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Abstract (248 words) 8 

Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis.  We introduce a 9 

longitudinal mathematical model that is capable of representing the metabolic state of an individual at any 10 

point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a 11 

period of years.  As an application of the model, we account for the diversity of pathways typically 12 

followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) 13 

first, and one that goes through impaired glucose tolerance (IGT) first.  These two pathways are widely 14 

recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral 15 

glucose uptake, respectively.  We confirm this but go beyond to show that IFG and IGT lie on a 16 

continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low 17 

hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT, and IGT 18 

generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects 19 

and the need to assess patients early to determine their underlying primary impairment.  We illustrate the 20 

relevance of this for patient stratification by simulating the effects of properly and improperly targeted 21 

therapies.  The model also incorporates insulin granule exocytosis and accounts for both first and second 22 

phase secretion.  Simulations suggest that the loss of first phase secretion in both the IGT-first and IFG-23 

first pathways is only a marker of progression to diabetes, not a causative mechanism.         24 

 25 
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 26 

Introduction 27 

 28 
 29 
Diabetes is by definition a state of hyperglycemia, but its natural history is diverse.  For example, some 30 

individuals experience fasting hyperglycemia first (Impaired Fasting Glucose, IFG), followed by 31 

hyperglycemia at the two-hour time point (2hPG) of an oral glucose tolerance test (OGTT), defined as 32 

Impaired Glucose Tolerance (IGT), and some experience these in the opposite order. Eventually, all 33 

people with diabetes will have both IFG and IGT (combined glucose impairment, CGI), so we refer to 34 

these two pathways as “IGT-first” and “IFG-first”, respectively.  An important implication of these 35 

observations is that the best period for determining differences in the underlying physiology of these 36 

pathways is during the pre-diabetic stage, when the phenotypes are still distinct.   37 

 38 
Prediabetes is also the stage in which progression to type 2 diabetes (T2D) can be markedly delayed or 39 

prevented 1, and interventions can plausibly be made even more effective by targeting the specific 40 

metabolic defects of the patient.   For example, IFG is generally thought to reflect insulin resistance at the 41 

liver, resulting in elevated hepatic glucose production (HGP), whereas IGT is thought to reflect peripheral 42 

insulin resistance, mainly in muscle, resulting in reduced glucose disposal. One would like to know 43 

whether using drugs that primarily affect hepatic or peripheral insulin resistance makes a material 44 

difference for patients on the IFG-first or IGT-first pathways, and whether any such benefit carries over 45 

once T2D has begun. 46 

 47 
Moreover, diabetes is not a state that one enters and exits, like an infection, but a chronic condition that is 48 

the culmination of a series of gradual changes.  Understanding of this progression is best obtained by 49 

longitudinal studies over a period of years or decades.  Here we will focus on one such study, the 50 

Baltimore Longitudinal Study of Aging (BLSA) 2, which asked whether CGI is an obligatory stage 51 

between IFG and T2D and between IGT and T2D (Fig. A1). 52 
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 53 
These features of diabetes suggest that a longitudinal mathematical model for disease progression could 54 

be a valuable adjunct to clinical studies.  Here we establish such a model and demonstrate that it can 55 

distinguish hepatic and peripheral insulin resistance and can simulate the IGT-first and IFG-first pathways 56 

to T2D over a period of years.  We will use the model to address the clinical questions raised by the 57 

BLSA and Perrault studies.  By tracking virtual patients continuously in time, the model can interpolate 58 

between clinical observations, which are necessarily sparsely sampled, and indicate what is likely to have 59 

happened in the interim. 60 

  61 

The model provides broader insight into the different insulin-resistance phenotypes, showing that a wide 62 

array of pathways, ranging from isolated IFG to isolated IGT to combinations of the two, can be obtained 63 

by combining different degrees of hepatic and peripheral insulin resistance.  Thus, the apparent clinical 64 

diversity of individual paths comprises a set of quantitative variants within a unified process of metabolic 65 

dysfunction. 66 

 67 

There is also diversity in the relative contributions of insulin resistance and beta-cell dysfunction to 68 

diabetes pathogenesis.  This is particularly apparent in comparing diabetes risk factors in populations with 69 

a high prevalence of obesity, such as those of African descent and Native Americans, to populations in 70 

which diabetes risk is seen among lean individuals and beta-cell function is weaker, such as South and 71 

East Asians; populations of European descent tend to lie in between 3.  Furthermore, beta-cell dysfunction 72 

can be subdivided into defects in first- and second-phase insulin secretion.  As a first installment on this 73 

large and complex set of problems, we examine whether the loss of first-phase secretion early in pre-74 

diabetes plays a fundamental causal role in T2D development or is just a useful marker. 75 

 76 

General modeling approach 77 

 78 
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The diabetes field is fortunate to have a strong tradition of mathematical modeling 4,5.  A common feature 79 

of those models is that they provide snapshots in time of the metabolic state of an individual, including 80 

insulin resistance and beta-cell function. These models have been used to track progression by taking a 81 

series of snapshots, but they do not contain mechanisms of progression and do not describe trajectories of 82 

progression.  83 

   84 

The model developed here belongs to a different family of models that seek to explain disease progression 85 

mechanistically, rather than assess the current state.  It is an extension of our previously published model 86 

of beta-cell mass and function, which successfully simulated progression to diabetes in rodents over 87 

months and humans over years 6. That model, in turn, was based on the seminal model of 7, which 88 

expressed mathematically the hypothesis that beta-cell mass provides negative feedback on a slow time 89 

scale to compensate for insulin resistance.  If that compensation is inadequate, however, the toxic effects 90 

of very high glucose overcome the stimulatory effects of moderately elevated glucose. The normal 91 

homeostatic negative feedback is converted to positive feedback, leading to deterioration in glucose 92 

tolerance and culminating in diabetes.  This fundamental concept has been incorporated into other models 93 

that broadly agree but emphasize different details 8–13.  Notably, the model of 9 was shown to be able to 94 

account for the progression of fasting hyperglycemia and T2D observed in the Diabetes Prevention 95 

Program (DPP) 1. 96 

A third class of modeling studies has fit longitudinal data from clinical studies with non-linear mixed 97 

effects statistical approaches to assess the magnitude of treatment effects on glucose, insulin and HbA1c 98 

14,15 or, by fitting to a modified form of the model of 7, on beta-cell mass and insulin sensitivity 16.   99 

See 13 for further comment on the models cited here and other models, and see 17 for a perspective on 100 

modeling T2D. 101 

The initial wave of mechanistic longitudinal models simulated fasting or average daily glucose and were 102 

therefore unable to describe post-prandial responses or responses to glucose challenges such as OGTTs 103 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/648816doi: bioRxiv preprint 

https://doi.org/10.1101/648816


5 

 

and IVGTTs.  A recent model 13 added the capability of following daily and post-challenge glucose 104 

variations and was fit to OGTT data from the DPP.  It also introduced a distinction between peripheral 105 

and hepatic insulin resistance in order to account for the effects of drug and lifestyle interventions on 106 

these parameters.   107 

We also, using a different methodology, introduce simulations of OGTTs at selected points during 108 

progression, and separate representations for hepatic and peripheral insulin resistance.  We use these new 109 

features to differentiate progression by either 2hPG or FPG.  We perform IVGTTs as well to illustrate the 110 

evolution of the acute insulin response to glucose (AIRg), often used to assess beta-cell function.  This 111 

requires the model to simulate first and second phase secretion, which we  accomplish by incorporating a 112 

previously published model for insulin granule exocytosis 18.   113 

This study focuses on mechanism and insight, rather than assessment. Instead of fitting parameters to 114 

particular data sets, we assume parameters and investigate the trajectories of glycemia and insulin 115 

secretion that result.  We demonstrate that the model captures known features of diabetes pathogenesis 116 

data and provides novel insights and interpretations of the data.  We conceptualize this as building a 117 

factory, not a product.  Once the utility of the model is established, we expect that a wide variety of 118 

applications to clinical data will become possible. 119 

 120 

Materials and Methods 121 

 122 

We briefly review the previous version of the model 6 and then describe the enhancements introduced 123 

here.  The enhanced version has been used to study clinical implications of differences in glucose time 124 

courses during an OGTT 19, but was not documented in detail.  Parameter values and details of functions 125 

not given here are in the Appendix. 126 

 127 

Previous version of the model 128 
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The core element, retained in the new version, is a glucose-insulin feedback loop, represented by two 129 

differential equations adapted from the Minimal Model of Bergman and Cobelli 20 as modified in 7: 130 

!"
!#
= 𝑀𝐸𝐴𝐿 + 𝐻𝐺𝑃 − (𝐸"/ + 𝑆1𝐼)𝐺        (1)	131 

!1
!#
= 5

6
𝐼𝑆𝑅 − 𝑘𝐼           (2) 132 

 133 

The glucose (G) equation (Eq. 1) says that G increases on a time scale of hours as a result of meal influx 134 

and hepatic glucose production (HGP) and decreases as a result of uptake, which has both insulin-135 

independent and insulin-dependent components.  The factor SI in the insulin-dependent term is closely 136 

related to the well-known sensitivity to insulin reported by the Minimal Model.  The insulin (I) equation 137 

(Eq. 2) says that I decreases due to removal, mainly in the liver, with rate constant k, and increases due to 138 

secretion by beta cells, where b is the beta-cell mass, ISR is the insulin secretion rate per unit mass, and V 139 

is the volume of distribution. In the original version, ISR depended only on G, through the rate of beta-140 

cell metabolism M: 141 

𝐼𝑆𝑅 = 𝜎 (:;<)=>?@

A>?@
=>?@;(:;<)=>?@

         (3) 142 

where M was assumed to be a sigmoidally-increasing function of G: 143 

𝑀 = "=B

AB
=B;"=B

           (4) 144 

The parameter g  in Eq. (3) represents the effect of K(ATP) channel density to shift the glucose 145 

dependence of secretion (the triggering pathway 21); when the channel density is low, g  is high, and shifts 146 

the dependence to the left, increasing secretion for the same level of M  because Ca2+ is higher.  147 

Experiments in 22 showed that mouse beta cells in vitro adjust the K(ATP) channel density down in 148 

response to sustained (overnight) elevated glucose.  This has also been observed in vivo in humans 23–25, 149 

along with evidence of reduced insulin clearance, k, (19–21) which we omit here for simplicity.  This can 150 

be viewed as the first line of defense through enhanced beta-cell function against insulin resistance over a 151 

time scale of days (e.g. holiday overeating).    152 
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The value of g depends on glucose, which is taken into account by adding a third differential equation to 153 

the system: 154 

!<
!#
= <∞(")C<

DE
                     (5) 155 

 156 

where g∞ is an increasing sigmoidal function of G, andtg is the time constant. 157 

Insulin resistance that persists over longer periods (months in humans) despite reduced K(ATP) channel 158 

density, is assumed to trigger a further level of compensatory increased beta-cell function via s, the 159 

maximal insulin secretion capacity (Eq. 3).  This corresponds to the amplifying effects of metabolism 160 

and/or modulators such as GLP-1 and ACh on the efficacy of Ca2+ to drive insulin granule exocytosis.  161 

This second aspect of beta-cell functional compensation entails a fourth differential equation:  162 

!F
!#
= FG(1HI,:)CF

DK
          (6) 163 

We assume that increased ISR (workload in the sense of 26 ) leads to an increase in s  whereas increased 164 

M leads to a decrease in s.                                                                                                                                                                                                                        165 

The slowest and final form of compensation for insulin resistance is increased beta-cell mass, b, which 166 

develops over years in humans.  We assume that b is increased by proliferation, P, and decreased by 167 

apoptosis, A.  Following the data of 26, we assume that P increases when ISR increases.  We further 168 

assume that apoptosis is largely driven by metabolic stress (e.g. through increased production of reactive 169 

oxygen species) when glucose is high, so we make A an increasing function of M : 170 

!5
!#
= (L(1HI)CM(:))5

DN
          (7) 171 

 172 
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The parameters defining P and A are chosen such that modest increases in G result in a net increase in b, 173 

but large increases in G result in a net decrease in b.  As in the predecessor model of 7, this leads to a shift 174 

from compensation (negative feedback) to decompensation (positive feedback).  In 6, we showed that this 175 

can account for the threshold behavior observed in both rodents and humans, that is, nearly steady G 176 

followed by a sharp, essentially irreversible increase 27,28.  We proposed this as an explanation for why 177 

prevention of T2D is much easier than reversing it once it is established.  The same dynamic properties 178 

carry over in this study with the model enhanced as described next. 179 

 180 

New features in the model 181 

Modeling glucose flux during daily meals and glucose tolerance tests 182 

In the previous version of the model 6, G represented average daily glucose and insulin levels in response 183 

to steady glucose input.  To address IFG and IGT, we need to be able to dissociate fasting glucose from 184 

post-challenge glucose. The first step is to introduce variable glucose influx from meals, represented by 185 

the term MEAL in Eq. (1).  Timing of meals is standardized to 6:00 AM, 12:00 Noon, and 6:00 PM.  The 186 

expression is given in Eq. (A1), and Fig. A3 shows the glucose flux (panel A) and the resulting plasma 187 

glucose concentrations (panel B).  We do not yet account for other nutrients (amino acids, fats).  Flux 188 

during an OGTT is modeled with a more rapid rise and decay of flux (Eq. (A2) and shown in Fig. A3, C, 189 

D).  Flux during an IVGTT rises and decays still more rapidly. 190 

                                                                                                                                                                      191 

Modeling hepatic glucose production (HGP) 192 

In order to distinguish peripheral and hepatic insulin resistance and describe how they are related to each 193 

other, we need to refine the model description of hepatic glucose production (HGP in Eq. 1). In the first 194 
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version of the model 6, HGP was assumed to be constant, which is an acceptable approximation as long as 195 

fasting plasma insulin is adequate to compensate perfectly for any hepatic insulin resistance.  To study the 196 

failure of compensation, however, we need to make HGP dependent on I (Eq. A4).  This is sufficient to 197 

give the typical drop and recovery of HGP after a meal (Fig. A4, A).  Figure A6, E – H shows the 198 

response of HGP and glucose disposal to a simulated hyperinsulinemic, euglycemic clamp, with steady-199 

state values in good agreement with experimental data 29. 200 

Less obvious, but also important, we need to account for the correlation between hepatic and peripheral 201 

insulin resistance, which we do by making two of the parameters in Eq. A4, hepamax and aHGP, functions 202 

of SI (Eqs. A5, A6 and Fig. A4, B, C).  If this is not done, then in a case of severe peripheral resistance 203 

with strong compensatory insulin secretion, it is possible to have fasting hypoglycemia, which is not the 204 

typical pattern  (See Fig. A7).  In more typical cases of progression to pre-diabetes or diabetes, the 205 

relative impairment in insulin secretion would mask this effect: the level of glycemia would be reduced 206 

but hypoglycemia would not result.  We choose the parameters such that HGP remains normal when 207 

insulin is elevated unless there is a defect in beta-cell mass or function.   To represent hepatic insulin 208 

resistance over and above the component related to peripheral insulin resistance, we decrease the 209 

parameter hepaSI in Eq. A4, which increases HGP at any value of I. 210 

 211 

Modeling insulin granule exocytosis 212 

To study the dynamics of glucose and insulin under glucose challenges such as meals, OGTT, and 213 

IVGTT, the model needs to account for the multiple kinetic components of insulin secretion. We adapted 214 

an existing model of insulin granule exocytosis 18, which was designed to capture the biphasic pattern of 215 

ISR in response to a glucose step in vitro or a hyperglycemic clamp in vivo.  The first phase is 216 

characterized by a sharp peak of ISR during the first 10 minutes and the second phase by a steady increase 217 
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of ISR over the next hour.  Figure A6 shows a simulated OGTT (panels A, B) and  a simulated IVGTT 218 

(panels, C, D) compared to experimental data.  219 

These phases are mediated by progression of vesicles through a sequence of stages culminating in 220 

exocytosis (fusion with the plasma membrane and release of insulin to the circulation; Fig. A2A).  A large 221 

reserve pool, treated as an inexhaustible reservoir, feeds the docked pool (vesicles at binding sites on the 222 

plasma membrane).  Once docked, vesicles are primed and enter the readily releasable pool (RRP).  223 

Primed vesicles join the immediately releasable pool by becoming closely associated with voltage-224 

dependent Ca2+ channels.  First-phase secretion depends mainly on the size of the RRP at basal glucose, 225 

and second phase secretion is controlled by the rate of mobilization of vesicles to the docked pool. 226 

 227 
The insulin secretion rate ISR in the first version 6 of the model (Eq. 3) is in the new version no longer a 228 

function of glucose, but is calculated as an output of the exocytosis model (Eqs. A11), ISR thus now 229 

depends on the history of exposure to G, as it should, not just the current value.  The exocytosis model 230 

requires as input the cytosolic Ca2+ concentration, which is modeled as a sigmoidal function of the beta-231 

cell metabolic rate M (Eq. A7), and the much higher Ca2+ concentration in the microdomains of Ca2+ 232 

channels, which is modeled as a function of cytosolic Ca2+ (Eq. A8).  The dose response curve shift g, 233 

previously included in Eq. 3, represents the dynamic changes in K(ATP) channel density as before, but 234 

now explicitly alters cytosolic Ca2+ at a given level of M (Eq. A7).  Cytosolic calcium enhances the rates 235 

of mobilization of the reserve pool to the plasma membrane (Eq. A10) and priming of docked vesicles (r2 236 

in Eqs. A12), whereas vesicle fusion is primarily controlled by microdomain Ca2+.  The amplifying effect 237 

of glucose 21 is incorporated as a multiplicative factor in the rate of vesicle mobilization (GF in Eq. A9).  238 

The effects of the incretins GLP-1 and GIP are effectively rolled into GF but could be broken out as 239 

independent factors to study their dynamic changes over time or as targets of drug therapy, though we do 240 

not use that feature in this paper.  For IVGTT and hyperglycemic clamp simulations, we reduce GF by 241 

about a factor of two to represent the lack of the incretin effect on vesicle mobilization and reduce 𝑟PQ (Eq. 242 
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A12) about 10-fold to represent the lack of incretin effect on vesicle priming. The rate of mobilization 243 

(Eq. A11) is also assumed to be proportional to the variable s  (Eq. 6), which thus controls the magnitude 244 

of second-phase insulin secretion.  As a consequence, ISR implicitly includes s as a multiplicative factor, 245 

as in Eq. (3) of the simpler, first version of the model  , and the dynamic evolution of the maximal 246 

secretory capacity over long time scales (months) is essentially equivalent. 247 

 248 

Criteria of pre-diabetes and diabetes 249 

Following the ADA criteria, we define IFG as FPG > 100 mg/dl but < 126 mg/dl, IGT as 2hPG > 140 250 

mg/dl but < 200 mg/dl, and T2D as FPG ≥ 126 mg/dl or 2hPG ≥ 200 mg/dl.  Combined glucose 251 

impairment (CGI) is defined as co-occurrence of IFG and IGT.  252 

 253 

Software 254 

The model equations are solved using xppaut 30 and Matlab (The Mathworks, Natick, MA). Input files 255 

defining the parameters and initial conditions are available on github at: 256 

https://github.com/artielbm/Pathways. 257 

 258 

Results 259 

 260 

In Figs. 1 – 4, we carry out longitudinal simulations over a period of five years starting in the NGT state 261 

in which either peripheral insulin resistance is dominant, in which case the first stage of hyperglycemia is 262 

IGT, or hepatic insulin resistance is dominant, in which case the first stage of hyperglycemia is IFG.  263 

These assumptions are applied by modeling peripheral and hepatic insulin sensitivity as exponentially 264 
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decreasing, using Eqs. A13 and A14, respectively.  The initial values and rates of decline are the same for 265 

all figures, but the steady state (target) values, tarSI and tarhepaSI, are varied.  The simulations calculate the 266 

daily responses to meals, but we plot only the results of OGTTs carried out periodically over the five-year 267 

time span by pausing the longitudinal simulation.  The capacity of beta-cell function to compensate for 268 

insulin resistance is assumed to be limited, except in Fig. 2.   The defect consists of a right shift in g¥ 269 

relative to Fig. 2, which can be interpreted as a slight gain of function mutation in KCNJ11, the Kir6.2 270 

component of the KATP channels.  Alterations in s¥  representing a mild defect in insulin granule 271 

mobilization would have a similar effect.  272 

Parameters that were varied to make the figures are listed in Table S12A in the Appendix, and the initial 273 

conditions for Figs. 1 – 4 are in Table S12B.   274 

 275 

IGT-first pathway 276 

Figure 1 shows a longitudinal simulation of the effects of a strong decrease in peripheral insulin 277 

sensitivity SI (Fig. 1A) combined with a mild decrease in hepatic insulin sensitivity, hepaSI (Fig. 1B).  As 278 

insulin resistance progresses, 2hPG increases rapidly while FPG increases more slowly (Fig. 1C), 279 

resulting in progression from normal glucose tolerance (NGT) to IGT, CGI and ultimately T2D (Fig. 1C). 280 

Fasting plasma insulin (FPI) and 2-hour plasma insulin (2hPI) rise as the beta cells initially compensate 281 

partially for the insulin resistance, then fall as the beta cells fail (Fig. 1D), following the classic “Starling 282 

law” of the pancreas 31.  The initial rise in secretion results from an increase in beta-cell sensitivity to 283 

glucose (the variable g  increases, not shown), and the decline results from a fall in the slower component 284 

of beta-cell function, s  (Fig. 1E).   Beta-cell mass (b) also rises and falls, but the variation is limited 285 

because of the slowness of b, and the fall occurs only after T2D is already underway (Fig. 1F).  This 286 
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accords with observations that beta-cell mass is elevated in insulin-resistant pre-diabetics but reduced in 287 

long-standing diabetes 32,33. 288 

  289 

A subtle but important point of this simulation is that insulin resistance in both the liver and peripheral 290 

tissues reaches saturation (Fig. 1A, B) well before the advent of T2D.  It is rather the continuing fall in 291 

beta-cell function, s,  that drives conversion to T2D.  The same sequence was seen in the simulation of 292 

T2D progression in Zucker diabetic fatty rats (Fig. 6 in 6) and in data from monkeys 34. 293 

The fall in s  is triggered by the hyperglycemia and glucotoxicity that follows the early loss of insulin 294 

sensitivity (Fig. 1D) but would not lead to T2D if the pre-existing capacity of beta-cell function to 295 

compensate were stronger.  This is illustrated by a simulation with the same degree of insulin resistance 296 

as in Fig. 1, but a milder beta-cell defect, which mimics a non-diabetic subject with insulin resistance 297 

(Fig. 2).  FPG and 2hPG increase modestly in response to insulin resistance and reach a plateau in the 298 

IGT state as s levels off (Fig. 2E) and plasma insulin plateaus (Fig. 2D).   The limitation of the rise in 299 

glucose reduces the effects of glucotoxicity and buys time for beta-cell mass to increase and stabilize the 300 

IGT state (Fig. 2F). 301 

Figures 1 and 2 together paint a picture in which not only is a combination of insulin resistance and 302 

impaired secretion necessary for T2D, but insulin resistance develops and saturates first, and T2D 303 

develops only if the beta cells fail.  Some defect in beta-cell function is required even for pre-diabetes, in 304 

agreement with 35.  Conversely, a pre-existing defect in insulin secretion would be silent in the absence of 305 

insulin resistance (not shown). 306 

 307 

IFG-first pathway 308 
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In Fig. 3 we illustrate a contrasting case to Fig. 1, dominant hepatic insulin resistance with minor 309 

peripheral resistance (Fig. 3A, B); the same beta-cell function defect is assumed as in Fig. 1.  Hepatic 310 

insulin resistance drives FPG across the threshold for IFG, while 2hPG remains below the threshold for 311 

IGT (Fig. 3C).  After the initial threshold crossing, however, FPG and 2hPG continue to rise, and IFG 312 

progresses to CGI as in Fig. 1. Insulin again rises with the help of g (not shown) and falls when the drop 313 

in s  becomes too great (Fig. 3E).  As in the IGT-first pathway, the conversion to T2D is driven mainly 314 

by reduced beta-cell function, s, because insulin resistance in both the liver and peripheral tissues 315 

saturates well before T2D (or even CGI) begins.  Beta-cell mass again plays a minor role (Fig. 3F). 316 

In the BLSA some subjects who had progressed from NGT to IGT went on to T2D at the next follow-up, 317 

which prompted the authors to ask whether CGI could be skipped 2.  Figure 4 demonstrates that this can 318 

happen if peripheral insulin resistance is made much greater than hepatic resistance (compare Fig. 4A to 319 

Fig. 1A). Extreme loss of peripheral insulin sensitivity causes 2hPG to rise dramatically, while FPG 320 

remains in the normal range, converting NGT to IGT.  2hPG continues to deteriorate without a substantial 321 

increase in FPG, resulting in progression of IGT to T2D without passing through CGI.   Eventually, FPG 322 

crosses the thresholds for IFG and T2D, but after the individual has already reached T2D based on 2hPG. 323 

Figures 1 and 3, respectively, consider extreme cases of peripheral insulin resistance (PIR), where SI 324 

dominates, and hepatic insulin resistance (HIR), where hepaSI  dominates .  However, most people on the 325 

path to T2D will have both.  A composite view of the cases of Figs. 1 and 3 together with intermediate 326 

phenotypes is given in Fig. 5, where trajectories are plotted in the FPG – 2hPG plane.  The only 327 

difference among the trajectories is the degree of HIR and PIR, varied inversely from lower right to upper 328 

left; the compensatory capacity of beta-cell function is identical for all traces.  Fig. 5A shows that the 329 

trajectories diverge markedly as the defects in HIR and PIR set in but converge as hyperglycemia 330 

worsens; this happens because IFG induces IGT and IGT induces IFG.   Thus, all the virtual patients end 331 

up looking the same as time goes on.  The latter part of the NGT stage and the early part of the IGT stage, 332 
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shown expanded in Fig. 5B, are when the underlying pathologies give rise to the most distinct behavior.  333 

This is important both for designing clinical studies and for stratifying patients for treatment.  The figure 334 

suggests that the slope of the trajectory from two or more OGTTs spaced suitably far apart in time could 335 

give a good indication of the future path of the patient. 336 

We next look more closely at the pathogenesis process as it would appear clinically by simulating OGTTs 337 

(Fig. 6) and IVGTTs (Fig. 7) at representative times for each stage of glucose tolerance, indicated by the 338 

black circles on the time axes in Figs. 1C and 3C.  339 

 340 

Simulation of OGTTs 341 

Figure 6A, C shows representative glucose and insulin profiles during OGTTs at each stage of the IGT-342 

first pathway of Fig. 1. Insulin concentrations at the IGT stage (Fig. 6C, dotted curve) are increased 343 

compared to NGT (Fig. 6C, solid curve) but are inadequate to maintain normoglycemia at two-hours 344 

because of the decreased peripheral insulin sensitivity (Fig. 1A). In contrast, the level of fasting insulin at 345 

IGT (Fig. 6C, dotted curve) is sufficient to maintain fasting glucose within the normal range because 346 

hepatic insulin resistance is relatively mild (Fig. 1B).  During CGI, glucose (Fig. 6A, dashed curve) is 347 

increased at all time points compared to IGT, while the insulin level (Fig. 6C, dashed curve) is slightly 348 

diminished at the early time points (relative to glucose, however, secretion is impaired at all time points).  349 

This indicates that even progression to CGI from IGT is mainly due to impaired beta-cell function.  350 

Further and more marked decreases in insulin, due to impaired secretion at all time points during the 351 

OGTT, lead to diabetes (dot-dashed curve).  Thus, during the progression towards T2D, insulin at all time 352 

points during the OGTT first increases and then decreases, in accord with the Starling Law 31. 353 

Figure 6B, D shows glucose and insulin at each stage of the IFG-first pathway of Fig. 3. Severe hepatic 354 

insulin resistance increases glucose at all time points during the OGTT (Fig. 6B).  The increase in FPG is 355 
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greater than for 2hPG, so the threshold for IFG is crossed first in Fig. 3.  Even though fasting insulin at 356 

the IFG stage (Fig. 6D, dotted curve) is very high, it is not enough to maintain normal FPG, because of 357 

the severe hepatic insulin resistance (Fig. 3B). However, 2hPG is maintained in the normal range because 358 

peripheral insulin resistance is mild (Fig. 3A). Since both peripheral and hepatic insulin sensitivity 359 

saturate before the onset of CGI (Fig. 3A, B), the decrease in insulin at all time points during the OGTT 360 

(Fig. 6D, dashed curve) due to falling beta-cell function (Fig. 3E) is the main contributor to the 361 

progression to CGI from IFG and then to T2D.   362 

 363 

Simulation of IVGTTs 364 

Figures 1 – 6 highlight the importance of secretion defects, in the context of insulin resistance, in all the 365 

pathways to T2D, but now we break out the contributions of early vs. late secretion.  First-phase secretion 366 

is widely considered a key early marker of future progress.  For example, the classic paper 36 reported a 367 

cross-sectional study of IVGTTs, and showed that AIRg declines as FPG rises and is nearly gone by the 368 

time FPG reaches 115 mg/dl, well below the threshold for T2D.  This supports the use of AIRg, and by 369 

implication first-phase insulin secretion, as an early marker for T2D.  We now show that the model can 370 

reproduce the negative correlation between FPG and AIRg, but that rising FPG is not necessarily the sole 371 

or proximal cause of the decline in AIRg. 372 

Figures 7A, B show simulations of the insulin responses during IVGTTs performed during the IGT-first 373 

and IFG-first pathways, respectively.  AIRg is blunted and then vanishes in both pathways as FPG rises, 374 

as found in 36, but 2hPG also rises at the same time, albeit to different degrees relative to FPG in the two 375 

pathways.  The decline of AIRg is more rapid than seen experimentally along both pathways 37, but the 376 

main point is that it results from the decline of RRP size (Figs. 7C, D), which is more fundamental than 377 

the level of glycemia, as the next two paragraphs explain. 378 
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RRP size is controlled by two factors, the rate of secretion, which determines the rate of vesicle efflux 379 

from the RRP and the rate of vesicle influx into the RRP from the docked pool.  High FPG increases the 380 

rate of efflux in the basal state, so the RRP will already be depleted when the IVGTT commences, and 381 

AIRg will consequently be reduced.  The rate of influx depends on the size of the docked pool and the 382 

rate of priming of docked vesicles.  The rate of priming does not vary much in our simulations, but the 383 

size of the docked pool does, depending mainly on the rate of docking, which is proportional to one of our 384 

beta-cell function variables, s.  Although modest increases in glucose stimulate vesicle docking, larger 385 

increases cause glucose toxicity, which reduces s and hence docking. 386 

Because s  is slow, it responds to the average daily glucose, including the contributions of both fasting 387 

and post-prandial glucose, which differ according to pathway.  Along the IGT-first pathway (Figs. 1 and 388 

7A, C), AIRg initially declines primarily because of reduced s  (Fig. 1E), which is mainly determined by 389 

high post-prandial glucose, rather than FPG.  Positive feedback in turn drives post-prandial glucose 390 

higher as s  decreases (Figs. 1C, E).  Thus, the loss of AIRg and first-phase secretion is an indirect 391 

consequence of diminished second-phase secretion capacity.  As the subject progresses to CGI, FPG also 392 

rises and further reduces AIRg due to pool depletion.  In contrast, during the IFG-first pathway (Figs. 3 393 

and 7B, D), the early rise of FPG reduces AIRg by depleting the RRP, and positive feedback from the 394 

later rise of 2hPG further diminishes AIRg by driving down s .   395 

In summary, reduced AIRg can be a marker of impairment in either first- or second-phase secretion, and, 396 

as glycemia progresses towards T2D, is likely to indicate both. 397 

 398 

Targeted Drug Therapy  399 

With the previous, simpler model 6 we showed that NGT and T2D were bistable states separated by a 400 

threshold.  This accounted for the well-known observation that it is easier to prevent T2D than to reverse 401 
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it.  The new model retains these characteristics but raises the possibility that the response to therapeutic 402 

interventions may vary depending on which pathway a patient follows to T2D.  Figure 8 shows that this is 403 

indeed the case, and that knowledge of a patient’s subtype of insulin resistance can in principle lead to 404 

more effective drug therapy.   405 

Figures 8A, B contrast two drug therapies targeted to peripheral vs. hepatic insulin resistance in patients 406 

in the early stages of diabetes. Figure 8A shows glucose for a patient on the IGT-first pathway with 407 

dominant peripheral insulin resistance as in Fig. 1, in the absence of therapy (control, black curves) or in 408 

response to a high dose of a drug targeted to peripheral insulin resistance (dashed curves) or a drug 409 

targeted to hepatic insulin resistance (dotted).  The high dose of the appropriately targeted drug only 410 

transiently improves FPG and 2hPG and ultimately fails to reverse T2D. Nonetheless, it is more effective 411 

at delaying progression than the mistargeted drug. 412 

Figure 8B represents the complementary case, a patient on the IFG-first pathway with dominant hepatic 413 

insulin resistance, as in Fig. 3.  The same treatments are applied, and, as in panel A, both drugs only 414 

transiently improve FPG and 2hPG, but the appropriately targeted drug is more effective at delaying 415 

progression. 416 

Figures 8C, D show the same drug therapies and progression pathways as in panels A and B, but with the 417 

drugs applied before the onset of diabetes. A low dose of a drug targeted to the patient’s specific insulin 418 

resistance pathology is in both cases now able to prevent progression to diabetes, while a low dose of a 419 

mistargeted drug only delays progression. These examples suggest that the effectiveness of drug therapy 420 

depends on both early initiation of treatment and detection of the major metabolic abnormality.  421 

The study in 13 found that it was necessary to assume that the efficacy of treatment wanes with time in 422 

order to fit the data from lifestyle and drug interventions in the DPP.  Here we have shown that even if the 423 
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efficacy of treatment is maintained, the intrinsic dynamics of progressive beta-cell dysfunction can cause 424 

treatment to fail. 425 

Caution should be used in interpreting the simulated treatments in Fig. 8 in terms of currently used drugs.  426 

For example, in the DREAM study 38 it was found that rosiglitazone was effective in cases of isolated IFG 427 

(IIFG), that is IFG in the absence of IGT.  Although rosiglitazone is often thought of as primarily 428 

improving peripheral insulin sensitivity, it also improves hepatic insulin sensitivity 39.  In addition, IIFG 429 

does not necessarily imply pure hepatic insulin resistance.  For example, a person with FPG = 115 and 430 

2hPG = 135 would be classified as IIFG but may have significant peripheral insulin resistance.  Most 431 

individuals with pre-diabetes likely have a mixture of peripheral and hepatic insulin resistance. 432 

 433 

Discussion 434 

In recognition of the fundamental character of type 2 diabetes (T2D) as a progressive disease that 435 

develops over many years, we have established a longitudinal model for its pathogenesis.  We follow in 436 

the footsteps of other longitudinal models 7,10,13 but offer new clinical applications and insights. 437 

We apply the model to analyze the diverse presentation of hyperglycemia, which may manifest first in 438 

fasting glucose (IFG-first pathway) or two-hour glucose during an OGTT (IGT-first pathway).  To carry 439 

out this program, we modified the representation for beta-cell response to insulin resistance in the model 440 

of 6, enhancing it to differentiate between hepatic and peripheral insulin resistance.  The simulations show 441 

that heterogeneity in the degree of the two forms of insulin resistance can account for a wide variety of 442 

observed patterns, supporting the idea of T2D as a unitary disease with quantitative variants. We have 443 

focused on extreme cases to highlight the differences (e.g. Fig. 1 vs. Fig. 3), but the family of trajectories 444 

in the FPG-2hPG plane (Fig. 5) shows that these lie on a continuum.  Figure 5 also highlights that 445 
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differences in insulin resistance phenotype are most evident in the late NGT and early pre-diabetes stages, 446 

which are thus most amenable to differential phenotyping and therapeutic stratification. 447 

 We have incorporated a description of insulin granule dynamics sufficient to account for both first- and 448 

second-phase insulin secretion. This made it possible to simulate OGTT and IVGTT time courses and 449 

show how they are transformed systematically during progression along the two canonical pathways to 450 

diabetes (Figs. 6, 7).  We also showed that sufficiently strong beta-cell function can prevent T2D even 451 

when insulin resistance is severe, allowing individuals to maintain a permanent state of IGT (Fig. 2) or 452 

even revert from IGT to NGT (not shown).  Conversely, sufficient insulin sensitivity can prevent T2D 453 

even when beta-cell function is somewhat impaired 6. As discussed below, a fuller treatment of the 454 

differences in the balance of insulin secretion and insulin action defects is needed to account fully for the 455 

diverse patterns of T2D progression. 456 

We summarize below the specific lessons learned and questions answered by this study and give a 457 

preview of the clinical applications we anticipate for the model. 458 

 459 

Questions raised in the BLSA and other studies 460 

 461 
The BLSA study 2 asked whether subjects who enter the IGT state necessarily pass through CGI on the 462 

way to T2D.  The model suggests (Fig. 4) that this is not the case, but skipping CGI happens only if the 463 

peripheral insulin resistance is markedly greater than hepatic insulin resistance, so this is expected to 464 

occur only rarely.  An intermediate possibility predicted by the model is a short, but not absent, interval of 465 

CGI that could escape detection if the follow-up interval is too long.  466 

A parallel question is whether individuals can go directly from IFG to T2D without passing through CGI.  467 

This is harder than going directly from IGT to T2D because 2hPG is much more labile than FPG; it is 468 

difficult to get an increase in FPG sufficient to cross the threshold for T2D (125 mg/dl) without at the 469 
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same time having 2hPG cross the threshold for IGT (140 mg/dl).  Indeed, we have not been able to 470 

simulate this scenario just by choosing an appropriate mixture of hepatic and peripheral insulin sensitivity 471 

using the other parameters as in Figs. 1 – 4, but model simulations (not shown) predict that it can happen 472 

if a more severe beta-cell defect (in g∞, Eq. A15) is assumed. 473 

The BLSA study also asked whether individuals can pass directly from NGT to T2D without passing 474 

through any pre-diabetic state.  Because glucose is in quasi-steady state with the much slower variables 475 

representing beta-cell mass, beta-cell function and insulin sensitivity, this is not possible in the model 476 

unless one of those slow variables undergoes a catastrophic, virtually discontinuous, change.  477 

Pancreatectomy would be an example of this, but even type 1 diabetes, triggered by a rapid fall in beta-478 

cell mass, has a distinct prediabetes phase.   The cases observed in BLSA in which subjects were NGT at 479 

baseline and T2D at first follow-up most likely reflected rapid progression or a long gap between visits.  480 

Similarly, the model simulations indicate that it is unlikely for individuals to go from NGT to CGI 481 

without passing through IFG or IGT. 482 

The BLSA reported that IFG is generally followed by IGT and IGT is generally followed by IFG, and the 483 

model suggests that each state induces the other.  This happens because the initial rise in glucose during 484 

IFG impairs beta-cell function, which causes 2hPG to rise, and vice versa.  Another study raised the 485 

question of whether CGI is a progressed state of IFG 40; the model simulations together with the BLSA 486 

data show that CGI may instead be a progressed state of IGT, to which IFG has been added.   487 

One can also ask whether crossing the threshold for FPG or 2hPG of pre-diabetes predicts whether T2D 488 

will be reached by crossing the corresponding threshold.   In Fig. 1, IGT is followed by T2D diagnosed 489 

through 2hPG, and further simulations with the model (Fig. 5) suggest that this is typical.  In Fig. 3, IFG 490 

is followed by T2D diagnosed through FPG, but further simulations (not shown) indicate that this may or 491 

may not be the case, depending on the degree of discrepancy between HIR and PIR and the strength of g  492 

to control FPG. 493 
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Both the IFG- and IGT-first pathways exhibit elevated fasting insulin.  This may account for the 494 

observation that elevated fasting insulin was a better predictor of future diabetes in a prospective study 495 

than fasting glucose, which is only elevated early on in the IFG-first pathway 41; it may not be necessary 496 

to hypothesize a major causative role for high fasting insulin itself.  Indeed, in the IGT-first pathway, 497 

which is more common, fasting glucose may be suppressed by the compensatory increase in beta-cell 498 

function (our variable s) induced by high post-load glucose (compare Figs. 1 and 4 to Fig. 3). 499 

The suppression of fasting glucose in the context of a predominance of peripheral insulin resistance has 500 

particular importance for pre-diabetes screening in populations that are prone to IGT but not IFG.  This 501 

applies notably to people of African descent, for whom fasting glucose has markedly reduced sensitivity 502 

for detecting pre-diabetes and diabetes 42.  The problem is exacerbated for Africans living in Africa, 503 

where measuring 2hPG with OGTTs is prohibitively expensive.  The model suggests that in this and 504 

similar cases, lowering the threshold for diagnosing pre-diabetes based on fasting glucose could be a cost-505 

effective strategy.  More generally, the model points to the need for population- and patient-specific 506 

thresholds for diagnosis, which may contribute to resolving current debate on whether prediabetes is a 507 

useful diagnosis 43. 508 

 509 

Peripheral and hepatic insulin resistance are not independent 510 

We have varied peripheral and hepatic insulin resistance independently to study their contributions to 511 

T2D progression, but in reality, they are related. Statistically, they are correlated with a coefficient of 512 

about 0.7 44.  This is expected for several reasons.  For one, they share major components of the insulin 513 

signaling pathway.  Also, there is evidence that an important determinant of hepatic insulin resistance is 514 

excess supply of free fatty acid (FFA) substrate from adipose tissue 45.   Thus, insulin resistance in 515 

adipose cells would increase lipolysis and FFA flux to the liver, which would drive increased 516 
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gluconeogenesis 46.  On the other hand, the liver has unique roles in glucose and lipid production not 517 

shared with muscle, which may account for the fact that the correlation is imperfect. 518 

The unique contribution of the model in this regard, however, is to reveal dynamic reasons for a 519 

relationship between hepatic and peripheral resistance.  Fasting HGP is primarily controlled by fasting 520 

insulin concentration, but post-prandial HGP is suppressed by the post-prandial rise of insulin.  If severe 521 

peripheral insulin resistance is present, but the compensation in insulin is strong, it is possible to have 522 

fasting hypoglycemia unless there is some degree of hepatic insulin resistance. This is illustrated in Fig. 523 

A7.  Since this is not typically observed, we have accounted for this by making HGP dependent on SI 524 

(Eqs. A4 - A6, Fig. A4), reflecting the above-mentioned correlation between hepatic and peripheral 525 

resistance.  Note that we have omitted glucagon from the model for simplicity because we are not aware 526 

of strong evidence that it is involved in the development of diabetes, though it is involved in worsening 527 

hyperglycemia in established diabetes.  It is possible that glucose may also contribute to avoiding 528 

hypoglycemia under the conditions of severe insulin resistance and strong secretion described in this 529 

paragraph. 530 

To address hepatic insulin resistance above and beyond the component correlated with peripheral insulin 531 

resistance, we have independently varied the affinity of HGP for insulin (parameter hepaSI in Eq. A4), the 532 

effect of which is shown in Fig. A4.  We have obtained similar results (not shown) by varying the 533 

maximal rate of HGP (parameter hepamax). 534 

 535 

Secretion defects 536 

The simulations of progression to T2D (Figs. 1, 3, and 4) require some degree of secretion defect in 537 

addition to the various combinations of insulin resistance.  We assumed a defect only in the triggering 538 

pathway (g ), but we have obtained similar results by assuming defects in the amplifying pathway (s ). 539 
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The assumed triggering defect represents a right shift in the glucose dose response curve, which 540 

corresponds to a mild gain of function mutation of the K(ATP) channels, a prominent hit in GWAS 47. 541 

The model shows that defects in first- and second-phase secretion are not independent. Impairment in one 542 

leads to impairment in the other because of the harmful effects of elevated glucose.  The model accounts 543 

for classic data 36 showing that the acute insulin response to glucose (AIRg), a surrogate for first phase 544 

secretion, declines with even modest increases in FPG during the NGT and pre-diabetic stages.  The 545 

model shows, however, that second-phase insulin secretion declines in parallel, belying a privileged role 546 

for first-phase secretion, as also shown in another modeling study 48.  In our model, reduced AIRg results 547 

mainly from reduced size of the RRP, which can be caused by impairment in either first-phase or second-548 

phase secretion or both.  More generally, any unanswered rise in either fasting or post-prandial glucose 549 

impairs both first and second phase secretion, and any defect in either first or second phase secretion 550 

raises both fasting and post-prandial glucose.  This creates a vicious cycle that drives down both first- and 551 

second-phase secretion regardless of which defect is primary.  Empirical studies that do not select for 552 

early isolated FPG or IGT cases do not show a clear prominence of first phase secretion loss 49, in 553 

agreement with the model.  554 

 555 

Limitations of the study 556 

For simplicity and brevity, we addressed here only the contributions of hepatic and peripheral insulin 557 

resistance in driving the IFG-first and IGT-first pathways.  It has been shown, however, that non-insulin-558 

dependent glucose uptake (glucose effectiveness) also plays a role 40.  The model can account for this if 559 

the glucose effectiveness parameter EG0 in Eq. (1) is varied.  We have also found that a right shift in the 560 

sensitivity of the beta cells to glucose (our function g∞(G) in Eqs. (5, A15)) can by itself or in combination 561 

with hepatic insulin resistance cause IFG and alter the trajectory of IGT.   562 
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The model as presented here is also oversimplified in that it only considers glucotoxicity and neglects 563 

other factors that are likely to play a role, such as lipotoxicity 50.  In addition, we believe that prolonged 564 

high secretion rate is probably harmful beyond the negative effect incorporated in the equation for s, 565 

possibly because of ER stress and/or calcium toxicity 51.  Those factors were not included here because 566 

they were not needed to account for the pathways considered, but they may be necessary to explain other 567 

pathways to T2D and will be addressed elsewhere. 568 

To capture the full range of patterns, it is necessary to consider as well pre-existing variation in beta-cell 569 

function, not the moment-to-moment beta-cell function, which evolves in response to hyperglycemia, but 570 

the innate, genetic capacity of beta-cell function to adapt to hyperglycemia.  For example, changing the 571 

parameters defining s∞  (Eqs. 6, A16) has marked effects on the speed of progression in IGT; we 572 

neglected this because it doesn’t change the likelihood of entering the IGT state much. 573 

We have modeled the suppression of hepatic glucose production as a direct effect of insulin on the liver.  574 

However, much if not all of the acute effect of insulin is indirect, mediated by suppression of lipolysis in 575 

adipose tissue, which reduces the supply of free fatty acid (FFA) to the liver 45.  We consider this an 576 

acceptable approximation for our purposes, as post-prandial suppression of lipolysis is roughly a mirror 577 

image of the post-prandial rise in insulin.  In future, if we want to account for FFA dynamics or adipose-578 

tissue insulin resistance, the model would have to be augmented. 579 

We have modeled insulin-dependent glucose uptake as linear in insulin, but it is likely to be non-linear 580 

(sigmoidal) 52 and has been suggested to exhibit hysteresis 53.  We have not found these features to be 581 

necessary to explain the data under consideration, but they can be easily added in the future if the need 582 

arises. 583 
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We have included only a very simple representation of insulin clearance, assuming a first-order 584 

dependence on insulin concentration.  We have not distinguished portal from peripheral insulin 54 or 585 

considered possible regulation by glucose 55 or free fatty acids 56. 586 

A question of particular current interest with regard to clearance that we have not investigated here is 587 

what contribution clearance makes to the pathogenesis of T2D.  There is considerable evidence that 588 

insulin clearance is positively correlated with peripheral insulin sensitivity (e.g., 54,57), but the direction of 589 

causation is not clear.  If clearance is reduced secondary to reduced overall insulin sensitivity, then it 590 

would contribute to the compensatory response, along with increased insulin secretion.  However, it has 591 

been suggested that the increased insulin resulting from reduced clearance may also contribute to insulin 592 

resistance 58. If that effect is modest in magnitude, it may reduce or even eliminate the compensatory 593 

contribution of reduced clearance.   594 

If the effect of hyperinsulinemia is great, or is even the primary cause of insulin resistance, as suggested 595 

in 57, it could possibly itself drive the pathogenesis of diabetes.  Along those lines, it has been shown that 596 

knocking out a key enzyme regulating insulin clearance, carcinoembryonic antigen-related cell adhesion 597 

molecule 1 (CEACAM1), causes insulin resistance in mice 59.  The pathway involved is complicated, 598 

involving direct effects on de novo lipogenesis in the liver and interactions with feeding circuits in the 599 

hypothalamus in addition to hyperinsulinemia per se.  It is beyond the scope of the present model but may 600 

be an interesting topic for future modeling work.   601 

 602 
Future directions 603 

This paper has demonstrated that if the insulin resistance phenotype of an individual is known, their 604 

future trajectory of hyperglycemia can be predicted (Figs. 1 – 4) and drug choice can potentially be 605 

optimized for the patient’s insulin resistance phenotype (Fig. 8).  Another longitudinal model has shown 606 

similarly the results of targeting insulin resistance vs. beta-cell replication 9.  Our model can provide 607 
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similar predictions if the relative impairments in insulin secretion and insulin resistance are known. For 608 

example, plotting 1hPG vs. 2hPG obtained by simulating OGTTs results in a family of trajectories similar 609 

to the ones for FPG vs. 2hPG shown in Fig. 5.  The differences in trajectories due to the contributions of 610 

insulin secretion and insulin action can be read off from the difference between 1hPG and 2hPG and are 611 

similarly most pronounced during prediabetes (Ha et al, ADA poster 1490-P, June, 2019).  This 612 

prediction may provide deeper insight into the diagnostic information that can be extracted from different 613 

time points during the OGTT, an issue that is currently receiving much attention 19,60. 614 

However, to be a useful tool for patient stratification and treatment planning, one needs to ascertain the 615 

patient’s phenotype.  We plan to investigate whether the model can be used, with suitable modifications, 616 

to solve the inverse problem of inferring the individual’s parameters of insulin resistance and beta-cell 617 

function from the observed behavior. 618 
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Figure Legends 813 

Figure 1: IGT-first pathway to diabetes.  (A) Assumed severe decline in peripheral insulin sensitivity. (B) 814 
Assumed mild decline in hepatic insulin sensitivity. (C) Simulated longitudinal changes based on the 815 
assumptions in (A) and (B) in fasting plasma glucose (FPG) and two-hour glucose (2hPG) during OGTTs 816 
performed at each time point.  The virtual subject experiences first high two-hour glucose (IGT), then 817 
high fasting glucose (CGI), and finally crosses the 2hPG threshold for T2D. (D) Simulated longitudinal 818 
changes in fasting plasma insulin (FPI) and two-hour insulin (2hPI) during the OGTTs. Insulin increases 819 
early on but decreases later. (E) The component of b-cell function represented by s decreases 820 
progressively throughout. (F) The b-cell mass, b, first increases during prediabetes, then decreases after 821 
diabetes onset. 822 

 823 

Figure 2: Insulin resistance (same as Fig. 1) does not lead to diabetes if beta-cell function is sufficiently 824 
responsive.  The g-dynamics is made stronger than in Fig. 1 by decreasing gs to 90 mg/dl from 100 mg/dl  825 
(see other parameters in Table S12A). (A) Assumed severe decline in peripheral insulin sensitivity. (B) 826 
Assumed mild decline in hepatic insulin sensitivity. (C) Simulated longitudinal changes in FPG and 2hPG 827 
during OGTTs performed at each time point.  The virtual subject experiences modest rises in glucose and 828 
crosses the threshold for IGT but never crosses the thresholds for IFG, CGI or T2D. (D) Simulated 829 
longitudinal changes in fasting plasma insulin (FPI) and two-hour insulin (2hPI) during the OGTTs. 830 
Insulin concentration increases and saturates but never declines. (E) The b-cell function component s first 831 
decreases, but then levels off.  Increase in the b-cell function component represented by g (not shown) 832 
helps limit the rise in glucose, which allows the b-cell mass b to increase gradually throughout (F). 833 

Figure 3: IFG-first pathway to diabetes.  (A) Assumed mild decline in peripheral insulin sensitivity. (B) 834 
Assumed severe decline in hepatic insulin sensitivity component hepaSI. (C) Simulated longitudinal 835 
changes in FPG and 2hPG during OGTTs performed at each time point.  The virtual subject experiences 836 
first high FPG (IFG), then high 2hPG (CGI), and finally crosses the FPG threshold for T2D first. 837 
Simulated longitudinal changes in fasting plasma insulin (FPI) and two-hour insulin (2hPI) during the 838 
OGTTs. Insulin concentration increases early on but decreases later. (E) The b-cell function component s 839 
decreases progressively throughout. (F) The b-cell mass b increases during prediabetes then decreases 840 
after diabetes onset. 841 

Figure 4: The CGI state is not obligatory. (A), (B): Extreme discrepancy between peripheral and hepatic 842 
(A – B) insulin resistance results in progression directly from IGT to T2D without passing through CGI 843 
based on OGTTs performed at each time point (C).  FPG does not exceed the threshold for IFG until after 844 
T2D onset. (D) Simulated longitudinal changes in fasting plasma insulin (FPI) and two-hour insulin 845 
(2hPI) during the OGTTs. Insulin increases early on, then decreases. (E) The b-cell function component s 846 
decreases more rapidly than in Figs. 1, 3. (F) The b-cell mass b increases during prediabetes, then 847 
decreases after diabetes onset. 848 

Figure 5: (A) Two-hour glucose (2hPG) plotted vs. fasting glucose (FPG) for varying degrees of 849 
peripheral insulin sensitivity, SI, and hepatic insulin sensitivity hepaSI, starting from the same initial 850 
values as in Figs. 1 – 4 and evolving to the target values, tarSI  (Eq. A13) and tarhepaSI  (Eq. A14) as 851 
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follows: from upper left to lower right, the tarSI  values increase: 0.1, 0.17, 0.22, 0.33, 0.4 and 0.5; and the 852 
tarhepaSI  values decrease: 0.85, 0.6, 0.45, 0.35, 0.25 and 0.1.  All other parameters are fixed.  (B) 853 
expanded view of (A) to highlight the prediabetes region. 854 
 855 
Figure 6: Glucose during OGTTs performed at the times indicated by the black dots in (A) Fig. 1 (IGT-856 
first pathway) and (B) Fig. 3 (IFG-first pathway).  (C, D) insulin corresponding to A and B, respectively.  857 
See text for details. 858 
 859 
Figure 7: Insulin during IVGTTs performed at the time points indicated by the black dots in (A) Fig. 1 860 
(IGT-first pathway) and (B) Fig. 3 (IFG-first pathway). (C, D): RRP size (numbers of vesicles) 861 
corresponding to A and B, respectively.  Decline of AIRg parallels the reduction of RRP for each case. 862 
 863 
 864 
Figure 8: Drug therapies targeting either peripheral insulin sensitivity (modeled as a rapid increase in SI) 865 
or hepatic insulin sensitivity (modeled as a rapid increase in hepaSI; see Tables S13 – S16 for details).  866 
The drugs are applied in the early stages of T2D (A, B) or during prediabetes (C, D). (A, C) Dominant 867 
peripheral insulin resistance, leading to IGT-first pathway as in Fig. 1.  (B, D) Dominant hepatic insulin 868 
resistance, leading to IFG-first pathway as in Fig. 3.  The appropriately targeted drug is more effective 869 
than the inappropriately targeted drug in each case, but therapy is more effective when initiated during 870 
prediabetes. 871 

 872 

Appendix Figure Legends: 873 

 874 
Fig. A1. Pathways to diabetes from the Baltimore Longitudinal Study of Aging. Data extracted from Fig. 875 
3B of 2.  Of 362 subjects initially at NGT, 253 progressed to prediabetes (IFG, IGT or CGI) or T2D at 876 
first follow-up.  A subset of each group had further follow-up, at which time some had progressed to 877 
T2D.  In addition, some of the subjects who had initially progressed to IFG and IGT progressed further to 878 
CGI (Fig. 3A of 2).  Current ADA thresholds were used to define each category. 879 

Fig. A2. A. Schematic of exocytosis model.  Vesicles progress from the reserve pool to the docked pool, 880 
then the readily releasable pool (primed) and finally the immediately releasable pool (tethered to Ca2+ 881 
channels).  B: Effect of high fasting glucose on first phase secretion rate.  Control (solid): G sharply 882 
increased from 80  to 213 mg/dl with an exponential time course starting at time 0, matched to data from 883 
Fig. 1 in 61 (not shown).  Parameters and variables as in Fig. 1, except the following variables, which are 884 
fixed: b = 1000, s = 1; the G equation and its parameters are eliminated. Open circles: insulin response to 885 
the glucose from Fig. 1 in 61.  Dashed: Glucose raised to 213 mg/dl after equilibration at 110 mg/dl, 886 
reducing first-phase secretion. Parameters as for control, but s  reduced to 0.83 as expected for 887 
progression along IFG pathway.  For both simulations, the implicit incretin effect is removed by reducing  888 
𝐺RSTUC:10-fold and 𝑟PQ14-fold.  Effect of reduced s on second phase secretion. G is raised as in panel B, 889 
control, but with s  reduced 10% or 20% . 890 
  891 
Fig. A3. Glucose fluxes and responses during meals and OGTTs. (A) Glucose flux in response to meals at 892 
6:00 AM, 12:00 Noon, and 6:00 PM and (B) corresponding plasma glucose. Peak glucose flux during a 893 
meal of about 5 mg/dl/min, or 7.8 mg/kg/min, assuming 1.569 dL/kg  62, half-width of about 2 h and 894 
return to baseline in 7 h may be compared to Fig. 1 in 63.  (C) Glucose flux during an OGTT and (D) 895 
corresponding plasma glucose. 896 
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Fig. A4. Hepatic glucose production (HGP) as modeled by Eq. (A4). (A) HGP in response to a meal at 897 
time 0. (B) hepamax, maximum of HGP given the level of insulin I, is modeled as a decreasing function of 898 
peripheral insulin sensitivity, SI (Eq. A5).  (C) aHGP, representing the affinity of HGP for insulin, is 899 
modeled as a decreasing function of peripheral insulin sensitivity, SI (Eq. A6).  (D) Total HGP as a 900 
function of SI , with I fixed at 30 µU/ml.  Hepatic insulin sensitivity independent of peripheral insulin 901 
sensitivity is modeled by varying hepaSI in Figs. 1 - 7. 902 

Fig. A5. Postprandial (PG) one hour after each breakfast, at 6:00 AM each day, and fasting (FG) glucose 903 
corresponding to Figs. 1, 2, 3, 4 is shown in A, B, C. and D, respectively.  PG follows the same trends as 904 
two-hour glucose. 905 

Fig. A6. Comparison of model simulations to selected experimental results. A, B: Glucose and insulin 906 
during an OGTT administered to a representative NGT person 64, Fig. 1 A, B:  Parameters and variables 907 
are as in Fig. 1 except the following variables, which are fixed:  b = 1553, s = 1, SI = 0.5 and hepaSI = 0.5.  908 
C, D: Glucose and insulin during an IVGTT 65, Fig. 1C, D:  Parameters and variables are as in Fig 1 909 
except the following variables, which are fixed:  b = 1200, s = 1, SI = 0.8 and hepaSI = 0.5.  E – H: 910 
simulation of a hyperinsulinemic, euglycemic clamp. Steady-state measured values from Fig. 2 in 29 are 911 
shown as grey ´’s. b and s are set to 0 to reflect use of somatostatin to suppress endogenous insulin 912 
secretion.  SI = 0.8 and hepaSI = 1.0, corresponding to an individual in the NGT range. 913 

 914 

Fig. A7. A, C, E: Simulation of a case of very strong compensatory secretion, which preserves normal 915 
glucose tolerance in spite of a severe drop in SI, from 0.8 to 0.2.  The liver is insulin sensitive, with hepaSI 916 
maintained at 1.0, and beta-cell function is enhanced by increasing s ISR,max to 2.1 (default=1.4).  Hepatic 917 
glucose production (panel E) remains nearly constant because the effect of the drop in SI on HGP 918 
balances the rise in fasting insulin.    B, D, F: The same simulation but with SI held fixed in Eqs. A5 and 919 
A6 at 0.8 while still declining in Eq. 1. Even though fasting insulin is lower in the right panels, the slight 920 
increase in fasting I over time causes HGP to decline, resulting in fasting hypoglycemia.  921 
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 922 

Appendix  923 

Model equations repeated from main text 924 

𝑑𝐺
𝑑𝑡 = 𝑀𝐸𝐴𝐿 + 𝐻𝐺𝑃 − (𝐸"/ + 𝑆1𝐼)𝐺	925 

𝑑𝐼
𝑑𝑡 =

𝛽
𝑉 𝐼𝑆𝑅 − 𝑘𝐼 926 

𝑑𝛽
𝑑𝑡 =

(𝑃(𝐼𝑆𝑅) − 𝐴(𝑀))𝛽
𝜏5

 927 

𝑑𝛾
𝑑𝑡 =

𝛾\(𝐺) − 𝛾
𝜏<

 928 

𝑑𝜎
𝑑𝑡 =

𝜎\(𝐼𝑆𝑅,𝑀) − 𝜎
𝜏F

 929 

 930 

Where tmin=EG0 = 0.0118 min-1
, V = 7200 mL, and k = 0.446 min-1 (other parameters defined in tables 931 

below). 932 

 933 

MEAL MODEL 934 

𝑀𝐸𝐴𝐿 = 𝑚𝑒𝑎𝑙abc d
#S=

ASeTf;#S=g
h
exp(−𝜇𝑡)       (A1) 935 

 936 

Figs. A3 A, B show glucose fluxes and the corresponding glucose concentration in response to three 937 
meals per day. 938 

 939 

Table S1.   Parameters for MEAL 940 

Parameter Name Value Description Unit 

mealmax 11.055 Maximum meal rate mg/dl/min 

mk 4 Degree of polynomial unitless 

ameal 40 Half activation value unitless 
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h 0.3 Exponent of rise for 
meal flux 

unitless 

µ 0.015 Rate of decay for meal 
flux 

unitless 

 941 

 942 

OGTT MODEL 943 

Figs. A3 C, D show glucose fluxes and the corresponding glucose response during an OGTT. The OGTT 944 
fluxes are modeled by a piecewise linear function similar to 4.  Specifically, the term MEAL in the G 945 
equation is replaced by OGTT, where  946 

𝑂𝐺𝑇𝑇 = /"oop
6q

, where 𝑉" = 𝐵𝑊 × 𝑉u  is the volume of distribution for glucose in dL,  BW is body weight 947 

in kg, 𝑉u= 1.569 dL/kg 62, and 948 

𝑂𝐺𝑇𝑇Q = 𝑎vCw +
bxCbxyz
#xC#xyz

(𝑡 − 𝑡vCw), 𝑡vCw < 𝑡 < 𝑡v, 𝑖 = 1,2,3     (A2)	949 

𝑂𝐺𝑇𝑇� = 0, elsewhere 950 

The simulations in the paper were carried out assuming BW = 75kg, for a volume of distribution of 11.77 951 
L, but this formulation makes the glucose load 75g independent of those choices.  The values for ai are 952 
given in Table S2. 953 

 954 

Table S2. Parameters for OGTT 955 

Parameter name Value Description Unit 

a0 0 Glucose flux at t=t0 mg/min 

a1 588.5 Glucose flux at t=t1 mg/min 

a2 353.1 Glucose flux at t=t2 mg/min 

a3 0 Glucose flux at t=t3 mg/min 

t0 0 Initial time of 
activation of glucose 
flux 

min 

t1 15 First time of activation 
of glucose flux 

min 
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t2 120 Second time of 
activation of glucose 
flux 

min 

t3 240 Third time of activation 
of glucose flux 

min 

 956 

IVGTT MODEL.  957 

The rapid rise and decline in glucose flux are modeled by a polynomial and exponential function as 958 
shown in Figs. 6A, B, and C.  The term MEAL in the G equation is replaced by IVGTT, where 959 

𝐼𝑉𝐺𝑇𝑇 = 16"oo�T�
��	6q

𝑡� exp(−𝜆𝑡)         (A3) 960 

and IVGTTbar is given in Table S3 along with the other parameters.   As for the OGTT, the simulations 961 
were carried out assuming BW = 75g. 962 

Table S3 Parameters for IVGTT 963 

Parameter name Value Description Unit 

IVGTTbar 1.471 ´ 106 Maximum glucose flux mg/min 

k 1 Degree of polynomial unitless 

l 10 Decay rate of 
exponential function 

1/min 

 964 

Hepatic Glucose Production (HGP).  HGP is modeled as a function of insulin concentration I and 965 
peripheral insulin sensitivity SI using equations A4, A5, and A6.  The model HGP is a decreasing function 966 
of I (Eq. A4): As I increases during the post-prandial state, HGP is suppressed (Fig. A4A). hepamax and 967 
aHGP are modeled as decreasing functions of peripheral insulin sensitivity SI, as shown in Figs. A4 B, C. 968 

  969 

                           𝐻𝐺𝑃 = ���bSTU
A�q�	;	���b?>1

+ 𝐻𝐺𝑃�b�                              (A4) 970 

                          ℎ𝑒𝑝𝑎abc =
���b�T�
���b=;H>

+ ℎ𝑒𝑝𝑎��                                 (A5) 971 

																													𝛼�"L =
A�T�
A=	;H>

+		𝛼��                                             (A6) 972 

                                973 
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Table. S4   Parameters for HGP 974 

Parameter name Value Description Unit 

HGPbas 0.104 Basal HGP rate mg/dl/min 

hepabar 15.443 Coefficient of hepamax 10-4min(mg/dl/min) 

hepak 0.27 Translation of hepamax 10-4ml/µU/min 

hepash -3.542 Shift of hepamax (µU/ml)(mg/dl/min) 

abar 6 Coefficient of aHGP 10-4/min 

ak 0.4 Translation of aHGP 10-4ml/µU/min 

ash -0.5 Shift of aHGP µU/ml 

  975 

 976 

Bulk Cytosolic Calcium Concentration (Ci) Model.  977 

𝐶v =
�xSTU(:;<)

=�x

A�x
=�x;(:;<)=�x

+ 𝐶v�                                     (A7) 978 

                                                                                           979 

 980 

Table S5 parameters for Ca2+ model 981 

Parameter name Value Description Unit 

Ci,max 2 Maximum Ca2+ µM 

kCi 4 Exponent of sigmoidal 
function 

unitless 

aCi 0.62 Half activation value unitless 

Ci,b 0.07 Basal calcium µM 

 982 

 983 

Microdomain Ca2+ Concentration (Cmd) Model 984 
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𝐶a! =
�S�STU(�x)

=�S�

A�S�
=�S�;(�x)=�S�

+ 𝐶a!�                                    (A8) 985 

                                         986 

Table S6 Parameters for Microdomain 987 

 988 

Parameter name Value Description Unit 

Cmd,max 150 Maximum Cmd µM 

kCmd 4 Exponent of sigmoidal 
function 

unitless 

aCmd 1 Half activation value unitless 

Cmd,b 0.0635 Basal microdomain 
calcium 

µM 

 989 

 990 

Glucose Amplifying Factor Model. 991 

𝐺R =
"�STU("C"��ℎ)

=q�

Aq�
=q�;("C"��ℎ)

=q�
+ 𝐺R�                                       (A9) 992 

 993 

GF implicitly includes a component corresponding to the incretin effect.  For IVGTT and hyperglycemic 994 
clamp simulations, we reduced 𝐺RSTUby a factor of 10, which reduces GF by a factor of about 2. 995 

                                         996 

Table S7 Parameters for amplifying factor 997 

Parameter name Value Description Unit 

GF,max 4.45 Maximum value unitless 

GF,sh 89 Shift of Glucose mg/dl 

kGF 16 Exponent of sigmoidal 
function 

unitless 
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aG,F 260 Half activation mg/dl 

GF,b 1.78 Basal GF unitless 

 998 

 999 

Insulin Granule Exocytosis Model. The model was previously published in 18. The rate of mobilization of 1000 
insulin granules, r3, is modified to include a component of b-cell function, s, and a glucose amplifying 1001 
factor GF that is modeled by a Hill function, whereas it was originally modeled by a step function in 18. 1002 

 1003 

𝑁w� =
𝑘𝑚w

3𝑘w𝐶a! + 𝑟𝑚w
 1004 

𝑁w� =
𝑟w

3𝑘w𝐶a! + 𝑟𝑚w
 1005 

𝑁P� =
3𝑘w𝐶a!

2𝑘w		𝐶a! + 𝑘𝑚w
 1006 

𝑁PR =
2𝑘𝑚w

2𝑘w		𝐶a! + 𝑘𝑚w
 1007 

𝑁�� =
2𝑘w𝐶a!

2𝑘𝑚w		 +	𝑘w𝐶a!
 1008 

𝑁�� =
��az

P�az		;	�z�S�
                                                        (A10) 1009 

𝐶�  =
𝑘w𝐶a!

2𝑘𝑚w		 +	𝑢w
 1010 

𝐶�� =
𝑁��

1 − 𝑁��𝐶� 
 1011 

𝐶�P =
𝑁P�

1 − 𝑁PR�¢£
 1012 

𝐶�w =
𝑁w�

1 − 𝑁w��¢¤
 1013 

 1014 

𝑑𝑁¥
𝑑𝑡 = 𝑡�(𝑟𝑚w𝐶�w𝑁¥ − (𝑟w +	𝑟𝑚P)𝑁¥ 	+	𝑟P𝑁¦) 1015 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/648816doi: bioRxiv preprint 

https://doi.org/10.1101/648816


43 

 

𝑑𝑁¦
𝑑𝑡 = 𝑡�(𝑟� + 𝑟𝑚P𝑁¥ − (𝑟𝑚� + 𝑟P)𝑁¦) 1016 

where 1017 

 𝑟� = 𝜎𝐺R𝑟�Q
�x

�x;�§¤
                                                             (A11) 1018 

and s is determined by Eqs. (6) in the main text and Eq. (A16) below. 1019 

Equations of the exocytosis model, simplified from 18 by setting fast steps N1 – N4 to steady state: 1020 

 1021 

𝑁w = 𝐶�w𝑁¥	1023 
 1022 

𝑁P = 𝐶�P𝑁w         1024 

           	1025 
𝑁� = 𝐶��𝑁P         1026 

        	1027 
𝑁  = 𝐶� 𝑁�            1028 

𝑁R = 𝑢w𝑁 /𝑢P   1029 

𝑁I = 𝑁R𝑢P/𝑢�  1030 

 1031 

𝑟P = 𝑟PQ
�x

�>;�§¤
  (A12) 1032 

𝐼𝑆𝑅 = 𝜌𝑡�𝑢�𝑁I  1033 

The output of the exocytosis model vesicles/min/cell.  In contrast to the first version of the model 6, s is a 1034 
unitless scale factor modifying vesicle delivery to the plasma membrane, so we need the factor 1035 
r to convert vesicles/cell/min to µU(insulin)/mg(beta cells)/min for substitution of ISR into Eq. 2 for I.   1036 
The value of r is approximately 90 µU/mg based on the following estimates: 1037 

1 vesicle has 9 fg of insulin 66. 1038 

A beta cell has a volume of about 3 pL 67 and weighs about 2.9 ng, so there are about 3.5 ´ 105 cells/mg. 1039 

1 U = 0.035 mg of insulin, giving 3.5 ´ 104 fg/µU. 1040 

Combining these three factors gives r = 90 µU/mg.  However, we find that this rate, based on single-cell 1041 
measurements of capacitance, gives whole-body insulin secretion that is too large.  Previous reports have 1042 
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said that islet secretion in vivo is 3-fold 67 and in vitro 25-fold 68 smaller than single-cell secretion.  The 1043 
inhibition of insulin secretion by paracrine somatostatin and by insulin itself may contribute to this.  We 1044 
have compromised and reduced r 10-fold to 9 µU/mg. With this choice, total secretion rate (b ISR/V) is in 1045 
the range 100 – 550 pmol/min during an OGTT, compared to 200 – 700 pmol/min in experimental data 1046 
from 7 NGT and 4 IGT subjects 69, and peak post-prandial secretion for an NGT subject is about 0.6 1047 
ng/ml/min, close to results from a mixed meal test in 70. 1048 

Table S8 Parameters for the exocytosis model 1049 

Parameter name Value Description Unit 

ts 60 Unit conversion factor sec/min 

k1 20 Flux (µM sec)-1 

km1 100 Flux sec-1 

r1 0.6 Flux sec-1 

r2
0 0.006 Flux sec-1 

rm2 0.001 Flux sec-1 

r3
0 1.205 Flux sec-1 

u1 2000 Flux sec-1 

u2 3 Flux sec-1 

u3 0.02 Flux sec-1 

kp2 2.3 Half activation value µM 

 1050 

 1051 

Dynamics of peripheral and hepatic insulin resistance. Both peripheral insulin sensitivity, SI, and hepatic 1052 
insulin resistance, hepaIR, are modeled as decreasing exponentially to target levels tarSI and tarhepaIR with 1053 
time constants tSI and thepaIR, respectively.   1054 

 1055 

          	1056 
!H1
!#
= #Sxª(#b«?>C	H1)

D?>
                                               (A13) 1057 

 1058 
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!���b?>
!#

=
#Sxª(#b«¬e§T?>C	���b?>)

D¬e§T?>
                            (A14) 1059 

                                                                                          1060 

 1061 

Parameter adjustments for daily glucose responses. Some parameters in Tables S9 and S10 have been 1062 
changed from 6 to accommodate daily glucose fluctuations.  1063 

g-dynamics: 1064 

𝛾∞(𝐺) =
<STU

w;�c�(("C<�)/<ª)p
         (A15) 1065 

                         1066 

Table S9. Parameter adjustments of g-dynamics for daily glucose fluctuations 1067 

Parameter name Value Description Unit 

gmax 0.4 Maximum value of g unitless 

gs 100 Default value of 
horizontal shift 

mg/dl 

gn 5 Slope factor of g∞ unitless 

g0 0.2 Baseline value of g unitless 

tg 3,081.6 Time constant of g min (2.14 d) 

 1068 

s-dynamics: 1069 

 1070 

𝜎\(𝐼𝑆𝑅,𝑀) = 𝜎1HI\(𝐼𝑆𝑅)𝜎:\(𝑀) +	𝜎�      1071 

𝜎1HI\(𝐼𝑆𝑅) =
F>?@STU

w;F>?@= ­®¯°C
>?@yK>?@�
K>?@ª

±
                                                                       (A16) 1072 

𝜎:\(𝑀) = 1 −	
𝜎:abc

1 + 𝜎:�exp	(−
𝑀F − 𝜎:�
𝜎:²

)
 1073 

where   𝑀F = 𝑀(𝐺 − 𝐺F�) 1074 

Table S10. Parameters of s-dynamics for daily glucose fluctuations 1075 
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Parameter name Value Description Unit 

𝜎1HIabc 1.4 Maximum value 
of 𝜎1HI∞ 

𝜇𝑈
𝜇𝑔 ⋅ 𝑑 

𝜎1HI� 1 Weight of  𝜎1HI∞  

𝜎1HI� 0.1 Horizontal shift of 
𝜎1HI∞ 

 

𝜎1HI² 0.1 Slope of 𝜎1HI∞  

𝜎� 0.0175 Basal sigma value 𝜇𝑈
𝜇𝑔 ⋅ 𝑑 

𝜎:abc 1 Scale factor of 𝜎:∞  

𝜎:�  0.2 Weight of  𝜎:∞  

𝜎:� 0.2 Horizontal shift of 𝜎:∞  
 

𝜎:²  0.02 Slope of 𝜎:∞  

𝐺F� 35 shift of glucose 
dependent M    

mg/dl 

               ts 3.598 ´ 105 Time constant of s min (249.9 d) 

 1076 

 1077 

b-dynamics: 1078 

	1080 

𝑃(𝐼𝑆𝑅)=	𝑃abc
1HI=�

A�=�;1HI=�
      (A17) 1079 

𝐴(𝑀) = 𝐴abc
𝑀�M

𝛼M�M +𝑀�M 1081 

 1082 

Table S11. Parameters of b-dynamics for daily glucose fluctuations  1083 

 1084 

dg
U
×µ

µ
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 1085 

Parameters Values Description Units (unitless if blank) 

𝑘: 2 Exponent of metabolic rate 
M  

 

𝛼: 150 Half maximum G value for 
M 

mg/dl 

𝑘𝐼𝑆𝑅 2 Exponent of insulin 
secretion rate ISR  

 

𝛼1HI  1.2 Half maximum M value for 
ISR 

 

𝑃abc 4.55 Maximum proliferation rate 1/day 

𝑘𝑃 4 Exponent of proliferation 
rate  

 

𝛼L 41.77 Half maximum value of ISR 
for proliferation 

 

𝐴abc 3.11 Maximum apoptosis rate 1/day 

𝑘𝐴 6 Exponent of apoptosis rate  

𝛼M 0.44 Half maximum value of M 
for apoptosis 

 

𝐴� 0.8 Basal apoptosis rate 1/day 

             tb 1.008 ´ 107 Time constant of b  min (7000 d) 

 1086 

 1087 

 1088 

 1089 

 1090 

Table S12A. Parameter values for Figs. 1 – 4 1091 
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 Fig. 1 (NGT-IGT-
CGT-T2D) 

Fig. 2 (Maintained 
IGT) 

Fig. 3 (NGT-IFG-
CGI-T2D) 

Fig. 4 (NGT-IGT-
T2D) 

tarSI 0.1 0.1 0.5 0.03 

tSI 250 250 250 150 

tarhepaSI 0.85 0.85 0.1 1.3 

thepaSI 250 250 250 1 

gs 100 90 100 100 

 1092 

Table S12B. initial conditions for Figs. 1 - 4 1093 

Variables Initial Conditions Units (unitless if blank) 

G 78.6 mg/dl mg/dl 

I 5.6  µU/ml 

b 1533.9  mg 

g -0.076  

s 1  

SI 0.8 ´ 10-4  ml/µU/min 

hepaSI 1  

N5 60.2  

N6 443.4  

 1094 

Table S13. Parameter values for Fig. 8A 1095 

 1096 

 High-dose TZD High-dose metformin 

Initiation of drug therapy 4.25 years 4.25 years 

SI 0.1à0.25 0.1à0.1 
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hepaSI 0.85à0.85 0.85à1.5 

tSI 15 (days) 250 (days) 

thepaSI 250 (days) 15 (days) 

 1097 

Table S14. Parameter values for Fig. 8B 1098 

 High-dose metformin High-dose TZD 

Initiation of drug therapy 4.25 years 4.25 years 

SI 0.5à0.5 0.5à0.65 

hepaSI 0.1à0.5 0.1à0.1 

tSI 250 (days) 15 (days) 

thepaSI 15 (days) 250 (days) 

 1099 

Table S15. Parameter values for Fig. 8C 1100 

 Low-dose TZD Low-dose metformin 

Initiation of drug therapy 2.43 years 2.43 years 

SI 0.1à0.2 0.1à0.1 

hepaSI 0.85à0.85 0.85à1.25 

tSI 15 (days) 250 (days) 

thepaIR 250 (days) 15 (days) 

 1101 

 1102 

Table S16. Parameter values for Fig. 8D 1103 

 Low-dose metformin Low-dose TZD 

Initiation of drug therapy 2.43 years 2.43 years 

SI 0.5à0.5 0.5à0.6 
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Fig. A3 
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