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Abstract 17 

1. A major objective of microbial ecology is to identify how the composition of gut 18 
microbial taxa shapes host phenotypes. However, most studies focus solely on 19 
community-level patterns and pairwise interactions and ignore the potentially 20 
significant effects of higher-order interactions involving three or more component 21 
taxa.  22 

2. Studies on higher-order interactions among microbial taxa are scarce for many 23 
reasons, including experimental intractability, daunting diversity and complexity of 24 
many microbial systems, and the potential confounding role of the environment. 25 
Moreover, we still lack the empirical and statistical tools to isolate and understand 26 
the role of higher-order interactions on the host.  27 

3. Here, we apply a mathematical approach to quantifying the effects of higher-order 28 
interactions among taxa on host infection risk. To do so, we adapt the Hadamard-29 
Walsh method recently used in evolutionary genetics to quantify the nonlinear 30 
effects of mutations on fitness. We apply our approach to an in silico dataset built to 31 
resemble a population of insect hosts with gut-associated microbial communities at 32 
risk of infection from an intestinal parasite. Critically, we examine these 33 
interactions across a breadth of environmental contexts, using nutrient content of 34 
the insect diet as a model for context. 35 

4. We find that the effect of higher-order interactions is considerable and can change 36 
appreciably across environmental contexts. Strikingly, the relative eminence of 37 
different orders (pairwise vs. third order, fourth order, and fifth order) changes as a 38 
function of environmental context. Furthermore, we show– in our theoretical 39 
microcosm– that higher-order interactions can stabilize community structure 40 
thereby reducing host susceptibility to parasite invasion. 41 

5. Our approach illustrates how incorporating the effects of higher-order interactions 42 
among gut microbiota across environments can be essential for understanding their 43 
effects on host phenotypes. We conclude that higher-order interactions among taxa 44 
can profoundly shape important organismal phenotypes, and they deserve greater 45 
attention in host-associated microbiome studies.   46 
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 50 

Introduction 51 

Animal guts contain complex microbial communities whose structure and function depend upon the 52 

interactions among microbes and the host. Gut microbiota serves as key actors in host health, impacting 53 

development, metabolism, and the immune system (Brugman et al., 2018; McFall-Ngai et al., 2013). The 54 

development of axenic and gnotobiotic model hosts has made it possible to experimentally study how the 55 

microbiota influences host traits of interest (Douglas, 2018). However, most studies rely on correlations 56 

between the relative abundances of individual microbial taxa and host traits (e.g. immune function), and 57 

also community-level patterns at family level taxonomic resolutions, ignoring the potential influence of 58 

higher-order interactions among taxa within the community (Hooper et al., 2012; Knutie et al., 2017; 59 

Macpherson & Harris, 2004; Round & Mazmanian, 2009). 60 

 61 

The field of complex systems is increasingly interested in understanding the emergent properties of 62 

higher-order interactions (Battiston et al., 2020). Higher order interactions have been the object of 63 

relatively rigorous inquiry in the realm of genetics, where they are discussed in terms of epistasis, or non-64 

linear interactions between genes and mutations (Mackay & Moore, 2014; Weinreich et al., 2013, 2018a). 65 

A useful non-technical definition of epistasis is “surprise at the phenotype when mutations are combined, 66 

given the constituent mutations’ individual effects” (Weinreich et al., 2013). In particular, higher-order 67 

epistasis is of interest, as these interactions comprise all of the complexity and challenges of 68 

understanding and studying higher-order interactions in other systems, and even in microbes (Gould et al., 69 

2018). Not unlike genomes, communities or neural circuits, insect gut microbiomes are complex systems 70 

defined by the interaction between individual entities or parcels of information (in this case, component 71 
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taxa in the microbiota). Consequently, we might predict that higher-order interactions between taxa in the 72 

microbiota might underlie microbiota-associated organismal phenotypes.  73 

 74 

A long-standing goal of ecology is to capture the vast diversity of multispecies interactions—the 75 

unpredictable effects that arise when multiple species are present in an ecosystem (Barabás et al., 2016; 76 

Chesson, 2000; Hutchinson, 1961; Mayfield & Stouffer, 2017; Vandermeer, 1969). For example, animals 77 

harbor diverse microbial communities that are variable in their composition, governed by stochastic 78 

processes, which influences the overall behavior of the system (Douglas, 2018). This problem has more 79 

recently become the object of inquiry in communities of microbes (Enke et al., 2019; Guittar et al., 2019; 80 

Mickalide & Kuehn, 2019; Sanchez-Gorostiaga et al., 2018). Many ecological studies involving complex 81 

network structures typically focus on pairwise interactions (Kareiva, 1994; Levine et al., 2017; Mayfield 82 

& Stouffer, 2017). Only very recently has the literature demonstrated that higher-order interactions are at 83 

play in these systems, an important area for further inquiry, given how they may potentially complicate 84 

(or even undermine) simple models of microbial community function (Sanchez-Gorostiaga et al., 2018).  85 

 86 

Higher-order interactions in the gut microbiota of Drosophila species impact lifespan, fecundity, 87 

development time, and community composition (Gould et al., 2018). With a gut community comprising 88 

five core taxa, Gould et al. found that three-way, four-way, and five-way interactions accounted for 13-89 

44% of all possible cases depending on the host trait. Yet, lower-order interactions (2-pairs) still 90 

accounted for at least half of all the observed phenotypes in the system. Work by Sanchez-Gorostiage et 91 

al. (2018), examined the contributions of multispecies interactions to determining community function 92 

(i.e. amylase expression). In the presence of higher-ordered interactions, the predictive power of the 93 

additive null model (absence of interactions) in predicting community function decreases. However, by 94 

accounting for both behavioral and population dynamics effects into their null model, higher-order 95 

interactions did provide good predictions for community function. Higher-order interactions can have 96 

important implications for the predictive power of bottom-up approaches to designing complex 97 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2021. ; https://doi.org/10.1101/647156doi: bioRxiv preprint 

https://doi.org/10.1101/647156
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

communities and determining their functional traits (Sanchez-Gorostiaga et al., 2018). The 98 

aforementioned studies provide examples of how higher-order interactions can be measured and suggest 99 

that they are relevant for understanding how microbial taxa influence certain phenotypes.  While the 100 

importance of diversity and host interactions is clear, to our knowledge no studies have attempted to 101 

specifically disentangle effects of higher-order interactions across environmental contexts.  102 

 103 

One major barrier to more of these studies is the paucity (or non-existence) of the datasets structured like 104 

those in an evolutionary genetics framework, such that existing statistical methods might be used to 105 

resolve interactions (Tekin et al., 2017; Wood et al., 2012). For example, the problem of constructing a 106 

set of insects that each carry a different combination of constituent taxa of interest grows exponentially 107 

with the number of taxa.  And unlike some genetic systems, constructing a different insect with a different 108 

set of bacterial taxa (corresponding with the possible combinations of taxa) is currently a non-trivial 109 

technical challenge. Nonetheless, the use of combinatorial complete datasets—insects containing all 110 

combinations of taxa (even few in number)— to explore higher-order interactions (beyond a single taxon 111 

or pairwise interactions) could help to inform how taxa interact in framing organismal phenotypes. 112 

Higher-order interactions could, in principle, be used to examine how our predictions for taxa-taxa 113 

interactions will be contingent on the host context in which a certain distribution of taxa exists.   114 

 115 

In this study, we reframe how we consider higher-order interactions in an insect gut using theoretical 116 

approaches. We apply a relatively simple mathematical method called the Walsh-Hadamard transform 117 

(WHT), which has been used to demonstrate how higher-order interactions between mutations influence 118 

fitness or other organismal traits (Poelwijk et al., 2016; Weinreich et al., 2013, 2018b).  We use this 119 

method to explore how higher-order interactions among gut taxa can influence host fitness, across micro-120 

environments. In this study, we use it to quantify higher-order interactions in an in silico dataset 121 

resembling the type of data that can be collected, presently in genetic systems, and plausibly in the future 122 

in microbiota experimental systems.   123 
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We have chosen to consider the nutritional environment of the host, as resources can vary due to 124 

spatial and temporal differences, and in terms of the quantity and quality of required resources. A key 125 

component of resource availability is nutrition, which is likely to influence host resistance to natural 126 

enemies. In microbial systems, increased resource availability resulted in greater host resistance to 127 

parasites (Gómez et al., 2015; Lopez-Pascua & Buckling, 2008). Lower resource levels have been found 128 

to be costly for resistance to parasites in Drosophila melanogaster (McKean et al., 2008). Nutritional 129 

content (quality and quantity) is a well-known stressor for insect microbes in many settings, including the 130 

gut microbiota (Engel & Moran, 2013; Gurung et al., 2019; Mereghetti et al., 2017; Skidmore & Hansen, 131 

2017). However, experimental studies involving model systems rely on high nutritional diets to 132 

understand factors affecting susceptibility to infectious diseases (Roberts et al., 2019). In this work, we 133 

consider how varying nutritional environments influence host susceptibility to disease risk. 134 

 135 

Using this framework, we are able to examine underappreciated aspects of the microbiota: questions 136 

surrounding the notion that the microenvironment of the insect gut may shape higher-order interactions 137 

between taxa, with important consequences for host health and fitness. Our study examines the 138 

consequences of higher-order microbial interactions for host susceptibility (i.e. phenotype of interest) to 139 

disease risk. We hypothesize that higher-order interactions underlie host microbiome robustness to 140 

intestinal parasite invasion, reducing host susceptibility to disease risk, and that these interactions are 141 

highly dependent on environmental context. While this study is designed to address standing questions 142 

about interactions within the microbiota, it also offers future directions.  We introduce this approach with 143 

the hope that it, or a related method may eventually be applied to a tractable experimental system for real-144 

world validation and believe that insect systems are among the most promising candidates for these 145 

examinations.   146 

 147 

 148 

 149 
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Methods  150 

Data source 151 

The data used in this study arise from raw data used to generate theoretical fitness landscapes, composed 152 

of five-bit strings that were generated from an in silico data set introduced in a prior study (Meszaros et 153 

al., 2019). The data set was originally generated in order to provide large empirical data sets that could be 154 

used to study advanced topics in population genetics, including higher-order epistasis. The datasets are 155 

constructed such that they can serve as an exploratory space for any theoretical set of interactors, and 156 

therefore, is well-structured for the study of interacting microbial taxa.  That is, there is nothing about the 157 

datasets that renders it a better fit for any one biological problem than another: these data could just as 158 

well be used to study interacting genes as taxa or any parcel of information. The data are defined as 159 

strings of information (e.g. 01011 or 11001), each with a corresponding “phenotype” value. Therefore, 160 

this data is equipped for the analyses as proposed in this study. Here, we use it to generate theoretical 161 

microbiota in an insect gut. For more information on the data set and its origin, see Meszaros et. al 2019 162 

and the Supplementary Information.  163 

 164 

For the purpose of this study, it is important that we are transparent with regards to the data source, the 165 

notation, and the method for transforming the data into a microcosm for taxa in an in silico insect 166 

microbiota. In this study, our hypothetical insect guts are encoded as strings of bits. Bits can either be 0 or 167 

1.  1 indicates the presence (+) of a taxa. 0 indicates absence (-) of a taxon. For example, we can write a 168 

string of 0 and 1 corresponding to an insect gut with five interacting taxa (A-D) as demonstrated in Table 169 

1.  170 

 171 

 172 

 173 

 174 

 175 
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 176 

Taxa A B C D E 

Presence (+) or absence (-

) 

 

+ 

 

- 

 

+ 

 

+ 

 

- 

Binary representation 1 0 1 1 0 

   Table 1. Data structure of a hypothetical insect gut.  177 

 178 

As we can see, the “10110” string corresponds to an insect gut where taxa A is present, B is absent, C is 179 

present, D is present, and E is absent.  The data set that we are mining, originally derived for studying 180 

combinatorial data sets that are common in the study of fitness landscapes, offers tens of thousands of 181 

combinatorial sets that correspond to a hypothetical insect gut with interacting taxa (Meszaros et al., 182 

2019). We have randomly chosen one such set, containing five individual bits, to explore the central 183 

biological concepts of interest in this study: the measurement of higher-order interactions between taxa, 184 

and how these interactions might be influenced by the environmental context.   185 

 186 

The data set that we will use is a five-bit string (a string of five numbers), combinations of presence and 187 

absence (+ or -) of five taxa (A-D). The combinatorial possibility corresponds to 25 = 32 theoretical 188 

combinations of taxa across four different insect environments.  In Table 1, we show the “fitness” (host 189 

infection risk in our study) values for all 32 in silico combinations of taxa across four different insects.  190 

 191 

Calculating the strength of interactions 192 

As mentioned in the introduction, there are myriad methods for resolving higher-order interactions, and 193 

many such methods have been explored in genomic studies (Crona, 2020; Domingo et al., 2018; Guerrero 194 

et al., 2019; Otwinowski et al., 2018; Poelwijk et al., 2016; Sailer & Harms, 2017). A full treatment of the 195 

strengths and weaknesses of every method would require a review that is beyond the scope of our study, 196 

but some existing work has interrogated multiple methods in the study of epistasis (Poelwijk et al., 2016). 197 
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In describing the methods as applied in this study, we have erred on the side of redundancy in our 198 

explanations. We believe that this is appropriate, given that our method of choice – the Walsh Hadamard 199 

Transform – has never been applied to the study of the microbiota and so could benefit from further 200 

explanations. 201 

 202 

The Walsh-Hadamard Transform 203 

The Walsh-Hadamard Transform allows one to quantify the eminence of interaction effects among 204 

potentially interacting objects or parcels. Its main output is a Walsh coefficient, which communicates the 205 

magnitude (how large the interaction is) and sign (positive interaction or negative direction) for a given 206 

interaction. The method implements phenotypic (host infection risk in our study) values in the form of a 207 

vector, before reformatting it into a Hadamard matrix (and is then scaled by a diagonal matrix). The 208 

output is a collection of coefficients which correspond to the strength of interaction between taxa.  209 

For example, we can define the Walsh Hadamard coefficient for the following: 210 

*B*DE 211 

The asterisks ( * ) correspond to taxa that could either be present or absent. This can reencoded in binary 212 

as: 213 

 214 

01011 215 

 216 

This Walsh Hadamard coefficient for this string would correspond to the magnitude of the interaction 217 

between the B, D and E taxa.  Importantly, we would label the interaction between B, D and E as a “third 218 

order” interaction, as the calculation provides the average strength of interaction between three different 219 

taxa: B, D and E.  Understanding the different orders of interaction is the key to gaining a perspective on 220 

“higher-order” interactions.  In a gut containing five taxa that we are interested in understanding the 221 

interaction between, there are five different “orders” of potential interaction.  222 

 223 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2021. ; https://doi.org/10.1101/647156doi: bioRxiv preprint 

https://doi.org/10.1101/647156
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

For example: 224 

0th (zeroth) order interaction would be the insect containing none of the taxa of interest (A-E) present.  225 

First order interactions correspond to the influence of individual taxa on the infection risk. There are five 226 

such first order terms in this theoretical insect microbiota: 227 

A**** 228 

*B*** 229 

**C** 230 

***D* 231 

****E 232 

 233 

Similarly, there are ten second order coefficients, ten third order, five fourth order, and one fifth order 234 

(corresponding to the interaction between all five taxa; ABCD or 11111). These Walsh Hadamard 235 

coefficients can be summed within an order. Consequently, a whole theoretical “insect gut” can be 236 

described in terms of the overall magnitude of its 0 – 5th order interactions. For example, we can examine 237 

the strength of third-order interactions (in sum) and compare them to the strength of fourth order 238 

interactions. 239 

 240 

The Walsh Hadamard coefficient describes the magnitude to which an interaction map is linear, or second 241 

order, third, and so forth. We refer interested readers to two published manuscripts—Poelwijk et al. 242 

(2016) and Weinreich et. al. (2013)—that outline and apply the method in good detail. Also, see the 243 

Supplementary Information for a brief primer.  244 

 245 

The Walsh-Hadamard Transform relies on the existence of combinatorial data sets, where the objects for 246 

which we are interested in understanding the interactions between (taxa in this study) are constructed in 247 

all possible combinations.  Another limitation of the Walsh-Hadamard Transform is that it can only 248 

accommodate two variants per site, that is, two states per actor.  In the case of taxa, we can think of this in 249 
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terms of the presence/absence of a certain taxon, and we can encode this in terms of 0 (absence) or 1 250 

(presence).  For each hypothetical insect with a different presence/absence combination, we have a 251 

corresponding phenotypic measurement (e.g. host infection risk). For example, if we wanted to measure 252 

the higher-order interactions between 4 taxa within an insect with regards to their role in parasite load (as 253 

a model phenotype), we would need 2L = 16 individual measurements (insects in this case), with L 254 

corresponding to the number of different taxa whose effects we were interested in disentangling.  We can 255 

encode this combination of 4 taxa in bit string notation (see Figure 1). 256 

 257 

As described above (Methods section), each site (0 or 1) in the string corresponds to the presence or 258 

absence of a given taxa in a given insect. This notation allows us to keep a mental picture of which taxa 259 

are in which insect for which we have a phenotypic measurement and can be used to construct a vector of 260 

values.  Again, the string 01011 corresponds to an insect with the pattern of absent (0), present (1), absent 261 

(0), present (1), present (1). The full data set includes a vector of phenotypic values for all possible 262 

combinations of taxa—(see Table 1). Note, again, that these can be divided into different classes based on 263 

the “order” of the interaction. This vector of phenotypic values for the 32 will be multiplied by a (32 x 32) 264 

square matrix, which is the product of a diagonal matrix V and a Hadamard matrix H. These matrices are 265 

defined recursively by: 266 

 267 

 268 

n is the number of loci (n = 4 in this hypothetical example). This matrix multiplication gives an output:     269 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2021. ; https://doi.org/10.1101/647156doi: bioRxiv preprint 

https://doi.org/10.1101/647156
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

                                                     270 
 271 

Where V and H are the matrices described in [1] and [2] above, and 𝛾 is the Walsh coefficient, the 272 

measure of the interaction between parcels of information in a string. Using this, we compute 𝛾 values for 273 

every possible interaction between bits in a given string. These methods measure every one of these 274 

interactions (e.g. all ten 2nd order interactions) between taxa.  While our use of a five-bit string structure 275 

(as opposed to an three or fifteen bit string) is arbitrary, it communicates the nature of the higher-276 

interaction problem: Even if we suspect that only five taxa in an insect microbiota are meaningfully 277 

influencing a phenotype of interest (Cagnolo et al., 2011; Ferrari & Vavre, 2011; McLean et al., 2016), 278 

the possible ways that these species are interacting, and the number of measurable coefficients between 279 

them can be meaningful.  280 

Having outlined the method used to quantify higher-order interactions above, it is important to directly 281 

explain the presumptive biological interpretation of the values.  The Walsh Hadamard Transform returns 282 

a Walsh coefficient for each “order” of interaction. This corresponds to the relative strength or importance 283 

of that “order” in the phenotype being measured.  Therefore, the Walsh-Hadamard Transform can help to 284 

interpret the overall presence and eminence of higher-order interactions between taxa in a microbiota.  285 

 286 

The theoretical environment of the insect gut microbiota 287 

Here, we explore how varying nutrient diets influence host susceptibility to parasites in the gut 288 

microbiota. We chose to focus on the nutrient diet content in our study design because the resource 289 

environment is highly relevant to the insect gut microbiota. In insects, nutrition content of the host’s food 290 

can be controlled by the addition of methyl cellulose (an indigestible bulk agent) in the standard food 291 

medium (Boots & Begon, 1994). Resource-levels varying from high-quality diets (containing no methyl 292 

cellulose in the food medium) to lower-quality diets (replacing 10%, 20%, 30%, 40%, 50%, 60%, 70%, 293 

80%, 90% of the food medium with methyl cellulose) have been utilized to empirically study the role of 294 

varying nutrition environments to parasite resistance in lepidopteran pest species (Boots et al., 2011). In 295 
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our theoretical study, we define “nutrient content” as a diet compromising a range of nutrients in a 296 

standard insect diet. A diet of 0 % would correspond to an extremely low nutrition diet, and 100% to a 297 

high-quality diet composed of the standard food amount for insects. Consequently, the nutrient gradient 0 298 

– 100% represents varying degrees of resource availability.  299 

 300 

Results 301 
 302 

Norm of reaction. The norm of reaction demonstrates that two insect guts, corresponding to 00000 (no 303 

taxa) and 11111 (the presence of taxa of every kind) have the largest parasite loads relative to other insect 304 

microbiota combinations. The high parasite load pattern is consistent across the nutrient content that 305 

insects consume (Fig. 2). In contrast, we find that parasite load is drastically reduced for all other insect 306 

microbiota combinations (examples include combinations 001100; 11011; 11101). 307 

 308 

Comparison of the orders of interactions among taxa across microenvironments. Figure 3 demonstrates 309 

the sum of the absolute values of the interaction coefficients. Here, we can observe the raw magnitude 310 

(whether positive or negative in sign) of higher-order interactions as a function of interaction order. Note 311 

how the eminence of the higher-order effects changes as a function of nutrient content. At low nutrient 312 

contents, fourth order effects are the most impactful on the overall parasite load. At approximately 20%, 313 

the fifth order effects (corresponding to the five-way interaction of taxa in the in silico insect gut 314 

represented by 11111). The change in order of eminence also applies to the second order (pairwise) and 315 

third order interactions. At low nutrient contents, the pairwise interactions exert a more meaningful 316 

influence on the parasite load than the three-way interactions. At approximately 20% nutrient content--not 317 

far from that nutrient percentage where a switch between fourth and fifth order effects manifests--the 318 

three-way interactions supplant the pairwise effects in their overall influence on parasite load. Note that 319 

all of these values—the in silico parasite load data, the interaction coefficients for all individual 320 

interactions, and the scaled, absolute value coefficients—can be found in the Supplementary Material. 321 
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 322 

 323 

Figure 1. Schematic representation of higher-order interactions in the insect gut microbiota. We represent 324 
the presence of microbial species in the gut similarly to the presence of a genetic locus. Species 325 
composition of gut microbiota is represented in binary strings. In this configuration, the combination 326 
0011 represents both the presence and absence of two species. For each string combination, we associated 327 
a phenotypic measurement, such as infection risk. We quantify “epistatic” interactions between microbes 328 
in n dimensional space, where n represents the number of species interacting.  329 
 330 
 331 
 332 
 333 
 334 
 335 

 336 
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Figure 2. A Norm of reaction representing the parasite load of in silico insect guts as a function of 337 
nutrient microenvironment. The x-axis represents the nutrient content that insects consume, ranging from 338 
0% (deprived) to 100% (a full, standard nutrient content. Individual data points correspond to insect cuts 339 
containing different combinations of taxa. The y-axis represents the parasite load, a proxy for the 340 
susceptibility of a given insect to infection by parasites. Note that only a subset of the 32 taxa are 341 
represented in this, as many of the in silico insect guts have parasite loads that are very low. The data for 342 
all 32 can be found in the supplementary material.  343 
 344 
 345 
 346 

 347 
Figure 3. The magnitude of higher-order interaction between taxa as a function of environment (nutrient 348 
content). Absolute value, averaged magnitude interactions across interaction orders.  The purpose of this 349 
depiction is to illustrate how the magnitude (not sign) of the interactions change with interaction order. Of 350 
special note is how importance of the order of interactions changes as a function of nutrient content (x-351 
axis). In this scenario, there is a nutrient content threshold (~20%) where the patterns of the interactions 352 
change. In our theoretical insect microbiota system, we define “nutrient content” as a diet compromising a 353 
range of nutrients in a standard insect diet. In insect populations, the nutrient content of the host’s food 354 
can be controlled by the addition of methyl cellulose (an indigestible bulk agent) in the standard food 355 
medium (Boots & Begon, 1994). In our model, a diet of 0 % would correspond to an extremely low 356 
nutrition diet, and 100% to a high-quality diet composed of the standard food amount for insects. 357 
Consequently, the nutrient gradient 0 – 100% represents varying degrees of nutrient content.  358 
 359 
 360 

 361 

 362 

 363 
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Discussion 364 

In this study, we explore the possibility of higher-order interactions between taxa that compose an 365 

insect gut microbiota. Using in silico and mathematical approaches, we demonstrate how higher-order 366 

interactions can be measured in a complex system of interacting microbial taxa. In our theoretical 367 

scenario, higher-order interactions are present and generally increase in relevance with the order of 368 

interaction. Notably, the environment (nutrient content in this case) has a meaningful influence on how 369 

higher-order interactions among taxa manifest. This result highlights an aspect of higher-order 370 

interactions that is so far largely under-appreciated: that the environment and context in which taxa exist 371 

can have a meaningful impact on how taxa interact. Consequently, simply noting that non-linear and 372 

higher order interactions between taxa may exist is no longer sufficient in how the insect microbiota is 373 

discussed: we must consider, and measure, how environments may influence how interactions manifest. 374 

Though our results arise from a theoretical examination of in silico insect microbiota, they are results 375 

nonetheless (Goldstein, 2018) and highlight the potentially vast scope of the higher-order interaction 376 

problem that could define the true dynamics of gut microbiota. Specifically, the outlining of a method that 377 

can be used to deconstruct higher-order interactions in biological systems, across environmental contexts, 378 

represents a potentially useful contribution to the study of the microbiota.  379 

 380 

Though empirical data of the size and scope used in this study are currently challenging to generate, this 381 

intractability may be temporary, and future methods may permit the generation of data similar in structure 382 

to those explored in our theoretical examination. Note that the calculations of higher-order interactions, 383 

and their dynamic nature, can be considered without knowing the specific mechanism that underlies the 384 

nature of these interactions, determining the magnitude of coefficients provides relevant information on 385 

the eminence of a given order in the microbiota. One additional benefit of these results is that they can 386 

identify those settings (combinations between microbiota and a given microenvironment) that should be 387 

the focus on mechanistic study. For example, by identifying the taxa involved in large pairwise 388 
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interactions, one can then examine the mechanistic basis underlying this pairwise interaction through 389 

manipulative experiments.  390 

 391 

Our results are consistent from recent findings, where diverse communities are more effective at resisting 392 

invasions including E. coli invasion of soil communities (Elsas et al., 2012), plant root bacterial 393 

communities (Wei et al., 2015), and experimental invasions in bacterial communities (Lu et al., 2018). 394 

Collectively these studies show that outcome of invasions are determined by available resources in the 395 

microbiota. Our main result showing that higher-order microbial interactions limits the invasion of 396 

parasites across nutrient environments is in agreement with studies that interactions are mediated by 397 

underlying resource dynamics. The nutritional status of the gut microbiome plays an important role in the 398 

health of hosts. Simple gut microbiotas have been engineered to provide hosts with novel functions, such 399 

as the ability to use more complex nutrient sources and to fight against pathogens. Recent work by Sun et 400 

al. 2020 shows that in Caenorhabditis elegans, the colonization of cellulolytic bacteria enables C. elegans 401 

to utilize cellulose, an otherwise indigestible carbon substrate. At the community level, cellulolytic 402 

bacteria can also support resident bacterial species with additional functional roles, such as the protection 403 

by Lactobacillus in the gut against Salmonella infection (Sun et al., n.d.). To test our model, insect gut 404 

microbiota could be engineered to explore how higher-order microbial endosymbiont interactions protect 405 

against pathogen infection by enhancing the nutritional status of the host.  406 

 407 

The mathematical approach used in this study—the Walsh-Hadamard Transform—has been previously 408 

used by theoretical population geneticists to measure non-linear interactions between mutations 409 

(Weinreich et al., 2013). Several empirical data sets in genetics and genomics have demonstrated that the 410 

sign of interaction effects can change readily with the identity of the interacting parcels (Guerrero et al., 411 

2018; Weinreich et al., 2013, 2018a). Given this, we predict that the taxa that compose the gut microbiota 412 

might be similarly defined by higher-order interactions, and that these interactions will change 413 

appreciably with insect microenvironment. The capacity for measuring the effects of higher-order 414 
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interactions on host fitness is an important step towards understanding the effects of microbiota on their 415 

host.  416 

 417 

The impact of higher-order interactions in the gut microbiota on host fitness may result from a range of 418 

possible interactions, ranging from competitive to mutualistic (Fast et al., 2018; Ludington & Ja, 2020; 419 

Newell & Douglas, 2014). To test the full suite of all possible combinatorial interactions and their 420 

associated effects on host traits, it is important to experimentally manipulate microbial communities. For 421 

example, the fruit fly (Drosophila melanogaster) is an attractive model system for designing 422 

combinatorial studies due to relative ease of rearing gnotobiotic flies and modularity of its microbiome 423 

(Ludington & Ja, 2020). For example, combinatorial designs of microbial communities in D. 424 

melanogaster revealed that emerging higher-order effects composed of 3, 4, and 5-way interactions 425 

impacted aspects of host fitness such as life span and fecundity (Gould et al., 2018). While the relative 426 

simplicity and tractability of fly microbiomes facilitates the study of host-microbe interactions, 427 

underlying mechanisms can provide insights for more complex mammalian gut microbiomes. In D. 428 

melanogaster, stable gut colonizers favor specific regions of the foregut, which like mammals, suggest 429 

specific niches for gut colonizers (Pais et al., 2018). Therefore, strategies that invertebrates and their 430 

microbes employ to form stable associations might be informative for mammalian gut microbiomes 431 

(Ludington & Ja, 2020). 432 

Conclusion 433 

Recent theoretical work suggests that higher-order modeling approaches are able to capture volumes of 434 

rich data arising from complex ecological interactions (Battiston et al., 2020). We have adapted 435 

approaches from evolutionary genetics to the study of host-associated microbiota. In the future, applying 436 

these methods to the analysis of experimental data will yield important insight into microbiome dynamics, 437 

towards a richer understanding of just how peculiar the microbiota is, and the many meaningful 438 

interactions that it embodies.   439 
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