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Optimal Recovery of Missing Values for
Non-negative Matrix Factorization

Rebecca Chen and Lav R. Varshney

Abstract

We extend the approximation-theoretic technique of optimal recovery to the setting of imputing missing values in clustered
data, specifically for non-negative matrix factorization (NMF), and develop an implementable algorithm. Under certain geometric
conditions, we prove tight upper bounds on NMF relative error, which is the first bound of this type for missing values. We
also give probabilistic bounds for the same geometric assumptions. Experiments on image data and biological data show that this
theoretically-grounded technique performs as well as or better than other imputation techniques that account for local structure.
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I. INTRODUCTION

MATRIX factorization is commonly used for clustering and dimensionality reduction in computational biology, imaging,
and other fields. Non-negative matrix factorization (NMF) is particularly favored by engineers and biologists because

non-negativity constraints preclude negative values that are difficult to interpret in biological processes [2], [3]. A recent
tutorial article highlighted the interpretability and identifiability (or model uniqueness) of NMF, both of which are valuable for
practical applications [4]. Without constraints on the factor matrices, latent factors are non-unique, but requiring non-negativity
guarantees model uniqueness under certain assumptions. Furthermore, experimental results demonstrate that the latent factors
are intuitive given the data [4]. In signal processing and statistical learning, NMF has been used for speech and audio separation,
medical imaging, community detection, and topic modeling. In biology, NMF of gene count matrices can discover cell groups
and lower-dimensional manifolds (latent factors) describing gene count ratios for different cell types. Due to channel noise,
incomplete survey data, or biological limitations, however, data matrices are usually incomplete and matrix imputation is often
necessary before further analysis [3]. In particular, Stein-O’Brien et al. argue that “newer MF algorithms that model missing
data are essential for [single-cell RNA sequence] data” [5].

Imputation accuracy is commonly measured using root mean-squared error (RMSE) or similar error metrics. However,
Tuikkala et al. argue that “the success of preprocessing methods should ideally be evaluated also in other terms, for example,
based on clustering results and their biological interpretation, that are of more practical importance for the biologist” [6]. Here,
we specifically consider imputation performance in the context of NMF and describe NMF error rather than RMSE (or some
other prediction error) of imputed matrices. Previous analyses of information processing algorithms with missing data have
considered high-dimensional regression [7] and subspace clustering [8]. Missing values for NMF have also been studied for
the application of stock price prediction, but previous approaches lack theoretical guarantees [9].

Data often exhibits local structure, e.g., different groups of cells follow different gene expression patterns. Information about
local structure can be used to improve imputation. We introduce a new imputation method based on optimal recovery, an
approximation-theoretic approach for estimating linear functionals of a signal [10]–[12] previously applied in signal and image
interpolation [13]–[15], to perform matrix imputation of clustered data. Characterizing optimal recovery for missing value
imputation requires a new geometric analysis technique. Previous work on missing values take a statistical approach rather
than a geometric one.

Our contributions include:
• A computationally efficient imputation algorithm that performs as well as or better than other modern imputation methods,

as demonstrated on hyperspectral remote sensing data and biological data;
• A tight upper bound on the relative error of downstream analysis by NMF. This is the first such error bound for settings

with missing values; and
• A probabilistic bound on NMF error after imputation.
The remainder of the paper is organized as follows. In Section II, we give background on missing data mechanisms,

imputation algorithms, and NMF. In Section III, we introduce optimal recovery and apply it to NMF. In Section IV, we present
an algorithm for optimal recovery imputation of clustered data and give a deterministic upper bound on algorithm performance.
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In Section V we give a probabilistic bound on the performance of our algorithm. In Section VI we give experimental results
for both synthetic and real data, and we conclude in Section VII.

II. BACKGROUND

In this section, we describe the relationships between missingness patterns and the underlying data, which are referred to as
missing data mechanisms. We then discuss prior work on practical imputation algorithms, and we present NMF as an analysis
technique that is commonly performed after imputation.

A. Missingness mechanisms

Rubin originally described three mechanisms that may account for missing values in data: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR) [16]. When data is MCAR, the missing data is
a random subset of all data, and the missing and observed values have similar distributions [17]. The MCAR condition is
described in (1), where X refers to observed variables and Y refers to missing variables. This may occur if a researcher forgets
to collect certain information for certain subjects, or if certain data samples are collected only for a random subset of test
subjects. When data is MAR, the distribution of missing data is dependent on the observed data, (2). For example, in medical
records, patients with normal blood pressure levels are more likely to have missing values for glucose levels than patients with
high blood pressure. When data is MNAR, the distribution of missing data is dependent on the unobserved (missing) data, (3).
For example, people with very high incomes may be less likely to report their incomes.

MCAR: P(Y is missing|X,Y ) = P(Y is missing) (1)

MAR: P(Y is missing|X,Y ) = P(Y is missing|X) (2)

MNAR: P(Y is missing|X,Y ) = P(Y is missing|Y ) (3)

It is important to understand the missingness mechanism when analyzing data. When data is MCAR, the statistics of the
complete cases (data points with no missing observations) will represent the statistics of the entire dataset, but the sample size
will be much smaller. If data is MAR or MNAR, the complete cases may be a biased representation of the dataset. One can
also estimate statistics such as means, variances, and covariances based on all available non-missing observations of a variable
[18]. Then the sample size reduction may be less severe for certain variables. However, this may be a biased representation
of the entire dataset when data is MAR or MNAR, and there is the additional problem of inconsistent sample sizes. Although
some research has been done on MNAR imputation, this is generally a difficult problem, and most imputation methods assume
the MAR or MCAR model.

Ding and Simonoff argue that missingness mechanisms are more nuanced than the three basic categories described by Rubin
[19]. They claim that missingness can be dependent on any combination of the missing values, the observed predictors, and
the response variable (e.g. a category label). In cases where the missingness pattern contains information about the response
variable, the missingness is informative [20]. Ghorbani and Zou leverage informative missingness, using the missingness patterns
themselves as an additional feature for data classification [21].

B. Imputation algorithms

Imputation is often necessary before specific downstream analysis, such as clustering or manifold-finding for classification.
Two main categories of imputation are single imputation, in which missing values are imputed once, and multiple imputation,
in which missing values are imputed multiple times with some built-in randomness. The variance in the multiple imputations
of each missing observation reflects the uncertainty of the estimates, and all imputed datasets are used in the downstream
analysis, which increases statistical power.

1) Single imputation: One of the simplest imputation techniques is mean imputation. Missing values of each variable are
imputed with the mean value of that variable. Since all missing observations of a variable are imputed with the same value,
variance is reduced, and other statistics may be skewed in the MAR and MNAR cases. The reduced variability in the imputed
variable also decreases correlation with other variables [22].

In regression imputation, a variable of interest is regressed on the other variables using the complete cases. Imputation puts
points with missing values directly on the regression line. This method also underestimates variances, but it overestimates
correlations. Stochastic regression attempts to add the variance back by distributing imputed points above and below the
regression line using a normal distribution.

Bayesian imputation approaches also exist, including Bayesian PCA [23] and maximum likelihood imputation [24]. Bayesian
methods are theoretically sound and assume that data samples are generated from some underlying joint distribution. In
practice, these methods require numerical algorithms such as the Markov chain Monte Carlo (MCMC) method, which may be
prohibitively time-consuming for large datasets.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/647560doi: bioRxiv preprint 

https://doi.org/10.1101/647560
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

2) Multiple imputation: Multiple imputation attempts to preserve the variance/covariance matrix of the data. Several im-
putations are randomly generated, resulting in multiple complete datasets. Imputed datasets are then analyzed and results are
pooled. The different imputations introduce variance into the data, but the variance may still be an underestimate since the
imputations assume correlation between the variables. One popular algorithm for multiple imputation is multiple imputation
by chained equations (MICE) [25]. While MICE does not have the theoretical backing that maximum likelihood imputation
has, MICE is flexible and can accommodate known interactions and independencies of real-world datasets [26]. A stepwise
regression can be performed so that the missing variable is regressed on the best predictors.

C. Imputation with clustered data

When the underlying data is clustered, a data point should be imputed based on its cluster membership. Local imputation
approaches outperform global ones when there is local structure in data. Global approaches generally perform some form
of regression or mean matching across all samples [25], [27], whereas local approaches group subsets of similar samples.
Popular imputation algorithms that utilize local structure include k-nearest neighbors (kNN), local least squares (LLSimpute),
and bicluster Bayesian component analysis (biBPCA) [28]–[30]. The kNN imputation method finds the k closest neighbors
of a sample with missing values (measured by some distance function) and fills in the missing values using an average of its
neighbors. LLSimpute uses a multiple regression model to impute the missing values from k nearest neighbors. Rather than
regressing on all variables, biBPCA performs linear regression using biclusters of a lower-dimensional space, i.e. coherent
clusters consisting of correlated variables under correlated experimental conditions. Delalleau et al. develop an algorithm to train
Gaussian mixtures with missing data using expectation-maximization (EM) [31]. By itself, MICE does not address clusters,
but cluster-specific (group-wise) regression can be performed [32].

Tuikkala et al.’s clustering results on cDNA microarray datasets showed that “even when there are marked differences in
the measurement-level imputation accuracies across the datasets, these differences become negligible when the methods are
evaluated in terms of how well they can reproduce the original gene clusters or their biological interpretations” [6]. They use
the Average Distance Between Partition (ADBP) to calculate clustering error, and they show that BPCA, LLS, and kNN give
similar clustering results. Chiu et al. find that LLS-like algorithms performed better than kNN-like algorithms in terms of
downstream clustering accuracy (measured using cluster pair proportions) [33]. De Souto et al. evaluate whether the effect of
different imputation methods on clustering and classification are statistically significant [34]. They remove all genes with more
than 10% missing values and compare classification using the corrected Rand index. They find that simple methods such as
mean and median imputation perform as well as weighted kNN and BPCA.

D. Non-negative matrix factorization (NMF)

After imputation, downstream analysis such as NMF can be performed on data. Donoho and Stodden interpret NMF as the
problem of finding cones in the positive orthant which contain clouds of data points [35]. Liu and Tan show that a rank-one
NMF gives a good description of near-separable data and provide an upper bound on the relative reconstruction error [36].
Given that gene and protein expression data is often linearly separable on some manifold- or high-dimensional space [37],
the bound given by rank-one NMF is valid. We extend these ideas to data with missing values and, for the first time, bound
performance of downstream analysis of imputation. Loh and Wainwright have previously bounded linear regression error of data
with missing values [7], but they do not consider imputation, and their proof is based on modifying the covariance matrix when
data is missing. Tan and Févotte consider NMF with missing values, but they replace missing with zeros instead of performing
imputation, and they do not provide error bounds [9]. In addition, their NMF algorithm requires hyperparameter tuning and
makes some probabilistic assumptions on the data. Our proof is based on the geometry of NMF and is parameter-free. The
nonnegativity of NMF lends itself to a geometric interpretation, which we describe in Section III.

III. OPTIMAL RECOVERY

In this section, we introduce our new approach to imputation based on approximation-theoretic ideas. Suppose we are given
an unknown signal v that lies in some signal class Ck. The optimal recovery estimate v̂ minimizes the maximum error between
v̂ and all signals in the feasible signal class. Given well-clustered non-negative data V, we impute missing samples in V so
the maximum error is minimized over feasible clusters, regardless of the missingness pattern.

A. Application to clustered data

Let V ∈ RF×N+ be a matrix of N sample points with F observations (N points in F -dimensional Euclidean space). Suppose
the N data points lie in K disjoint clusters Ck (where k = 1, 2, . . . ,K), and that these clusters are compact, convex spaces
(e.g., the convex hull of the points belonging to Ck).
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Fig. 1. Feasible set of estimators.

Now suppose there are missing values in V. Let Ω ∈ {0, 1}F×N be a matrix of indicators with Ωij = 1 if vij is observed
and 0 otherwise. We make no assumptions on the missingness pattern, such as MCAR or MAR because we take a geometric
approach rather than a statistical one. We define the projection operator of a matrix Y onto an index set Ω by

[PΩ(Y)]ij =

{
Yij if Ωij = 1
0 if Ωij = 0

.

We use the subscripted vector (·)fo to denote fully observed data points (columns), or data points with no missing values,
and we use the subscripted vector (·)po to denote partially observed data points. We use a subscripted matrix (·)fo or (·)po to
denote the set of all fully observed or partially observed data columns in the matrix.

We can impute a partially observed vector vpo by observing where its observed samples intersect with the clusters C1, . . . , Ck.
Let the missing values plane be the restriction set over RF that satisfies the constraints on the observed values of vpo. We call
this intersection the feasible set W :

W = {v̂po ∈ Ck : PΩ(v̂po) = PΩ(vpo)} for some k ∈ [K]. (4)

Fig. 1 illustrates the feasible set of a three-dimensional vector with two missing samples when the signal class (convex space
containing samples from kth cluster) covers an ellipsoid. If the signal had only one missing sample, the feasible set would be
a line segment.

All k for which (4) is satisfied are possible clusters from which the true v originated. Since W cannot be empty, there must
be at least one Ck that has non-empty intersection with the set of all points satisfying the PΩ(vpo) constraint. The optimal
recovery estimator v̂∗po minimizes the maximum error over the feasible set of estimates:

v̂∗po = arg min
v̂po∈Ck

max
v∈Ck

‖v̂po − v‖, (5)

where ‖ · ‖ denotes some norm or error function. If we use the ∞-norm, v̂∗po is the Chebyshev center of the feasible set.
If W contains estimators belonging to more than one Ck, W can be partitioned into K disjoint sets, Wk, defined as

Wk = {v̂po ∈ Ck : PΩ(v̂po) = PΩ(vpo)}, k ∈ [K]. (6)

Feasible clusters are those for which Wk is not empty, and we can find (5) over the Ck for which the corresponding Wk covers
the largest volume: k = arg maxk |Wk|.

B. Application to non-negative matrix factorization

Let V ∈ RF×N+ be a matrix of N sample points with F non-negative observations. Suppose the columns in V are generated
from K clusters. There exist W ∈ RF×K+ and H ∈ RK×N+ such that V = WH. This is the NMF of V [38]. We use the
conical interpretation of NMF [35], [36], described as follows.

Suppose the N data points originate from K cones. We define a circular cone C(u, α) by a direction vector u and an angle
α:

C(u, α) :=

{
x ∈ RF \{0} :

x · u
‖x‖2

≥ cosα

}
, (7)

or equivalently,
C(u, α) :=

{
x ∈ RF \{0} : (x · u)2 − (x · x) cos2(α) ≥ 0

}
. (8)

In a three-dimensional space, this conical hull is sometimes called an ice cream cone [4]. We truncate the circular cones to be
in the non-negative orthant P so that we have C(u, α) ∩ P . We can consider uk to be the dictionary entry corresponding to
Ck and all x’s belonging to Ck as noisy versions of uk. We call the angle between cones βij := arccos(ui · uj). Assume the
columns of V are in K well-separated cones, that is,

min
i,j∈[K],i6=j

βij > max
i,j∈[K],i6=j

{max{αi + 3αj , 3αi + αj}}. (9)
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Fig. 2. Geometric assumption for greedy clustering.

Fig. 3. Decomposition of vectors in a circular cone.

This implies that the distance between any two points originating from the same cluster is less than the distance between any
two points in different clusters, which is a common assumption used to guarantee clustering performance [36], [39], [40] (see
Fig. 2). We can then partition V into k sets, denoted Vk := {vn ∈ Ck ∩P}, and rewrite Vk as the sum of a rank-one matrix
Ak (parallel to uk) and a perturbation matrix Ek (orthogonal to uk). For any vector z ∈ Vk, z = ‖z‖2(cosβ)uk + y, where
‖y‖2 = ‖z‖2(sinβ) ≤ ‖z‖2(sinαk). We use this rank-one approximation to find error bounds [36] (see Fig. 3).

If V contains missing values, we can use the optimal recovery estimator to impute V. Assuming the columns in V come
from K circular cones defined as (7), there is a pair of factor matrices W∗ ∈ RF×K+ ,H∗ ∈ RK×N+ , such that

‖V −W∗H∗‖F
‖V‖F

≤ max
k∈[K]

{sinαk}. (10)

Since the error is bounded by sinαk, we choose our optimal recovery estimator to minimize αk. This is equivalent to
maximizing the inequality in (8):

v̂∗po = arg max
v̂po∈Ck

{(v̂po · uk)2 − (v̂po · v̂po) cos2(αk)}. (11)

We can solve (11) analytically using the Lagrangian with known values of vpo as equality constraints. We can also solve (11)
numerically using projected gradient descent.

Generally, uk is not known beforehand, but we can find uk given Wk. Given an ellipse in R3, we reconstruct its cone
by drawing lines from its limit points to the origin. Then it is straightforward to find the center of the cone. (Note that
while this volume minimization problem is NP-hard, there are efficient and accurate algorithms when certain assumptions
are met, which have been used with NMF [4].) Liu and Tan propose the following optimization problem (in the absence of
missing values) over the optimal size angle and basis vector for each cluster [36]. We write the data points in each cluster as
X := [x1, . . . ,xM ] ∈ RF×M+ where M ∈ N+:

minimize(0,π/2) α

subject to xTmu ≥ cosα, m ∈ [M ],

u ≥ 0, ‖u‖2 = 1, α ≥ 0.

(12)

Of course, we also do not know Ck or Wk, so we use a clustering algorithm to find the vectors belonging to each Ck (see
Sec. IV).

IV. ALGORITHM AND ERROR BOUND

Now we consider clustering and NMF with missing values. If the geometric assumption (9) holds, a greedy clustering
algorithm [36, Alg. 1] returns the correct clustering of fully observed data. Here we show that a greedy algorithm also
guarantees correct clustering of partially observed data under certain conditions.
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Algorithm 1: Greedy Clustering with Missing Values

Data: Data matrix V ∈ RF×N+ , K ∈ N, Ω ∈ {0, 1}F×N
Result: Cone indices J ∈ {0, 1, ...,K}N ; α ∈ (0, π/2)K ; u ∈ RF×K+

1 Partition columns in V into subsets Vfo and Vpo, where Vfo contains data columns for which
∑
i rij = F , and Vpo

contains remaining columns.;
2 Normalize Vfo so that all columns have unit `2-norm. Let V′fo be the normalized matrix ;
3 Cluster items in V′fo using greedy clustering [36, Alg. 1] to obtain cluster indices J and run Alg. 3 on V′fo to get

u1, ..., uk from W ∗. ;
4 for vpo ∈ Vpo do
5 Let Ωj correspond to observed entries of vpo. Find k = arg maxj∈[K] cos−1

(
PΩ(zj)·PΩ(v)
‖PΩ(zj)‖‖PΩ(v)‖

)
. If this condition is

maximized by more than one k, choose one at random. Add the index of vpo to Jk. ;
6 end
7 for k ∈ [K] do
8 αk = maxvpo cos−1

(
PΩ(vpo)·PΩ(uk)
‖PΩ(vpo)‖‖PΩ(uk)‖

)
;

9 end
10 Return cone indices J , u, α ;

Lemma 1 (Greedy clustering with missing values). Let Ω indicate the missing values of vpo. Let αk be the defining angle of
Ck and PΩ(αk) be the defining angle of the cone resulting from projecting Ck onto the missing value plane from Ω. If, for
exactly one k,

arccos

(
PΩ(vpo) · PΩ(uk)

‖PΩ(vpo)‖‖PΩ(uk)‖

)
≤ PΩ(αk) (13)

then vpo originated from the corresponding Ck. If αk are identical for all k, Alg. 1 will cluster vpo correctly.

Proof. The result follows directly.

Now consider feasibility of imputing data points using the α̂ and û from Alg. 2. Clearly, the missing values plane for each
point intersects the original corresponding cone defined by the true u and α of the cone. We know the û fall somewhere within
the original cones, but if the α̂ are too small, the new cones may not intersect with the missing values plane.

Lemma 2 (Feasibility of imputation algorithm). The estimator in (5) is able to find an imputation within the feasible set given
α1, . . . , αK and u1, . . . , uk returned by Alg. 1.

Proof. Let vector vpo be a partially observed version of vfo ∈ V. We define the angle between vpo and cluster center uk in
the F -dimensional space:

γk = arccos

(
PΩ(vpo) · uk
‖PΩ(vpo)‖‖uk‖

)
, (14)

and between vpo and the projected cluster center in the projected (F − f)-dimensional space:

γ̂k = arccos

(
PΩ(vpo) · PΩ(uk)

‖PΩ(vpo)‖‖PΩ(uk)‖

)
, (15)

where Ω is the observed values indicator corresponding to vpo. Then γk ≤ γ̂k since PΩ(vpo) · uk = PΩ(vpo) · PΩ(uk) and
‖uk‖ ≥ ‖PΩ(uk)‖. Thus γ̂k is large enough that an imputation on the missing values plane is feasible for each vpo. Since
αk = max γk, all partially observed points labeled as belonging to Ck can be imputed.

Algorithm 2: Rank-1 NMF with Missing Values

Data: Partially observed data V ∈ RF×N+ , Ω ∈ {0, 1}F×N , K ∈ N
Result: Ŵ∗ ∈ RF×K+ and Ĥ∗ ∈ RK×N+

1 Cluster data using Alg. 1 ;
2 Impute data using (5) ;
3 Perform rank-1 NMF on imputed data using [36, Alg. 2] ;

We extend bound (10) on the relative NMF error to missing values (Alg. 3). Note that the original bound allows for
overlapping cones and does not assume (9) holds. It only requires all points be within αk of uk, which essentially allows the
normalized perturbation matrix Ek to be upper-bounded by sinαk. If the missing entries of each vpo are imputed using Alg. 1,
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Fig. 4. Geometric proof of relative NMF error bound.

Fig. 5. Minimum covering sphere in two dimensions.

then the perturbation from the original uk, which we denote Êk, will be at most 2Ek. We can prove this using a worst-case
scenario.

Theorem 1 (Rank-1 NMF with missing values). Suppose V is drawn from K cones and missing values are introduced to get
Vpo. If Alg. 2 correctly clusters data points and Alg. 1 is used to perform imputation, then

‖V −W∗
poH

∗
po‖F

‖V‖F
≤ max
k∈[K]

{sin 2αk}, (16)

where W∗
po and H∗po are found by Alg. 3.

Proof. Suppose there are two points v1 and v2 in a cone, as indicated by the solid circle in Fig. 4. Then u will be at an angle
α from both v1 and v2. Now suppose v2 contains missing values. Then the new v1 will be the only vector in the cone, v̂2

is imputed using (11), where û = v1, and v̂2 is at an angular distance sin 2α from û. (One can check that if there are more
than two points in the cone, this distance cannot increase.) A worst-case imputation places v̂2 at an angle 2α away from v1

(suppose the optimizer places v̂2 at an angle greater than 2α from v1, but this is a contradiction since then v2 would be a
better estimate than the optimum). The dashed circle in Fig. 4 represents points at an angle 2α from v1. Any v̂2 outside the
dotted circle is at an angle greater than 2α from v2. So the shaded region indicates when the error may be greater than sin 2α.
But the missing values of v2 allow for “movement” only along the axes. Since the intersection of a hyperplane with a cone is
a finite-dimensional ellipsoid [41], [42], which is compact [43], v2 cannot “travel” via imputation to the shaded region without
crossing a feasible region less than 2α from û. Hence the theorem holds and is tight.

V. PROBABILISTIC ERROR

We now make some probabilistic assumptions on our data and missingness patterns to calculate the expected maximum
error of optimal recovery imputation. First, consider a cone C in an F -dimensional space defined by u and α. Let us ignore
the length of the vectors in C and preserve only the angles of the vectors from u. We can then represent vectors of an
F -dimensional cone as points in an (F − 1)-dimensional ball. For example, a 3-dimensional cone can be represented as points
in a circle, as in Fig. 4.

Let there be N points {x1, . . . , xN} ∈ RF , drawn uniformly at random from K F -dimensional balls, labeled B1, . . . , BK .
Let d(xi, xj) be the Euclidean distance between xi and xj . We assume there is at least one data point in each ball, and that
the distance between any two points in a ball Bk is less than the distance between any point in Bk and a point not in Bk.
That is, for any i, j ∈ [N ], i 6= j,

max
i,j∈Bk

d(xi, xj) < min
i∈Bk,j /∈Bk

d(xi, xj) for all k = 1, . . . ,K. (17)

This is equivalent to the geometric assumption in (9), and we can correctly cluster any points drawn from such balls using
Alg. 1. After obtaining the clusters, we can compute the minimum covering sphere (MCS) on the points in each cluster [44]
(Fig. 5). This gives us K balls with Nk points in each ball.

Now suppose that we have partially observed entries in our data. Let the missingness of a point be a Bernoulli random
variable with parameter γ. That is, x is fully observed with probability γ and partially observed with probability 1−γ. There is
now some uncertainty about the position of partially observed data points, so we will find the MCS for only the fully observed
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Fig. 6. Assumption that points are uniformly random on the radius.

points. This is analogous to step 3 in Algorithm 2. By calculating the expected change in the radius of the MCS, we can
calculate the expected change in its corresponding cone.

Theorem 2 (Probabilistic bound on NMF error). Given the setting described above, and assuming that the N points are drawn
uniformly at random from the K balls, then after imputing with Alg. 1, we can tighten the bound in (16) to

‖V −W∗
poH

∗
po‖F

‖V‖F
≤ max
k∈[K]

{sinαk}. (18)

Proof. If the N points are drawn uniformly at random from the K balls, then E[Nk] = N/k, and the expected number of
fully observed and partially observed points in each cluster is

E[|Xk,fo|] = γNk and E[|Xk,po|] = (1− γ)Nk. (19)

Clearly, the volume of the MCS can only decrease as |Xk,fo| decreases. Let Rmax be the radius of MCS if there were no
missing values, and let R̂ be the radius of the MCS of only the fully observed points. Then R̂ < Rmax only if any x ∈ Xpo

originally lay on the surface of MCSk,fo. Suppose the points are randomly distributed along the radius of the F -ball and we
pick points to be partially observed uniformly at random. Let

Npo = d(1− γ)Ne. (20)

Assume xi are i.i.d. and uniformly distributed (without loss of generality) on [0, 1]. This matches the assumption in the
probabilistic analysis in [36] that the angles are drawn uniformly at random on [0, α] (see Fig. 6). Assuming a continuous
distribution, almost surely no two points have exactly the same radius, and the probability of picking the ` outermost points is

P(`) =

(
N−`
Npo−`

)(
N
Npo

) , where ` = 0, 1, ..., Npo . (21)

This gives us

E[`] =

Npo∑
`=1

` · P[`] (22)

=

Npo∑
`=1

` ·

(
N−`
Npo−`

)(
N
Npo

) (23)

=
1(
N
Npo

) Npo∑
`=1

` ·
(
N − `
Npo − `

)
(24)

=

(
N−1
Npo−1

)
N(N + 1)(

N
Npo

)
(N −Npo + 1)(N −Npo + 2)

, (25)

where Npo is dependent on γ, as defined in (20).
The radius of the resulting MCS is dependent on the distribution of points along the radius. We can determine R̂ using

order statistics. If we assume uniform distribution between 0 and 1, and order the points x1, . . . , xn so that x1 is closest to
the center of the sphere and xn is farthest, the radius of the nth point, Rn, is given by the beta distribution

Rn ∼ B(n, 1), (26)
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Fig. 7. Example of E[R̂] with N = 9 and ` = 3.

and
E[Rn] =

n

n+ 1
. (27)

Thus if ` of the outermost points are chosen to be missing,

E[R̂] = Rmax − (`/N)Rmax =

(
N − `
N

)
Rmax . (28)

We illustrate with an example in Fig. 7. We can substitute E[`] for `, and since E[`] is a function of γ, we have derived the
expected radius of the MCS as a function of missingness:

E[R̂] =

(
N − E[`]

N

)
Rmax . (29)

Now we reverse the arrow in Fig. 6. Due to the random distribution of points in the sphere, removing the ` outermost points
does not change the expected center u of the MCS. Transitioning from spheres back to cones, we get

E[α̂] =

(
N − E[`]

N

)
α . (30)

Thus
α− E[α̂] =

E[`]

N
· α, (31)

and the normalized Frobenius distance between W∗
foH

∗
fo and W∗H∗ for a single cone is:

‖W∗
foH

∗
fo −W∗H∗‖F
‖W∗H∗‖F

≤ sin

(
E[`]

N
· α
)
. (32)

If we assume vn ∈ V are MCAR, the statistical mean of Vfo is the same as that of V. Since vn are uniformly distributed,
the range of vn remains centered on the mean, so the expected center of the MCS does not change. Thus the maximum
difference between a point v ∈ Ck and its imputed point v̂ is sinαk, and the theorem follows.

A. MCS with a different assumption

If instead we assume points are uniformly distributed in the volume of the ball, we find the change in radius as follows.
First, calculate the volume of a F -dimensional ball of radius R = 1:

VF (R) =
πF/2

Γ(F/2 + 1)
RF . (33)

Then we calculate radius R̂ of an F -dimensional ball as:

R̂F (V̂ ) =
Γ(F/2 + 1)1/F

√
π

V̂ 1/F , (34)

where volume V̂ =
(

1−`
N

)
VF (1).

The probability that a point x is in MCSpo is

P(x ∈ MCSpo) =
V (R̂)

V (Rmax)
. (35)

Thus the expected radius given a missing parameter γ is given by

E[R̂] = R̂F

(
1− E[`]

N
VF (1)

)
, (36)
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where E[`] is a function of γ, and the expected NMF error is

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin

(
E[R̂] · α

)
. (37)

B. Minimum covering spherical cap for normalized data

If the data is normalized such that each vector has an L2 norm of 1, all the points will fall on the surface of a sphere. Let
there be N points {x1, . . . , xN} ∈ RF , drawn at random from K F -dimensional spherical caps of a radius R F -ball, labeled
C1, . . . , CK . Let d(xi, xj) be some distance between xi and xj . Assume there is at least one data point in each spherical cap,
and that (9) holds.

The area of an F -dimensional spherical cap is

A(R, h) =
1

2
AFR

F−1I2rh−h2/r2

(
F − 1

2
,

1

2

)
, (38)

where 0 ≤ h ≤ R,An = 2πn/2/Γ[n/2] is the area of the unit n-ball, h is the height of the cap, which can be calculated as a
function of the angle α between the center and the edge of the cap, and Ix(a, b) is the regularized incomplete beta function.
Using the same style of analysis from the previous section, we can find the expected angle E[αpo] given a parameter γ for
partially observed points. Thus,

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin (E[αpo]) . (39)

VI. EXPERIMENTAL RESULTS

To test our algorithm, we first generate conical data satisfying the geometric assumption, using N = 10000, F = 160, and
K = 40. We choose squared length of each v as a Poisson random variable with parameter 1, and we choose the angles of v
uniformly. We then let V be partially-observed with Bernoulli parameter ξ to obtain Vpo. That is,

Ω(i, j)
i.i.d.∼ Bern(ξ). (40)

We run tests using ξ ∈ {0.4, 0.55, 0.7, 0.8, 0.9} and find imputation relative error for NMF:

E[V,W∗
poH

∗
po] =

‖V −W∗
poH

∗
po‖F

‖V‖F
. (41)

Fig. 8 shows relative error of our optimal recovery imputation with different values of α when we enforce correct clustering.
The error for all α values and missingness percentages lies within the bound given by (16). Note that because our data is
drawn uniformly at random, the error does not approach the worst-case bound.

In the next experiment, we impute the conical data with α = 0.1 with other local imputation algorithms, including kNNimpute
[45] with Euclidean, cosine, and Chebyshev (L∞) distances and iterated local least squares (itrLLS) [46]. We perform two
tests with optimal recovery: one with enforced correct clusterings and one without prior knowledge of the correct clusterings.
We use α = 0.1 and do not enforce correct clustering for Alg. 3 as before (see Fig. 9). We find k = 8 neighbors gives us the
best results. Optimal recovery performs much better than other methods when clusters are known, and it performs similarly to
other methods when they are not.

Following [36], the next experiment tests a subset of the hyperspectral imaging data set from Pavia [47]. We crop the 103
images to have 2000 pixels per image, set K = 9, corresponding to the different imagery categories, and introduce missing
values in the same proportions as before (see Fig. 10). We also run tests with mice protein data [48] (see Fig. 11). The original
dataset contains 1077 measurements with 77 proteins. We remove the 9 proteins that had missing measurements, then introduce
missing values. We find k = 5 neighbors gives us the best results for kNNimpute on these datasets. On the mouse data, we
also test bicluster BPCA [30] in addition to the other methods. The conical and Pavia test data were not sufficiently well-
conditioned to run bicluster BPCA. See Tab. I for a comparison of run times. Our results demonstrate that optimal recovery
performs similarly to kNN methods when clusters are not known beforehand. When clusters are known, optimal recovery
performs similarly to more advanced methods (itrLLSimpute and biBPCA) in a fraction of the time.

VII. CONCLUSION

We have extended classical approximation-theoretic optimal recovery to the setting of imputing missing values, specifically
for NMF. Fu et al. remark that “separability-based methods have many attractive features, such as identifiability, solvability,
provable noise robustness, and the existence of lightweight greedy algorithms” [4]. We showed that imputation using optimal
recovery minimizes relative NMF error under certain separability assumptions, and provided a straightforward algorithm for
implementation.

Future work aims to extend optimal recovery to other settings of missing values in modern data science. Different applications
(and therefore models) require different NMF algorithms and model assumptions. Thus different error bounds will be necessary
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Fig. 8. Relative NMF error of imputed conical data with correct clustering.

Fig. 9. Relative NMF error for Conical data.

Fig. 10. Relative NMF error for Pavia data.

Fig. 11. Relative NMF error for Mouse data.
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TABLE I
AVERAGE IMPUTATION TIMES FOR MOUSE DATA IN SECONDS.

% Missing 10 20 30 45 60
OptRec 0.51 0.48 0.63 0.91 1.41

OptRec (Correct Clusters) 0.48 0.48 0.58 0.85 1.36
kNN (Euc) 0.11 0.17 0.29 0.34 0.51
kNN (Cos) 0.10 0.15 0.19 0.27 0.41

kNN (Cheb) 0.08 0.16 0.23 0.35 0.52
itrLLSimpute 43.9 30.4 25.7 20.5 14.5

biBPCA 5000+

[4]. On the experimental side, we plan to test our imputation algorithm on single-cell RNA sequencing data along with different
clustering algorithms; these experiments will inform more specific heuristic refinements. We also aim to extend our algorithm
to the scenario where complete cases for each cluster are not available.
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