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 45 
Abstract 46 

The repeated evolution of herbicide resistance has been cited as an example of genetic 47 
parallelism, wherein separate species or genetic lineages utilize the same genetic solution in 48 
response to selection. However, most studies that investigate the genetic basis of herbicide 49 
resistance examine the potential for changes in the protein targeted by the herbicide rather than 50 
considering genome-wide changes. We used a population genomics screen and targeted 51 
exome re-sequencing to uncover the potential genetic basis of glyphosate resistance in the 52 
common morning glory, Ipomoea purpurea, and to determine if genetic parallelism underlies the 53 
repeated evolution of resistance across replicate resistant populations. We found no evidence 54 
for changes in 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS), glyphosate’s target 55 
protein, that were associated with resistance, and instead identified five genomic regions that 56 
show evidence of selection. Within these regions, genes involved in herbicide detoxification--57 
cytochrome P450s, ABC transporters, and glycosyltransferases--are enriched and exhibit signs 58 
of selective sweeps. One region under selection shows parallel changes across all assayed 59 
resistant populations whereas other regions exhibit signs of divergence. Thus, while it appears 60 
likely that the physiological mechanism of resistance in this species is likely the same among 61 
resistant populations, we find patterns of both similar and divergent selection across separate 62 
resistant populations at particular loci.  63 
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Introduction 89 
The evolution of pesticide resistance is a key example of rapid evolutionary change in 90 

response to strong, human-mediated selection [1]. Due to the widespread use of insecticides 91 
and herbicides in agriculture, multiple resistant pest populations often exist across the 92 
landscape [2–4]. These repeated examples of resistance allow for questions about the level at 93 
which parallel adaptation occurs [5–7]—e.g., are parallel resistant phenotypes in separate 94 
lineages due to parallel changes at the developmental, physiological, or genetic level? Herbicide 95 
resistant weeds in particular provide remarkable examples of evolutionary parallelism, since the 96 
same nucleotide change can lead to resistance among separate lineages and even separate 97 
species [1,8,9]. Further, these examples of ‘extreme parallelism’ are often broadly considered 98 
as evidence of genomic constraint [7,10], which is the idea that parallel phenotypic evolution 99 
occurs because there are a finite number of genetic solutions to the same, often novel, 100 
environmental pressure.  101 

 102 
Among herbicide resistant plants, the data that support the constraint hypothesis stems 103 

from sequence analysis of genes that are a priori known to produce the protein targeted by the 104 
herbicide (i.e., cases of target site resistance, TSR [9]) rather than genome-wide sequence 105 
surveys such as population genomics scans or genetic mapping studies. As a result, we 106 
understand very little about the potential for parallel genetic responses that may occur across 107 
the genome beyond the potential for changes within the (most often) single genes responsible 108 
for TSR. This is problematic as many weed species exhibit non-target-site resistance (NTSR) 109 
[11], which is caused by any physiological mechanism that is not due to TSR. NTSR can include 110 
a range of mechanisms, from herbicide detoxification to transport differences to vacuole 111 
sequestration [11]. Intriguingly, some weed species show multiple NTSR mechanisms within a 112 
single lineage [2,12,13], and even evidence of both TSR and NTSR [2,14]. Because there are 113 
relatively few examples underscoring the genetic basis of NTSR in herbicide resistant plants, it 114 
is currently unclear how ubiquitously cases of herbicide resistance support the idea of extreme 115 
genetic parallelism. 116 

 117 
Previous research on the genetic basis of glyphosate resistance in crop weeds has 118 

focused largely on the potential for changes at the target site, the enzyme 5-119 
enolpyruvylshikimate-3-phosphate synthase (EPSPS), which is a central component of the 120 
shikimate acid pathway in plants [15]. Conformational changes to the enzyme, due to mutations 121 
in the EPSPS locus, lead to target site resistance (TSR). There are also nontarget site 122 
resistance mechanisms responsible for glyphosate resistance in other weeds [11]; however, 123 
unlike the cases of resistance controlled by TSR, the genomic basis of NTSR to glyphosate has 124 
been characterized in very few species [16]. As a result, it is unknown if the same genetic basis 125 
underlies NTSR mechanisms across separate resistant populations. Thus, examining the 126 
genomic basis of resistance among replicated, resistant weed populations would provide an 127 
ideal study system to interrogate the hypothesis that genomic constraint underlies the parallel, 128 
repeated evolution of the resistance phenotype.   129 

 130 
Ipomoea purpurea is a common agricultural weed that shows both within- and among-131 

population variation in the level of resistance to glyphosate, the active ingredient in the widely 132 
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used herbicide RoundUp: while some populations of this species across its range in the 133 
southeastern and Midwest United States exhibit high survival following herbicide application 134 
(high resistance), other populations exhibit low survival (high susceptibility) [4]. The pattern of 135 
resistance across populations suggests that resistance has evolved repeatedly, with highly 136 
susceptible populations interdigitated among resistant populations [4], and no evidence of 137 
isolation-by-distance across populations, as would be expected in the simple scenario wherein 138 
resistance evolved once and moved across the landscape via gene flow [4]. We have recently 139 
shown that neutral genetic diversity across these populations is negatively related to the level of 140 
resistance [17] and that additive genetic variation underlying resistance to glyphosate in I. 141 
purpurea responds to selection via the herbicide [18,19]. Additionally, there is evidence of a 142 
fitness cost associated with glyphosate resistance in the form of lower seed germination and 143 
smaller plant size [20]. Intriguingly, the resistant populations appear to vary in the expression of 144 
this cost -- some highly resistant populations exhibit low germination and others exhibit smaller 145 
size, on average, than susceptible populations [20]. These data suggest that perhaps the 146 
genetic basis of resistance, or the physiological mechanism underlying resistance, differs 147 
among resistant populations. However, the genetic basis of resistance across any population of 148 
this species is currently unknown. 149 

 150 
Our overarching goal is to determine if the same genetic basis is responsible for 151 

glyphosate resistance across separate populations of I. purpurea sampled from agricultural 152 
fields with a history of glyphosate exposure. We first evaluate the potential for sequence 153 
changes in the EPSPS locus and find there are no changes that correlate with resistance, 154 
providing evidence that target site resistance is not responsible for the resistance phenotype 155 
across populations. We then perform a population genomics screen to identify loci that exhibit 156 
signs of selection--thus putatively responsible for the resistance phenotype--and to determine if 157 
patterns of relatedness between resistant populations suggest a single or multiple origins of 158 
resistance. We follow up on this screen with exome resequencing of candidate resistance loci, 159 
and determine if populations share a similar haplotype structure, which would suggest that a 160 
similar genetic basis was responsible for resistance across the landscape. We find regions of 161 
the genome that show evidence of selection across resistant populations to contain genes 162 
responsible for herbicide detoxification. Additionally, patterns of haplotype sharing among 163 
populations suggests both parallel and nonparallel genomic responses underlie resistance 164 
among populations. Overall, our results suggest that evolutionary constraints can underlie 165 
herbicide adaptation, but that patterns of selection across the genome indicate the potential for 166 
both parallel and divergent responses.  167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 
 175 
 176 
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Results  177 
 178 
No evidence for changes in glyphosate target enzyme (EPSPS) 179 

 We sequenced two copies of EPSPS (copy A and B) from geographically separate 180 
populations of I. purpurea to determine if glyphosate resistance is due to a target-site resistance 181 
mechanism in this species as identified in other resistant species [21]. Individuals used for 182 
sequencing were sampled as seed from six highly resistant (R) (N=20, average survival at 1.7kg 183 
a.i./ha: 84%) and five susceptible (S) populations (N=25, average survival at 1.7kg a.i./ha: 26%; 184 
S1 Table) [4]. We found 14 (copy A) and 22 (copy B) variable sites across all populations but no 185 
copy exhibited SNPs in the region previously shown to cause resistance in other weed species 186 
(S1 Fig). Additionally, resistant and susceptible populations did not significantly differ in allele 187 
frequencies for any of these SNPs (copy A: chi-squared test, χ2 range 0.02-0.33, min p-value =  188 
0.57; copy B: chi-squared test, χ2 range 0.00-0.18, min p-value = 0.67; S1 Table) nor were any 189 
significantly correlated with resistance level (copy A: Pearson’s correlation, coefficient range 190 
0.25-0.69, min p-value = 0.12; copy B: Pearson’s correlation, coefficient range 0.15-0.72, min p-191 
value = 0.17; S1 Table).  192 
 193 
Population structure suggests independent evolution of resistance  194 
 195 

We next examined measures of genetic relatedness to determine if separate resistant 196 
populations showed a pattern of high similarity, which would suggest that resistance alleles 197 
were shared between populations due to gene flow or from a common lineage. To do so, we 198 
used a modified RAD-seq approach (nextRAD) and genotyped 10 individuals sampled as seed 199 
from each of four resistant populations and four susceptible populations (average survival at 200 
1.7kg a.i./ha: 89% and 16%, respectively [4]; Fig 1A; Table 1). This resulted in 8,210 high-201 
quality, variable SNP loci from 80 individuals. Population genetics parameters of the RADSeq 202 
SNPs, including expected and observed heterozygosity across populations are presented in the 203 
S2 Table. A neighbor joining tree calculated from pairwise relatedness showed that resistant 204 
populations did not cluster into a single group and are instead interspersed with the susceptible 205 
populations (S2 Fig). Additionally, a principal coordinates analysis (PCoA) using allele 206 
frequencies (Fig 1B) did not separate the populations into distinct resistant and susceptible 207 
groups, and a genetic structure analyses showed that resistant and susceptible populations did 208 
not segregate into two separate genetic clusters as would be expected if all resistant 209 
populations derived from the same initial population (S3 Fig).  210 
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 211 
Fig. 1. Population locations and relationships among I. purpurea samples. (A) Populations were 212 
sampled from locations in the southeast and ranged from 10% to 100% survival following glyphosate 213 
application (proportion of individuals that survived glyphosate treatment shown for each population, 214 
red=survived, blue=died). Individuals from resistant populations (>50% survival after treatment; red 215 
colored symbols) do not group together in a PCoA analysis (B) when using all of the RAD-seq SNP loci. 216 
Allele frequencies of outlier loci are presented in (C). Populations indicated in blue are highly susceptible 217 
whereas populations in red are resistant to glyphosate. 218 
 219 
 220 
Genome-wide scan indicates loci associated with resistance 221 

We next performed a genome-wide outlier screen to identify loci exhibiting signs of 222 
selection and thus potentially involved in glyphosate resistance in I. purpurea. We used two 223 
programs (BayeScan and bayenv2) to do so. BayeScan identified 42 loci that were outliers 224 
while bayenv2 identified 83 loci whose allele frequencies were correlated with the level of 225 
resistance (Dataset S1). Using GO assignments (Dataset S1), we found that the top three 226 
biological processes for the resistance outlier loci were proteolysis, protein phosphorylation, and 227 
regulation of transcription. Of special note, we identified a glycosyltransferase among the outlier 228 
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loci, which are genes shown to be involved in herbicide detoxification in other species 229 
[12,22,23].  230 

 231 
The identified resistance outliers showed twice the level of differentiation among the 232 

resistant populations (mean pairwise FSTs of outliers = 0.327, 95% CI = 0.293-0.362) compared 233 
to the level of differentiation among susceptible populations (mean pairwise FSTs of outliers = 234 
0.180, 95% CI = 0.146-0.216). This contrasted with genome-wide patterns of FST (i.e. pairwise 235 
FST across all loci: resistant populations FST = 0.198 (0.192-0.203), susceptible populations FST 236 
= 0.133 (0.128-0.137)). Further, the pattern was the same for outliers regardless of whether 237 
they were identified by BayeScan or bayenv2. This increased differentiation of outlier loci 238 
among resistant populations could be a result of drift, or could indicate that a different genetic 239 
basis underlies resistance across populations. Two resistant populations from central 240 
Tennessee (SPC and WG) exhibited significant overlap in allele frequencies of outlier loci (Fig 241 
1C), suggesting a similar response to selection between these two populations. On the other 242 
hand, the allele frequencies of outliers from BI, another highly resistant population from TN, 243 
clustered between the susceptible and other resistant populations whereas individuals from DW, 244 
a resistant population from North Carolina, exhibited some overlap with BI (Fig 1C).  245 

 246 
To insure that our resistance outliers from the RADseq analysis were associated with 247 

resistance rather than an environment that might co-vary with the level of resistance, we 248 
examined three other likely environmental variables in a separate bayenv2 analysis: minimum 249 
temperature of the coldest month, precipitation of the driest month, and elevation. We chose 250 
these specific climatic variables as other herbicide resistance studies have identified the 251 
influence of temperature and precipitation on the expression of resistance within a population 252 
[24–27]. While this tactic identified loci that were associated with environmental variables, very 253 
few of these loci overlapped with our identified resistance loci, indicating that the loci that are 254 
associated with resistance are not likely the result of selection by other environmental influences 255 
(S4 Fig).  256 

 257 
Exome re-sequencing identifies genomic regions associated with resistance 258 

We next performed target-capture re-sequencing of the genes located near (or 259 
containing) outlier SNPs identified by the population genomics screen. Using both a de novo 260 
genome and transcriptome assembly [28] (S3 Table), we designed probes to sequence the 261 
following: exons from predicted genes near outlier SNPs (171 genes), genes from a match of 262 
the outlier SNPs to the transcriptome (30 genes), the EPSPS genes (2), previously reported 263 
differentially expressed genes associated with resistance [28] (19 genes), and 214 randomly 264 
chosen transcriptome sequences to serve as a control (Dataset S1). We made target-enriched 265 
libraries for 5 individuals in each of the 8 populations (Fig 1A), which were then sequenced on 266 
an Illumina Hi-Seq 2000. Following sequencing, filtering, and contig assembly (see Methods) we 267 
ran outlier tests to identify SNPs exhibiting signs of selection. Of this set, BayeScan identified 268 
104 SNP outliers while bayenv2 identified 231 SNP outliers, 98 of which were shared between 269 
programs (Dataset S1). The majority of outliers were from the probes designed from the 270 
population genomics RAD-seq outliers (52%), followed by the non-probe contigs (i.e. off-target 271 
sequences; 37%), and a few from the control probes (11%). The majority of the outliers from 272 
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control probes (17/20) fell within genomic regions that we found to be enriched with outliers (see 273 
below).  274 

 275 
 276 
 277 
 278 
 279 
 280 
 281 
 282 
 283 
 284 
 285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 

 299 
Fig 2. Regions of the I. purpurea genome enriched with outlier loci. (A) Aligning the denovo contigs 300 
to the I. nil genome shows 5 regions enriched for outliers (regions in grey; symbol colors denote 301 
chromosomes; symbol shape denotes significance). The majority of the outliers (71%) fall within the five 302 
regions. Significant outliers, noted with triangles, exhibited the most extreme 1% Bayes Factors and the 303 
5% most extreme Spearman correlation coefficients (left y-axis). The average GST (right y-axis) was 304 
calculated per enriched region and is indicated by a thin horizontal line for each outlier enriched region 305 
(arrow indicates average GST value over all SNPs). The position of each chromosome’s centromere is 306 
indicated by a thick black vertical line on the x-axis. (B) The five outlier-containing regions (chr1-chr15) 307 
had multiple copies of several genes potentially involved in non-target site resistance (numbers indicate 308 
the number of genes that fall into each category, P450 = cytochrome P450, GST = glutathione s-309 
transferase, Glycosyltransferase = glycosyltransferase, ABC transporter = ABC transporter). (C) 310 
Resampling the I. nil genome 1000 times to generate an empirical distribution of gene copy number of 311 
each type of gene indicates that the outlier enriched regions contain more of the potential herbicide 312 
detoxification genes of interest than expected due to chance. Thin horizontal line indicates overall number 313 
of each type of gene found within the outlier-enriched regions, which was greater than expected from the 314 
empirical distribution for the cytochrome P450, glycosyltransferase, and ABC transporter genes (P < 315 
0.001).  316 
 317 

 318 
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 319 
 320 

We aligned the re-sequenced contigs onto the assembled genome of a close relative, I. 321 
nil [29], and identified five genomic locations that were enriched for outliers (Fig. 2A), with 149 322 
(71%) of the outlier SNPs falling within these regions. The five regions ranged from 276 KB to 4 323 
MB in size and together contained 945 predicted genes (based on I. nil gene annotations; 324 
Dataset S1). Some of the five regions contained outliers identified by both bayenv2 and 325 
BayeScan while others regions had outliers primarily identified by bayenv2 (% of outlier SNPs 326 
identified by both programs, chromosome 1: 6%; chromosome 6: 72%; chromosome 10: 100%; 327 
chromosome 13: 60%; chromosome 15: 36%). The outlier enriched regions were not located 328 
near or within the centromere for any chromosome (centromere indicated by thick vertical line 329 
on the x-axis, Fig 2A).  330 

 331 
We identified multiple genes within the outlier enriched regions from four gene families of 332 

interest—the cytochrome P450s, ABC transporters, glycosyltransferases, and glutathione S-333 
transferases (GST)—which are gene families hypothesized to be involved in non-target site 334 
resistance via herbicide detoxification (Fig 2B). Resampling 1000 times identified a significant 335 
over-representation of glycosyltransferase (P = 0.01), ABC transporter (P = 0.05), and 336 
cytochrome P450 (P = 0.01) genes within the five enriched regions (Fig 2C), suggesting that 337 
these loci are potentially responsible for resistance in I. purpurea and were not identified solely 338 
due to their high copy number in plant genomes. In comparison, outlier SNPs that did not fall 339 
into the five outlier enriched regions (29% of SNPs) were less likely to be near genes from these 340 
four families (S5A-D Fig).  341 

 342 
As expected based on the Bayescan results, the regions of each of the five 343 

chromosomes enriched with outliers exhibited high genetic differentiation between resistant and 344 
susceptible populations (average across genome is indicated by the arrow on Fig 2A; measured 345 
as GST, which is FST generalized to multiple alleles). Although all regions showed an average 346 
GST > 0.20, the enriched region on chromosome 10, spanning ~0.28MB, displayed the highest 347 
GST (chr 10 enriched region avg�SD: 0.64�0.12, R vs S populations). Within this region, we 348 
found higher nucleotide diversity among susceptible compared to resistant individuals (�S/�R = 349 
2.04; a ratio more extreme than that found across 95% of the genome-wide SNP windows, Fig 350 
3A; S6 Fig). In comparison, across other outlier enriched regions, nucleotide diversity was 351 
higher among resistant compared to susceptible individuals, but the difference between 352 
resistant and susceptible individuals exceeded the background genome-wide ratio only within 353 
the enriched region on chromosome 1 (Fig 3A).  354 

 355 
The outlier enriched region on chromosome 10 likewise exhibited evidence of selection 356 

based on estimates of both Tajima’s D (Fig 2B) and Fay and Wu’s H (Fig 2C). Tajima’s D, which 357 
is sensitive to a lack of low-frequency variants [30], exhibited a negative value among resistant 358 
individuals, although the most extreme values within this region ranged from -0.64 to -0.81 and 359 
did not exceed the 95% most extreme genome-wide values (Fig 2B). In comparison, Fay and 360 
Wu’s H, which is sensitive to excess high-frequency derived variants compared to neutral 361 
expectations [31], was significantly more negative than the genome-wide value among resistant 362 
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individuals (-8.55; Fig 2C). Interestingly, values of Tajima’s D and Fay and Wu’s H were typically 363 
positive and either greater than 2 (2.37, avg Tajima’s D in region) or approaching 2 (1.59, avg 364 
Fu and Way’s H in region) among susceptible individuals, suggesting a pattern of balancing 365 
selection within susceptible populations. The difference in both Tajima’s D and Fu and Way’s H 366 
between resistant and susceptible individuals within two 25 SNP windows (positions 381983679 367 

- 382012084) were more extreme than that 368 
found across 99% of the genome-wide SNP 369 
windows, potentially narrowing in to a ~28 370 
kb region of strong selection within the 371 
outlier enriched region of chromosome 10. 372 
Finally, the enriched region on chromosome 373 
13 exhibited negative values of Fu and 374 
Way’s H among resistant individuals (-1.58, 375 
avg Fu and Way’s H within region), with the 376 
most extreme negative values ranging from 377 
-2.15 to -3.68 over a contiguous region of 378 

1.49MB. 379 
 380 
 381 

 382 
Given signs of positive selection on the outlier enriched regions of chromosome 10 and 383 

(to a lesser extent) chromosome 13, we examined the genes found within these two regions in 384 
greater detail. Within the outlier-enriched region of chromosome 10, we identified 7 385 
glycosyltransferase and 9 cytochrome P450 genes, with the 7 glycosyltransferase genes found 386 
tandemly repeated within a span of 42 kb (Fig 4A). Seventeen non-synonymous SNPs were 387 
present across four of the glycosyltransferase genes (asterisks in Fig 4A). Within an 811 bp 388 
segment of the conserved domain one of the glycosyltransferases, we identified a cluster of 389 
seven non-synonymous SNPs with very low π values in resistant compared to susceptible 390 
individuals (conserved domain average πR = 0.18; πS = 0.43). None of the non-synonymous 391 
SNPs within this region were fixed within the resistant populations, but were very close to 392 

Fig 3. Resistant individuals exhibit evidence 
of selective sweeps in outlier-enriched 
regions of genome. (A) Nucleotide diversity 
(shown here as log10 piS/piR) is decreased in 
resistant individuals within the chr10 region 
compared to susceptible individuals, and (B) 
values of Tajima’s D and (C) Fay and Wu’s H 
across outlier enriched regions both suggest 
marks of positive selection in the chromosome 
10 outlier enriched region, with some indication 
for positive selection in the outlier enriched 
region of chromosome 13. Dashed lines show 
the 95% most extreme genome-wide values for 
each metric. 
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fixation (allele 1, resistant freq = 0.1, susceptible freq = 0.7; allele 2, resistant freq = 0.9, 393 
susceptible freq = 0.3). Within the outlier-enriched region of chromosome 13, we identified a 394 
cytochrome P450 gene with 6 non-synonymous SNPs (shown with asterisks in Fig 4B), and a 395 
shared haplotype among three of the four resistant populations (Fig 4B).   396 
 397 

 398 

 399 
 400 
Fig 4. Signs of selection across conserved haplotypes of herbicide detoxification genes. 401 
Haplotypes are shown for each individual for the (A) seven duplicated glycosyltransferase genes on 402 
chromosome 10 (exons above in grey), and (B) an ABC transporter gene on chromosome 13. Blue and 403 
yellow indicate homozygotes, red indicates heterozygotes, white in missing data; stars indicate a non-404 
synonymous change at that location. Black bar above gene models indicates 1kb. 405 
 406 

We likewise examined patterns of linkage disequilibrium across the outlier enriched 407 
regions of each of the five chromosomes, since linkage between SNPs would provide another 408 
line of evidence for a potential selective sweep indicating a response to selection. Additionally, 409 
we calculated linkage disequilibrium (LD) along the chromosome (for chrs 1, 6, 10, 13 and 15) 410 
to determine an expected background amount of linkage between SNPs and thus an idea of the 411 
efficacy of our RADseq followed by exome-resequencing approach for identifying the genetic 412 
basis of resistance among populations. Across each chromosome, we found the average r2 413 
values (the correlation coefficient between each SNP pair as our estimate of LD) to be low, 414 
ranging from 0.032-0.036 (S4 Table). Due to the granular nature of the data, we did not 415 
estimate linkage decay, but did examine the potential for linkage within 10 kb windows on 416 
average. These values were greater than the background LD, but still less than 0.1 (range 417 
0.038-0.078, S4 Table). In comparison to values of linkage across the entire chromosome, we 418 
found evidence of stronger linkage among SNPs within the outlier-enriched regions of 419 
chromosomes 1, 6, 10, 13 and 15 (range of average r2, 0.12-0.23). Notably, the chromosome 10 420 
outlier-enriched region exhibited the highest r2 value (0.234, S5 Table). Because the outlier-421 
enriched regions varied in length, thus complicating the comparison of LD between them, we 422 
qualitatively examined the length around each outlier enriched region with elevated LD, or r2 423 
values that were > 0.25. We found that each outlier enriched region exhibited r2 > 0.25 across 424 
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relatively large sequence lengths, which ranged from 84 kb to 3 MB across chromosomes (S5 425 
Table).  426 
 427 
Haplotype structure  428 

A goal of the present work was to determine if separate populations have responded in 429 
parallel at the genomic level to selection via herbicide application. We performed a visual 430 
examination of the haplotype structure among outlier-enriched regions in more depth with the 431 
idea that a similar haplotype among separate resistant populations would point to a shared 432 
genomic basis underlying at least some of the loci indicated in herbicide resistance and another 433 
indication of selection on those loci. We used hierarchical clustering for this examination of 434 
haplotype structure. Using each sequenced contig from the outlier-enriched regions (Chrs 1, 6, 435 
10, 13, and 15), we assigned individuals to one of two groups based on genetic distance—either 436 
the group that contained the majority of susceptible individuals from highly susceptible 437 
populations (hereafter the ‘S’ group) or the other group (hereafter the ‘R’ group). We found a 438 
high proportion of resistant individuals (>75%) across all four resistant populations (SPC, WG, 439 
DW, and BI) in the chromosome 10 outlier enriched region (Fig 5A), meaning that the majority of 440 
resistant individuals from these populations shared high levels of genetic similarity in this region. 441 
Likewise, a high proportion of resistant individuals exhibited high genetic similarity in the outlier 442 
enriched region on chromosome 6, but only in three of the four resistant populations (SPC, WG, 443 
and DW). In contrast, the enriched regions on chromosomes 1, 12 and 15 exhibited high 444 
proportions of resistant individuals for SPC and WG, but not BI and DW (Fig 5A).  445 

 446 
Additionally, we examined patterns of pairwise genetic differentiation among resistant 447 

and susceptible populations of the outlier-enriched regions of each chromosome, with the 448 
general expectation that a higher pairwise FST between resistant populations, compared to 449 
susceptible populations, might indicate lack of gene flow and/or greater genetic differences 450 
between resistant populations within these regions. We calculated pairwise FST estimates [32] 451 
among the resistant populations and the susceptible populations separately for each SNP, and 452 
then compared the average pairwise FST of the resistant populations versus the susceptible 453 
populations within the 5 outlier enriched regions. Across chromosomes 1, 6, 13, and 15, we 454 
found higher pairwise FST among resistant populations compared to susceptible populations, 455 
indicating that resistant populations were more differentiated in these regions. On chromosome 456 
10, in comparison, we found no evidence of genetic differentiation among resistant populations, 457 
suggesting either strong selection on young standing genetic variation within this region among 458 
populations, or the potential that gene flow has recently occurred between them followed by 459 
subsequent recombination (Fig 5B). 460 
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 461 
Fig 5. Genetic similarity of haplotypes among resistant populations. (A) The proportion of each 462 
population that exhibited the resistant haplotype are shown for each population. Pairwise genetic distance 463 
between each individual was calculated using all SNPs from each I. purpurea contig from the outlier-464 
enriched regions (length of contig used shown for each chromosome), and multidimensional scaling was 465 
used to reduce the resultant genetic distance matrix to two dimensions. Populations were then 466 
hierarchically clustered into two groups, with the group containing less than half of the individuals from the 467 
susceptible populations considered the ‘resistant’ group. (B) The average pairwise genetic differentiation 468 
for resistant (red) and susceptible (blue) populations. Pairwise FST values were calculated separately for 469 
resistant and susceptible populations using contigs from each outlier enriched region of each 470 
chromosome.  471 
 472 
Formal test of convergence 473 

Given multiple lines of evidence suggesting the region on chromosome 10 has 474 
responded in parallel across the examined resistant populations (i.e., an outlier enriched region 475 
with high differentiation between resistant and susceptible populations, a similar haplotype 476 
among resistant populations, marks of selection based on nucleotide diversity, Tajima’s D, and 477 
Fu and Way’s H, and evidence for linkage between markers within the enriched region), we next 478 
performed tests to examine the nature of convergence within this region. More specifically, we 479 
sought to determine the most likely model for genomic convergence by determining whether 480 
potential selected alleles within the region on chromosome 10 exhibited multiple independent 481 
origins, were spread among populations via gene flow, or were shared among populations due 482 
to ancestral standing variation. To do so, we applied the inference method of Lee and Coop 483 
(2017), which builds on coalescent theory to show how shared hitchhiking events influence the 484 
covariance structure of allele frequencies between populations at loci near the selected site. 485 
Although our screens indicated multiple regions of the genome under selection, in this work we 486 
focus formal tests of convergence only on the enriched region of chromosome 10 given the 487 
evidence for a high proportion of individuals exhibiting the same haplotype. This pattern is 488 
suggestive of a selective sweep that was shared among resistant populations, and one that was 489 
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due to selection on young standing, shared genetic variation, or due to migration between 490 
populations.  491 

 492 
We applied the inference method using 2248 SNPs from the ~276 KB region of the 493 

contig encompassing the outlier enriched regions on chromosome 10 to identify the locus under 494 
selection and to distinguish the most likely model of adaptation (independent, de novo 495 
mutations, migration, or selection on standing ancestral variation). From this analysis we find 496 
the migration and standing variation models to show similarly high log-likelihood ratios (Fig 6A). 497 
All three models peak at position 381,993,922 (based on the I. nil genome), indicating the most 498 
likely selected site. Notably, this position is within the two SNP windows that exhibited signs of 499 
selection from estimates of Tajima’s D and Fu and Way’s H (Fig 3). Further examination of the 500 
standing variant model at this position shows the parameters that result in the highest likelihood 501 
are very low standing allele frequency (g = 10^-6) and very high selection (s = 1), with the 502 
amount of time that the beneficial allele has been standing in the populations prior to selection, 503 
or t, estimated to be 5 generations (Fig 6B, C). This standing time is much smaller than the 504 
population split times (289K generations ago), so we assume migration in the model and the 505 
five generations are interpreted as the time between gene flow between populations and the 506 
onset of selection. We ran the model with a denser grid of t (0-10 generations) and found that 507 
the likelihood value was highest when t was equal to 0, indicating that the beneficial allele was 508 
immediately advantageous after introgressing and began sweeping rapidly within populations. In 509 
comparison, for the migration model, the parameters that result in the highest likelihood are a 510 
migration rate of 1 and high selection (s = 0.65). Overall, our analyses of this region strongly 511 
supports a model where gene flow introduced the beneficial allele(s) into populations, which 512 
then began sweeping quickly and immediately. A rapid sweep like that proposed here would not 513 
allow for recombination to break down the haplotype introgressing along with the selected allele. 514 
This fits our expectations from the haplotype patterns above since there is high similarity 515 
between resistant populations over long stretches of this region. 516 
 517 
 518 

 519 
Fig 6. Test of convergence. (A) Likelihood ratio of the following models relative to a neutral model with 520 
no selection: standing variant model (blue), migration (green) or independent mutation (red). (B) 521 
Likelihood surface for minimum frequency of the standing variant and the strength of selection holding the 522 
age of the standing variant constant; the point indicates the highest likelihood. (C) Likelihood surface for 523 
the minimum age of standing variant maximizing over the other parameters. 524 
 525 
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Discussion 526 
 527 

In this work, we examined the evolution of glyphosate resistance across geographically 528 
separate populations of the common morning glory, Ipomoea purpurea. We set out to identify 529 
candidate loci involved in glyphosate resistance in this species and to determine if the pattern of 530 
selection on putative resistance loci was similar across highly resistant populations, which would 531 
indicate that populations responded in parallel to herbicide selection. Our results provide 532 
evidence that adaptation to glyphosate in I. purpurea is not due to a single gene, target-site 533 
resistance mechanism (TSR) as there are no nucleotide sequence differences in the target 534 
locus, EPSPS, that correlate with resistance. We found instead that at least five regions of the 535 
genome show evidence of selection and that these regions are significantly enriched for genes 536 
involved in herbicide detoxification. Further, we found evidence for a shared pattern of strong 537 
selection on one region of the genome among the four highly resistant populations 538 
(chromosome 10) whereas other regions under selection exhibited divergence between the 539 
resistant populations. These findings suggest that resistance in this species is due to a non-540 
target genetic mechanism (NTSR), components of which exhibit signs of both parallel and non-541 
parallel responses to selection among populations.  542 
 543 
Genetic basis of glyphosate resistance in I. purpurea 544 
 545 

Ipomoea purpurea is a noxious crop weed found in disturbed agricultural sites in the 546 
Southeastern and Midwest US. Our previous work examining the level of resistance among 47 547 
populations showed that resistance appeared on the landscape in a mosaic fashion, with highly 548 
resistant populations interdigitated among highly susceptible populations. This phenotypic 549 
pattern suggested resistance was independently evolving across populations [4]. Coalescent 550 
modelling using SSR marker variation supported a scenario of migration among populations 551 
prior to onset of glyphosate use (before 1974, when glyphosate was released commercially), 552 
rather than a scenario of migration after the introduction of the herbicide [4]. We thus 553 
hypothesized that resistance independently evolved among populations, and was most likely 554 
due to selection on standing and shared genetic variation [4]. However, we also found genetic 555 
differentiation among populations to be low (FST = 0.127; [4]), and a more recent fine-scale 556 
analyses of their connectivity showed that although the majority of individuals were sired from 557 
within populations, three of the resistant populations included in this work (WG, SPC, and BI) 558 
shared recent migrants [33]. These findings support the idea that migration between populations 559 
could allow for the sharing of resistance alleles. Both of these scenarios--migration prior to the 560 
widespread use of the herbicide, or very recent migration--suggest that resistance is likely to be 561 
controlled by the same genetic basis across populations. Intriguingly however, we also 562 
previously showed that fitness costs were different among resistant populations, suggesting that 563 
the genetic basis of resistance could potentially be different [20]. Thus, we used a sequencing 564 
approach across highly resistant but broadly separated populations to investigate the genetic 565 
basis of resistance and to determine if patterns of selection and haplotype sharing indicated that 566 
the same genomic features were responding to herbicide selection among populations. 567 
 568 
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We found no evidence supporting target site resistance in I. purpurea--there were no 569 
variants within the EPSPS locus associated with resistance, and we found no evidence for 570 
selection on copies of EPSPS from the exome resequencing data. Using both RNAseq and 571 
rtPCR, we previously showed that transcripts of EPSPS are not overexpressed in I. purpurea 572 
[28], providing evidence that resistance is not related to EPSPS overexpression, as has been 573 
shown in a variety of resistant species [34–38].  574 
 575 
 Given the lack of structural or expression-related changes to the target-site locus, 576 
EPSPS, we combined a population genomics screen and exome resequencing to identify 577 
potential candidate loci underlying resistance. This strategy identified five candidate regions of 578 
the genome that were enriched with loci exhibiting signs of selection. The pattern of genomic 579 
differentiation within these five regions was greater than that of genome-wide, background 580 
differentiation--suggesting a response to herbicide selection. None of these regions were 581 
physically located near the centromere, which has been shown in other species to be areas of 582 
reduced recombination and thus high differentiation [39–42]. We identified the strongest 583 
evidence for positive selection associated with resistance within the outlier-enriched region on 584 
chromosome 10. In this region, we found reduced nucleotide diversity and a significant and 585 
negative Fu and Way’s H, which is sensitive to a high frequency of derived variants. These 586 
patterns--high differentiation, reduced diversity, as well as the same haplotype among 587 
individuals from resistant populations--indicates that a hard selective sweep of this region 588 
occurred across the four resistant populations. It also strongly suggests that this region contains 589 
at least some of the loci underlying glyphosate resistance in I. purpurea.  590 
 591 

Intriguingly, we identified balancing selection among susceptible populations for this 592 
region on chromosome 10 (i.e. >2 Tajima’s D and Fu and Way’s H), which in this system would 593 
most likely be driven by crop rotations leading to herbicide on and off years, i.e., a pattern of 594 
alternating selection [43]. Further, and opposite our expectations, we found higher nucleotide 595 
diversity among resistant individuals for the outlier enriched regions found on chromosomes 1 596 
and (to a lesser extent) 13. Such a pattern could be due to different loci responding to selection 597 
across resistant populations, or, and more likely, different haplotypes within resistant 598 
populations carrying the selected alleles. Unlike the dynamics we uncovered on chromosome 599 
10, which suggest a hard selective sweep, the pattern of selection on chromosomes 1 and 13 600 
are more aligned with a soft sweep model of evolution [43,44]. 601 
 602 

Within the five genomic regions enriched with outlier loci, we identified genes involved in 603 
the herbicide detoxification pathway, suggesting that glyphosate resistance is caused by 604 
herbicide metabolism in I. purpurea. The herbicide detoxification pathway is hypothesized to 605 
occur in three phases [11,45]: 1) activation, which is generally performed by cytochrome P450s, 606 
2) conjugation, which is performed by GSTs or glycosyltransferases, and 3) transport into the 607 
vacuole, often by ABC transporters, which leads to the subsequent degradation of the herbicide. 608 
Multiple copies of each of these genes were present within the five outlier enriched regions. 609 
Within a 42.3 kb segment on chromosome 10, for example, we found seven duplicated, 610 
successive glycosyltransferase genes, with multiple non-synonymous SNPs present within the 611 
1st, 4th, 5th and 7th glycosyltransferase genes. In addition to being present on the enriched 612 
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region of chromosome 10, glycosyltransferases were also present within each of the other four 613 
outlier enriched regions. We likewise identified copies of ABC transporter and cytochrome P450 614 
genes in two and three regions exhibiting selection, respectively. Although detoxification genes 615 
have yet to be functionally verified for glyphosate resistance in any weed species, transcriptomic 616 
surveys have shown that at least some of the genes involved in herbicide detoxification are 617 
associated with glyphosate resistance [28,46–48]. Additionally, we have previously shown that a 618 
cytochrome P450 transcript was up-regulated in artificially selected glyphosate resistant 619 
lineages of I. purpurea [28], supporting the conclusion that detoxification is a likely mechanism 620 
underlying glyphosate resistance in this species.  621 
 622 

While our reduced representation population genomics and exome resequencing 623 
strategy has identified strong potential candidate genes associated with glyphosate resistance 624 
in I. purpurea, it is important to note that we found low levels of linkage disequilibrium between 625 
SNP markers (on average, r2 ~0.03 across chromosomes). This suggests our initial reduced 626 
representation screen, which influenced the target exons we chose for exome resequencing, 627 
likely missed portions of the genome responding to selection from the herbicide. It also 628 
suggests, however, that the positive associations we did uncover (especially with our exome 629 
resequencing data) are likely to be loci that are involved in resistance, or very tightly linked to 630 
loci involved with resistance. Importantly, linkage was strongly elevated across outlier enriched 631 
regions compared to background levels of linkage for each of the chromosomes. These areas of 632 
increased linkage (defined as r2 > 0.25) in each outlier enriched region ranged between 84 kb to 633 
3 MB in length, and support our findings of a genomic response to herbicide selection. 634 
 635 
Patterns of haplotype sharing across resistant populations suggests parallel and non-636 
parallel responses to selection 637 
 638 

Our initial population genomics screen across a genome-wide panel of ~8K SNPs 639 
showed that resistant populations were not more related to one another than they were to 640 
susceptible populations, as would be expected under a scenario where resistance evolved in 641 
one lineage and moved via migration between locations. This, in addition to the ‘mosaic’ 642 
appearance of resistance among populations suggested that selection on standing variation 643 
was responsible for the repeated appearance of resistance in this species across the 644 
landscape. Another likely scenario, however, is one where migration introduced beneficial 645 
allele(s) that introgressed into the local background and then rapidly increased in frequency 646 
when exposed to very strong selection. The region under selection on chromosome 10 appears 647 
to follow this scenario. We found an identical haplotype within this region in high frequency 648 
across the resistant populations (>75% of individuals within populations with the same 649 
haplotype), and our formal test of convergence identified a very short standing time of the 650 
variant within this region (t = 5). Thus, the most likely model is one in which gene flow shared 651 
beneficial allele(s) between resistant populations which then started sweeping quickly and 652 
immediately, or within a few generations. This is likewise supported by our finding of low 653 
genome-wide patterns of linkage between SNPs, and evidence of a hard selective sweep, as 654 
indicated by low nucleotide diversity in this region and marks of positive selection indicating a 655 
high frequency of derived variants. Because this species employs a mixed mating system (i.e., 656 
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multilocus outcrossing rate (tm) = 0.5; [49]), it is plausible that resistance alleles, once introduced 657 
into the population, could quickly spread via outcrossing and then increase in frequency given 658 
strong selection. 659 
 660 

Haplotypes from the other four outlier enriched regions were less consistently shared 661 
among the four highly resistant populations. The ‘resistant’ haplotype of the five outlier enriched 662 
regions were similar and in high frequency (>50%) in populations WG and SPC; genome-wide 663 
patterns of allele frequencies were also very similar between these two resistant populations 664 
(Fig 1C). This suggests that a highly similar resistant lineage is shared via migration between at 665 
least these two populations. The haplotypes of the other outlier enriched regions are in lower 666 
frequency among the other two resistant populations, BI and DW; further, pairwise FST values 667 
between resistant populations for the outlier enriched regions of chromosomes 1, 6, 13, and 15 668 
were higher than the values among susceptible populations. These findings suggest a couple of 669 
possibilities: the presence of multiple haplotypes across these regions that carry resistance loci 670 
(i.e. soft sweep model of evolution), or the potential that resistance in this species is mostly 671 
attributable to the region on chromosome 10 that is shared and highly similar among resistant 672 
populations, with signs of selection from the other regions attributable to other factors. In 673 
support of the latter explanation, studies from other species have suggested that changes to a 674 
single step in the detoxification pathway are enough to provide some level of resistance [16]. 675 
However, coordinated upregulation of all of the genes from the detoxification pathway has been 676 
observed in grass species resistant to graminicide herbicides [50,51], suggesting that multiple 677 
components of this pathway are required for resistance. Unfortunately, there are few examples 678 
in which the genetic basis of NTSR resistance is known, making it difficult to draw conclusions 679 
on the importance of one gene versus the efforts of multiple genes in the detoxification pathway.  680 

 681 
Interestingly, it is hypothesized that rather than detoxify the herbicides per se, these 682 

detoxification genes enable the plant to survive the resulting oxidative stress after being 683 
exposed to herbicide, a mechanism that may allow for resistance to several different herbicides 684 
[11]. This explanation--i.e. the ability to handle oxidative stress--could potentially underlie 685 
glyphosate resistance in I. purpurea, and further examination will be required to differentiate 686 
between the direct detoxification of glyphosate or an adaptive ability to respond to oxidative 687 
stress. Our results here, combined with that of previous work, also suggests the possibility of a 688 
slightly different story--a single gene (or set of them; i.e. region on chromosome 10) is enough 689 
to gain resistance but further involvement of other genes in the same pathway may lead to lower 690 
fitness costs. Individuals from the resistant BI population from TN, for example, share only the 691 
haplotype found on chromosome 10 in common with the other resistant populations. 692 
Interestingly, BI exhibits a higher cost of resistance than SPC and WG (26.9% germination vs 693 
45.9% and 39.6%, respectively; [20]). This may indicate that loci specific to SPC and WG are 694 
important for ameliorating negative fitness costs of the changes in the chromosome 10 region.  695 
 696 
Conclusions  697 
 698 

While there is strong evidence in support of genetic parallelism from cases of target-site 699 
resistance in other species [9,52], the genetic basis of non-target site resistance remains 700 
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uncharacterized in most weeds [52,53]. Thus, we do not have a clear idea of the genetic 701 
mechanisms responsible for non-target site resistance, nor do we know how often the same 702 
mechanism is responsible for non-target site resistance across resistant lineages of the same 703 
weed. Our approach of using genome-wide scans and exome resequencing is an important step 704 
in understanding which broad-scale genetic changes may be responsible for resistance in I. 705 
purpurea, and whether or not the same genomic features respond to selection among 706 
populations. 707 
 708 

Overall, our combined use of targeted sequencing, outlier analysis and exome re-709 
sequencing provides a comprehensive view into the genomic basis of glyphosate resistance in a 710 
common and highly problematic agricultural weed. Our results suggest that genes responsible 711 
for herbicide detoxification are likely responsible for resistance in this species, with the important 712 
caveat that at this point we cannot determine if direct detoxification of the herbicide is occurring 713 
or if the species is able to respond to subsequent oxidative damage caused by the herbicide. 714 
Further, while we previously hypothesized that resistance across populations was due to 715 
selection on standing and shared genetic variation [4], the results we present here (stemming 716 
from the region on chromosome 10) support a scenario where gene flow between the resistant 717 
populations introduced the beneficial allele(s), followed by a hard selective sweep within a few 718 
generations. Finally, that we uncovered areas of genomic divergence among resistant 719 
populations within the regions showing signs of selection on chromosomes 1, 6, 13, and 15 720 
suggests either different mutations/loci are involved with detoxification across populations, or 721 
that multiple haplotypes carrying the same adaptive alleles are responding to herbicide 722 
selection.  723 
 724 
 725 
Materials and Methods 726 
 727 
Seed collection and resistance phenotyping 728 
Seeds were collected from populations across the range of I. purpurea (Table 1). In each 729 
population, seeds were sampled from multiple maternal individuals separated by at least 2 m. 730 
These seeds were used in a previously reported resistance assay to determine levels of 731 
resistance at field suggested rates of glyphosate [4]. 732 
  733 
EPSPS sequencing  734 
From the populations collected, we chose six high resistance (Avg. survival rate of populations, 735 
84%) and five low resistance populations (Avg. survival rate of populations, 26%) that spanned 736 
the range of the collection in the U.S [4]. For each population we grew 2-5 (Avg. 4.1) plants from 737 
different maternal families in the greenhouse. Leaf tissue from each individual was collected and 738 
immediately frozen in liquid nitrogen. mRNA was extracted using the Qiagen RNeasy Plant kit 739 
and cDNA was created using Roche’s Transcriptor First Strand cDNA Synthesis Kit. Primers 740 
were designed based on Convolvulus arvensis EPSPS (GenBank: EU698030.1). These primers 741 
were used in a PCR to amplify the EPSPS coding regions using Qiagen’s Taq PCR Master Mix 742 
kit, followed by cleaning using GE’s Superfine Sephadex. Samples were then Sanger 743 
sequenced by the sequencing core at the University of Michigan. Bases were scored using 744 
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PHRED [54] followed by visual confirmation of heterozygous sites. Each of the copies of the 745 
EPSPS were aligned across all individuals using MafftWS [55] via Jalviewer [56] (Genbank: 746 
MK421977-MK422097). Variable sites were identified and used to obtain allele frequencies for 747 
the pool of resistant and susceptible populations separately. We used a �2 test to determine if 748 
allele frequencies varied between resistant and susceptible populations, and likewise 749 
determined if allele frequencies were correlated with population-level resistance values using 750 
Pearson's correlation. P-values were adjusted for multiple tests using the Benjamini and 751 
Hochberg [57] correction. We also calculated observed and expected heterozygosity using 752 
adegenet [58,59] and tested for Hardy-Weinberg equilibrium using 1000 bootstraps in pegas 753 
[60]. To compare to other known EPSPS, we downloaded several protein sequences from 754 
GenBank and aligned them to our translated amino acid sequences using tCoffee [61] in 755 
Jalview [56] (S1 Fig). 756 
 757 
SNP genotyping  758 
Eight populations were chosen to investigate non-target site resistance: 4 low resistance (Avg. 759 
survival rate, 16%) and 4 high resistance populations (Avg. survival rate, 89%) (Fig 1A; Table 1, 760 
data from [4]). Seeds from up to 10 maternal families per population were germinated and 761 
leaves were collected and frozen for DNA extractions. A total of 80 individuals were used for 762 
SNP genotyping. 763 

DNA was extracted using a Qiagen Plant DNeasy kit. Genomic DNA was converted to 764 
nextRAD sequencing libraries (SNPsaurus). The nextRAD method for GBS (genotyping-by-765 
sequencing) uses a selective PCR primer to amplify genomic loci consistently between 766 
samples; nextRAD sequences the DNA downstream of a short selective priming site. Genomic 767 
DNA (7 ng) from each sample was first fragmented using a partial Nextera reaction (Illumina, 768 
Inc), which also ligates short adapter sequences to the ends of the fragments. Fragmented DNA 769 
was then amplified using PhusionÂ® Hot Start Flex DNA Polymerase (NEB), with one of the 770 
Nextera primers modified to extend eight nucleotides into the genomic DNA with the selective 771 
sequence TGCAGGAG. Thus, only fragments starting with a sequence that can be hybridized 772 
by the selective sequence of the primer were amplified by PCR. The 80 dual-indexed PCR-773 
amplified samples were pooled and the resulting libraries were purified using Agencourt 774 
AMPure XP beads at 0.7x. The purified library was then size selected to 350-800 base pairs. 775 
Sequencing was performed using two runs of an Illumina NextSeq500 (Genomics Core Facility, 776 
University of Oregon). This resulted in 42,004,808,475 bp total, with an average of 525,060,106 777 
bp per individual (Genbank: XXXX). 778 
         To control for repetitive genomic material or off-target or error reads, coverage per locus 779 
was determined using reads from 16 individuals and loci with overly high or low read counts 780 
were removed (i.e. above 20,000 or below 100). The remaining reads were aligned to each 781 
other using BBMap [62] with minid = 0.93 to identify alleles, with a single read instance chosen 782 
to represent the locus in a pseudo-reference. This resulted in 263,658 loci. All reads from each 783 
sample were then aligned to the pseudo-reference with BBMap and converted to a vcf genotype 784 
table using Samtools.mpileup (filtering for nucleotides with a quality of 10 or better), and bcftools 785 
call [63]. The resulting vcf file was filtered using vcftools [64]. SNPs were removed if there was a 786 
minimum allele frequency less than 0.02, a read depth of 5 or less, an average of less than 20 787 
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high quality base calls or more than 20% of individuals exhibited missing data. This left 8,210 788 
SNPs. 789 
 790 
RAD-seq analysis  791 
Basic population genetic statistics (He, Ho, and FIS) were calculated via poppr [65] and hierfstat 792 
[66] packages and can be found in S2 Table. fastStructure [67] was used to detect population 793 
structure (S2 Fig). A PCA analysis on individual allele frequencies was used to investigate 794 
structure using the dudi.pca function in the adegenet package [58,59] in R. Tassel was used to 795 
construct a neighbor-joining tree from pairwise relatedness [68]. Bootstraps of loci were 796 
conducted using a custom script, with 500 replications. 797 
         We used two outlier-based programs to identify potential loci under selection. We first 798 
used BayeScan (version 2.1, [69], which assumes an ancestral population from which each 799 
sampled population differs by a given genetic distance. Pairwise FST values are calculated 800 
between each sampled population and the ancestral population, thus correcting for differences 801 
in population structure. These FST values are then used in a logistic regression that includes a 802 
population specific factor (the structure across all loci) and a locus specific factor. If the locus-803 
specific factor significantly improved the model, it implies that something abnormal is occurring, 804 
which is assumed to be natural selection. We used the default settings (false discovery rate of 805 
0.05) to identify loci that showed evidence of high FST between the resistant and susceptible 806 
populations. 807 

The second program, bayenv2, identifies correlations between locus specific allele 808 
frequencies and an environmental variable [70,71]; in our work, the “environment” is the level of 809 
resistance per population. This program uses “neutral” loci to create a genetic correlation matrix 810 
against which each SNP is tested for a correlation between its frequency and the environment. 811 
In essence, the allele frequencies are modeled based on solely the neutral correlation matrix 812 
and with the addition of the environmental variable. Loci potentially under selection are then 813 
identified using the Bayes Factor (the support for the model with the environmental variable 814 
added) and the Spearman’s correlation coefficient. To estimate the "neutral" population 815 
structure, we removed any SNPs from sequences that aligned (via bowtie) with either the I. 816 
purpurea or Lycium sp. (from 1kp data, [72] transcriptome (only 35% of SNPs aligned to either) 817 
and then used the final matrix outputted from the correlation matrix estimation after 100,000 818 
iterations. All SNPs were then run with the environment being either -1 for the susceptible 819 
populations or 1 for the resistant populations, and a burn-in of 500,000 with a total of 5 runs was 820 
performed (correlation between runs was >0.80). Following Gunter & Coop [71], we identified 821 
outlier loci with the highest 1% of Bayes Factors and the 5% most extreme Spearman 822 
correlation coefficients averaged over the 5 runs. 823 

We compared pairwise FSTs for the resistant and susceptible populations using the full 824 
data set and the outlier data set using 4P [73]. We calculated Weir and Cockerham [32] pairwise 825 
FST values for each data set (overall SNPs and outlier SNPs) for each pair of populations to 826 
calculate the average FST among resistant populations and susceptible populations. To obtain 827 
95% confidence intervals around these estimates, we performed the same steps on 1000 828 
randomly selected sets of loci (sampled with replacement). 829 
  830 
De novo genome assembly for exome resequencing  831 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/647164doi: bioRxiv preprint 

https://doi.org/10.1101/647164


 22

We annotated RAD-seq outliers by using a BLASTN analysis to align them to a draft genome 832 
sequence from highly homozygous I. purpurea individual. To generate the draft genome 833 
sequence, DNA from a single individual was sequenced using PacBio (11 SMRT cells) and 834 
Illumina (2 lanes of 100 bp, paired end) sequencing (Genbank: XXXX). PacBio reads were 835 
filtered for adaptors and to remove low quality (<0.8) and short read lengths (<500 bp). Illumina 836 
reads were trimmed of low quality sequences using trimmomatic [74]. Illumina reads were 837 
assembled using ABYSS-PE k=64 [75]. This resulted in 1,933,851 contigs with lengths ranging 838 
from 64-94,907 bp (N50=6,790) for a total of 631,125,096 bp. LoRDEC [76] was used to error 839 
correct the PacBio sequences using the raw Illumina reads followed by trimming of weak 840 
regions. This resulted in 4,621,037 reads and 1,823,002,799 bp. These sequences were then 841 
combined with the Illumina assembled contigs using DBG2OLC (k=17, kmer coverage threshold 842 
= 2, min overlap = 10, adaptive threshold = 0.001, LD1=0) [77]. This resulted in 17,897 scaffolds 843 
with lengths ranging from 231-162047 bp (N50=15,425) for a total of 194,708,849 bp. This 844 
PacBio+Illumina assembly as well as the Illumina-alone assembly were used in a BLASTN 845 
analysis with each of the RAD-seq outliers. For those with genomic hits, putative genes on the 846 
contig were determined using AUGUSTUS [78], FGenesH [79], SNAP [80] and tRNAScan [81], 847 
which were used to design target capture probes. 848 
  849 
Target capture exome re-sequencing  850 
We next designed probes for exome sequencing of loci that were either identified from our 851 
population genomics RAD-seq screen or loci have been shown to correlate with resistance in 852 
other species. We used a variety of methods to select possible capture probe sequences. First, 853 
we used a BLASTN [82] analysis to select transcripts matching our RAD-seq outliers - we 854 
BLASTed the 75 bp of the RAD-seq tags that contained outlier SNPs from either the BayeScan 855 
or bayenv2 analyses using the full dataset against transcripts in an I. purpurea transcriptome 856 
[28] and selected the top hit for each (30 transcripts, min e-value = 3e-7). Second, we selected 857 
transcripts that were previously identified as differentially expressed in an RNAseq experiment 858 
[28] which compared artificially selected resistant and susceptible lines following herbicide 859 
application (19 sequences). Third, we used the two EPSPS mRNA sequences (2 sequences). 860 
Fourth, we used a BLASTN analysis to select the putative genes on genomic contigs that 861 
matched our outlier SNPs. We BLASTed 75 bp of the RAD-seq tags that contained outlier SNPs 862 
to the two draft I. purpurea genomes described above and then selected the resulting coding 863 
sequences from the putative genes (171 sequences, min e-value=7e-14). Additionally, we 864 
randomly chose an even number of transcripts from the transcriptome to serve as our controls 865 
(214 sequences). 866 

These 436 sequences were then used to design the capture probe candidates. 867 
Candidate bait sequences were 120 nt long, with a 4x tilling density. Each bait candidate was 868 
BLASTed against the I. trifida genome [83], and a hybridization melting temperature (Tm)* was 869 
estimated for each hit. Non-specific baits were filtered out (Additional candidates pass if they 870 
have at most 10 hits 62.5 – 65°C and 2 hits above 65°C, and fewer than 2 passing baits on 871 
each flank.) This led to 16,078 baits, with a total length of 580,421 nt. 872 

To generate material for sequencing, five seeds from each of the 8 populations used in 873 
the previous population genomics screen (Fig 1A, Table 1) were grown in the greenhouse, 874 
leaves were collected, and DNA was extracted from young leaf tissue using a Qiagen DNeasy 875 
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Plant Mini kit. Genomic DNA was sent to MYcroarray for library preparation and target 876 
enrichment using the MYbaits (R) system. Genomic DNA was sonicated and bead-size-selected 877 
to roughly 300nt fragments, which was then used to create libraries using the Illumina (R) 878 
Truseq kit. A total of 6 cycles of library amplification using dual-indexing primers was applied, 879 
and index combinations were chosen to avoid potential sample misidentification due to jumping 880 
PCR during pooled post-capture amplification [84]. Pools of 3 or 4 libraries each were made, 881 
combining 200 or 150 nanograms of each library, respectively. These pools were then enriched 882 
with our custom MYbaits (R) panel (following the version 3.0 manual). After capture cleanup, the 883 
bead-bound library was amplified for 12 cycles using recommended parameters, and then 884 
purified with SPRI beads. These amplified, enriched library pools were combined in proportions 885 
approximating equimolar representation of each original library and sequenced on 2 lanes of 886 
Illumina 4k 150 PE. Our coverage goal was >30x depth per individual per locus.The resulting 887 
sequences were trimmed of adaptor sequences and low quality bases using cutadapt (q<10 888 
removed). On average we sequenced 11.6 million reads (min = 5.9 million, max = 13.8 million) 889 
for each individual (Genbank: XXXX). 890 

We next assembled the sequenced reads into contigs to perform SNP calls. We used 891 
trimmed sequences from one individual and default settings in Megahit [85] to assemble 892 
reference contigs (24,524,768 reads assembled into 67,266 contigs; N50 = 458 bp; range 200-893 
16167 bp; S3 Table). For each individual, trimmed sequences were aligned to the assembled 894 
contigs using bwa [86], and SNPs were called and then filtered using the GATK pipeline ([87–895 
89]; overview of process: variants were initially called, individuals jointly genotyped, bases 896 
recalibrated based on filtered initial variants, and variants were recalled and jointly genotyped; 897 
specific commands: QD<2.0, FS>60, MQ<40, MQRankSum <12.5, RedPosRankSum<-8, 898 
minimum allele frequency >0.02, min mean depth > 5, max missing <0.8, min Q >20). After 899 
examining coverage per site, we found several contigs to have extremely high coverage and 900 
nearly 100% heterozygosity, suggesting multiple sequences were collapsed into 1 variant. Thus, 901 
we eliminated sites that had greater than 80% heterozygosity across individuals, or had more 902 
than twice the average coverage. This left 152,636 SNPs on 26,988 contigs for downstream 903 
analyses (N50 = 530; range 200-16167 bp). Bwa [86] was used to align the de novo contigs to 904 
the probes to estimate the percentage of SNPs that were from target capture probes. Fifty-one 905 
percent of these SNPs exhibited significant homology to one of the original probe sequences. In 906 
addition to analyzing these contigs, we also examined the contigs that did not exhibit significant 907 
homology to the probe sequences (hereafter non-probe contigs). The coverage for non-probe 908 
contigs was lower than that for probe contigs (23x average vs 33x), however because 13x 909 
coverage is sufficient to call heterozygous SNPs in a diploid [90] we chose to use both to 910 
increase our sampling of the genome. To annotate the contigs, we used a local TBLASTX 911 
analysis against Arabidopsis cDNA (from TAIR: [91]; e-value 0.001, and chose the sequence 912 
with the highest e-value for identification). 913 
  914 
Outlier analysis of targeted exome re-sequencing  915 
We used BayeScan and bayenv2 as above to identify putative adaptive loci from the targeted 916 
exome re-sequencing. To reduce the effect of linkage among loci, we randomly chose 1 SNP 917 
per 1000 bp using vcftools (27,225 SNPs retained). To estimate the neutral population structure 918 
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for bayenv2, 2000 contigs were randomly selected from contigs that did not map to the probes 919 
designed for the outliers. 920 

To place the SNPs into a genomic context we aligned them to the I. nil [29] genome 921 
using BLAT [92] and liftover [93]. A total of 124,149 SNPs aligned to the genome. By visual 922 
analysis we identified five regions with a large majority of significant outliers (i.e. 71% of outlying 923 
SNPs). We delimited each of these ‘enriched regions’ by the first and last outlier of each region, 924 
and searched the regions for genes involved in non-target site resistance using the following 925 
GO terms and gene names: GO:0009635, GO:0006979, GO:0055114, glycosyltransferase, 926 
glutathione s-transferase, ABC transporters and cytochrome P450s. We randomly selected 5 927 
regions of the same size from the I. nil genome and counted the number of genes from the 928 
above gene families to determine if outlier enriched regions contained more of these genes of 929 
interest than expected due to chance. We repeated this 1000 times to create an empirical 930 
distribution, which was then used to determine the percentile of the observed data. We next 931 
determined if outliers outside of the enriched regions were more, less, or equally likely to be 932 
located near a gene family of interest (i.e., glycosyltransferase, ABC transporter, etc). To do so, 933 
we counted the number of genes of each family within ~4MB (the largest of the 5 regions) from 934 
outliers found outside the five enriched regions and then compared the distributions of these 935 
outliers to those found within the enriched regions. We used CooVar [94] with the I. nil gene 936 
models to predict the protein level changes for each SNP that aligned to the I. nil genome and to 937 
determine if SNPs were from nonsynonymous or synonymous sites. 938 

For estimates of genetic differentiation and diversity, we calculated GST [95], nucleotide 939 
diversity (as the ratio of susceptible to resistant individuals; piS/piR), Tajima’s D [30], and  Fu 940 
and Way’s H [31] over 25 SNPs windows using customized scripts from [96]; 124,149 SNPs in 941 
analyses). Additionally, we used vcftools to calculate pairwise FST estimates [32] among the 942 
resistant and susceptible populations separately for each SNP. Negative FST values will occur 943 
when there is little genetic variation, and thus we set any negative value to zero. We then 944 
compared the average pairwise FST of the resistant populations versus the susceptible 945 
populations within the 5 outlier enriched regions.  946 

We used hierarchical modeling to determine if the resistant populations had similar 947 
haplotype structure in outlier containing regions of the genome, which would potentially indicate 948 
that resistance is controlled by the same genetic basis across populations. We grouped 949 
sequenced individuals into either those that exhibited the putative susceptible allele (‘S’ group) 950 
or the putative resistant allele (‘R group’) for each contig. To do so, the pairwise genetic 951 
distance between each individual was calculated based on all SNPs in each contig using the 952 
dist.gene command from the ape package (vers 5.0; [97]) in R [98]. This genetic distance matrix 953 
was reduced to 2 dimensions by multidimensional scaling using the cmdscale and eclust 954 
commands [99]. These two dimensions were then used to hierarchically cluster the populations 955 
into 2 groups using kmeans clustering. The group that contained less than half of the individuals 956 
from the susceptible populations was deemed the ‘R’ group (i.e. those that are genetically 957 
different from the majority of the susceptible individuals and presumably have the allele that aids 958 
in resistance). 959 
 960 
Linkage  961 
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We used the exome resequencing data to examine patterns of linkage across the genome and 962 
within the outlier-enriched regions. We estimated LD as the correlation coefficient (r2) between 963 
each SNP pair using the program GUS-LD (genotyping uncertainty with sequencing data-964 
linkage disequilibrium; [100]), a likelihood method developed to estimate pairwise LD using low-965 
coverage sequencing data. GUS-LD controls for under-called heterozygous genotypes and 966 
sequencing errors, which are a known problem with reduced representation sequencing. We 967 
estimated LD for each chromosome that exhibited an outlier enriched region (chr1, chr6, chr10, 968 
chr13, chr15) using the SNPs identified across all individuals using the exome resequencing 969 
dataset. We used only biallelic SNPs of at least 2% frequency and with <20% missing genotype 970 
calls since rare alleles can influence the variance of LD estimates. Only SNPs that could be 971 
aligned to the I. nil genome were used in the analysis, and we used the reduced SNP dataset (1 972 
SNP/kb) to reduce processing time (~10K SNPs used overall). The number of SNPs used per 973 
chromosome ranged from 1189 to 3191 and are presented in S5 Table. Linkage decay was not 974 
estimated due to the granular nature of the data; instead, we report r2 values averaged over the 975 
entire chromosome as a background estimate of LD, along with the 3rd quartile of r2 values, and 976 
the average of r2 values of SNPs located within 10 kb of one another.  977 
 978 
Test of convergence 979 
Given evidence that the outlier-containing region on chromosome 10 showed the strongest sign 980 
of differentiation between the resistant and susceptible populations (see Results), we applied 981 
the inference method of Lee and Coop (2017) to examine the most likely mode of adaptation 982 
within this region. This composite likelihood based approach, explained in full in [101] both 983 
identifies loci involved in convergence and distinguishes between alternate modes of 984 
adaptation--whether adaptation is due to multiple independent origins, if adaptive loci were 985 
spread among populations via gene flow, or were shared among populations due to selection on 986 
standing ancestral variation. We first estimated an F matrix to account for population structure 987 
using SNPs from scaffolds on Chr 3, 7, and 14 that showed no evidence of selection from our 988 
outlier analyses (S6 Table). We then used all SNPs (N = 2248) on a scaffold from the I. 989 
purpurea assembly (that aligned to I. nil scaffold BDFN01001043) to apply the inference 990 
framework to the region on chromosome 10 that exhibited signs of selection. We estimated the 991 
maximum composite likelihood over a grid of parameters used to specify these models (S7 992 
Table). We allowed two of the resistant populations (WG and SPC) to be sources of the variant 993 
in the migration model. Additionally, and following [101], we used an Ne = 7.5 X 105.  994 
 995 
 996 
Functional annotation of nontarget site resistance genes  997 
To predict the putative function of genes within the five enriched regions, we used a BLASTN 998 
analysis to generate a network graph of each of our target gene families (cytochrome P450s 999 
[102], glycosyltransferases [103], and ABC transporters [104]) based on homology to 1000 
Arabidopsis thaliana genes. We used the I. nil genes from the outlier regions and all A. thaliana 1001 
genes from each gene family in an all-by-all BLASTN, with an e-value = 1-10 for the cytochrome 1002 
P450s and ABC transporters. For the glycosyltransferases, we first used a conserved domain 1003 
search to identify glycosyltransferase genes in the 5 outlier-enriched regions and used these in 1004 
the BLASTN search, with an e-value cutoff of 1-1 due to very low conservation among genes 1005 
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within this family, a widely-recognized problem [105]. The resulting bit-score of the BLASTN 1006 
analysis were then used in cytoscape [106] to visualize the relationships, with colors denoting 1007 
the families (P450s and ABC transporters) or conserved coding domains (glycosyltransferases). 1008 
 1009 
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Table 1. Population information for each population used in the study. Pop number = population number 1053 
as used in other studies resulting from this seed collection, Resistance type = classification of resistance 1054 
in the population R >0.5 prop. survival S<0.5 prop. Survival, Pop Abbrev. = abbreviation for each 1055 
population as used in other studies, State = state where seeds were collected, Proportion survival at 1.7 = 1056 
proportion of individuals that survived a spray rate of 1.7 kg/ha of glyphosate based on Kuester et al 1057 
2014, Latitude and Longitude = location where seeds were collected, Used for = abbreviation for which 1058 
part of the study each population was used for E=EPSPS sequencing P=population genetics. 1059 
  1060 

Pop 
number 

Resistance 
type 

Pop 
Abbrev. 

State Proportion 
survival at 
1.7 

Latitude Longitude Used 
for 

42 S SH4 VA 0.1 38.373523 -78.662516 E,P 

4 S CR NC 0.21 34.556672 -79.125602 E 

36 S IN12 IN 0.25 40.565608 -85.503826 E 

17 S MA1 SC 0.25 34.159155 -79.272908 E 

23 S SN TN 0.5 35.067905 -86.62955 E 

19 R MC NC 0.67 34.508193 -78.70899 E 

5 R CL1 SC 0.73 33.859875 -79.909072 E 

43 R VA2 VA 0.82 36.886448 -78.553156 E 

32 R WG TN 0.83 35.099356 -86.225509 E,P 

1 R BI TN 1 35.775237 -85.903419 E,P 

10 R DW NC 1 34.983161 -78.039309 E,P 

48 S RB TN 0.18 35.31653 -87.35373 P 

14 S HA NC 0.15 35.424763 -77.917121 P 

12 S FL SC 0.20 34.145812 -79.865313 P 

51 R SPC TN 0.71 35.533413          -85.951902 P 

 1061 
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Accession numbers  1062 
EPSPS sequencing data (MK421977-MK422097), NextRAD sequencing data (XXXX), genome 1063 
assembly (XXXX) and Exome resequencing data (XXXX) are available in GenBank.  1064 
 1065 
Supporting Information 1066 
S1 Fig. No sequence differences in EPSPS. Comparison of amino acid sequences of Ipomoea 1067 
purpurea EPSPS protein sequence (bottom two sequences) with other reported EPSPS proteins in the 1068 
NCBI database (gi|170783792, gi|76782198, gi|15225450, gi|257228989, gi|16751569, gi|460388790, 1069 
gi|225454012, gi|374923051, gi|46095337, gi|189170087) shows no sequence variation within the region 1070 
known to affect herbicide resistance (inside red outline). Non-synonymous changes (red and blue arrows) 1071 
outside of this region likewise do not correlate with resistance (Table S1). 1072 
 1073 
S2 Fig. Neighbor joining tree using all of the RAD-seq SNP loci. On the tree, populations are denoted 1074 
by color and tip labels; values at nodes are percent bootstrap support; population level resistance is 1075 
denoted by the color in the column (red=resistant, blue=susceptible). 1076 
 1077 
S3 Fig. Population structure analyses. At K=2 FastStructure results for the RADseq data do not show 1078 
the resistant populations (first four populations on the left) segregating into a distinct group, suggesting 1079 
they are not from a single origin. FastStructure analysis suggests either K=6 or K=7 as the best model, 1080 
both of which leads to some populations being highly admixed (e.g. BI) while others are fairly 1081 
homogenous (e.g. SH). 1082 
 1083 
S4 Fig. RADseq outliers associated with environmental variables. Based on bayenv2 analyses using 1084 
environmental variables, we identified 50 loci that correlated with minimum temperature of coldest month, 1085 
only 2 of which overlapped with the resistance outliers; 27 loci correlated with precipitation of the driest 1086 
month, 0 of which overlapped with the resistance outliers; 36 loci correlated with elevation, 0 of which 1087 
overlapped with the resistance outliers. 1088 
 1089 
S5 Fig. Differences between outliers inside and outside of outlier enriched regions. (A-D) 1090 
Distributions of the number of genes within 4 mb of an outlier, either inside (blue) or outside (red) an 1091 
outlier-enriched region. For each type of gene, the outliers outside of the regions show a left-skewed 1092 
distribution indicating fewer close detoxification genes for (A) ABC transporters, (B) Glycosyltransferases, 1093 
(C) Cytochrome P450s and (D) Glutathione S-transferases. (E) Outliers outside of the regions have lower 1094 
frequencies of the resistant haplotype than those inside the regions, suggesting they are more population 1095 
specific. 1096 
 1097 
S6 Fig. Nucleotide diversity across all SNPs that aligned to the I. nil genome. Data are shown are 1098 
the ratio of susceptible to resistant individual nucleotide diversity. Grey bars indicate the outlier enriched 1099 
regions identified on chromosomes 1, 6, 10, 13, and 15. Dashed lines show the 5% most extreme 1100 
genome-wide values. 1101 
 1102 
S1 Table. EPSPS SNP data for gene copy A and B. SNP #=the location of the SNP after alignment with 1103 
EPSPS from Convulvulus arvensis, Ho=observed heterozygosity (across all samples), He=expected 1104 
heterozygosity, HWE p-value=p-value for test of Hardy-Weinberg equilibrium from permutation test, 1105 
Alleles=SNP alleles, Syn=whether a synonymous change (as determined by alignment with C. arvensis 1106 
sequence), P-value chi-squared R vs S=p-value for test of allele frequency difference between resistant 1107 
and susceptible populations, P-value cor with resistance=adjusted p-value for correlation with survival. 1108 
 1109 
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S2 Table. Population genetics parameters for the RADseq SNPs. Population = population abbreviation. 1110 
Ave N/locus = average number of individuals with high quality allele data per locus. % loci missing = 1111 
average percent of the population with missing data per locus. Ho = observed heterozygosity. He = 1112 
expected heterozygosity. FIS = Wright’s inbreeding coefficient. 1113 
 1114 
S3 Table. Assembly statistics for the Illumina genome assembly (using ABYSS-PE), the PacBio + 1115 
Illumina genome assembly (using DBLOG2), the resequencing assembly (using Megahit) and the 1116 
resequencing assembly contigs containing SNPs. 1117 
 1118 
S4 Table. Summary of SNPs used in the analysis of linkage disequilibrium. Only SNPs that could be 1119 
mapped to the genome of the close relative, I. nil, were used in analyses. r2 values were determined 1120 
using all individuals regardless of population or resistance level. 1121 
 1122 
S5 Table. Summary of SNPs used in the analysis of linkage disequilibrium. 1123 
 1124 
S6 Table. Neutral F matrix from scaffolds on chromosomes 3, 7, and 14 (61 scaffolds total). BI, DW, 1125 
SPC, and WG are the high resistance populations. 1126 
 1127 
S7 Table. Parameter spaces for composite-likelihood calculations for the standing variation (s, t, g) and 1128 
migration (s, m, source population) model simulations. 1129 
 1130 
S1 Dataset: Tables include annotations of outlier RADseq loci, annotations of probe sequences used for 1131 
target capture probes, annotation of outlier contigs from resequencing, a list of I. nil genes within the 5 1132 
outlier enriched regions. 1133 
 1134 
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Supporting Information 1445 
S1 Fig. No sequence differences in EPSPS. Comparison of amino acid sequences of Ipomoea 1446 
purpurea EPSPS protein sequence (bottom two sequences) with other reported EPSPS proteins in the 1447 
NCBI database (gi|170783792, gi|76782198, gi|15225450, gi|257228989, gi|16751569, gi|460388790, 1448 
gi|225454012, gi|374923051, gi|46095337, gi|189170087) shows no sequence variation within the region 1449 
known to affect herbicide resistance (inside red outline). Non-synonymous changes (red and blue arrows) 1450 
outside of this region likewise do not correlate with resistance (Table S1). 1451 
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S2 Fig. Neighbor joining tree using all of the RAD-seq SNP loci. On the tree, populations are denoted 1456 
by color and tip labels; values at nodes are percent bootstrap support; population level resistance is 1457 
denoted by the color in the column (red=resistant, blue=susceptible). 1458 
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S3 Fig. Population structure analyses. At K=2 FastStructure results for the RADseq data do not show 1465 
the resistant populations (first four populations on the left) segregating into a distinct group, suggesting 1466 
they are not from a single origin. FastStructure analysis suggests either K=6 or K=7 as the best model, 1467 
both of which leads to some populations being highly admixed (e.g. BI) while others are fairly 1468 
homogenous (e.g. SH). 1469 
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 1474 
 1475 
S4 Fig. RADseq outliers associated with environmental variables. Based on BayEnv2 analyses using 1476 
environmental variables, we identified 50 loci that correlated with minimum temperature of coldest month, 1477 
only 2 of which overlapped with the resistance outliers; 27 loci correlated with precipitation of the driest 1478 
month, 0 of which overlapped with the resistance outliers; 36 loci correlated with elevation, 0 of which 1479 
overlapped with the resistance outliers.  1480 
 1481 
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S5 Fig. Differences between outliers inside and outside of outlier enriched regions. (A-D) 1486 
Distributions of the number of genes within 4 mb of an outlier, either inside (blue) or outside (red) an 1487 
outlier-enriched region. For each type of gene, the outliers outside of the regions show a left-skewed 1488 
distribution indicating fewer close detoxification genes for (A) ABC transporters, (B) Glycosyltransferases, 1489 
(C) Cytochrome P450s and (D) Glutathione S-transferases. (E) Outliers outside of the regions have lower 1490 
frequencies of the resistant haplotype than those inside the regions, suggesting they are more population 1491 
specific.  1492 

 1493 
 1494 
 1495 
 1496 
 1497 
  1498 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/647164doi: bioRxiv preprint 

https://doi.org/10.1101/647164


 

 1

S6. Nucleotide diversity across all SNPs that aligned to the I. nil genome. Data are shown are the 
ratio of susceptible to resistant individual nucleotide diversity. Grey bars indicate the outlier enriched 
regions identified on chromosomes 1, 6, 10, 13, and 15. Dashed lines show the 5% most extreme 
genome-wide values. 
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S1 Table. EPSPS SNP data for gene copy A and B. SNP #=the location of the SNP after alignment with 
EPSPS from Convulvulus arvensis, Ho=observed heterozygosity (across all samples), He=expected 
heterozygosity, HWE p-value=p-value for test of Hardy-Weinberg equilibrium from permutation test, 
Alleles=SNP alleles, Syn=whether a synonymous change (as determined by alignment with C. arvensis 
sequence), P-value chi-squared R vs S=p-value for test of allele frequency difference between resistant 
and susceptible populations, P-value cor with resistance=adjusted p-value for correlation with survival. 
 

SNP # Ho He HWE p-
value 

Alleles Syn P-value chi-
squared R vs S 

P-value cor 
with 
resistance 

EPSPS A 

102 0.19 0.47 0 A:G Y 0.68 0.20 

188 0.02 0.02 1 A:G N 0.89 0.45 

234 0.2 0.47 0 C:G Y 0.68 0.19 

247 0.2 0.47 0 C:T Y 0.68 0.19 

265 0.02 0.02 1 A:G N 0.89 0.45 

689 0.11 0.11 1 A:T N 0.77 0.12 

690 0.11 0.11 1 C:A N 0.77 0.12 

741 0.16 0.48 0 G:A Y 0.64 0.19 

831 0.18 0.47 0 C:T Y 0.66 0.19 

936 0.2 0.48 0 T:C Y 0.66 0.20 

1194 0.21 0.48 0.001 T:C Y 0.69 0.21 

1425 0.18 0.49 0 A:G Y 0.67 0.19 

1500 0.11 0.5 0 T:G Y 0.57 0.19 

1503 0.14 0.5 0 T:C Y 0.62 0.19 

EPSPS B 

214 0.18 0.42 0.001 G:A N 0.85 0.59 

246 0.18 0.4 0 T:G Y 0.84 0.59 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/647164doi: bioRxiv preprint 

https://doi.org/10.1101/647164


 

 3

372 0.18 0.42 0.001 C:T Y 0.80 0.59 

496 0.18 0.42 0 C:A N 0.85 0.59 

497 0.27 0.63 0 T:C:G N 0.89 0.17 

606 0.18 0.4 0.001 T:G Y 0.86 0.59 

666 0.18 0.4 0 T:C Y 0.84 0.59 

729 0.23 0.5 0.001 T:A Y 0.89 0.45 

792 0.16 0.31 0.002 C:T Y 0.69 0.17 

921 0.16 0.34 0.003 C:T Y 0.67 0.45 

963 0.16 0.34 0.005 C:T Y 0.67 0.45 

1029 0.3 0.49 0.01 A:G Y 1.00 0.45 

1034 0.3 0.49 0.007 G:C N 1.00 0.45 

1044 0.3 0.49 0.012 T:C Y 1.00 0.45 

1053 0.18 0.35 0.002 C:T Y 0.67 0.17 

1114 0.3 0.49 0.012 C:G N 0.98 0.45 

1278 0.02 0.49 0 T:A N 0.97 0.48 

1359 0.16 0.34 0.002 C:G Y 0.67 0.45 

1392 0.3 0.49 0.011 A:G Y 1.00 0.45 

1401 0.3 0.49 0.022 G:A Y 1.00 0.45 

1413 0.16 0.34 0.001 A:G Y 0.67 0.45 

1503 0.02 0.02 1 C:T Y 0.89 0.66 
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S2 Table. Population genetics parameters for the RADseq SNPs. Population = population abbreviation. 
Ave N/locus = average number of individuals with high quality allele data per locus. % loci missing = 
average percent of the population with missing data per locus. Ho = observed heterozygosity. He = 
expected heterozygosity. FIS = Wright’s inbreeding coefficient. 
 

Population Ave N/locus % loci missing Ho He FIS 

RB 9.518758 0.048124 0.239929 0.260012 0.101951 

HA 9.585627 0.041437 0.276958 0.325516 0.135513 

BI 9.223264 0.077674 0.282875 0.335554 0.151809 

DW 9.539342 0.046066 0.242219 0.267021 0.112749 

FL 9.610597 0.03894 0.278797 0.309048 0.107022 

SH 9.648599 0.03514 0.26598 0.247444 -0.03845 

SPC 9.632156 0.036784 0.207493 0.222291 0.119612 

WG 9.488307 0.051169 0.209562 0.251296 0.209932 
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S3 Table. Assembly statistics for the Illumina genome assembly (using ABYSS-PE), the PacBio + 
Illumina genome assembly (using DBLOG2), the resequencing assembly (using Megahit) and the 
resequencing assembly contigs containing SNPs. 
 

 Illumina PacBio+Illumina Denovo contigs Denovo contigs 
with SNPs  

Number of contigs 1933851 17897 67266 26988 

Smallest contig 64 231 200 200 

Largest Contig 94914 162047 16167 16167 

Number of bases 631125096 194706849 29298709 13126985 

Mean contig length 237.49186 10879.30094 435.56 486.40 

n_under_200 1679726 0 0 0 

Number of contigs over 
1k 

107943 17846 1456 832 

Number of contigs over 
10k 

5686 6597 3 2 

n90 809 5106 268 301 

n70 2774 9988 363 415 

n50 6790 15425 458 530 

n30 23809 25478 592 668 

n10 94914 49505 908 975 

gc% 0.37927 0.38219 0.44 0.45 

Number of bases that are 
N 

361257 439633 0 0 

Proportion of bases that 
are N 

0.00057 0.00226 0 0 
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S4 Table. Summary of SNPs used in the analysis of linkage disequilibrium. Only SNPs that could be 
mapped to the genome of the close relative, I. nil, were used in analyses. r2 values were determined 
using all individuals regardless of population or resistance level. 
 

Chromosome 
SNP 

Number 
r2 

mean 
SD 

r2 

75% 
r2 

within 10kb 

1 1488 0.036 0.085 0.033 0.071±0.02 

6 3191 0.032 0.077 0.031 0.038±0.001 

10 1779 0.033 0.074 0.033 0.057±0.009 

13 2011 0.034 0.077 0.034 0.039±0.004 

15 1189 0.035 0.087 0.032 0.078±0.02 

 
 
S5 Table. Summary of SNPs used in the analysis of linkage disequilibrium in the regions enriched for 
outliers, per chromosome, as identified by bayenv2 or Bayescan. Only SNPs that could be mapped to the 
genome of the close relative, I. nil, were used in analyses. r2 values were determined using all individuals 
regardless of population or resistance level. 
 

Chromosome 
SNP 

Number 
r2 

mean 
SD 

r2 

75% 
Size of region 
with outliers 

Size of region 
with high LD,  

r2 >  0.25 

1 76 0.132 0.234 0.099 1.56MB ~1MB 

6 54 0.122 0.214 0.116 1.37MB 0.84MB 

10 46 0.234 0.292 0.359 276KB 0.94MB 

13 91 0.163 0.263 0.190 2.9MB 1.55MB 

15 195 0.125 0.248 0.062 >4MB ~3MB 
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S6 Table. Neutral F matrix from scaffolds on chromosomes 3, 7, and 14 (61 scaffolds total). BI, DW, 
SPC, and WG are the high resistance populations. 
 

 BI DW SPC WG RB HA FL SH 

BI 0.223 0.180 0.181 0.068 0.209 0.159 0.080 0.140 

DW 0.180 0.404 0.177 0.075 0.260 0.271 0.097 0.158 

SPC 0.181 0.177 0.428 0.083 0.202 0.188 0.098 0.137 

WG 0.068 0.075 0.083 0.484 0.034 0.095 0.000 0.001 

RB 0.209 0.260 0.202 0.034 0.420 0.184 0.027 0.178 

HA 0.159 0.271 0.188 0.095 0.184 0.295 0.098 0.062 

FL 0.080 0.097 0.098 0.000 0.027 0.098 0.131 0.010 

SH 0.140 0.158 0.137 0.001 0.178 0.062 0.010 0.322 

 
 
 
S7 Table. Parameter spaces for composite-likelihood calculations for the standing variation (s, t, g) and 
migration (s, m, source population) model simulations. 
 

Position of 

selected site 

37189, 37198, 37224, 37246, 37258, 37267, 37271, 37273, 37282, 37283, 

37285, 37288, 37303, 37305, 37342, 37355, 37357, 37360, 37362, 37366, 

37376, 37408, 140310, 140466, 140544, 140552, 140565, 140571, 140605, 

140627 

s 

0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011, 

0.014, 0.016, 0.019, 0.021, 0.024, 0.026, 0.029, 0.032, 0.034, 0.037 0.039, 

0.042, 0.045, 0.047, 0.05, 0.052, 0.055, 0.057, 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 

t 

5, 10, 81, 151, 222, 293, 364, 434, 505, 576, 646, 717, 788, 859, 929, 1000, 

1500, 1607, 1714, 1821, 1929, 2036, 2143, 2250, 2357, 2464, 2571, 2679, 

2786, 2893, 3000 

g 10
−10

, 10
−9

 , 10
−8

 , 10
−7 

, 10
−6

 , 10
−5

 , 10
−4

 , 10
−3

 , 10
−2 

m 10
−5

 , 10
−4

 , 5
−4

 , 0.001, 0.005, 0.01, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

source 

population SPC and WG 

 
 
 
 
S1 Dataset: Tables include annotations of outlier RADseq loci, annotations of probe sequences used for 
target capture probes, annotation of outlier contigs from resequencing, a list of I. nil genes within the 5 
outlier enriched regions. 
https://docs.google.com/spreadsheets/d/1I59RoHSTc4ktXMOuZQuN5KNxMQ0Lprozqma8Cf3g
BmA/edit?usp=sharing 
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