
GSAn: an alternative to enrichment analysis for

annotating gene sets

Aaron Ayllon-Benitez 1,2,∗, Romain Bourqui 2, Patricia Thébaut 2,† and
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Abstract

The revolution in new sequencing technologies, by strongly improving the pro-

duction of omics data, is greatly leading to new understandings of the relations

between genotype and phenotype. To interpret and analyze these massive data
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that are grouped according to a phenotype of interest, methods based on statisti-

cal enrichment became a standard in biology. However, these methods synthesize

the biological information by a priori selecting the over-represented terms and may

suffer from focusing on the most studied genes that represent a limited coverage of

annotated genes within the gene set.

To address these limitations, we developed GSAn, a novel gene set annotation

Web server that uses semantic similarity measures to reduce a priori Gene Ontol-

ogy annotation terms. The originality of this new approach is to identify the best

compromise between the number of retained annotation terms that has to be dras-

tically reduced and the number of related genes that has to be as large as possible.

Moreover, GSAn offers interactive visualization facilities dedicated to the multi-scale

analysis of gene set annotations. GSAn is available at: https://gsan.labri.fr.

1 Introduction

Over the past decade, the revolution in new sequencing technologies has strongly

supported the production of omics data to improve our understanding of the rela-

tions between genotype and phenotype. This research field involves analyzing gene

sets to identify their biological function and to synthesize the key annotation infor-

mation with the objective to help biologists in their interpretation. In this frame,

many tools have been developed to support gene set analysis and visualization

of annotations. Most of these tools are based on statistical enrichment methods

that usually involve two stages: (i) an a priori stage that aims to synthesize the

annotation by selecting the over-represented terms and (ii) an a posteriori stage

to remove the potentially redundant information by using the Gene Ontology [1]

relations. Examples of such enrichment-based tools are g:Profiler [2], clusterPro-
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filer [3] and WebGestalt [4]. In g:Profiler, statistically enriched terms are grouped

if they share one or more common parent terms. Two filters, named moderate and

strong, then make use of the hierarchical structure of the used ontologies. The

specific functionality simplify in clusterProfiler provides a score to retain only the

most statistically relevant enriched GO terms (obtained by the EnrichGO tool)

according to semantic similarity measures. WebGestalt does not propose any step

to reduce redundancy within enrichment results, but an annotation file free from

redundancy may be used as input of the analysis. Other tools like DAVID [5]

propose an a posteriori stage that clusters the annotation terms that may be re-

lated to each other according to the genes they annotate. This stage does not

result in a reduction of terms but rather in a categorization of terms according to

their use. The results are thus given as lists of related terms and an additional

manual expertise is still required to synthesize the information. Moreover, signif-

icant limitations of enrichment-based methods have recently been reported [6, 7].

First, these methods tend to focus on the most studied genes and provide gene

set annotation results that cover a limited number of annotated genes [8, 6, 7].

Moreover, visualization facilities often suffer from a lack of capacity to perform

multi-scale analyses which may help users while interpreting their results.

To address these limitations, we developed a novel gene set annotation Web

server, called Gene set Annotation (or GSAn). The implemented method uses

semantic similarity measures that allow users to a priori reduce a large number of

Gene Ontology terms by computing a synthetic annotation for a given gene set [9].
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The originality of this new approach is to identify the best compromise between

the number of retained annotation terms that has to be drastically reduced and

the number of related genes that has to be as large as possible. Moreover, GSAn

provides interactive visualization facilities dedicated to the multi-scale analysis of

gene set annotations [10] and is available at: https://gsan.labri.fr.

2 GSAn method

GSAn is based on a method that annotates a gene set making use of the annota-

tions from Gene Ontology Annotation (GOA) [11] and the hierarchical structure

of Gene Ontology (GO) [1]. The method is composed of four steps (Figure 1).

2.1 Removing inappropriate annotation.

First, we removed inappropriate annotations. An inappropriate annotation is de-

fined by any association where the GO term does not provide relevant information.

An annotation can be inappropriate for two reasons: redundancy and incomplete-

ness. Criteria for removing redundant annotations are described in Supplementary

data. The notion of incomplete annotation was first reported by Faria et al. [12]

that considered terms with more than 10 descendants as inappropriate (being too

general). We adapted this definition of incomplete annotation for taking into ac-

count the quality of the annotation. To this end, we considered the information

content (IC) provided by Mazandu and Mulder [13] and computed the IC distri-

bution of terms from GO. We then retained only GO terms whose IC was higher
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Figure 1: The GSAn method workflow. Steps are represented in orange rectangles

while their input and output are displayed as grey rectangles.
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than the value of the first quartile.

2.2 Clustering of terms according to semantic similarity

measures.

The semantic similarity compares GO terms depending on ontological or annota-

tion features. A pairwise semantic similarity measure is defined as a function that,

given two terms, returns a value reflecting how close in meaning they are [14, 15].

A semantic similarity matrix was thus computed for each pair of GO terms as-

sociated with the gene set. The semantic similarity measures implemented in

GSAn are: Resnik [16] normalized according to Jain and Bader’s approach [17],

Lin [18], Aggregate Information Content (AIC) [19], NUnivers [13] and Distance

Function [20]. Formulas of these semantic similarity measures are available in

Supplementary Data. This matrix was then used to compute groups of terms

according to the average linkage clustering algorithm (that exhibited the highest

cophenetic correlation compared with other algorithms considered in [9]). The best

number of clusters was determined using the Average Silhouette Width score [21].

2.3 Selecting the most relevant representative terms.

We define a representative term as a term that exhaustively represents the various

information given by the terms of a cluster. As the number of representative terms

may vary according to the size of the cluster, two strategies were used to determine

the best number. First, if a single term inside a cluster annotated more than 70%
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of genes, it was directly considered as representative. Secondly, if such a term did

not exist, an algorithm described in [9] was applied to compute an appropriate

number of representative terms for the cluster. At the end of this stage, a new set

of terms is obtained from the addition of representative terms of each cluster.

Then, to retain the most relevant representative terms, we used two quality

criteria: term redundancy and gene coverage.

Removing inappropriate representative terms. Some clusters of terms may have

been generated from terms with low similarity between them, resulting in very

general representative terms. We thus removed terms whose IC is lower than

the first quartile. A new selection stage was then applied to eliminate potential

redundancies. According to the type of hierarchical relationship (is a or part of ),

the removal of the ancestor terms may have a different impact on the number

of annotated genes. To deal with this issue, a different strategy was applied

according to the type of hierarchical relationships. For the is a relationship, the

representative terms being ancestors of other representative terms were removed.

For the part of relationship, only the parent or child terms annotating the largest

number of genes were retained.

Filtering representative terms according to the gene coverage. To filter out the

representative terms associated with a limited number of genes, we used a formula

that depends on the size of the gene set used as input. The resulting filtering

value gradually increases according to the number of genes (see the formula in

Supplementary Data).
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2.4 Selecting the synthetic terms.

At last, a heuristic algorithm based on the set cover problem (SCP) [22] was ap-

plied to the representative terms for selecting the terms that best summarized the

biological information within the gene set. Within this framework, we thus defined

a solution of the SCP as a minimal set of terms covering the maximum number

of genes of the gene set. Finally, to identify the terms considered as synthetic, a

weight was assigned to each term for taking into account its IC and the number

of genes it annotates. For a given term, this weight is defined as follows:

w(t) =
−log(annotated genes in genome(t))

−log(annotated genes in set(t))
(1)

where annotated genes in genome(t) and annotated genes in set(t) correspond

to the number of genes annotated by the term t within a whole genome and

within a gene set, respectively. The numerator actually corresponds to the IC

proposed by Resnik [16]. The pseudo-code of the synthetic algorithm (SA) and

the customized implementation of SCP are described in Supplementary Data.

3 SERVER INTERFACE

3.1 Description input.

At first, users have to upload a gene or gene product list and to select the ap-

propriate organism within the form. Fourteen organisms are currently stored in
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GSAn, downloaded from the GO Web site1 and from the European Bioinformatics

Institute Web site2, and listed in Supplementary Data. To be more flexible, users

can also upload the annotation of any organism of interest using the GAF 2.1

format3. Users may choose any of the three GO sub-ontologies (being biological

process or BP, molecular function or MF and cellular component or CC) or any

combination of them. If more than one sub-ontology is chosen, the analyses are

computed separately and results are then merged. Five semantic similarity mea-

sures are available (see the list in Methods). By default, GO annotations inferred

automatically (evidence code: IEA) are included in the analysis but users may

decide to exclude such annotations.

To customize the analysis, two advanced parameters are proposed to users:

the gene support and the incomplete information filter. The gene support is the

minimum number of genes that have to be associated to each representative term.

The default value of this parameter is determined according to Formula (12) in

Supplementary Data (based on the size of the gene set), and can be modified.

The incomplete information filter is used to discard the terms presenting a low

specificity in the ontology. Four levels of tolerance (none, low, medium and hard)

can be applied corresponding to the percentile values given by the IC distribution

(1, 10, 25 and 50 respectively) of GO terms. As a result, terms below the chosen

percentile value are discarded. Optionally, users can provide their email address

to be notified when the analysis is finished.

A summary of all of these parameters is given in Supplementary Data.

1http://www.geneontology.org/page/downloads
2https://www.ebi.ac.uk/GOA/downloads
3http://www.geneontology.org/page/go-annotation-file-gaf-format-21
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3.2 Description output.

GSAn results are presented according to multiple visual metaphors. At the top

left, three gauge plots display the global gene set information (see Figure 2A). The

first one indicates the percentage of genes which are annotated by GO terms while

the second one provides the percentage of genes part of GSAn results. Finally,

the gene set similarity consists in a groupwise approach using the gene annotation

proposed in [23]. A gene set similarity score of 1.0 means that all genes in the

set have the same annotation and 0.0 means that terms have no common anno-

tation. At the top right, a diverging bar plot display the gene coverage and the

IC score of each synthetic term (see Figure 2B). Information about the represen-

tative terms is available within two separate pages in two different ways: a table

(Figure 2C) and a combined tree visualization (Figure 2D). The table summa-

rizes the information of each representative term, being synthetic or not. The

tree visualization aims to describe the hierarchical context of each representative

term within GO. To obtain such visualization, the GO structure (represented as

a directed acyclic graph) was transformed in a tree according to the most infor-

mative parent of each representative term [10]. Two types of tree visualizations

are then combined: a collapsible indented tree and a circular treemap. A tree

color algorithm is applied to attribute similar colors to terms that are hierarchi-

cally related [24]. The brightness of the circle is related to the depth of terms in

the ontology (darker means deeper in GO). White color forms represent the genes

inside their annotation terms. Thus, a given gene can appear inside several terms

of different branches. Moreover, within each gene circle, a bar chart is displayed

to represent its annotation terms (using their assigned colors). This visualization
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allows to explore annotation results thanks to interactions such as zooming within

the circular treemap, or expanding the branch in the indented tree (illustrated in

Figure 2D). Additionally, users can download a JSON file and view these results

again by uploading the file within the “Visualization” page. Also, results can be

downloaded as a CSV format.

3.3 Implementation and storing results.

GSAn was implemented in JAVA EE using the SpringBoot framework. From the

client side, the page exhibiting results was implemented based on JavaScript using

the D3.js [25] and TreeColors.js4 libraries. The releases of GO and GOA are weekly

updated. The JSON files created by GSAn are stored during 12 hours.

4 CASE STUDY

To illustrate GSAn, we present two analyses: (i) a comparison of the results with

known enrichment tools (available in Supplementary Data) and (ii) an application

of GSAn using a gene set involved in the immune system.

For both analyses, we used the dataset computed by Li et al. [26], called BTM

for blood transcriptional modules. This dataset is a repertoire of 346 modules char-

acterizing innate and adaptative immune response in vaccination studies and was

built using a large-scale data integration of human blood transcriptome provided

by the NCBI Gene Expression Omnibus. Moreover, “interactome”, “bibliome”

4https://github.com/e-/TreeColors.js/
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Figure 2: GSAn output results. (A) Three gauge plots show information about the

annotated genes and the genes covered by GSAn as well as the groupwise similarity

of genes in the set defined in [23]. (B) A diverging bar plot displays the IC and

the gene coverage of each synthetic term. (C) A table presents all information

about representative terms. (D) An example of the combined visualization shows

the click and zoom interactions.
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and pathways extracted from public databases were integrated to create a set of

transcription modules.

In the second case study, we use GSAn to analyze a BTM module annotated

by experts as regulation of antigen presentation and immune response [26]. This

module contains 81 genes involved in the signal transduction in the immunological

process against pathogens. The default parameters of GSAn are used and the

chosen semantic similarity measure is NUnivers. GSAn retain 37 representative

terms covering 80 out of 81 genes and 8 of them are synthetic terms (Figure 2).

The gauge plots show a high gene coverage using the GOA file (first gauge) and

GSAn analysis (second gauge). At last, the third displays a gene set similarity of

0.59, which means that genes share a high number of terms.

By focusing on the synthetic annotation displayed within the diverging bar

plot, we observe terms related to the proliferation and costimulation of T cell

and the activation of signaling transduction by the innate immune response. Also,

these terms and the term antigen processing and presentation of exogenous peptide

antigen via MHC class II (GO:0019886) are consistent with the manual annota-

tion performed by experts and show that the annotation provided by GSAn is

even more specific. Indeed, GSAn illustrates that the module is also involved in

the proliferation of T cell. Moreover, more complete information may be observed

from the representative terms through the information table or the combined tree

visualization. By exploring the tree visualization, we obtain additional informa-

tion, such as terms sharing the same informative ancestor or the genes annotated

by more than one term. For example, by focusing on the term antigen processing

and presentation of exogenous peptide antigen via MHC class II, we notice that
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eleven genes are annotated by this term. When clicking and developing in details

each gene, we observe that six out of the eleven genes are annotated by T cell

receptor signaling pathway (GO:0050852) and three of them by T cell prolifera-

tion (GO:0042098). Thus, with very few user interactions, we retrieve additional

information about the biological role of some genes in the module.

5 CONCLUSION

The main problems in finding gene signatures are mainly related to the investiga-

tion of the biological function of gene sets. That problem can be solved using clas-

sical enrichment methods, such as DAVID or g:Profiler. However, these methods

focus on the most studied genes that may provide annotations covering a limited

number of annotated genes [8, 6, 7]. Another problem is the redundant information

within annotations that may increase the difficulty in interpreting results when no

a posteriori analysis is performed. To address these issues, we propose a new Web

server as an alternative to classical enrichment analysis. The underlying method

makes use of the hierarchical structure of GO to reduce the number of terms while

keeping an appropriate level of biological information. Compared to enrichment

analysis tools, GSAn has shown excellent results in terms of maximizing the gene

coverage while minimizing the number of terms. GSAn has provided a gene set

annotation that is more specific than results given by experts (for a human gene

set). Also, an originality of GSAn is to provide interactive visualization abilities to

analyze the resulting gene set annotations. The underlying visualization is based

on a combined tree that supplies zoom operations to browse terms and the genes
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they annotate according to the level of biological information that may interest

users.
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