Abstract
Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a “clean” Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predicted the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyzed the total HCP content of 6-protein, 11-protein, and 14-protein knockout clones and characterized their growth in shake flasks and bioreactors. These cell lines exhibited a substantial reduction in total HCP content (40%-70%). We also observed higher productivity and improved growth characteristics, in specific clones. With the reduced HCP content, protein A and ion exchange chromatography more efficiently purified a monoclonal antibody (mAb) produced in these cells during a three-step purification process. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.