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Abstract​: 
Leaf-associated microbes can drastically affect disease severity, and host genotype can 
influence the diversity and composition of the leaf microbiome. However, these processes have 
not been studied and linked in the context of breeding for improved disease resistance. Here, 
we demonstrate that breeding for broad-spectrum disease resistance altered leaf microbiome 
composition in field-grown maize. Quantitative trait loci (QTL) conferring resistance to multiple 
fungal pathogens were introgressed into a disease-susceptible genetic background, and 
microbiome composition of the resulting near-isogenic lines was compared to that of the original 
susceptible parent line in five fields over two years. Introgression of disease-resistance alleles 
shifted the relative abundance of diverse fungal and bacterial taxa by up to 1000-fold in both 
3-week-old and 7-week-old plants; however, these effects varied among fields and years. With 
few exceptions, host genotype effects were not any stronger in fields with high disease pressure 
than in uninfected fields, and microbiome succession over time was similar in heavily infected 
plants and uninfected plants. Overall, our results suggest that QTL for broad-spectrum disease 
resistance--or closely linked genes--have direct pleiotropic effects on the leaf microbiome in 
maize. Additional manipulative experiments will be needed to determine the consequences, if 
any, for plant health and disease resistance. 
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Introduction 
Phyllosphere microbiomes—the communities of bacteria and fungi living on and in plant 

leaves—can profoundly affect the health of their plant hosts as well as the entire ecosystem 
(Lindow & Brandl 2003; Vorholt 2012; Laforest-Lapointe ​et al.​ 2017). Leaf-dwelling microbes 
can interfere with the exchange of gases and plant-derived volatiles at the leaf surface (Bringel 
& Couée 2015), alter patterns of herbivory (Clay 1990; Humphrey ​et al.​ 2014), participate in 
nitrogen cycling (Murty 1984; Papen ​et al.​ 2002; Fürnkranz ​et al.​ 2008), and influence drought 
resistance (Schardl ​et al.​ 2004; Rodriguez ​et al.​ 2009). Microbial symbionts are also noted for 
their role in disease resistance; manipulation of the phyllosphere microbiome can directly affect 
disease susceptibility in various plant species including tomato, poplar, wheat, and ​Arabidopsis 
thaliana​ (Massart ​et al.​ 2015; Busby ​et al.​ 2016; Ritpitakphong ​et al.​ 2016; Berg & Koskella 
2018). Despite the importance of leaf microbiomes to plant health and productivity, little is 
known about whether they are affected by systematic changes in host genotype, such as those 
introduced by crop breeders. Existing studies of leaf microbiome heritability have compared 
distantly related genotypes to each other, or mutated genes to the wild type (Bodenhausen ​et al. 
2014; Horton ​et al.​ 2014; Ritpitakphong ​et al.​ 2016; Wagner ​et al.​ 2016; Wallace ​et al.​ 2018). 
Here, we take a new approach by using germplasm from an active maize breeding experiment 
to compare maize leaf microbiome composition before and after the introgression of quantitative 
trait loci (QTL) for improved broad-spectrum disease resistance. Our study was designed to test 
whether systematic genetic changes commonly used in breeding programs have the potential to 
alter crop microbiomes, and to investigate the relationships between host genotype, disease 
resistance, and leaf-associated microbes. 

The ecological, physiological, and molecular mechanisms by which the microbiome 
influences disease resistance appear to be complex and remain poorly understood. For 
instance, in ​A. thaliana​, the foliar community did not directly inhibit the pathogen ​Botrytis cinerea 
but still conferred resistance via an unknown interaction with the plant host (Ritpitakphong ​et al. 
2016). Inoculation with individual fungal endophytes was sufficient to substantially reduce 
symptoms of ​Melampsora ​rust infection in ​Populus trichocarpa​, but other endophytes had no 
effect or even increased disease severity (Busby ​et al.​ 2016). And in tomato, the ability of the 
phyllosphere microbiome to improve resistance to ​Pseudomonas syringae ​depended on the 
nutrient status of the plant (Berg & Koskella 2018). These examples illustrate the need for 
further investigation of the links between pathogens, non-pathogenic members of the leaf 
microbiome, and their shared plant host. 

One potential link between disease resistance and the microbiome is a shared sensitivity 
to the genotype of the host plant, which largely determines the plant phenotype. Host 
phenotype, in turn, determines the habitat available to both pathogenic and non-pathogenic 
microbes. Several studies have detected host genetic variation affecting features of the 
phyllosphere microbiome either among or within plant species (Sapkota ​et al.​ 2015; Wagner ​et 
al.​ 2016; Wallace ​et al.​ 2018), but most of the plant genes and traits that shape microbiome 
composition remain unknown. In laboratory settings, mutant studies in ​A. thaliana​ have shown 
that genes involved in cuticle synthesis also affect the composition of foliar bacterial 
communities (Bodenhausen ​et al.​ 2014; Ritpitakphong ​et al.​ 2016), and that salicylic acid 
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signaling and glucosinolate biosynthesis genes can alter root microbiome composition (Bressan 
et al.​ 2009; Lebeis ​et al.​ 2015). A genome-wide association study of field-grown ​A. thaliana 
revealed that genes affecting cell wall traits, defense-response pathways, and trichome 
development were overrepresented among the candidate genes at quantitative trait loci (QTL) 
affecting foliar microbiome composition (Horton ​et al.​ 2014). In poplar, down-regulation of a key 
enzyme in the lignin biosynthetic pathway caused dramatic changes in the composition of 
endophyte communities in leaves, stems, and roots (Beckers ​et al.​ 2016). In addition, evidence 
is mounting that the plant innate immune system is centrally involved in regulating microbial 
symbionts (Hacquard ​et al.​ 2017). 

Some of the same plant traits implicated in microbiome variation have also been 
implicated in quantitative disease resistance (QDR), which is characterized by partial resistance 
to one or more pathogens (Poland ​et al.​ 2009; Niks ​et al.​ 2015; Beckers ​et al.​ 2016; Yang ​et al. 
2017). For example, salicylic acid is a critical hormonal regulator of defense responses (Loake & 
Grant 2007); and while the leaf cuticle can be a physical barrier to pathogens and a reservoir for 
antimicrobial compounds, it also can be recognized and used by pathogens to stimulate 
invasion (Martin 1964; Bessire ​et al.​ 2007; Kachroo & Kachroo 2009; Serrano ​et al.​ 2014). QDR 
is a valuable target for crop improvement for several reasons. Compared to the nearly-complete 
immunity conferred by large-effect resistance (or “R”) genes, QDR is generally more difficult for 
pathogens to overcome via co-evolution (St Clair 2010). In addition, unlike the highly-specific 
R-genes, QDR genes can be effective against several pathogens, whether through pleiotropy or 
linkage (Wisser ​et al.​ 2011; Wiesner-Hanks & Nelson 2016; Yang ​et al.​ 2017). The resulting 
broad-spectrum protection, or multiple disease resistance (MDR), is desirable in situations 
where several pathogens are present or disease pressures are unpredictable.  

By definition, MDR loci affect colonization success of multiple (pathogenic) 
microorganisms; therefore, we hypothesized that they might also influence the establishment of 
other microbiome members. MDR is usually a quantitative plant trait underlain by a large 
number of relatively small-effect genes, likely with diverse functions. A few MDR genes have 
been identified, such as the wheat ABC transporter gene ​Lr34​ that confers partial resistance to 
a wide range of biotrophic and hemibiotrophic pathogens (Krattinger ​et al.​ 2009; Wiesner-Hanks 
& Nelson 2016; Schnippenkoetter ​et al.​ 2017; Sucher ​et al.​ 2017). However, most of the 
mechanisms underlying MDR remain unknown. Despite this, systematic breeding methods such 
as controlled crosses and recurrent selection enable genetic improvement of this complex trait. 

We used germplasm from an MDR breeding program to test whether MDR alleles have 
pleiotropic effects on the maize leaf microbiome. We compared the foliar microbiomes of 
improved and unimproved maize lines in several fields, at early- and late-season timepoints, 
both with and without pathogen infection. The resulting data enabled us to test several 
hypotheses. First, because our MDR lines were selected for resistance to three different fungal 
pathogens (Lopez-Zuniga et al. 2019), we hypothesized that the introgressed MDR alleles 
would have stronger effects on the fungal microbiome than the bacterial microbiome. Second, 
because these loci have known effects on disease resistance, we hypothesized that their effects 
on the microbiome would be stronger in environments with higher disease pressure (Figure 1). 
Finally, we hypothesized that disease establishment would disrupt patterns of microbiome 
succession over the growing season. Overall, our results provide partial support for each of 
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these hypotheses and suggest that breeding for broad-spectrum disease resistance has 
context-dependent side effects on the maize leaf microbiome. 

 
Figure 1 | ​Host-pathogen-microbiome relationships involve complex interactions among all community 
members. ​(a) ​In our simplified model, host genotype can affect the late-season microbiome both directly 
and through cascading effects via disease resistance; for this reason, we hypothesized that MDR alleles 
would exert stronger effects on the microbiome when disease pressure is higher. Furthermore, host 
genotype could affect disease severity both directly (via immune system and other traits that impact 
pathogen success) and indirectly (via traits that influence early microbiome assembly, which in turn 
interacts with the pathogen). ​(b)​ The repercussions of MDR-induced changes in a microbial symbiont’s 
relative abundance (Figure 4) will depend on whether it has a positive effect, negative effect, or no effect 
on host health. 

Materials and methods 

 ​Field experimental design 
To directly test whether breeding for MDR affects the foliar microbiome, we compared 

microbiome composition of near-isogenic plants with and without introgressed chromosome 
segments that conferred MDR (Lopez-Zuniga ​et al.​ 2019). Briefly, two multiple disease resistant 
inbred lines (NC304 and Ki3) were crossed with H100, a line that is highly susceptible to 
multiple diseases. Using single seed descent, the resulting F​1​ offspring were backcrossed three 
times to H100 and then self-fertilized for four generations.  The resulting two populations of 
~200 BC​3​F​4:5 ​near-isogenic lines (NILs) were mostly genetically identical to the recurrent elite 
parent (H100) but retained small chromosome segments from the donor lines. On average, 
these introgressions covered 6.25% of the genome and were 78% homozygous (Figure 2; 
(Lopez-Zuniga ​et al.​ 2019). The NIL populations were assessed for resistance to three fungal 
pathogens: ​Bipolaris maydis​, ​Setosphaeria turcica​, and ​Cercospora zeae-maydis​, the causative 
agents of the maize foliar diseases southern corn leaf blight, northern corn leaf blight, and grey 
leaf spot, respectively.  

For this study, we selected eight NILs (four from each cross) that had high scores for 
resistance to all three pathogens. The relatively strong MDR phenotypes of these NILs likely 
reflect larger-than-average contributions from the MDR parent genome (roughly 10% per NIL, 
compared to the expected 6% based on the breeding design; (Lopez-Zuniga ​et al.​ 2019). Within 
each set of four NILs there was little overlap between introgressed regions, and cumulatively the 
NILs carried approximately 40% of each MDR parent genome (Figure S1). We planted these 
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eight NILs and their parent lines in a randomized design in multiple fields at the Central Crops 
Research Station in Clayton, NC (Table S1). Replicate plots were planted in two fields in 2016, 
and in four fields in 2017 (Figure 2c). Twenty kernels of each line were planted in each field, 
with the exception of the recurrent parent H100, which was planted at a replication of 30 kernels 
per field. Due to uneven germination, final sample sizes varied among replicates.  

To reduce microbial inoculum from kernel surfaces, we soaked kernels in 3% hydrogen 
peroxide for two minutes and rinsed them in distilled water before planting. In each field, plants 
were randomly arranged in five to six adjacent rows of 40 to 50 plants each, spaced 12 inches 
apart. To reduce edge effects, we surrounded all experimental plots with two rows of border 
plants. All plots were maintained using standard agronomic conditions for rainfed maize. The 
four fields were all separated by <2 km and had similar soil types but different crop rotation 
histories (Figure 2b; Table S2). 

 
Figure 2 | ​Overview of experimental design. Panel ​(a) ​illustrates the crossing design used to generate 
the eight near-isogenic lines (NILs) used in this experiment, which were mostly genetically identical to 
their disease-susceptible parent line H100 but which had  chromosome segments introgressed from a 
donor line (Ki3 or NC304) that conferred multiple disease resistance (MDR). Eight NILs were planted in 
randomized plots along with the three parent lines. Panel ​(b)​ shows the locations of the replicate plots 
within Central Crops Research Station, Clayton, NC, USA. Map data and imagery: Google. Panel ​(c) 
summarizes the sampling scheme for a total of six experimental replicate plots over two years. For the 
pilot experiment in 2016, only a single timepoint was sampled at two fields, and only fungi were 
quantified. In 2017, we quantified both bacteria and fungi; plants were sampled at two timepoints in four 
fields, two of which were inoculated with either southern leaf blight (SLB) or northern leaf blight (NLB). 

Pathogen inoculation and disease scoring 
In the 2017 experiment, we explored the effects of pathogen invasion on foliar 

microbiomes in maize by inoculating one-month-old plants in two of the four fields. Plants in field 
“C10” were inoculated with ​C. heterostrophus​, plants in field “D3” received ​S. turcica​, and plants 
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in the other two fields received no inoculation (Figure 2c). Inoculations were performed by 
incubating sterilized sorghum grains in pathogen cultures, and then dropping infected grains into 
the whorl of each plant (Sermons & Balint-Kurti 2018). Approximately 2 weeks after inoculation, 
we visually scored symptom severity of all inoculated individuals. Northern leaf blight symptoms 
were scored by estimating the percentage of each leaf damaged by lesions, and then averaging 
these scores for each plant. Southern leaf blight symptoms were scored for entire plants on a 
scale from 1 (complete leaf mortality) to 9 (asymptomatic) (Lopez-Zuniga ​et al.​ 2019). Disease 
scores were recorded using the Field Book application (Rife & Poland 2014). 

Sample collection 
In both 2016 and 2017, we collected leaf samples for microbiome quantification when 

plants were 3 weeks old. In 2017 only, we sampled leaves again when plants were 7 weeks old 
(i.e., 3 weeks after disease inoculations). For all sample collections, we used a standard hole 
punch to remove three discs evenly spaced from the base to the tip of a single leaf. For the 
early timepoint, we sampled the third leaf; in cases where the third leaf was too small or too 
damaged (<5% of plants), we sampled the second or fourth leaf instead. For the second 
timepoint we sampled the oldest leaf that was at least 50% green and was not touching the soil. 
Our rationale for this choice was that the microbiomes of older leaves were more likely to reflect 
host-driven processes than younger leaves, which were in earlier stages of microbiome 
assembly and more prone to stochastic influences (Maignien ​et al.​ 2014). Whenever possible, 
we selected green tissue and avoided lesions because we were primarily interested in direct 
genotype effects on non-pathogenic microbial symbionts, rather than microbiome responses 
driven by drastic differences in pathogen abundance (Figure S2). Leaf discs were collected into 
sterile tubes and stored on ice for the duration of sampling, then immediately transferred into 
-20°C for storage. Tools were rinsed in 70% ethanol between samples to reduce transfer of 
microbes among plants. 

DNA extraction, library preparation, and sequencing 
To remove loosely associated microbes from the leaf surface, we vortexed leaf discs in 

sterile water for 30 s on maximum speed and then shook them dry before freezing them at 
-80°C. Lyophilized leaf discs were randomly arranged into 96-well plates and ground to a fine 
powder using a Retsch MM301 mixer mill (1 minute at 25 Hz). Several wells were left empty as 
a negative control; to several others we added a mock microbial community as a positive control 
(ZymoBiomics Microbial Community Standard, Zymo Research, Irvine, CA, USA). We extracted 
DNA from all samples using the Synergy 2.0 Plant DNA Extraction Kit (OPS Diagnostics, 
Lebanon, NJ, USA) following the manufacturer’s instructions, except that we doubled the length 
of the bead-beating step to increase microbial lysis. We eluted total DNA in 30 uL of 1x TE, pH 
8.0. 

We generated amplicon libraries separately for bacteria and fungi using a two-PCR-step 
approach. First, we amplified the barcoding genes 16S-V4 and ITS1 using the standard primer 
pairs 515f/806r for bacteria and ITS1f/ITS2 for fungi. Primers included upstream “frameshift” 
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stretches of 3 to 6 random nucleotides to increase library complexity and sequence quality, as 
well as a binding site for universal Illumina adaptors. Each 10-uL reaction included 0.4 uL of 
each primer (10 uM), 5 uL of 5Prime HotMasterMix (Quanta Bio, Beverly, MA, USA), 1.5 uL of 
template DNA, and 0.15 uL PNA PCR-blocker to reduce amplification of host plastid sequence 
(for bacterial libraries only; (Lundberg ​et al.​ 2013). We implemented an additional positive 
control at this stage: for several reactions, we used mock community DNA as the template 
(ZymoBiomics Microbial DNA Standard, Zymo Research). The PCR program for fungal libraries 
included an initial 2-minute denaturation at 95°C; 27 cycles of 20-second denaturation at 95°C / 
20-second primer annealing at 50°C / 50-second extension at 72°C; and a final 10-minute 
extension step at 72°C. The PCR program for bacterial libraries was identical except that the 
primer annealing temperature was 52°C, and the primer annealing step was preceded by a 
5-second PNA annealing step at 78°C. The resulting PCR products were cleaned by adding 7 
uL of magnetic SPRI bead solution, washing magnet-bound DNA twice with 70% ethanol, and 
eluting in 10 uL ultrapure water. 

The second PCR step added dual-indexed universal Illumina adaptors. The forward and 
reverse primers consisted of (from 5’ to 3’) the P5 or P7 adaptor sequence (respectively), a 
unique 8-bp index, and the binding site to enable annealing to amplicon sequences. PCR 
conditions were identical to those from the first step except that 1 uL of the first-step PCR 
product was used as the template DNA. We visualized the resulting libraries on a 1.5% agarose 
gel and then pooled 1 uL from each reaction to create separate pools for fungi and bacteria. We 
purified these pools by adding magnetic bead solution at a ratio of 0.8:1 (v/v), washing twice 
with 70% ethanol, and eluting DNA from the beads in ultrapure water. We then combined 
aliquots of the fungal and bacterial pools at equimolar concentrations. 

The final combined pool derived from the 2017 samples was sequenced at 1,344-plex 
on an Illumina HiSeq2500 machine in Rapid Run mode (250 bp paired-end reads). Because this 
first sequencing run yielded ample ITS sequence but low coverage of 16S amplicons, we 
sequenced the 16S amplicon pool again on the HiSeq platform and on the Illumina MiSeq using 
V2 chemistry (250 bp paired-end reads) along with the smaller pool of ITS amplicons from the 
2016 samples. All sequencing was performed by the North Carolina State University Genomic 
Sciences Laboratory (Raleigh, NC, USA).  

Sequence processing and quality filtering 
 After trimming primers from raw, demultiplexed FASTQ files using ​CUTADAPT ​ v1.12 (Martin 
2011), we processed amplicon sequences using ​DADA2 ​ v1.10.1 (Callahan ​et al.​ 2016). First, 
trimmed reads were quality-filtered. We required the forward and reverse 16S reads to have a 
maximum of 2 expected errors and no ambiguous bases, then truncated them at 220bp and 160 
bp, respectively to remove low-quality sequence from 3’ ends. We required the forward and 
reverse ITS reads to have a maximum of 1 and 2 expected errors (respectively) and no 
ambiguous bases but did not truncate reads to a fixed length. Error rates were inferred from 
3x10 ​6​ reads; this was done separately for the ITS data and 16S data, and separately for each 
independent sequencing run. Quality-filtered reads were then de-replicated, de-noised, and 
merged to generate tables of amplicon sequence variants (ASVs). At this point we merged the 
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bacterial ASV tables from the three 16S sequencing runs with each other, and also merged the 
fungal ASV tables from 2016 and 2017, which had been sequenced separately. After removing 
chimeric ASVs, we assigned taxonomy using the RDP Classifier (Wang ​et al.​ 2007) trained on 
the RDP (v.16) training set for 16S sequences (Cole ​et al.​ 2014) and the UNITE database for 
ITS sequences (Kõljalg ​et al.​ 2005)​. 
 We discarded ASVs without taxonomic assignment at the kingdom level and ASVs that 
were assigned to chloroplasts or mitochondria (“non-usable reads”). We used the mock 
community positive controls to determine a within-sample relative abundance threshold that 
removed most contaminant ASVs while retaining as much of the data as possible. This 
threshold (0.091% for bacteria, 0.221% for fungi) was then applied to all non-control samples 
(Brown 2019). We then removed “non-reproducible” ASVs that were not observed at least 25 
times in at least 5 samples (Lundberg ​et al.​ 2012). Together, these filtering steps reduced the 
final dataset to 1,502 bacterial ASVs while retaining 97.9% of the data. For fungi, the final 
dataset retained 548 ASVs and 93.8% of the original sequences. Finally, we excluded 
low-coverage samples from analysis (i.e., those with <500 usable reads). The number of reads 
remaining after all filtering steps was saved as the “sampling effort” for each sample; this 
variable was normalized and centered for use as a covariate in downstream analyses where 
appropriate. 

Data analysis 
We used R version 3.3.2 for all data analysis, especially the packages phyloseq, tidyr, 

lme4, DESeq2, vegan, and lmerTest (McMurdie & Holmes 2013; Love ​et al.​ 2014; Bates ​et al. 
2015; Kuznetsova ​et al.​ 2017). When applicable, we used the Benjamini-Hochberg false 
discovery rate (Benjamini & Hochberg 1995) to adjust ​P​​-values from multiple comparisons. All 
analyses were performed in parallel for fungi and for bacteria. Original R code and raw data will 
be made freely available in a Dryad repository upon publication; raw reads will be deposited into 
the NCBI Sequence Read Archive. 

Alpha diversity was characterized for each sample using the Shannon and 
abundance-based coverage estimator (ACE) metrics, which estimate community evenness and 
richness, respectively (Hughes ​et al.​ 2001). This was done prior to thresholding and removal of 
rare ASVs. For analyses conducted at higher taxonomic levels, we consolidated ASVs into their 
respective genera, families, orders, classes, or phyla using the function “Phyloseq::tax_glom” 
(McMurdie & Holmes 2013). For analyses that required normalization (​e.g.​, ordination) we 
applied the variance-stabilizing transformation from the “DESeq2” package (Love ​et al.​ 2014; 
McMurdie & Holmes 2014). Bray-Curtis dissimilarity of transformed count data was used to 
quantify community composition. Beta dispersion of groups of samples was calculated using the 
function “vegan::betadisper” (Oksanen ​et al.​ 2018). When modeling the relative abundances of 
individual taxa using the DESeq2 package, we excluded the rarest taxa by testing only taxa with 
abundances that were at least 10% of the mean taxon abundance (Wagner ​et al.​ 2016). This 
greatly reduced the number of tests to be performed but retained most of the data; for example, 
across the full dataset it reduced the number of bacterial ASVs from 1502 to 367 while retaining 
98.0% of all observations. We explored overall patterns of microbiome variation by performing 
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multivariate ANOVA on the Bray-Curtis dissimilarity matrix of the full dataset using the function 
“vegan::adonis”  (Oksanen ​et al.​ 2018). This model included the predictor variables “Genotype”, 
“Rep” (i.e., field and year), “Genotype*Rep”, “Timepoint”, and “Genotype*Timepoint”. 

Testing effects of MDR alleles on the juvenile and adult maize microbiomes: ​Next, 
we tested the hypothesis that the introgression of MDR alleles altered microbiome composition. 
We conducted these analyses separately for young plants measured three weeks after planting 
(the “early” timepoint) and seven weeks after planting (the “late” timepoint). For each timepoint 
we performed multivariate ANOVA of Bray-Curtis dissimilarity, using a model that included 
“Genotype”, “Rep”, and their interaction as predictor variables. Because we were specifically 
interested in contrasting MDR genotypes to the susceptible line H100 (Figure 2a), we repeated 
this analysis ten times; each time we subset the data to include only H100 and one other 
genotype (a MDR NIL or parent line). We took a similar approach to test whether MDR alleles 
altered alpha diversity and beta diversity. To quantify beta diversity, we used the function 
“vegan::betadisper” to find a centroid location in ordination space for each Genotype in each 
Rep, and then to calculate each sample’s distance to its corresponding centroid. We then 
modeled ACE diversity, Shannon diversity, and beta diversity (​i.e., ​distance to centroid) using 
separate linear mixed-effects models with “Genotype” as a fixed effect and “Rep” as a 
random-intercept term. The ACE diversity metric was log-transformed to improve 
homoscedasticity. Standardized sequencing depth and a “Plate” random-intercept term  were 
also included as nuisance variables to control for variation in sampling effort among samples 
and batch effects during DNA extraction and library preparation. Post-hoc Dunnett ​t-​tests 
(Dunnett 1955) were used to directly contrast each MDR genotype to H100 within each Rep. 
Finally, to determine which microbial taxa responded to host genotype, we fit negative binomial 
models to counts of individual ASVs, genera, families, orders, classes, and phyla, using 
“Genotype”, “Rep”, and their interaction as predictor variables. For these analyses, H100 was 
set as the reference genotype, so that the coefficients from the model described contrasts 
between MDR lines and the disease-susceptible control. 

Investigating the effect of disease severity on seasonal microbiome dynamics: ​To 
investigate the effect of disease establishment on microbiome succession over time, These 
analyses used only data from 2017 (Figure 2) and focused on comparison of inoculated fields 
versus uninoculated fields. Using the function vegan::capscale(), we performed a partial 
constrained distance-based redundancy analysis (based on the Bray-Curtis dissimilarity metric) 
to characterize the overall community response to Timepoint*Field interactions after controlling 
for batch effects. To assess statistical significance of this interaction, we used permutation tests 
to compare this model to an alternative model containing only the Timepoint and Field main 
effects. To determine which taxa drove this interaction, we used the DESeq2 package to fit 
negative binomial models for counts of individual ASVs, genera, families, orders, classes, and 
phyla in response to the Timepoint*Field interaction; likelihood ratio tests were used to compare 
these to alternative models with only the Timepoint and Field main effects. To investigate how 
disease establishment affected alpha and beta diversity at the field level from early season to 
late season, we calculated each individual plant’s change in Shannon diversity and in 
Distance_to_Centroid between timepoints (centroid calculated for each Field at each 
Timepoint). We then fit linear mixed models to these calculated values with “Field” as a 
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fixed-effect predictor. Standardized sequencing depth and a “Plate” random-intercept term were 
also included as nuisance variables to control for variation in sampling effort and batch effects 
during DNA extraction and library preparation. Statistical significance was assessed using 
ANOVA with Type III sums of squares and Satterthwaite’s approximation for denominator 
degrees of freedom, implemented with the R package “lmerTest”. We used Tukey’s Honest 
Significant Difference test to compare the early-to-late changes in alpha and beta diversity 
among fields. Finally, within each of the two inoculated fields, we modeled each plant’s change 
in alpha diversity and in community composition (i.e., Bray-Curtis dissimilarity between the two 
timepoints) as a function of symptom severity. 
 

Results 
 

TABLE 1 | ​Results of permutational MANOVA for fungal and bacterial community composition in the 
leaves of maize plants. ​P​-values are based on 999 permutations of the Bray-Curtis dissimilarity matrix 
calculated from variance-stabilized amplicon sequence variant (ASV) tables. 

 Bacteria  Fungi 

 R​2 pseudo- ​F ​test P  R​2 pseudo- ​F ​test P 

Genotype 0.010 F​10,1140 ​= 1.59 0.001  0.008 F​10,1456 ​= 1.72 0.001 

Timepoint 0.223 F​1,1140 ​= 344.66 0.001  0.125 F​1,1456 ​= 272.97 0.001 

Rep 0.035 F​3,1140 ​= 18.17 0.001  0.168 F​5,1456 ​= 73.41 0.001 

Genotype x Timepoint 0.009 F​10,1140 ​= 1.42 0.003  0.007 F​10,1456 ​= 1.60 0.001 

Genotype x Rep 0.021 F​30,1140 ​= 1.07 0.198  0.023 F​50,1456 ​= 1.01 0.436 

 
The final fungal dataset included 548 ASVs and 1,533 samples from 6 replicate plots 

over two years (2016-2017). The bacterial dataset included 1,502 ASVs and 1,141 samples 
from 4 replicate plots in 2017 only. The samples from 2017 represented two timepoints: early 
(3-week-old plants) and late (7-week-old plants), whereas the 2016 data represented the early 
timepoint only (Figure 2c). At the early timepoint, the median replication was ​N​=13 and ​N=​14 
per genotype per replicate plot for bacteria and fungi, respectively. At the late timepoint, the 
median replication was ​N​=12.5 for bacteria and ​N​=11 for fungi. The median sequencing depth 
per sample was 23,448 for fungi and 97,955 for bacteria. 

Bacterial microbiomes were structured largely by timepoint, which explained about 23% 
of the variation in community composition (Figure 3; PerMANOVA, ​P​ < 0.001); experimental 
replicate (i.e., field) and host genotype each explained only about 3% of the variation. At the 
early timepoint, communities were dominated by ​Pantoea​ spp. (52.6% relative abundance) 
followed by ​Herbaspirillum​ spp. (12.1%). However, four weeks later, the relative abundances of 
these groups had declined sharply to 4.3% and 2.0%, respectively. The dominant bacterial 
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members of the adult maize leaf microbiome belonged to the genera ​Sphingomonas ​(38.4%) 
and ​Methylobacterium​ (28.8%; Table S3). 

In contrast, fungal communities were shaped most strongly by experimental replicate 
(i.e., field and year; Table 1); however, timepoint became the dominant predictor when the reps 
from 2016 were excluded, indicating that differences between years contributed to this result 
(Figure S3). Excluding sequences that could not be identified, in 2016 the most abundant fungal 
genus in the leaves of young plants was ​Sporobolomyces​ (31.7% relative abundance) followed 
by ​Epicoccum​ (12.7%). The following year, the same genera were again the two most common 
in young leaves, although in the opposite order (​Epicoccum ​24.7%, ​Sporobolomyces​ 8.3%). At 
the later timepoint, ​Epicoccum​ remained the most abundant genus in older plants, although its 
share of the community declined to 9.8% (Table S3). 

We detected host genetic effects on overall composition of both bacterial and fungal 
microbiomes, as well as an interaction between host genotype and timepoint (Table 1); we 
explore these results in more detail below. On average, alpha diversity of both kingdoms 
increased between timepoints (Figure 3c-d), ​i.e.​, the microbial community within a given leaf 
sample was more diverse in seven-week-old plants relative to three-week-old plants. In contrast, 
beta diversity (​i.e.​, variation among samples) of bacterial communities decreased whereas beta 
diversity of fungal communities increased (Figure 3e-f).  

 
Figure 3 | ​Maize leaf microbiomes shifted dramatically between 3 weeks and 7 weeks after planting. ​(a-b) 
Overall microbiome composition shifted strongly  between timepoints. MDS1 and MDS2 are the two major 
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axes of variation after ordination of the Bray-Curtis dissimilarity matrix using non-metric multidimensional 
scaling, i.e., numerical summaries of community composition. Each point represents one leaf sample; 
points separated by smaller distances in MDS space indicate samples with more similar microbiomes. 

(c-d)​ On average, alpha diversity was higher at the late timepoint than the early timepoint. The top, 
middle, and bottom lines of the boxes mark the 75th percentile, median, and 25th percentile, respectively; 
box whiskers extend 1.5 times the interquartile range above and below the box. ​(e-f)​ Beta diversity (​i.e.​, 

variation among samples) decreased slightly over time for bacteria, but increased for fungi between 
timepoints. Boxplot statistics are the same as in panels (c-d).  

 
In juvenile plants, MDR alleles altered the composition of the bacterial 
leaf microbiome 
 

TABLE 2 | ​Results of permutational MANOVA of fungal and bacterial community composition in maize 
leaves at two timepoints. Each MDR line was individually compared to the common disease-susceptible 
genetic background, H100. ​R​2 ​values are shown for the Genotype and Genotype*Rep terms of each 
model. For the early timepoint, the Replicate factor included variation among fields and between years; 
for the late timepoint, it only included variation among fields. Statistical significance was based on 
comparison of pseudo-​F​ values after 999 permutations of the Bray-Curtis dissimilarity matrix calculated 
from variance-stabilized ASV tables. 

  Bacteria  Fungi 

  Early 
timepoint 

 Late 
timepoint 

 Early  
timepoint 

 Late 
timepoint 

MDR line 
(vs. H100) 

 Geno. Geno. 
x Rep 

 Geno.  Geno. 
x Rep 

 Geno. Geno. 
x Rep 

 Geno.  Geno. x 
Rep  

Ki3  0.012 * 0.020  0.020** 0.023  0.004 0.016  0.009 ​‡ 0.024 * 

DRIL32.063  0.008 0.017  0.015 ​‡ 0.026  0.005 0.022  0.012 * 0.018 

DRIL32.095  0.013 * 0.022  0.007 0.019  0.004 0.017  0.006 0.020 

DRIL32.134  0.013 * 0.014  0.007 0.019  0.004 0.018  0.012 * 0.020 

DRIL32.140  0.005 0.017  0.008 0.021  0.002 0.016  0.008 0.015 

DRIL62.030  0.008 0.026  0.016 ​‡ 0.034  0.006 0.022  0.019 ** 0.022 

DRIL62.032  0.008 0.023  0.011 0.029  0.004 0.018  0.009 ​‡ 0.026 * 

DRIL62.054  0.013 ​* 0.021  0.008 0.025  0.005 0.018  0.008 0.022 

DRIL62.127  0.008 0.016  0.007 0.032  0.002 0.015  0.008 0.019 

NC304  0.013 * 0.027  0.026** 0.029  0.008 0.023  0.021 ** 0.030 ** 

‡ ​FDR<0.1, *FDR<0.05, **FDR<0.01 
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First, we investigated whether the introgression of MDR alleles altered microbiome 
composition in the leaves of young maize plants, before the establishment of disease. For these 
analyses we used data from both years, but included only the data from the early timepoint (3 
weeks after planting). We found evidence of genetic variation for alpha diversity of both bacterial 
and fungal leaf microbiomes, measured using the ACE metric (ANOVA, Genotype x Rep, ​P ​= 
0.070 and ​P ​= 0.0038 respectively; Table S4). However, both the strength and the direction of 
this effect varied across experimental replicates. In some replicates, the MDR NILs deviated 
from H100 in the same direction as the MDR parent lines, consistent with the hypothesis that 
the introgressed QTL alleles affect both disease resistance and early microbiome diversity. In 
others, however, there was no apparent genetic variation at all (Figure S4). In contrast, we 
found no evidence that genetic variation influences alpha diversity measured using the Shannon 
metric (ANOVA, ​P ​> 0.05). These results indicate that host genotype interacts with environment 
in complex ways to influence the richness--but not evenness--of leaf-associated microbiomes in 
maize. Tests of beta diversity--​i.e​., variation in microbiome composition among individuals of the 
same genotype in the same experimental replicate--showed similar patterns. We detected 
genetic variation for beta diversity in both fungal and bacterial communities of juvenile maize 
leaves, but the direction and strength of the effect were inconsistent among experimental 
replicates, which incorporate differences between years (for fungi only) and among fields (for 
bacteria and fungi) (Table S5; Figure S5). 

In addition to alpha and beta diversity, we investigated the effects of MDR allele 
introgression on overall community composition using permutational MANOVA. In addition to 
the two disease-resistant parent lines used as donors of the introgressed loci, three of the eight 
NILs differed significantly from H100 in bacterial microbiome composition, suggesting that the 
alleles introgressed into these lines may play a role in early microbiome assembly (Table 2). In 
contrast, overall fungal community structure did not differ significantly between any of the MDR 
lines and H100, contradicting our hypothesis that these MDR loci would have stronger and more 
consistent effects on fungi than bacteria. Nevertheless, we detected a diverse range of 
individual taxa that changed in relative abundance in response to MDR allele introgression. For 
instance, 20 fungal genera were either enriched or depleted in at least one NIL relative to the 
common disease-susceptible parent line H100, with effect sizes ranging from approximately 
4-fold to over 1000-fold (Wald test, FDR < 0.05; Figure 4b). Many of these taxa responded 
similarly to several non-overlapping introgressions (Figure S1). For example, ​Aureobasidium 
was depleted in six of the eight NILs, while several other groups including ​Selenophoma​, 
Moesziomyces​, ​Curvularia​, ​Mycosphaerella​, ​Pseudopithomyces, Pseudozyma​, 
Kineosporiaceae, Oxalobacteraceae, Caulobacteraceae, and Xanthomonadaceae were all 
either enriched or depleted consistently across at least three NILs (Figure 4). This strengthens 
the evidence that broad-spectrum disease resistance and microbiome composition share a 
genetic basis, because multiple non-overlapping MDR QTL had similar effects on these taxa. 
However, the inconsistency of the microbiome response across fields and years suggests that 
these QTL have lower penetrance for microbiome composition than for disease resistance 
(Lopez-Zuniga ​et al.​ 2019). 
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Figure 4 | ​Introgression of MDR QTL alleles altered the relative abundance of diverse bacterial and 
fungal taxa in leaves of 3-week-old and 7-week-old maize. Panels ​(a)​ and ​(b)​ show the 
enrichment/depletion of bacterial families and fungal genera (respectively) caused by introgression of 
MDR alleles into the H100 genetic background (Figure 2). Host genotypes “Ki3” and “NC304” are the 
MDR parent lines; the others are NILs derived from crosses between those lines and the 
disease-susceptible line H100 (Figure 2). Taxa with significant changes in relative abundance (Wald test, 
FDR < 0.05) are shown as colored, enlarged points against the background of all taxa tested (small grey 
points). Shape indicates the experimental replicate in which the change in relative abundance was 
observed. Taxa unidentified at the genus level were excluded for clarity. 
 

Sensitivity of the adult maize microbiome to MDR alleles 
Second, we investigated whether MDR alleles affected the maize leaf microbiome later 

in the season, seven weeks after planting. For these analyses we used data from the 2017 
experiment only. One week after the first microbiome sampling, plants in two of the four fields 
received pathogen inoculations so that at the 7-week timepoint plants in field C10 were infected 
with southern leaf blight and those in field D3 were infected with northern leaf blight. We scored 
disease symptoms two weeks after inoculation and confirmed that resistance to both diseases 
was improved in all eight MDR NILs relative to the susceptible parent line H100 (Figure 5; all ​P 
< 4.7e ​-7​, all R​2​ > 0.70). However, we collected microbiome data only from green tissue, avoiding 
lesions of infected plants. ASVs corresponding to the introduced pathogens (​Bipolaris maydis 
and ​Setosphaeria turcica​) were removed from the dataset before analysis. We took this 
approach because we were primarily interested in direct effects of MDR alleles on the 
non-pathogenic microbiome, rather than cascading effects on the microbiome driven by 
improved disease resistance. 
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Our results provided mixed support for our hypothesis that host genotype effects would 
be stronger at the late timepoint than the early timepoint. For example, MDR alleles shaped 
fungal community structure more strongly in the late timepoint relative to the early timepoint, but 
the opposite was true for bacteria (Table 2). For both kingdoms, genetic differences in alpha 
diversity were comparable between timepoints (Figure S4); however, MDR alleles tended to 
decrease beta diversity of fungal communities only at the later timepoint, and only in the two 
fields that had been inoculated with pathogens. This suggests that at least some of their effects 
on the microbiome were mediated through their effects on disease resistance (Figure S5). We 
detected similar numbers of host-genotype-sensitive bacterial taxa at both timepoints (Figure 
4a), whereas changes in relative abundance for fungal taxa were more common at the late 
timepoint (considering only the 2017 replicates, since no data were available from the late 
timepoint in 2016; Figure 4b). Additionally, the magnitudes of taxon enrichments and depletions 
due to MDR allele introgression were comparable between timepoints (Figure 4). There was 
little overlap between the sets of taxa responding to MDR breeding at the early and late 
timepoints, with the exceptions of ​Cladosporium ​and the Sphingomonadaceae, which had lower 
relative abundance in several MDR lines at both timepoints. This indicates that MDR-induced 
microbiome differences in seedlings did not generally persist throughout the growing season. 

Altogether, our results indicate that introgression of MDR alleles did affect the leaf 
microbiome composition of both 3-week-old and 7-week-old maize plants by shifting relative 
abundance of diverse bacterial and fungal taxa (Figure 4). However, the effects of these MDR 
loci on the microbiome were much more variable among environments than their effects on 
disease resistance (Lopez-Zuniga ​et al.​ 2019). This suggests that changes in the relative 
abundance of potentially protective microbes is unlikely to be a major mechanism by which 
these particular MDR alleles confer improved disease resistance.  

 
Figure 5 | ​Introgression of QTL alleles from two MDR parent lines improved resistance to northern leaf 
blight (NLB; left) and southern leaf blight (SLB; right) in six-week-old plants. Symptoms were scored two 
weeks after pathogen inoculation. The top, middle, and bottom lines of the boxes mark the 75th 
percentile, median, and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile 
range above and below the box. For NLB, all comparisons to the susceptible genetic background H100 
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were significant at ​P​ < 9.3e ​-4 ​ (​N ​= 141; genotype R ​2 ​=0.71); for SLB, all comparisons were significant at ​P 
< 1.6e ​-7 ​ (​N ​= 147; genotype R ​2 ​=0.76). 
 

Seasonal microbiome dynamics were largely insensitive to disease 
status 

Finally, we shifted our focus away from host genotype to investigate the relationship 
between disease and the microbiome more closely. We hypothesized that heavy pathogen 
infection and disease establishment would disrupt the normal succession of maize leaf 
microbiomes both (1) at the whole-field level and (2) at the individual plant level. To test these 
hypotheses, we compared patterns of microbiome change over time in two pathogen-infected 
fields versus two uninfected control fields, and in heavily-infected individual plants versus 
less-infected individuals of the same genotype within a field. 

Microbiome composition and diversity of all fields changed dramatically between three 
weeks and seven weeks after planting, regardless of infection status (Figure 6). Community 
composition diverged among fields over time, although this pattern was much more pronounced 
for fungi than bacteria (Figure 6a; distance-based redundancy analysis, Timepoint*Field ​P​ = 
0.001). Contrary to our expectation, we observed no clear clustering of disease-inoculated fields 
from control fields at the late timepoint. Similarly, the relative abundances of individual taxa 
generally changed in the same direction over time in all four fields (Figure 6b). However, there 
were a few exceptions. For instance, in infected fields the genera ​Ralstonia​, ​Staphylococcus​, 
Gardnerella​, ​Dietzia​, and ​Mycobacterium​ all decreased between timepoints, but increased 
between timepoints in the control fields. The fungal genera ​Rhodotorula, Bullera,​ and 
Microdochium​ showed the opposite pattern. Nevertheless, infected and uninfected fields were 
mainly distinguished by the magnitude, rather than the direction, of leaf microbiome succession. 
The average shift in relative abundance between timepoints was stronger in infected fields than 
in uninfected fields (Figure 6b-c). Similarly, temporal changes in alpha and beta diversity varied 
in magnitude among fields for both bacteria and fungi (Figure 6d; ANOVA ​P​ < 0.05 for all); 
however, these differences did not correspond to disease treatment. 

Because our disease treatments had to be applied to entire fields, replication was low 
and treatment was confounded with other factors such as the species of crops planted in 
adjacent fields, proximity to roads and trees, and the species of crops planted the previous year 
(Figure 2; Table S2). As an additional test to circumvent this problem, we investigated whether 
temporal changes in microbiome composition and diversity were correlated with disease 
susceptibility within individual plants. We found no evidence that symptom severity altered 
microbiome succession in either NLB-infected or SLB-infected plants (linear regression, ​P ​> 
0.05 for both; ​N ​= 115 or ​N ​= 118, respectively; Figure S6). This result suggests that overall 
infection severity at the whole-plant level does not necessarily alter microbiome composition in 
the remaining green leaf tissue. 
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Figure 6 | ​Maize leaf microbiomes changed over the growing season regardless of disease pressure. All 
results are shown for four fields that are labeled according to the disease treatment they received 
(NLB/northern leaf blight, SLB/southern leaf blight, or none/control). ​(a) ​Partial distance-based 
redundancy analysis, constrained on the interaction between timepoint and field, shows that microbial 
communities in different fields became more distinct from each other over time. ​(b)​ Changes in relative 
abundance over time varied among fields for all taxa shown (likelihood ratio tests of negative binomial 
models with and without Timepoint*Field interaction term; FDR < 0.05). ​(c) ​The average magnitude of fold 
changes in relative abundance over time varied among fields (ANOVA, ​P ​< 0.001 for both bacteria and 
fungi; post-hoc Tukey tests, ​P ​< 0.05). The top, middle, and bottom lines of the boxes mark the 75th 
percentile, median, and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile 
range above and below the box. ​(d) ​Changes in alpha diversity (Shannon metric) and beta diversity 
(Distance to centroid) between timepoints differed among fields (ANOVA, all ​P ​< 0.05; post-hoc Tukey 
tests, ​P ​ < 0.05).  
 

Discussion  
The process of breeding for broad-spectrum disease resistance involves selecting alleles 

with the ability to alter the invasion success of several different pathogens. We demonstrated 
that different maize genotypes, identical except for the presence of MDR alleles, assemble 
different leaf microbial communities both early in development and later in the growing season 
(Figure 4; Figure S5; Table 1). This shift in community composition involved a wide variety of 
microbial taxa, likely including both non-pathogenic organisms and potential pathogens. 
Interestingly, many taxa (​e.g.​, Xanthomonadaceae, ​Pseudozyma​, ​Aureobasidium​, 
Selenophoma​) responded similarly to multiple independent introgressions (Figure 4a-b), 
suggesting that the underlying genes may involve partially redundant mechanisms. 
Counterintuitively, seedlings of MDR genotypes were consistently enriched in two fungal genera 
known to contain many plant pathogens (​Curvularia ​and ​Mycosphaerella​; Figure 4a), although 
all plants were asymptomatic at the early timepoint.  
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Different methods of testing for host genetic effects on the microbiome sometimes led to 
incongruent conclusions; for example, negative binomial models of individual fungal taxa found 
stronger genetic effects at the early timepoint than at the late timepoint, while permutational 
MANOVA found the opposite pattern (Figure 4b; Table 2). However, these outcomes are not 
necessarily contradictory because the latter method can detect simultaneous shifts in a large 
number of species, even if most or all of those shifts are too subtle to be detected using 
univariate models (Anderson 2001). Similarly, strong responses by a small number of taxa may 
be missed by permutational MANOVA if the rest of the community stays relatively stable. 

Our results are consistent with our hypothesis that some MDR loci work through general 
anti-microbial mechanisms, and therefore also affect non-pathogenic bacteria and fungi. 
However, because these NILs carried introgressions covering up to 10% of the genome, we 
cannot rule out the possibility that linked genes--rather than the MDR alleles 
themselves--caused the observed shifts in microbiome composition. Follow-up experiments 
comparing these NILs to others with similar-sized introgressions but no MDR improvement 
would help to disentangle these possibilities. To determine the causal genes for both the MDR 
phenotype and the associated microbiome changes, further refinement of these lines, additional 
genetic mapping, and molecular verification would be needed. Nevertheless, our results 
demonstrate that the introgression of certain MDR alleles can have side-effects on the 
microbiome. Whether caused by linkage or true pleiotropy, these side-effects have potential to 
either facilitate or interfere with the process of breeding for increased MDR (Figure 1b). 

It is worth noting that our experiment included only four NILs derived from each MDR 
parent line; combined, these sets of NILs represented no more than 40% of the MDR parent 
genome (Lopez-Zuniga ​et al.​ 2019). The inclusion of more NILs from these crosses, which 
contain MDR alleles at different QTL, would likely have revealed additional MDR-driven 
microbiome changes. Follow-up work exploring the prevalence of these effects across a wider 
range of MDR and MDS accessions, including those in other crop and non-crop plant species, 
would help to determine whether the shared genetic basis of MDR and microbiome composition 
is broadly generalizable. 

We also hypothesized that in addition to direct effects on the microbiome, MDR alleles 
would also indirectly influence the microbiome through cascading effects of differences in 
infection severity (Figure 1a). As a result, we expected to observe stronger host genotype 
effects after disease establishment. However, our data only partially supported this hypothesis, 
which relied on the assumption that disease establishment would profoundly disrupt the 
microbiome, as has been described in soil (Chapelle ​et al.​ 2016). However, comparisons of 
microbiome composition in infected versus uninfected fields, and of severely versus mildly 
infected plants, did not consistently support this assumption (Figure 6; Figure S6). We propose 
several possible explanations for the weaker-than-expected effect of pathogen invasion on the 
maize leaf microbiome. First, we deliberately sampled green tissue and avoided lesions (Figure 
S2), which likely biased our dataset away from capturing the most strongly perturbed local 
communities. This choice was intentional because our primary interest was in direct effects of 
MDR alleles on non-pathogenic microbes; nevertheless, we expected to observe changes in 
microbiome composition as a result of the plant’s systemic response to infection (Gu ​et al.​ 2016; 
Hacquard ​et al.​ 2017). Second, the observed succession between timepoints (Figure 2) likely 
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reflected many different causal factors, including plant development and strong morphological 
differences between juvenile and adult leaves, a changing biotic context including insect 
communities and neighboring plants, and increased temperature and community. The combined 
impact of these factors on the microbiome may have swamped out any signal of pathogen 
invasion. Finally, because our disease treatments could only be applied at the whole-field level, 
differences in microbial succession among fields also could have masked community responses 
to disease. A follow-up experiment that randomizes disease treatments while minimizing such 
environmental variation would help to explain this observation. 

The partially-shared genetic basis of MDR and microbiome composition suggests that 
breeding for broad-spectrum disease resistance is likely to have side-effects on colonization by 
other microbial symbionts. The upshot of these side-effects for plant health--and ultimately, 
breeding outcomes--depends on whether individual symbionts increase or decrease in 
frequency due to host genetic improvement, and whether they have a positive or negative effect 
on the host (Figure 1b). The resolution of the amplicon sequencing approach that we used in 
this experiment is insufficient to determine what effects the enriched or depleted taxa had on the 
experimental plants, if any. Re-inoculation experiments under controlled conditions would be 
necessary to determine whether these organisms affect disease resistance either positively or 
negatively. Another unresolved question that our data could not address is whether MDR alleles 
affected leaf microbiomes in ways other than changing relative abundance-- for example, by 
altering the total microbial load in leaves or by inducing changes in microbial gene expression 
and metabolic activity, which also could contribute to disease resistance (Chapelle ​et al.​ 2016). 
Understanding these complex links between the plant microbiota, pathogens, host phenotype, 
and environment will be crucial for developing microbiome-based solutions for sustainable 
disease control (Massart ​et al.​ 2015; Berg ​et al.​ 2017; Busby ​et al.​ 2017). 
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Supplementary Information 
  
Table S1 | ​Maize lines used in this experiment. The eight "DRIL" lines were near-isogenic lines 
descended from crosses between the disease-susceptible inbred line H100 and one of two 
disease-resistant inbred lines (Ki3 or NC304; Figure 2a). On average, the DRIL lines retained ~6.25% of 
their genome from the MDR donor line (Lopez-Zuniga et al. 2019). 

Line MDR parent (donor) MDS parent (recurrent) 
H100 --- H100 
Ki3 Ki3 --- 
NC304 NC304 --- 
DRIL32.063 Ki3 H100 
DRIL32.095 Ki3 H100 
DRIL32.134 Ki3 H100 
DRIL32.140 Ki3 H100 
DRIL62.030 NC304 H100 
DRIL62.032 NC304 H100 
DRIL62.054 NC304 H100 
DRIL62.127 NC304 H100 

  
 
 
Table S2 | ​Fields used for this experiment. All were located at Central Crops Research Station in Clayton, 
North Carolina, USA (Figure 2). No pair of fields was separated by more than 2 km. 
 
Field 

 
Soil type 

 
Rotation ​(2014-2017) 

 
Data collection 

Disease Treatment 
(2017 only) 

A5B Wagram loamy sand Squash > Soybean > Corn > 
Corn 

2016-2017 Uninoculated control 

C10 Dothan loamy sand Soybean > Corn > Cotton > 
Corn 

2017 SLB 

D3 Gilead sandy loam Wheat/Fava bean > Cotton > 
Corn/Winter pea > Corn 

2017 NLB 

G4C Norfolk loamy sand Corn > Soybean > Corn > 
Tobacco 

2016 NA 

G5C Wagram loamy sand Corn > Tobacco > Cucumber > 
Corn 

2017 Uninoculated control 
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Table S3 | ​The 20 most abundant genera in leaves of 3-week-old (“early”) and 7-week-old (“late”) maize 
plants, with their relative abundances. Parentheses indicate groups that could not be identified at the 
genus level.

 
 
Table S4 | ​Results of ANOVA of alpha diversity (ACE metric) for fungal and bacterial communities in the 
leaves of ​(a)​ maize seedlings three weeks after planting, and ​(b)​ adult maize seven weeks after planting. 
Linear mixed-effects models were fitted to log-transformed ACE values with predictors 
Genotype*Replicate while controlling for sequencing depth and batch effects; separate models were fit 
for the early and late timepoints. Least-squares mean estimates for each MDR genotype (relative to 
H100) are displayed in Figure S4. 
(a) Early timepoint Fungi  Bacteria 
  F ​test P   F ​test P 
Genotype  F​10,531 ​= 1.21 0.28   F​10,477 ​= 1.47 0.15 

Rep  F​5,535 ​= 25.91 2.7e ​-11   F​3,477 ​= 6.36 0.00031 

Genotype x Rep  F​48,527 ​= 1.68 0.0038   F​30,476 ​= 1.43 0.070 
        

(b) Late timepoint Fungi  Bacteria 
  F ​test P   F ​test P 
Genotype  F​10,542 ​= 1.69 0.078   F​10,495 ​= 2.63 0.004 

Rep  F​3,542 ​= 2.89 0.035   F​3,496 ​= 9.02 8.0e ​-6 

Genotype x Rep  F​30,542 ​= 1.32 0.12   F​30,495 ​= 2.21 0.0003 
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Table S5 | ​Results of ANOVA of beta diversity (distance from centroid) for fungal and bacterial 
communities in the leaves of ​(a)​ maize seedlings three weeks after planting, and ​(b)​ adult maize seven 
weeks after planting. Linear mixed-effects models were fitted to each individual’s distance to centroid, 
with predictors Genotype*Replicate while controlling for sequencing depth and batch effects; separate 
models were fit for the early and late timepoints. LS mean estimates for each MDR genotype (relative to 
H100) are displayed in Figure S5. 
(a) Early timepoint Fungi  Bacteria 
  F ​test P   F ​test P 
Genotype  F​10,855 ​= 1.43 0.16   F​10,536 ​= 1.93 0.039 

Rep  F​5,63 ​= 19.41 1.2e ​-11   F​3,537 ​= 7.72 4.7e ​-5 

Genotype x Rep  F​50,855 ​= 1.35 0.057   F​30,535 ​= 1.22 0.20 
        

(b) Late timepoint Fungi  Bacteria 
  F ​test P   F ​test P 
Genotype  F​10,555 ​= 3.47 0.0002   F​10,508 ​= 1.56 0.12 

Rep  F​3,555 ​= 4.72 0.0029   F​3,508 ​= 9.19 6.2e ​-6 

Genotype x Rep  F​30,555 ​= 2.04 0.0010   F​30,508 ​= 1.79 0.0067 
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Figure S1 | ​The introgressed MDR alleles 
carried by the eight NILs in this study had little 
overlap. The parent lines and NILs were 
genotyped using 245 or 270 informative markers 
(for the Ki3 x H100 cross and the NC304 x H100 
cross, respectively). Most alleles from the MDR 
parent were present in only one NIL or not at all; 
for both crosses, all four NILs carried the H100 
allele for >60% of markers. Observations of MDR 
alleles in the heterozygous state were scored as 
0.5 rather than 1. Data from Lopez-Zuniga et al. 
(2019). 

 
 

 
 

 
Figure S2 | ​For diseased plants, we avoided lesions and targeted green tissue for microbiome analysis. 
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Figure S3 | ​ ​The foliar fungal microbiome of three-week-old maize seedlings changed between years. ​(a) 
Non-metric multidimensional scaling of Bray-Curtis dissimilarities reveals that the early-timepoint samples 
from 2016 (black circles) cluster apart from the early-timepoint samples from 2017 (red circles); however, 
all early-timepoint samples (black and red circles) cluster apart from late-season samples (red triangles). 
(b) ​ In seedlings growing in “A5B”, the only field that was sampled in both years, many ASVs changed in 
relative abundance from 2016 to 2017. Grey points represent ASVs that did not change significantly 
between years; black points represent ASVs that were either more or less abundant in 2017 relative to 
2016 (shown to the right or left of the dashed red line, respectively; FDR < 0.05). 
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Figure S4 | ​MDR breeding shaped maize leaf alpha diversity (ACE and Shannon metrics). For each 
MDR genotype, its estimated deviation from the disease-susceptible line H100 is shown (based on LS 
means from linear mixed-effects models with predictors Genotype, Replicate, and Genotype*Replicate). 
Positive values for a given genotype indicate that within-sample diversity was higher than it was for the 
disease-susceptible line H100; negative values indicate that within-sample diversity was lower relative to 
H100. Error bars = +/- 1 s.e.m. Open circles mark deviations from H100 that were not significantly 
different from zero after ​P ​-value correction using Dunnett’s procedure; significant deviations from H100 
are shown as asterisks. Corresponding ANOVA results are given in Table S4. 
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Figure S5 | ​MDR breeding shaped maize leaf beta diversity (Distance to Centroid). For each MDR 
genotype, its estimated deviation from the disease-susceptible line H100 is shown (based on LS means 
from linear mixed-effects models with predictors Genotype, Replicate, and Genotype*Replicate). Positive 
values indicate that inter-individual variation within a genotype was higher than it was within the 
disease-susceptible line H100; negative values indicate that inter-individual variation was lower than in 
H100. Error bars = +/- 1 s.e.m. Open circles mark deviations from H100 that were not significantly 
different from zero after ​P ​-value correction using Dunnett’s procedure; significant deviations from H100 
are shown as asterisks. Corresponding ANOVA results are given in Table S4. 
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Figure S6 | ​Within individual plants, temporal changes in community composition (top, quantified as 
Bray-Curtis dissimilarity between timepoints) and alpha diversity (bottom, quantified as the change in 
Shannon diversity between timepoints) did not correlate with disease resistance (linear regression, ​P ​> 
0.05 for all tests). For NLB, ​N ​= 115; for SLB, ​N ​= 118. 
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