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The ever increasing amount of genomic and meta-genomic sequence
data has transformed biology into a data-driven and compute-
intensive discipline. Hence, there is a need for efficient algorithms
and scalable implementations thereof for analysing such data.
We present GENESIS, a library for working with phylogenetic data,
and GAPPA, an accompanying command line tool for conducting typ-
ical analyses on such data. While our tools primarily target phyloge-
netic trees and phylogenetic placements, they also offer a plethora
of functions for handling genetic sequences, taxonomies, and other
relevant data types.
The tools aim at improved usability at the production stage (con-
ducting data analyses) as well as the development stage (rapid
prototyping): The modular interface of GENESIS simplifies numer-
ous standard high-level tasks and analyses, while allowing for low-
level customization at the same time. Our implementation relies
on modern, multi-threaded C++11, and is substantially more com-
putationally efficient than analogous tools. We already employed
the core GENESIS library in several of our tools and publications,
thereby proving its flexibility and utility. Both GENESIS and GAPPA

are available under GPLv3 at http://github.com/lczech/genesis and
http://github.com/lczech/gappa.
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1. Introduction

When developing scientific software, there are several impor-
tant, yet often times competing design objectives: (a) Most
users require a fast and simple application for analysing their
data, (b) some power users desire customization, e. g., via
scripting etc., and (c) developers require a flexible toolkit for
rapid prototyping. At the same time, with the on-going data
growth, the implementation needs to be scalable and efficient
with respect to both, memory, and execution times. The tools
we present here aim to meet all of the above objectives. To this
end, genesis and gappa are written in C++11, using a modern,
modular, and function-centric software design. We evaluate
the code quality, the runtime behavior, and the memory re-
quirements for conducting typical tasks such as file parsing
and data processing in the Supplementary data. We find that
genesis has the overall best code quality score (1) compared
to other scientific codes written in C or C++. It is also consis-
tently faster than all evaluated Python and R libraries in our
tests.

2. Features of Genesis

genesis is a highly flexible library for reading, manipulating,
and evaluating phylogenetic data, and in particular phyloge-
netic placement data. It has a simple and straight forward API,
but is also computationally highly efficient. Typical tasks such
as parsing and writing files, iterating over the elements of a

data structure, and other frequently used functions are mostly
one-liners that integrate well with modern C++ and its stan-
dard library STL. Where possible, the library is multi-threaded,
allowing for fully leveraging the computational power of multi-
core systems. Hence, genesis allows for scalable parsing and
processing of huge datasets. The functionality is divided into
loosely coupled modules, which we briefly describe in the
following.

Phylogenetic Trees. Phylogenetic trees are implemented via a
data structure that enables fast and flexible operations, and
allows to store arbitrary (meta-)data at the nodes and at the
edges. The trees may contain multifurcations and may have
a designated root node. Trees can be parsed from newick
files and be written to newick, phyloxml, and nexus files,
again with support for arbitrary edge and node annotations.
Traversing the tree starting from an arbitrary node in, e. g.,
post-order, pre-order, or level-order can be accomplished via
simple for loops:

// Read a tree from a Newick file.
Tree tree = CommonTreeNewickReader (). read(

from_file ( "path/to/tree. newick " )
);

// Traverse tree in preorder , print node names .
for( auto it : preorder ( tree )) {

auto& data = it.node (). data < CommonNodeData >();
std :: cout << data.name << "\n";

}

Functionality for manipulating trees, finding lowest com-
mon ancestors of nodes or paths between nodes, calculating
distances between nodes, testing for monophyly of clades,
and many other standard tasks is provided. Furthermore,
functions for drawing rectangular and circular phylograms or
cladograms to svg files, using individual custom edge colors
and node shapes, are provided for creating publication quality
figures.

Phylogenetic Placements. Phylogenetic (or evolutionary)
placement is a method for classifying large numbers of
(meta-)genomic sequences with respect to a given reference
phylogeny (2, 3). Functions for analyzing the resulting place-
ment data constitute a primary focus of genesis. It offers
low-level functions for filtering, merging, and otherwise manip-
ulating placement data, as well as high-level functions such as
distance calculations (4), Edge PCA and Squash Clustering (5),
and Phylogenetic k-means (6), among others. Advanced func-
tions for analysing and visualizing the data are implemented
as well, for instance, our adaptation of Phylofactorization to
phylogenetic placement data (6, 7).
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Other Features. Sequences and alignments can be efficiently
read from and written to fasta and phylip files; in our tests,
we achieved reading rates close to 400 MB/s. High-level func-
tions for managing sequences include several methods for
calculating consensus sequences, the entropy of sequence sets,
and sequence re-labelling via hashes (e. g., MD5, SHA1, SHA256).

Taxonomies and taxonomic paths (for example,
“Eukaryota;Alveolata;Apicomplexa”) can be parsed
from databases such as Silva (8, 9) or NCBI (10, 11) and
stored in a hierarchical taxonomic data structure, again with
the ability to store arbitrary meta-data at each taxon, and to
traverse the taxonomy.

Furthermore, genesis supports several standard file formats
such as json, csv, and svg. All input methods (including trees
and sequence files) automatically and transparently handle
gzip-compressed files. Moreover, a multitude of auxiliary
functions and classes is provided: Matrices and dataframes
to store data, histograms and statistics functions to examine
such data, regression via Generalized Linear Models, color
support for handling gradients in plots, etc. The full list of
functionality is available via the online documentation.

Lastly, genesis offers a simple architecture for scripting-like
development of rapid prototypes or small custom programs
(e. g., convert some files or examine some data for a particular
experiment).

3. Features of Gappa

The flexibility of a library such as genesis is primarily useful
for method developers. For most users, it is however more
convenient to offer a simple interface for typical, frequent tasks.
To this end, we have developed the command line program
gappa, which we present in the following.

gappa is short for “Genesis Applications for Phylogenetic
Placement Analyses”. Its original purpose was to implement
and make available the methods we presented in (6) and (12).
For example, it offers a method for automatically obtaining a
set of reference sequences from large databases (12), which can
be used to infer a reference tree for subsequent phylogenetic
placement. Furthermore, it provides a set of visualization tools
to display the distribution of placements on the tree, as well
as visualize per-branch correlations with meta-data features
of environmental samples (6). Lastly, it offers quantitative
analysis methods such as Phylogenetic k-means and Placement-
Factorization for environmental samples (6).

gappa has since been substantially extended and now also
contains re-implementations of some prominent methods of
guppy (3), as well as commands for sanitizing, filtering, and
manipulating files formats such as jplace, newick, or fasta.
It can also calculate the taxonomic assignments for a set
of phylogenetic placements (previously implemented in the
SATIVA pipeline (13)).

The gappa commands are organized into functional mod-
ules for clarity, using a consistent command interface. gappa
can also be considered as a collection of demo programs us-
ing genesis, which might be helpful as a starting point for
developers who intend to use our library.

As gappa internally relies on genesis, it is also efficient
and scalable. In comparison to guppy (3), we have observed
speedups of several orders of magnitude when processing large
data volumes (12). Furthermore, the memory requirements
are generally about 50% lower for gappa compared to guppy.

4. Conclusion

We presented genesis, a library for working with phylogenetic
(placement) data and related data types, as well as gappa,
a command line interface for analysis methods and common
tasks related to phylogenetic placements. genesis and gappa
are already used as an integral part in several of our previous
publications and programs (2, 6, 12, 14, 15), proving their
flexibility and usefulness.

In future genesis releases, we intend to offer API bindings
to Python, thus making the functions of the library more ac-
cessible to developers. In gappa, we will implement additional
commands, in particular for working with phylogenetic place-
ments, as well as re-implement the remaining commands of
guppy, in order to facilitate analysis of larger data sets.

Both genesis and gappa are freely available under GPLv3
at http://github.com/lczech/genesis and http://github.com/lczech/
gappa. We maintain a Google Group for discussing phylo-
genetic placement and our tools at https://groups.google.com/
forum/#!forum/phylogenetic-placement.
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Supplementary Text: Software Comparison
Genesis and Gappa: Library and Toolkit for
Working with Phylogenetic (Placement) Data.

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis

In this supplement, we compare genesis to competing software. First, we evaluate its runtime and memory
requirements for some representative and frequent tasks, by comparing it to libraries that have similar scope
and functionality. Second, we evaluate the quality of the code in comparison to other scientific software
written in C++ and C.

1 Runtime and Memory

We compare genesis to several competing libraries and tools. We focus on the most widely used alternative
tools. The full list of competing software to which we compared genesis is provided in Table S1. Most
general-purpose libraries for bioinformatics tasks, manipulation and (post-)analysis of genetic sequences and
phylogenetic trees are written in interpreted languages such as Python or R. In order to also compare genesis
to software written in a similar, compiled, language, we also included other libraries developed by our lab,
namely libpll [1] and the accompanying pll-modules [2]. They are written in C, and form the core of the
recent re-implementation of RAxML-ng [3].

We compare several typical tasks for working with sequences, trees, and phylogenetic placements. As the
specific scope of each library and tool differs, there is comparatively little overlap in functionality that can
be used for benchmarking. Hence, we evaluated the runtime and memory requirements for the following
general tasks:

• Parsing files in fasta format [4]; see Figure S1.

• Parsing files in phylip format [5]; see Figure S2.

• Calculating base frequencies on sets of sequences; see Figure S3.

• Parsing files in newick format [6]; see Figure S4.

• Calculating the pairwise patristic distance matrix on a given tree with branch lengths; see Figure S5.

• Parsing files in jplace format [7]; see Figure S6.

The tests were run on a 4-core laptop with 12 GB of main memory. We note that genesis offers parallel
processing and computation. It can, for example read/parse multiple files simultaneously on distinct compute
cores. We are not aware that any of the competing libraries and tools evaluated here transparently offer this
feature. Hence, for a fair comparison, we also tested genesis on a single core only.

In summary, genesis outperforms all tools written in Python and R. In most cases it is also more memory-
efficient. The runtime and memory requirements for libpll/pll-modules in comparison to genesis show
that each of the tools performs better at specific tasks, depending on how much effort was invested into
the optimization of the respective method. Based on a careful code inspection, we believe that the tasks
were each software performs best are implemented close to optimal regarding runtime and/or memory. We
provide all scripts used for testing the tools and creating the plots shown here at https://github.com/lczech/
genesis-gappa-paper.
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2 Code Quality

Code quality is an important property of scientific software, as ‘good’ code quality facilitates detecting
bugs and ensures long-term maintainability of the software; see [8] for a recent analysis and discussion on
the state of software for evolutionary biology. We used the prototype implementation of softwipe (https:
//github.com/adrianzap/softwipe; also developed in our lab) to assess the relative code quality of genesis.
softwipe is a meta-tool for C and C++ software that employs other tools such as clang-tidy and cppcheck
to obtain scores for a number of different code quality characteristics/indicators: It checks for compiler
warnings, memory leaks, undefined behaviour, usage of assertions, cyclomatic complexity (modularity of the
code), code duplication, etc.

The result of softwipe is a ranking of the tested codes from best to worst, scoring each code relative to
the others for each code quality indicator, as well as an average “overall” ranking (average over all code
quality indicators). At the time of writing this paper, 15 different software codes in C and/or C++ formed
part of softwipe code quality benchmark, including highly cited tools such as INDELible [9], MAFFT
[10], MrBayes [11], T-coffee [12], and Seq-Gen [13].

Overall, genesis currently achieves the highest score of all tested codes, with 9.6/10 points, with top
scores (10/10) in compiler and sanitizer warnings, usage of assertions, and (low) cyclomatic complexity. See
https://github.com/adrianzap/softwipe/wiki for details and the up-to-date benchmark results.

Table S1: Evaluated libraries and tools for the runtime and
memory tests. The table lists the respective programming lan-
guage, the version we used in our evaluation, the main reference(s),
and the accumulated number of citations, using Google Scholar
(https://scholar.google.com), accessed on 2019-05-05.

Tool Language Version Reference Citations
genesis C++ 0.22.1 [this article] -
APE R 5.3 [14, 15] 7390
Biopython Python 1.73 [16] 1712
DendroPy Python 4.4.0 [17] 935
ete3 Python 3.1.1 [18] 644
ggtree R 1.10.5 [19] 294
guppy OCaml 1.1.a19 [20] 4761

libpll C 2019-04-13 [1, 2] -
scikit-bio Python 0.5.5 [21] -
1 guppy is part of the pplacer suite of programs; the number of

citations hence also includes those of pplacer itself.
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Figure S1: Runtimes and memory footprints for reading fasta files [4] containing 1 K to 1 M sequences.
The input files consist of randomly generated sequences using the alphabet ‘-ACGT’, with a length of 1000
characters per sequence. Hence, the largest file is about 1 GB in size.
In this test, genesis is by far the fastest and most memory-efficient software. In all cases, it parses files
more than two times faster than the second fastest software, libpll. Furthermore, the memory usage of
libpll for fasta files seems to be problematic: It uses about 8 times as much memory as the file size, for
example, 7.8 GB for the 1 GB file. On the other hand, genesis has almost no overhead for keeping the files
in memory, as can be seen by the 103 MB ≈ 1 GB memory usage for 1 M sequences. Asymptotically, the
memory usage of scikit-bio is the second best after genesis: It starts at around 120 MB, probably due
to constant memory for its Python environment, but then levels out for larger files. However, scikit-bio is
also one of the slowest tools, and at least 20 times slower than genesis in all cases.
Note that we did not evaluate DendroPy for files larger than 100 K sequences (corresponding to a 100 MB
file), because the runtime of 30 min for that file is already impractical for reasonable usage.

Figure S2: Runtimes and memory footprints for reading phylip files [5] containing 1 K to 1 M sequences.
The sequences are the same as in Figure S1, but converted to a strict phylip format. Strict phylip requires
exactly 10 characters for sequence names, and does not allow line breaks in the sequences. This was required
by some of the tools, which can not handle “relaxed” phylip containing longer sequence names and/or line
breaks. Although genesis supports all phylip variants, we generally advise against using the phylip format
for maximum portability across tools.
In this test, genesis is second best after libpll in both runtime and memory usage, but only by a small
margin. Using the phylip format, libpll also does not exhibit the memory issue that it shows for fasta,
c. f. Figure S1. We again limited the test of DendroPy to reasonable runtimes, as explained in Figure S1.
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Figure S3: Runtimes and memory footprints for calculating base frequencies on a given set of sequences.
Apart from merely reading and parsing files, we also tested some fundamental functionality for working
with sequence data. Unfortunately, the range of functions offered by each software largely differs, and we
did not find any function or procedure that is provided by all of them. We therefore evaluate the simple
calculation of character frequencies/occurences in the sequences of Figure S1 and Figure S2. The parsing of
the sequences is not included in the time measurement. We only include results for those libraries that do
offer a function for counting characters in either single sequences or in an entire set of sequences.

Figure S4: Runtimes and memory footprints for reading newick files [6] with 1 K to 1 M taxa (tip/leaf
nodes) and a randomly generated topology. The newick format is the only one supported by all libraries that
we tested. In most cases, genesis is fastest, closely followed by libpll, which does however exhibit a more
efficient memory usage. The memory usage for large trees is best for the R-based libraries ape and ggtree,
as they store most of the tree data in a memory-efficient table (instead of per-node storage that most other
tools use). ete3 exhibits the worst memory efficiency, with 3 GB for a 25 MB newick file containing a tree
with 1 M taxa. We did not include measurements of DendroPy and Biopython for trees above 50 K taxa.
These tools were able to read these trees, but not work with them: They store and traverse trees recursively,
so that even a simple counting of the number of taxa in the tree exceeded the Python recursion depth,
essentially rendering the tools inapplicable to such large trees.
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Figure S5: Runtimes and memory footprints for calculating the pairwise patristic distances on a given
tree. Similar to Figure S3, we evaluate a simple function that operates on trees: The calculation of the
pairwise patristic (branch length) distance matrix between all taxa of the tree. Unfortunately, we could
again not identify a basic function that is available in all libraries. For example, ete3 does have a function
for calculating distances between two given taxa—but applying this to all pairs of taxa to obtain the full
matrix was prohibitively slow, so we did not include it here. The tree parsing times are not included in the
time measurements.
Again, genesis outperforms all other libraries. We note that genesis calculates the matrix for all nodes
of the tree, including inner nodes, while the other libraries shown only return the distance matrix for the
taxa (leaf nodes) of the tree, which is only a quarter of the size. This explains the better memory footprint
of scikit-bio for larger trees. We could not test all tree sizes here, as the resulting matrices would have
exceeded the available memory. This is also the reason why DendroPy was not able to calculate the matrix
for 10 K taxa on the given hardware.

Figure S6: Runtimes and memory footprints for reading jplace files with 1 K to 1 M placed sequences
(“queries”). The jplace format [7] is a standard file format for storing phylogenetic placements of sequences
on a given, fixed reference tree. We conducted this test, because the manipulation, analysis, and visualization
of phylogenetic placement data constitutes one of the main use cases of genesis and gappa. Here, we used
the 1 K taxon tree of Figure S4 and randomly placed sequences on its branches, with each sequence having
up to 5 random placement positions (branches). We include a comparison with guppy, which is a command
line tool for the analysis of phylogenetic placements, and the tool on which many ideas and concepts of our
gappa tool are based upon. As guppy is not a library, we conduct the test by measuring the runtime and
memory usage of its info command. The command simply reads a jplace file and prints the number of
queries stored in the file. genesis consistently outperforms both alternative tools that can parse jplace

files, and is about one order of magnitude faster than ggtree.
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