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ABSTRACT: 17 

Epigenetic	single-cell	measurements	reveal	a	layer	of	regulatory	information	not	accessible	to	single-cell	18 

transcriptomics,	 however	 single-cell	 -omics	 analysis	 tools	 mainly	 focus	 on	 gene	 expression	 data.	 To	19 

address	this	issue,	we	present	epiScanpy,	a	computational	framework	for	the	analysis	of	single-cell	DNA	20 

methylation	and	single-cell	ATAC-seq	data.	EpiScanpy	makes	the	many	existing	RNA-seq	workflows	from	21 

scanpy	available	to	large-scale	single-cell	data	from	other	-omics	modalities.	We	introduce	and	compare	22 

multiple	feature	space	constructions	for	epigenetic	data	and	show	the	feasibility	of	common	clustering,	23 

dimension	 reduction	 and	 trajectory	 learning	 techniques.	 We	 benchmark	 epiScanpy	 by	 interrogating	24 

different	single-cell	brain	mouse	atlases	of	DNA	methylation,	ATAC-seq	and	transcriptomics.	We	find	that	25 

differentially	 methylated	 and	 differentially	 open	markers	 between	 cell	 clusters	 enrich	 transcriptome-26 

based	cell	type	labels	by	orthogonal	epigenetic	information.		27 
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	29 

BACKGROUND:	30 

Epigenetic	single-cell	measurements,	where	the	epigenetic	status	of	single	cells	is	evaluated	using	next	31 

generation	sequencing	techniques,	are	becoming	mainstream1.	Currently,	two	such	measurements	are	32 

performed	routinely	in	the	laboratory:	DNA	methylation	status	can	be	assessed	at	the	single-cell	level	with	33 

the	use	of	single-cell	bisulfite	sequencing	(scBS-seq)2,	and	open	chromatin	patterns	are	 investigated	at	34 

individual	cells	using	single-cell	Assay	for	Transposase-Accessible	Chromatin	using	sequencing	(scATAC-35 

seq)3.	 Thanks	 to	 dropping	 sequencing	 costs,	 well	 described	 protocols	 and	 advances	 in	 microfluidics	36 

techniques,	current	experimental	designs	afford	to	interrogate	the	epigenome	of	thousands	of	cells	at	the	37 

time4–7.	These	data	represent	a	rich	layer	of	regulatory	information	that	stands	between	the	genome	and	38 

the	transcriptome,	and	new	analysis	methods	are	needed	to	leverage	it8.		39 

While	many	methods	for	analyzing	single-cell	transcriptomics	data	have	been	developed	recently8,	this	is	40 

much	more	limited	for	scATAC-seq	data9,10	and	single-cell	DNA	methylation	data11	,	or	for	the	joint	analysis	41 

of	multiple	-omics	data	types8.	With	the	current	speed	at	which	single-cell	methylome	and	open	chromatin	42 

datasets	are	being	generated,	an	analysis	tool	that	goes	beyond	custom-made	scripts	and	that	permits	43 

dealing	with	different	-omics	data	types	in	the	same	framework	is	needed.	Here	we	present	epiScanpy,	a	44 

method	for	the	analysis	of	scATAC-seq	and	single-cell	DNA	methylation	data,	which	integrates	into	the	45 

scanpy	 platform	 for	 single-cell	 transcriptomics	 data	 analysis12.	 EpiScanpy	 enables	 preprocessing	 of	46 

epigenomics	data	as	well	as	downstream	analyses	such	as	clustering,	manifold	learning,	visualization	and	47 

lineage	estimation.	EpiScanpy	allows	for	comparative	analyses	between	-omics	layers,	and	can	serve	as	a	48 

framework	for	future	single-cell	multi-omics	data	integration.	Since	its	downstream	analyses	extend	the	49 

popular	scanpy	framework,	it	inherits	properties	such	as	fast	and	scalable	runtime	behavior	and	modular	50 

extensibility.	51 
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RESULTS:	53 

EpiScanpy	workflow:	54 

Workflows	based	on	epiScanpy	 consist	of	 four	stages:	Feature	space	engineering,	data	pre-processing,	55 

assessment	of	global	heterogeneity	via	embeddings	and	clusterings,	and	feature-level	analysis	to	attribute	56 

drivers	 of	 heterogeneity	 (Fig.	 1a).	 The	 input	 of	 epiScanpy	 consists	 of	 .bam	 files	 for	 scATAC-seq	 or	57 

methylation	count	files	for	single-cell	DNA	methylation.		58 

In	 the	 feature	 space	 engineering	 step,	epiScanpy	 generates	 count	matrices	 based	 on	 open	 chromatin	59 

levels	or	individual	cytosine	methylation	levels,	summarized	over	different	sets	of	genomic	regions	(Fig.	60 

1b).	These	count	matrices	serve	as	feature	space	that	retains	as	much	variation	of	the	data	as	possible	61 

without	being	too	high-dimensional	–	a	feature	space	at	single	base-pair	resolution	can	in	principle	be	62 

assembled	but	would	impede	downstream	analysis	through	memory	and	run	time	issues	as	well	as	though	63 

data	 sparsity.	 These	genomic	 regions	 can	 cover	 the	entire	 genome	 (i.e.	windows)	or	 can	be	based	on	64 

genomic	 features	 such	 as	 known	 open	 chromatin	 peaks,	 gene	 promoters,	 gene	 bodies	 or	 enhancers	65 

(suppl.	methods).	Any	other	feature	space	of	interest,	such	as	for	example	cis-regulatory	topics10,	can	also	66 

be	used.	For	scATAC-seq	data,	the	count	matrix	is	binarized	to	account	for	presence	or	absence	of	reads	67 

at	every	peak	or	feature,	library	size	is	regressed	out	and	low	quality	single	cells	are	filtered	out	(suppl.	68 

methods,	Fig.	SI1-2).	For	DNA	methylation	data,	the	CG	methylation	level	per	genomic	region	is	computed,	69 

and	 features	 with	 too	 few	 covered	 cytosines	 are	 labelled	 as	 missing	 data	 (suppl.	 methods,	 Fig.	 SI3).	70 

Optionally,	CH	methylation	can	also	be	used	for	computing	count	matrices,	but	methylation	in	this	context	71 

is	only	present	in	a	limited	number	of	mammalian	tissues.		72 

In	bisulfite	sequencing,	 it	 is	necessary	to	differentiate	non-methylated	cytosines	(zero	signal)	and	non-73 

observed	cytosines	(missing	signal).	Accordingly,	we	propose	the	usage	of	imputation	methods	for	non-74 

observed	 cytosines.	Note	 that	 this	 is	different	 to	 imputing	 zeros	 in	 single-cell	 RNA-seq,	which	are	not	75 

inherently			non-observed		data	points,		but		may		also		be		zero	count		observations.		EpiScanpy			imputes	76 
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Figure	1:	EpiScanpy	workflow:	a	epiScanpy	takes	.bam	files	or	methylation	count	files	(for	scATAC-seq	and	single-78 

cell	DNA	methylation	respectively)	as	input	and	constructs	data	matrices	that	contain	read	counts	(for	scATAC-seq)	79 

or	 DNA	 methylation	 levels	 (for	 single-cell	 DNA	 methylation)	 for	 different	 feature	 spaces	 (1).	 The	 data	 is	 pre-80 

processed	(2)	and	unsupervised	learning	algorithms	(clusters,	trajectories,	lineage	trees)	are	applied	(3).	Differential	81 

openness	 and	methylation	 calling	 allows	 for	 cell	 type	 and	 lineage	 tree	 identification	 as	well	 as	 identification	 of	82 

marker	loci	(4).	b	High	dimensional	feature	spaces	are	constructed	based	on	different	genomic	segmentations.	The	83 

methylation	 level	 or	 openness	 per	 feature	 and	 per	 cell	 is	 calculated	 and	 summarized	 as	 a	 data	 matrix	 per	84 

segmentation	type.		85 

	86 

based	 on	 the	 information	 from	 the	 surrounding	 windows	 or,	 alternatively,	 the	 population	 mean	87 

methylation	level	at	the	missing	feature	(suppl.	methods).	Finally,	we	discard	non-informative	features	88 

based	on	heuristics	for	the	subsequent	analysis:		For	methylation,	only	features	which	are	covered	in	a	89 

given	percentage	of	the	cells	are	retained	(usually	~30%),	while	for	ATAC-seq	only	the	top	most	commonly	90 

shared	peaks	are	considered	(usually	~20,000	peaks)	(Fig.	SI1-3).	The	constructed	epigenetic	data	matrix	91 

is	 stored	as	an	 instance	of	 the	anndata	 class,	 a	 flexible	data	 structure	 to	 store	 large	annotated	count	92 

matrices	introduced	in	scanpy12.	EpiScanpy	allows	for	joint	storage	of	multiple	-omic	modalities,	allowing	93 

easy	 comparison	between	 conditions	 and	offering	 integrated	 and	 easy	 to	 use	workflows	 for	 different	94 

types	of	single-cell	data.		95 

Given	 a	 processed	data	matrix,	epiScanpy’s	 unsupervised	 learning	 algorithms	 can	 be	 used	 to	 uncover	96 

heterogeneity	 in	 the	 data,	 such	 as	 clusters,	 trajectories	 or	 lineage	 trees.	We	 implemented	 a	 cell-cell	97 

distance	metric	 based	 on	 epigenetic	 features	 to	 enable	 common	 algorithms	 that	 rely	 on	 a	 k-nearest	98 

neighbor	(kNN)	graph,	such	as	Louvain	clustering13,	diffusion	pseudotime14		and	UMAP15.	These	algorithms	99 

and	other	unsupervised	algorithms,	such	as	tSNE16	and	graph	abstraction17,	can	directly	be	called	via	the	100 

interface	to	scanpy	(Fig.	1a	and	suppl.	methods).	Note	that	at	this	point,	epiScanpy	has	created	an	abstract	101 

representation	of	the	data	in	the	form	of	a	transformed	feature	space	or	a	kNN	graph	which	can	be	treated	102 
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in	a	similar	fashion	to	single-cell	RNA-seq	data	sets.	This	representation	is	independent	of	the	original	data	103 

form	(methylation	or	chromatin	accessibility)	so	that	the	workflows	presented	here	truly	generalize	across	104 

data	modalities.	105 

Lastly,	 feature-level	 analysis	 dissects	 the	 drivers	 of	 heterogeneity	 in	 a	 data	 set:	 epiScanpy	 includes	 a	106 

differential	methylation	and	differential	open	chromatin	calling	strategy	(suppl.	methods),	which	enables	107 

the	ranking	of	genomic	features	(such	as	genes,	promoters	or	other	regulatory	elements)	based	on	their	108 

relevance	in	the	discovered	cellular	identities	(Fig.	1a).	This	allows	for	the	identification	of	marker	loci	that	109 

can	be	used	for	a	fast	semi-automated	cell-type	identification	(Fig.	1a).	This	feature-level	analysis	allows	110 

the	user	to	correlate	variation	along	trajectories	or	across	clusters	with	marker	loci	to	support	cell	type	111 

annotation	 and	 to	 generate	 hypotheses	 on	 the	 mechanism	 that	 underlie	 the	 identified	 population	112 

structure.	113 

Applications:	114 

To	 illustrate	 the	 potential	 of	 epiScanpy	 and	 to	 show	 how	 it	 can	 effectively	 deal	 with	 different	 data	115 

modalities,	we	applied	it	to	brain	mouse	atlases	from	three	different	 -omic	data	types:	single-cell	DNA	116 

methylation	 (snmC-seq,	3,377	prefrontal	 cortex	neurons,	4.7%	average	genomic	coverage4),	 single-cell	117 

open	chromatin	 (scATAC-seq,	~13,000	prefrontal	cortex	and	whole	brain	cells,	median	coverage	range	118 

~8,000	-	24,000	reads	per	cell6)	and	single-cell	gene	expression	(Drop-seq,	~690,000	cells,	9	regions	of	the	119 

adult	mouse	brain18).		120 

Firstly,	we	explored	the	impact	of	the	choice	of	genomic	feature	on	the	global	topology	(“structure”)	that	121 

can	be	learned	from	the	data,	using	clustering	as	an	example	method	for	unsupervised	learning.	Count	122 

matrices	were	constructed	for		different	types	of	genomic	features	for	single-cell	DNA	methylation	and	123 

scATAC-seq	 data	 (respectively:	 100kb	 non-overlapping	 windows,	 gene	 promoters,	 gene	 bodies	 and	124 

enhancers	(from19);	and	open	chromatin	peaks	(from6)	and	enhancers).	We	performed	iterative	Louvain	125 

clustering	(suppl.	methods)	on	each	feature	space	and	found	that	cells	are	grouped	similarly	across	all	126 
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feature	 spaces	 used,	 illustrating	 the	 fact	 that	 different	 genomic	 features	 contain	 partially	 redundant	127 

information	and	can	be	used	interchangeably	(Fig.	2a-c,	Fig.	SI4-5).	For	single-cell	DNA	methylation	data,	128 

the	enhancer	feature	space	provided	the	clearest	cell-type	separation	in	clustering	and	low	dimensional	129 

visualization	 (average	 silhouette	 score	 of	 0.44	 (enhancers)	 versus	 0.36	 (promoters),	 Fig.2c	 and	 Fig.2a,	130 

suppl.	 methods),	 highlighting	 the	 relevance	 of	 DNA	methylation	 at	 non-genic	 regulatory	 elements	 at	131 

determining	cell	identity.		132 

To	evaluate	epiScanpy’s	ability	to	map	the	discovered	population	structure	in	the	form	of	clusterings	to	133 

known	cell	types,	we	ranked	differentially	methylated	and	differentially	open	loci	between	the	identified	134 

clusters	to	map	cluster	identity	to	cell	types		(suppl.	methods).	Neurod2	was	identified	as	one	of	the	top	135 

differentially	methylated	promoters	between	inhibitory	and	excitatory	neurons	(Fig.	2d),	which	correlates	136 

with	 its	 expression	 levels	 in	 the	 adult	 brain20.	4930567H17Rik	and	 Satb2	 could	be	used	 to	distinguish	137 

between	the	different	neuronal	 layers20	and	between	SCPN	and	CPN	neurons21,	 respectively	 (Fig.	SI6).	138 

These	observations	based	in	CG	promoter	methylation	are	consistent	with	CH	gene	body	methylation	at	139 

known	marker	genes	(Fig.	SI7).	Interestingly,	we	identify	several	differentially	methylated	promoters	of	140 

genes	which	are	not	differentially	expressed	in	the	adult	mouse	brain20	but	whose	differential	expression	141 

during	embryonic	development	is	necessary	for	cell	fate	determination,	such	as	Rab4a,	a	marker	of	SST	142 

neurons	 expressed	 during	 E12.5	 -	 E14.522	 (Fig.	 SI6).	 These	 findings	 reflect	 the	 unique	 ability	 of	 DNA	143 

methylation	 data	 to	 record	 past	 cellular	 states1	 and	 therefore	 add	 valuable	 information	 about	144 

differentiation	and	lineage	trees	to	models	based	on	transcriptomics.	This	integration	of	complementary	145 

layers	of	information	highlight	the	potential	of	multi-omics	approaches	to	build	a	more	complete	picture	146 

of	developmental	systems.		147 

For	scATAC-seq,	we	identified	top	differentially	open	peaks	which	were	used	to	label	cell	clusters	(Fig.	2b).	148 

For	 example,	 openness	 of	 the	Ndrg2	 promoter	 can	 be	 used	 to	 distinguish	 astrocytes23	 (Fig.	 SI8)	 and	149 

microglia	 and	 oligodendrocytes	 are	 identified	 by	 open	 peaks	 in	 the	 promoters	 of	 Runx1,	 and	 Efnb3	150 
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respectively24,25	(Fig.	SI8).	As	a	whole	group,	neurons	show	openness	of	peaks	in	promoters	for	neuronal	151 

genes	like	Ptprd,	Pik3r1,	and	Syt126–28	(Fig.	SI8),	while	differential	openness	at	the	Foxp2	promoter	can	be	152 

used	to	identify	Layer	6	cortical	neurons	(Fig.	2e),	for	example.	A	comprehensive	list	of	differential	markers	153 

used	for	single-cell	DNA	methylation	and	scATAC-seq	cluster	identification	can	be	found	in	SI	Table	1.	154 

	155 

Figure	2:	Results:	a	UMAP	with	Louvain	clusters	and	annotated	cell	types	for	neurons	for	single-cell	DNA	methylation	156 

data,	performed	on	the	promoter	feature	space.	b	UMAP	with	Louvain	clusters	and	annotated	cell	types	for	neurons	157 

for	 scATAC-seq	data,	 performed	on	 the	 open	 chromatin	 peak	 feature	 space.	 c	 UMAP	with	 Louvain	 clusters	 and	158 

annotated	cell	types	for	neurons	for	single-cell	DNA	methylation	data,	performed	on	the	enhancer	feature	space.	d	159 

Differential	 methylation	 at	 the	 promoter	 of	 Neurod2	 between	 excitatory	 and	 inhibitory	 neurons.	 e	 Differential	160 

openness	 at	 the	 promoter	 of	 Foxp2	 in	 excitatory	 neurons.	 f	 UMAP	 (left)	 and	 pseudotime	with	 Louvain	 clusters	161 

(middle)	and	pseudotime	(right)	for	hematopoietic	cells	for	scATAC-seq	data.	162 

	163 
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We	compared	epiScanpy	cell	type	identification	to	the	one	provided	by	Luo	et	al.	(obtained	using	CH-gene-164 

body	methylation	levels)4	and	the	one	provided	by	Cusanovich	et	al.	(obtained	using	promoter	and	distal	165 

regulatory	site	accessibility)6.	Respectively	~89%	and	~71%	of	cells	are	assigned	to	the	same	cell	type	as	166 

in	 the	 original	 publications	 (Fig.	 SI9-10).	 For	 the	 scATAC-seq	 dataset	 the	 biggest	 discrepancy	 is	 found	167 

between	SCPN/CPN	assignments,	where	we	identify	clusters	with	SCPN	signatures	that	were	labelled	as	168 

CPN	neurons	in	the	original	publication,	and	vice	versa	(Fig.	SI11).		169 

We	performed	a	global	comparison	of	multi-omic	cellular	atlases	based	on	mouse	brain	tissue	from	single-170 

cell	DNA	methylation,	scATAC-seq	and	scRNA-seq	data	(processed	using	scanpy,	suppl.	methods).	While	171 

some	markers	 are	 differentially	 expressed,	 differentially	 open	 and	 differentially	 methylated	 between	172 

clusters	(Fig.	SI12),	there	is	also	a	large	number	of	non-redundant	markers,	such	as	that	of	Fabp7.	Fabp7	173 

is	a	brain	fatty	acid	binding	protein	that	has	been	reported	to	be	important	for	forebrain	physiology	and	174 

is	 associated	 with	 Schizophrenia29,	 which	 displays	 signs	 of	 differential	 regulation	 in	 CPN	 neurons	175 

(differentially	open	and	methylated)	but	is	not	expressed	in	neurons	(Fig.	SI12).	These	markers	provide	176 

complementary	 information	 between	 data	 modalities,	 underpinning	 the	 fact	 that	 every	 -omic	 layer	177 

contributes	its	individual	non-redundant	layer	of	information,	and	emphasizing	the	need	for	a	tool	that	178 

deals	with	many	-omic	data	types	and	facilitates	integration	across	modalities.	179 

Finally,	we	also	considered	open	chromatin	profiles	of	hematopoietic	cells	(bone	marrow	cell	types	from6)	180 

to	evaluate	whether	epiScanpy	can	learn	developmental	trajectories	with	pseudotime	and	more	complex	181 

lineage	 trees	with	 graph	 abstraction	 directly	 	 based	 on	 epigenomic	 profiles	 (Fig.	 2f).	 Such	 continuous	182 

descriptions	 of	 developmental	 systems	 have	 been	 very	 useful	 in	 studies	 based	 on	 single-cell	183 

transcriptomics.	 EpiScanpy	 discovers	 7	 cell	 types	 (Fig.	 SI13)	 and	 recovers	 the	 known	 hematopoietic	184 

differentiation	tree	(Fig.	2f).		185 

	186 
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DISCUSSION:	188 

In	summary,	epiScanpy	is	a	fast	and	versatile	tool	for	the	analysis	of	single-cell	epigenomic	data	and	its	189 

integration	with	single-cell	 transcriptomic	data.	 It	offers	 the	first	unified	framework	for	 the	analysis	of	190 

both	 single-cell	DNA	methylation,	 scATAC-seq	and	 single-cell	 transcriptomic	data,	 and	 its	 flexible	data	191 

structure	is	ready	to	handle	other	new	types	of	single-cell	-omic	data,	such	as	Hi-C	or	NOME-seq,	as	well	192 

as	multi-omics	single-cell	data.	EpiScanpy	addresses	the	open	question	of	feature	space	construction	on	193 

epigenetic	data	and	we	show	evidence	that	similar	manifolds	can	be	learned	based	on	different	feature	194 

spaces.	EpiScanpy	also	scales	well	to	the	large	scATAC-seq	data	sets	generated	with	the	10x	Chromium	195 

platform	 (Fig.	 SI14)30.	 EpiScanpy	 performs	 single-cell	 graph	 construction	 from	 potentially	 any	 type	 of	196 

single-cell	 -omics	 data	 and	 performs	 downstream	 analysis	 like	 low-dimensional	 data	 visualization,	197 

clustering,	 single-cell	 graph	 abstraction	 or	 trajectory	 inference,	 and	 differential	 calling.	 EpiScanpy	 is	198 

available	 as	 a	 python	 package	 through	 Github	 (https://github.com/colomemaria/epiScanpy,	199 

documentation	 available	 on	 episcanpy.readthedocs.io)	 and	 builds	 upon	 the	 scanpy	analysis	 toolbox12,	200 

opening	the	toolchain	to	the	commonly	measured	single-cell	epigenomic	data.		201 
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