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Abstract 7 

Population structure is widely perceived as a noise factor that undermines the quality of association 8 

between an SNP variable and a phenotypic variable in genome-wide association studies (GWAS). 9 

The linear model for GWAS generally accounts for population-structure variables to obtain the 10 

adjusted phenotype which has less noise. Its result is known to amplify the contrast between 11 

significant SNPs and insignificant SNPs in a resultant Manhattan plot. In fact, however, 12 

conventional GWAS practice often implements the linear model in an unusual way in that the 13 

population-structure variables are incorporated into the linear model in the form of continuous 14 

variables rather than factor variables. If the coefficients for population-structure variables change 15 

across all SNPs, then each SNP variable will be regressed against a differently adjusted phenotypic 16 

variable, making the GWAS process unreliable. Focusing on this concern, this study investigated 17 

whether accounting for population-structure variables in the linear model for GWAS can assure 18 

the adjusted phenotypes to be consistent across all SNPs. The result showed that the adjusted 19 

phenotypes resulting across all SNPs were not consistent, which is alarming considering 20 

conventional GWAS practice that accounts for population structure.  21 
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Introduction 25 

Genome-wide association studies (GWAS) aim to identify single nucleotide 26 

polymorphisms (SNPs) whose allelic variation is significantly tied to phenotypic variation. In 27 

principle, the tie between the allelic variation and phenotypic variation can be measured based on 28 

the variance among the phenotypic averages for all scores per each SNP (Kim, 2017; Kim, 2018a). 29 

Greater variance indicates a stronger tie. Conventional GWAS practice has been largely conducted 30 

using statistical methods such as the linear model and the linear mixed model (LMM). To date, the 31 

use of the LMM has been widely encouraged because of the general perception that accounting 32 

for a kinship matrix can reduce the noise between a phenotypic variable and an SNP variable, by 33 

correcting the bias that genetic relationship among entities in a population introduces (Yu et al, 34 

2006; Bradbury et al, 2007; Kang et al, 2008; Lipka et al, 2012; Hoffman, 2013; Kim et al, 2018b). 35 

Recently, however, Kim (2019) demonstrated that the use of a kinship matrix actually makes the 36 

LMM unreliable. In this regard, this study excluded the LMM. 37 

Conventional GWAS practice based on the linear model often regresses each SNP variable 38 

along with population-structure variables against a phenotypic variable, one by one across all SNPs. 39 

Therein, the use of population-structure variables aims to obtain an adjusted phenotype calculated 40 

by subtracting the estimated population-structure effect from the phenotype (Yu et al, 2006; 41 

Bradbury et al, 2007; Kang et al, 2008; Lipka et al, 2012; Hoffman, 2013; Kim et al, 2018b). For 42 

reliable GWAS practice, it is crucial to assure the adjusted phenotypes resulting across all SNPs 43 

are consistent. Otherwise, every SNP variable will be regressed against a differently adjusted 44 

phenotypic variable, which consequently confounds GWAS results. This study investigated 45 

whether accounting for population structure in the linear model for GWAS assures the adjusted 46 

phenotypes resulting across all SNPs to be consistent 47 

 48 
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Materials and Methods 52 

Rice data set 53 

This study used a rice data set comprising SNP data, principle component analysis (PCA) data and 54 

phenotypic data. The data set was originally used for GWAS by Zhao et al. (2011) and freely 55 

available to public at http://ricediversity.org/data/index.cfm. Therefore, more information about the 56 

data set can be found from the related paper. In the original data, 413 entities were genotyped with 57 

36,901 SNPs. The number of SNPs was reduced to 12,983 by screening with a criterion of the 58 

minor allele frequency (MAF) of 0.1. The phenotype chosen for this study was seed length.  59 

 60 

Statistical model  61 

The two linear models were established as follows: 62 

    = + +          (1) 63 

    = + + + + + +    (2) 64 

where  = the phenotypic observation;  = the phenotypic mean;  = the SNP variable;  65 

= the PCA1 variable;  = the PCA2 variable;  = the PCA3 variable;  = the PCA4 66 

variable;  = the error term;  = the coefficient for ;  = the coefficient for ;  = the 67 

coefficient for ;  = the coefficient for ;  = the coefficient for .  68 

Equation 1 regresses the SNP variable against the phenotypic variable. Equation 2 regresses the 69 

SNP variable along with the four PCA variables ( , ,  ,  ) against the 70 

phenotypic variable. This means that Equation 2 regresses the SNP variable against the adjusted 71 

phenotypic variable obtained by accounting for the four PCA variables. Equation 3 highlights the 72 

adjusted phenotypic variable: 73 

  − − − − = + +    (3) 74 

Equation 3 is compatible with Equation 2 and represents the adjusted phenotypic variable as −75 − − − . 76 
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Manhattan plot 77 

The F test was implemented as a significance test, from which P values were obtained. The P 78 

values transformed by −  were drawn in a Manhattan plot. It is important to note that the P 79 

values resulting from the linear model for GWAS are prone to genomic inflation. Prior to 80 

confirming the resultant Manhattan plot, therefore, it is necessary to calculate the genomic inflation 81 

factor ( ). The situation of  > 1 indicates the genomic inflation, which means that the 82 

resultant P values are overly estimated compared with the -distribution (van Iterson et al, 2017). 83 

This study adjusted the genomic inflation using the genomic control. More information about the 84 

genomic control can be found in previous studies (Devlin and Roeder, 1999; Yang et al, 2011; van 85 

Iterson et al, 2017).  86 

  87 

Integrity validation of accounting for population structure in GWAS 88 

Equation 3 (compatible with Equation 2) regresses each SNP variable against an adjusted 89 

phenotypic variable. As GWAS handle numerous SNPs one by one at a time, it is important to 90 

assure that the adjusted phenotypes resulting across all SNPs are consistent. Otherwise, each SNP 91 

variable will be regressed against a differently adjusted phenotypic variable. The consistency 92 

among the adjusted phenotypes resulting across all SNPs can be achieved, only if every coefficient 93 

per each PCA variable is consistent across all SNPs. To check the consistency among the adjusted 94 

phenotypes resulting across all SNPs, this study calculated Pearson coefficients between the 95 

phenotype and every adjusted phenotype.  96 

 97 

Data set and R code   98 

All computations were conducted using R (R Core Team, 2016). The data set and R scripts used 99 

in this study are freely available at https://github.com/bongsongkim/Population.Structure.GWAS. 100 

 101 
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Results 103 

Validation of consistency across all adjusted phenotypes 104 

Table 1 summarizes the coefficients per each PCA variable, resulting from applying all 105 

SNPs to Equation 3. Figure 1 represents the estimated coefficients per each PCA variable, showing 106 

large variation. Figure 2 represents the estimated Pearson correlation coefficients between the 107 

phenotype and every adjusted phenotype, illustrating the adjusted phenotypes resulting across all 108 

SNPs are not consistent. This means that each SNP variable is regressed against a differently 109 

adjusted phenotypic variable.  110 

 111 

 112 

Table 1. Summary of coefficients per each PCA variable in relation to Equation 3. 113 

 Min. 1st Qu. Median Mean 3rd Qu. Max 

 -7.833 -2.246   -2.162 -2.109 -2.024 3.629 

 -4.438 -1.097 -1.020 -1.007 -0.944 3.271 

 -13.610 -9.229 -9.194 -9.180 -9.160 0.659 

 -9.308 3.016 3.087 3.025 3.121 8.704 

 114 
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 116 

Figure 1. (A) Estimated coefficients for the PCA1 variable, (B) estimated coefficients for the 117 

PCA2 variable, (C) estimated coefficients for the PCA3 variable, (D) estimated coefficients for 118 

the PCA4 variable. 119 

 120 

 121 

Figure 2. Pearson correlation coefficients between the phenotype and every adjusted phenotype.  122 

 123 
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Impact of accounting for population structure in GWAS 125 

Figure 3 shows four Manhattan plots, for which the same SNP and phenotypic data were used. 126 

Figure 3A represents the Manhattan plot in relation to Equation 1, in which the resultant λ  was 127 

3.688. Figure 3C is the same as Figure 3A in shape. However, Figure 3C meets λ  = 1 by 128 

implementing the genomic control with Figure 3A. Figure 3E represents the Manhattan plot in 129 

relation to Equation 3, in which the resultant λ  was 1.433. Compared with Figure 3A, Figure 3E 130 

has substantially lower λ . This suggests that accounting for the four PCA variables was 131 

impactful in diminishing the genomic inflation. Figure 3G was obtained by adjusting Figure 3E by 132 

implementing the genomic control. This led to λ  = 1 in Figure 3G. It is apparent that Figure 3E 133 

has clearer background than Figure 3A in relation to accounting for the four PCA variables. In this 134 

regard, previous studies explained that accounting for population structure in the linear model for 135 

GWAS eliminates the noise in SNP-phenotype associations, which results in clear background in 136 

a resultant Manhattan plot (Yu et al, 2006; Kang et al, 2008; Korte and Farlow, 2013; Sul et al, 137 

2018; Barton et al, 2019). However, Figure 4 illustrates that significant SNP-phenotype 138 

associations are not consistent between Figures 3C and 3G. This means that the clear background 139 

was not from eliminating the noise in SNP-phenotype associations, but from defining new SNP-140 

phenotype associations. 141 

  142 
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 144 

Figure 3. (A) Manhattan plot obtained by not accounting for the four PCA variables (  = 3.688), 145 

(C) Manhattan plot obtained by adjusting Figure 3A with implementing the genomic control (  146 

= 1.000), (E) Manhattan plot obtained by accounting for the four PCA variables (  = 1.433), (G) 147 

Manhattan plot obtained by adjusting Figure 3C with implementing the genomic control (  = 148 

1.000).  149 

 150 
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 151 

Figure 4. Correlation plot between the –log10 (P) values obtained by not accounting for the four 152 

PCA variables (Figure 3C) and the –log10 (P) values obtained by accounting for the four PCA 153 

variables (Figure 3G).   154 

 155 
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Discussion 164 

It is generally perceived that accounting for population structure in GWAS improves the 165 

quality of visual representation of a Manhattan plot by both suppressing genomic inflation and 166 

reducing false-positive SNP-phenotype associations (Yu et al, 2006; Bradbury et al, 2007; Kang 167 

et al, 2008; Lipka et al, 2012; Hoffman, 2013; Kim et al, 2018b). In fact, this study showed that 168 

accounting for the four PCA variables was very effective in diminishing the genomic inflation. 169 

Surprisingly, however, this study revealed that accounting for the four PCA variables breaks the 170 

consistency among the adjusted phenotypes resulting across all SNPs. The loss of the consistency 171 

consequently causes each SNP variable to be regressed against a differently adjusted variable, 172 

making the GWAS process unreliable. The use of population-structure variables in the linear 173 

model for GWAS implies two errors. First, the linear model is misused. Considering that the linear 174 

model is suited for analyzing data in experimental blocks, the use of continuous variables rather 175 

than factor variables necessarily causes an error. Second, the assumption for the relationship 176 

between phenotype and population structure is unjustified. The linear model for GWAS generally 177 

assumes that the population-structure variables additively contribute to the phenotypic variable. 178 

However, how the population structure biologically influences the phenotype has yet been 179 

unknown. Regardless of whether the additivity of the population-structure variables is true or false, 180 

the current way of accounting for population structure is inappropriate in that population-structure 181 

effects vary across all SNPs. The abovementioned errors consequently lead to the loss of the 182 

consistency among the adjusted phenotypes resulting across all SNPs and cause each SNP variable 183 

to be regressed against a differently adjusted phenotypic variable.  184 

 185 

Conclusion 186 

The linear model assures to preserve the consistency among the adjusted phenotypes resulting 187 

across all SNPs, only if factor variables such as years, locations, replications and treatments are 188 

used. This study concluded that the conventional way of accounting for population structure makes 189 

the GWAS process unreliable. This is because the population structure is represented as continuous 190 

variables. If population structure can be represented as factor variables, accounting for the 191 

population structure in the linear model for GWAS will be sound. 192 
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