinreich, Lan, Jaffe, & Heckendorn, 2018b). 84 

This effectively captures what makes epistasis a provocative concept: the notion that 85 

interacting objects or parcels can have effects that are non-additive.  In particular, 86 

higher-order epistasis is of interest, as it comprises all of the complexity and challenges 87 
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of understanding and studying higher-order interactions in other systems (Lambiotte et 88 

al., 2019a).  89 

 90 

Higher-order epistasis can have powerful effects on organismal phenotypes, which has 91 

complicated the genotype-phenotype mapping problem in genetics (Sackton & Hartl, 92 

2016). To study higher-order epistasis in model organisms, molecular biologists 93 

engineer genes and mutations of interest in all possible permutations, a method labeled 94 

the “combinatorial approach.”  (Weinreich et al., 2018b, 2013). Other studies resolve 95 

higher-order epistasis through more advanced statistical methods (Guerrero, Scarpino, 96 

Rodrigues, Hartl, & Ogbunugafor, 2019; Otwinowski, McCandlish, & Plotkin, 2018; 97 

Poelwijk, Krishna, & Ranganathan, 2016; Sailer & Harms, 2017).  98 

 99 

Insect gut microbiota have been used as model systems to study the formation and 100 

assembly of microbial communities. Insect guts harbor relatively fewer microbial 101 

species, as compared to higher eukaryote hosts, with restricted core-members that can 102 

be grown axenically and manipulated genetically (Zheng, Steele, Leonard, Motta, & 103 

Moran, 2018). The protective function of microbes against invading pathogens have 104 

been studied across a range of insect hosts. For example, previous studies with bees 105 

found that core gut species were associated with increased host health, while non-core 106 

taxa were associated with decreased host health and increased pathogen infection 107 

(Cariveau, Elijah Powell, Koch, Winfree, & Moran, 2014; Koch & Schmid-Hempel, 2011; 108 

Raymann & Moran, 2018). However, other studies have also shown that pathogens alter 109 
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the gut microbiota and facilitate gut infections (Abraham et al., 2017; Wei et al., 2017). 110 

Although many studies have shown correlations between core species and host traits, 111 

the extent to which individual versus species interactions facilitate or resist gut 112 

infections remains understudied. 113 

 114 

Not unlike genomes, societies or neural circuits, insect gut microbiomes are complex 115 

systems defined by the interaction between individual parcels (component taxa in the 116 

microbiota). Consequently, we might predict that higher-order interactions between 117 

taxa in the microbiota might underlie microbiota-associated organismal phenotypes, 118 

such as susceptibility to infection. Recent work by Gould et al. 2018 found that higher-119 

order interactions in the gut microbiota impact lifespan, fecundity, development time, 120 

and bacterial composition of Drosophila sp. With a gut community composed of 5 core 121 

taxa, they found that three-way, four-way, and five-way interactions accounted for 13-122 

44% of all possible cases depending on the host trait. Yet, lower-order interactions (2-123 

pairs) still accounted for at least half of all the observed phenotypes in the system 124 

(Gould et al., 2018).  125 

 126 

Studies like Gould et al. 2018 provide an example of how higher-order interactions can 127 

be measured and suggest that they might be relevant for understanding how taxa 128 

influence certain phenotypes.  But while the importance of diversity and host 129 

interactions is clear, no studies have attempted to specifically disentangle effects 130 

beyond four or five-way interactions.  One major barrier to more of these studies is the 131 
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paucity (or non-existence) of the datasets structured like those in an evolutionary 132 

genetics framework, such that existing statistical methods might be used to resolve 133 

interactions. (Tekin, Savage, & Yeh, 2017; Wood, Nishida, Sontag, & Cluzel, 2012). For 134 

example, the problem of constructing a set of insects that each carry a different 135 

combination of constituent taxa of interest grows exponentially with the number of 136 

taxa.  And (perhaps) unlike genetics, constructing a different insect with a different set 137 

of bacterial taxa (corresponding with the possible combinations of taxa) is a non-trivial 138 

technical challenge.  Nonetheless, the use of combinatorial complete datasets—insects 139 

containing all combinations of taxa— to explore higher-order interactions (beyond a 140 

single taxon or pairwise interactions) could help to inform how taxa interact in framing 141 

organismal phenotypes.  142 

 143 

In this commentary, we propose a theoretical examination of higher order interactions 144 

in the gut microbiome.  Specifically, we employ the Walsh-Hadamard transform 145 

(WHT), a mathematical regime that has been used to demonstrate how higher-order 146 

interactions between mutations influence fitness or other organismal traits (Poelwijk et 147 

al., 2016; Weinreich et al., 2013), to explore how higher-order interactions among gut 148 

taxa can influence host infection risk.  We use it to quantify higher-order interactions in 149 

an in silico dataset resembling the type of data that can be empirically—that can be 150 

developed in the future—collected from insect guts.  We introduce this approach with 151 

the hope that it may eventually be applied to a tractable experimental system for real-152 
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world validation, and believe that insect systems are among the most promising 153 

empirical systems.  154 

 155 

Methods  156 

The Walsh-Hadamard Transform allows one to quantify the eminence of interaction 157 

effects of different order in a system of potentially-interacting objects or parcels. It 158 

yields a Walsh coefficient, which communicates the magnitude and sign of how a 159 

particular order interaction influences an output of interest.  It implements phenotypic 160 

values in the form of a vector, before reformatting it into a Hadamard matrix (and is 161 

then scaled by a diagonal matrix). The output is a collection of coefficients which 162 

measure the degree to which the map is linear, or second order, third, and so forth. We 163 

provide a brief primer on the method, and refer readers to two published 164 

manuscripts—Poelwijk et al. (2016) and Weinreich et. al. (2013)—that outline and apply 165 

the method in good detail. Also see the Supplementary Information for a brief primer.  166 

 167 

The Walsh-Hadamard Transform relies on the existence of combinatorial data sets, 168 

where the objects for which we are interested in understanding the interactions between 169 

(taxa in this study) are constructed in all possible combinations.  Another limitation of 170 

the WHT is that it can only accommodate two variants per site, that is, two states per 171 

actor.  In the case of taxa, we can think of this in terms of the presence/absence of a 172 

certain taxon, and we can encode this in terms of 0 (absence) or 1 (presence).  For each 173 

hypothetical insect with a different presence/absence combination, we have a 174 
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corresponding phenotypic measurement (e.g. parasite load). For example, if we wanted 175 

to measure the higher-order interactions between 4 taxa within an insect with regards to 176 

their role in parasite load (as a model phenotype), we would need 2
L
 = 16 individual 177 

measurements (insects in this case), with L corresponding to the number of different 178 

taxa whose effects we were interested in disentangling.  We can encode this 179 

combination of 4 taxa in bit string notation (see Figure 1). 180 

 181 

Each site (0 or 1) in the string corresponds to the presence or absence of a given taxa in a 182 

given insect. This notation allows us to keep a mental picture of which taxa are in which 183 

insect for which we have a phenotypic measurement and can be used to construct a 184 

vector of values. For example, the string 1010 corresponds to an insect with the pattern 185 

of present (1), absent (0), present (1), absent (0). The full data set includes a vector of 186 

phenotypic values for all possible combinations of taxa—0000, 0001, 0010, 0100, 1000, 187 

0011, 0101, 0110, 1001, 1010, 1100, 0111, 1101, 1011, 1110, 1111. Note that these can be 188 

divided into different classes based on the “order” of the interaction. Order corresponds 189 

to the number of interacting actors. “Zeroth order” would correspond to the 0000 190 

variant. This would translate to an insect that has none of the insect taxa present.  There 191 

are 4, 1st order interactions (0001, 0010, 0100, 1000), 6, 2nd order (or pairwise) interactions 192 

(0011, 0101, 0110, 1001, 1010, 1100), 4, third-order interactions (0111, 1101, 1011, 1110), 193 

and 1 fourth order interaction (1111).  The WHT will quantify  194 
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This vector of phenotypic values for the 16 will be multiplied by a (16 x 16) square 195 

matrix, which is the product of a diagonal matrix V and a Hadamard matrix H. These 196 

matrices are defined recursively by: 197 

  [1] 198 

 199 

 [2] 200 

 201 

n is the number of loci (n = 4 in this hypothetical example). This matrix multiplication 202 

gives an output:     203 

                                                     204 
 205 

Where V and H are the matrices described in [1] and [2] above, and y is the Walsh 206 

coefficient, the measure of the interaction between parcels of information in a string. 207 

Using this, we compute y values for every possible interaction between bits in a given 208 

string. The in silico generated data discussed in this commentary are composed of 10-bit 209 

strings, each corresponding to the presence/absence of a different microbial taxa. Such 210 

a case would have 2
10

 = 1024 total combinations of taxa, and corresponding phenotypic 211 

measurements (parasite load). 212 

 213 

8 

it 
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Similar to the 4-bit string example used to explain the method, note that each order has 214 

a different number of possible combinations. That is, the number of insects that can 215 

carry a combination of interacting taxa of a certain order. These are as follows: 0th = 1; 1st 216 

= 10, 2nd = 45; 3rd = 120; 4th = 210; 5th = 252; 6th = 210; 7th = 120; 8th = 45; 9th = 10; 10th = 1. The 217 

methods offered here measure every one of these interactions (e.g. all 210 of the possible 218 

6th order interactions) between taxa.  While our use of a 10-bit string (as opposed to an 8 219 

or 15 bit string) is rather arbitrary, it is meant to highlight the vastness of the higher-220 

interaction problem: Even if we suspect that only 10 taxa are meaningfully influencing a 221 

phenotype of interest (many studies contain more), the possible ways that these species 222 

are interacting, and the number of measurable coefficients between them can be 223 

astronomical in number.  224 

 225 

Having outlined the method used to quantify higher-order interactions above, it is 226 

important to directly explain the presumptive biological interpretation of the values.  227 

The WHT returns a Walsh coefficient for each “order” of interaction. This corresponds 228 

to the relative strength or importance of that “order” in the phenotype being measured.  229 

Therefore, the Walsh-Hadamard Transform can help to interpret the overall presence 230 

and eminence of higher-order interactions between taxa in a microbiota.  231 

 232 

Results 233 
 234 

Figure 2 depicts an in silico generated collection of 1024 insects, each containing one of 235 

the combinations of 10 taxa (2
10

 = 1024), organized into a fitness graph (see 236 
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Supplemental Information for details on the in silico code and dataset). Each individual 237 

also has a parasite load.  While other statistical methods may not require all possible 238 

combinations of taxa in order to extract meaningful information on the magnitude of 239 

higher-order interactions, creating the combinatorial set demonstrates the size and 240 

shape of the problem, all of the possible ways that taxa could interact. 241 

 242 

Figure 3 depicts the raw calculations of the Walsh coefficients for all of the higher-order 243 

interactions (orders 2 – 9).  Here we observe that the magnitude and direction of the 244 

interaction effect (Walsh coefficient) varies across different combinations of taxa. That 245 

the Walsh Hadamard Transform can disentangle these types of effects is a feature of the 246 

calculation and reveals the possibilities that exist in complex systems—like the 247 

microbiota—where many different objects are interacting.  It is especially important to 248 

note that the specific identity of the taxa present is very important to understand in 249 

determining their interaction. We cannot assume that, for example, all third-order 250 

interactions (interactions between three taxa) will have the same magnitude or direction 251 

of interaction (e.g. positive or negative).   252 

 253 

Figure 4 demonstrates the sum of the absolute values of the interaction coefficients 254 

highlighted in Figure 3. Here, we can observe the raw magnitude (leaving the sign—255 

positive or negative—of it aside) of higher-order interactions as a function of interaction 256 

order. Between 1st and 9th order, higher-order effects increase, suggesting that they 257 

become more meaningful with the number of interacting microbes.  Without knowing 258 
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the specific mechanism at work, determining the mean magnitude of coefficients 259 

provides relevant information on the eminence of a given order in the microbiota. For 260 

example, in our in silico microbiota the 9th order taxa represents the highest magnitude 261 

of interaction relative to other taxa orders (Figure 4).  As this is a theoretical, in silico 262 

generated microbiota, we can interpret this finding as meaning that 9th order 263 

interactions contain the largest average deviation from additivity. That is, knowledge of 264 

how any given 9 taxa will interact requires very specific information on the identity of 265 

which 9 taxa are interacting. This is a characteristic of a highly non-linear, complex 266 

systems.    267 

 268 

Note that all of these values—the raw in silico parasite load data, the interaction 269 

coefficients for all individual interactions, and the scaled, absolute value coefficients—270 

can be found in the Supplementary Material. 271 
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 272 

Figure 1. Schematic representation of higher-order interactions in the insect gut 273 
microbiota. We represent the presence of microbial species in the gut similarly to the 274 
presence of a genetic locus. Species composition are represented in binary strings. In 275 
this configuration, the combination 0011 represents both the presence and absence of 276 
two species. For each string combination, we associated a phenotypic measurement, 277 
such as infection risk. We quantify “epistatic” interactions between microbes in n 278 
dimensional space, where n represents the number of species interacting. 279 

 280 

 281 

12 
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282 

283 

Figure 2. An in silico generated microbiota with a combinatorial complete set of 10 taxa, 284 
composing 1024 total nodes (210). Edges link neighboring strings. In genetics, these edges 285 
represent genotypes that are mutational neighbors; in this data set they just denote 286 
insect microbiomes that differ by the presence/absence of a single taxa). (A) Color 287 
gradient represents the mutational class (order): lighter colors correspond to higher 288 
orders (5 taxa, 6 taxa, etc). (B) Color gradient represents actual parasite load 289 
measurements. Darker colors represent higher parasite loads.  290 

 291 

13 
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 292 

Figure 3. The entire space of higher-order interactions between taxa in all possible combinations, 293 
organized by higher-order class. Each line represents an individual combination of the 10 294 
taxa, and the y-axis is the epistatic coefficient corresponding to that taxa. That is, for 295 
1001000001, there is a value corresponding to the magnitude of the 3rd order epistatic 296 
interaction between the presence of the taxa corresponding to first site, fourth site, and 297 
tenth site. 0th and 10th orders are missing from this figure because they are composed of a 298 
single interaction. 1st order is missing because it doesn’t constitute “higher-order” 299 
interactions, but rather, the “main effects” of each taxon acting in isolation. 300 
Alternatively, higher order interactions (2nd through 9th) are all composed of multiple 301 
parcels interacting. Please note that the y-axes are different across figures.   302 

 303 

 304 
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 305 

Figure 4. The magnitude of interaction between taxa. Absolute value, averaged magnitude 306 
interactions across interaction orders. These are the averaged, scaled, absolute values of 307 
the data show in Figure 3.  The purpose of this depiction is to illustrate how the 308 
magnitude (not sign) of the interactions change with interaction order. In this in silico 309 
microbiota data set, this translates to the 9th order interactions (interactions between 9-310 
different taxa) containing the most non-linearity, overall.  311 

 312 

 313 

 314 

 315 

 316 

 317 
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 318 

Discussion 319 

In this commentary, we explore the possibility of higher-order interactions between 320 

taxa composing an insect gut microbiota. Using in silico and applied mathematical 321 

approaches, we demonstrate how higher-order interactions can be measured in a 322 

complex system of interacting microbial taxa. In our theoretical scenario, higher-order 323 

interactions are present and generally increase in relevance with the order of 324 

interaction. Though our results are theoretical, they are results nonetheless (Goldstein, 325 

2018), highlighting the vast scope of the higher-order interaction problem, and outline 326 

one method that can be used to deconstruct them in biological systems. Though 327 

empirical data of the size and scope used in this study are currently challenging to 328 

generate, this intractability may be temporary, and future methods may permit the 329 

generation of data similar in structure to those explored in our theoretical examination.  330 

 331 

The approach used in this study—the Walsh-Hadamard Transform—has been 332 

previously used by theoretical population geneticists to measure non-linear interactions 333 

between mutations (Weinreich et al., 2013). Several empirical data sets in genetics and 334 

genomics have demonstrated that the sign of interaction effects can change readily with 335 

the identity of the interacting parcels(Guerrero et al., 2019; Weinreich et al., 2018a, 2013). 336 

Given this, we predict that the taxa that compose the gut microbiota might be similarly 337 

defined by higher-order interactions. The capacity for measuring the effects of higher-338 

order interactions on host fitness is an important step towards understanding the effects 339 
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of microbiota on their host. Indeed, considering higher-order interactions can enable 340 

more robust information on non-linear interactions in microbiome communities. 341 

 342 

We found that higher-order interactions were present, and that taxa interacted both 343 

positively and negatively. Combined interactions among taxa are augmented compared 344 

to what is expected from individual effects when phenotypic effects are positive. In 345 

contrast, higher-order effects are negative when combined interactions among taxa 346 

show a diminished return and are less fit than would be expected from their individual 347 

effects (fig 3). Such combinatorial complete data-sets can tell us what scale microbial 348 

interactions matter in predicting host infection. Moreover, they reveal patterns of 349 

interactions, particularly those combinations that interact synergistically or 350 

antagonistically (Hartl, 2014). One potential limitation of the outlined approach is the 351 

requirement for combinatorial complete datasets. For high-diversity microbiomes, 352 

including humans and plants, it is not currently feasible to carry out experiments 353 

measuring phenotypes for all the possible microbial interactions.   354 

 355 

Microbe-mediated protection against pathogens depends on subtle differences in gut 356 

community structure. In North American wild bumble bees, lower Chrithidia parasite 357 

infection loads are associated with higher microbiota diversity. Using transplants to 358 

naive host, it was shown that the core-gut bacteria were responsible for conferring 359 

resistance to the Chrithidia parasite, while non-core gut bacteria were found to be less 360 

effective against the parasite (Mockler, Kwong, Moran, & Koch, 2018). In mosquitos, gut 361 
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bacterial species can trigger an immune defense against Plasmodium parasites, the 362 

causative agent of malaria (Bahia et al., 2014). In sandflies, highly diverse midgut 363 

microbiota’s were found to be negatively correlated with the parasite that causes the 364 

vector-borne disease leishmaniasis (Kelly et al., 2017). While these studies did not 365 

investigate the effects of higher-order interactions on host fitness, future experimental 366 

studies manipulating microbial communities should consider combinatorial designs. 367 

 368 

Recent theoretical work suggests that higher-order modeling approaches are able to 369 

capture volumes of rich data arising from complex ecological interactions (Lambiotte, 370 

Rosvall, & Scholtes, 2019b). In this perspective, we have adapted approaches from 371 

population genetics to the study of host-associated microbiota. Applying these methods 372 

to the analysis of real experiments will yield important insight into microbiome 373 

dynamics, towards a richer understanding of just how peculiar the microbiota is, and 374 

the many meaningful interactions that it is embodies.   375 
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 384 

Data Availability 385 

The in silico data used in this study and code used to generate them can be found on 386 

github: https://github.com/OgPlexus/MicrobeTaxa1 387 

 388 

Supplemental Information 389 

The authors have prepared a simple mathematical primer on the Walsh-Hadamard 390 

Transform: https://github.com/OgPlexus/MicrobeTaxa1. For a more rigorous 391 

understanding, readers are encouraged to engage the works cited in this manuscript.  392 
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