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Abstract

Many events are followed by an absolute refractory state, when for some time after the event

a repetition of a similar event is impossible. If uniform events, each of which is followed by

the same period of absolute refractoriness, occur randomly, as in the Bernoulli scheme, then

the event probability as a function of time can exhibit damped transient oscillations caused

by a specific initial condition. Here we give an exact analytical description of the oscillations,

with a focus on application within neuroscience. The resulting formulas stand out for their

relative simplicity, enabling analytical calculation of the damping coefficients for the second

and third peaks of the event probability.

Keywords: renewal point process, absolute refractory period, damped oscillations, neuron,

stochastic spiking

1. Introduction

Many natural and technical events are followed by a refractory period, when for some time after

the event a repetition of a similar event is unlikely (relative refractory period) or even impossible

(absolute refractory period). A characteristic natural example is the neuron and the refractory

nature of its ability to generate electrical impulses - spikes. In turn, a typical example from the

technique is the existence of so-called dead time for some types of detectors (so-called the Type

1 counters [1]), especially for photodetectors. The dead time is a fixed period of time after the

detector triggering during which it becomes inoperative. Both the neuronal refractoriness and

the detector dead time influence essentially counting distributions. If instant events of the same

type, each of which is followed by the same absolute refractory period τref , occur randomly, the

average interval T between the events can be represented as the sum T = τref + T0, where T0 is

the value of the average interval if refractoriness is absent. A more nontrivial consequence of the

refractory period is damped oscillations of the event occurrence probability as a function of time

[2–4], which are strongly pronounced at T0 ≲ τref . Such transient oscillations arise due to (i) a

specific initial condition and (ii) the fact that random instant events ordered in time in the presence
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of refractoriness become dependent on each other. In particular, the probability of a subsequent

event depends on the time elapsed from the preceding event. Random point processes of this kind

are called renewal processes and are the subject of study of the renewal theory [1]. This theory

has a method of getting an explicit analytical description for the damped oscillations of the event

probability by finding of so-called renewal density [1, 2]. For instance, this has been repeatedly done

for the classic example of the Poisson process modulated by the dead time or absolute refractory

period [5–16]. However, the resulting analytical formula for the time-dependent probability of the

event is quite cumbersome, and that complicates further analysis.

In this paper, for the Bernoulli process modulated by absolute refractoriness we give a compact

analytical description of the damped oscillations without invoking the renewal theory. The de-

scription is presented in four equivalent forms (three kinds of a recurrence formula and one explicit

formula) and is quantitatively consistent with both the results of numerical simulations and those of

the renewal theory. One kind of the recurrence formula is especially simple, enabling accurate ana-

lytical calculation of the damping coefficients. Surprisingly, these are quite robust against changing

the values of the model parameters.

Finally, ready-to-use MATLAB/Octave codes for performing simulations and plotting the graphs

of the obtained formulas are included as supplementary material.

2. Formulation of the model problem

For certainty, consider a model neuron that stochastically emits spikes, each of which is followed

by an absolute refractory period. In particular, the neuron can spontaneously emit a spike with

probability ps per unit time (i.e., in a given elementary time interval △t) so that after the spike

emission the neuron becomes temporarily inactive, i.e. it cannot emit spikes during the refractory

period τref = nref△t, where nref is a positive integer. Then the mean rate of occurrence of events

in the absence of refractoriness ν0 = 1/T0 = ps/△t, and at τref ̸= 0 from the equality T = τref +T0

for the mean rate ν = 1/T one gets ν = ν0/(1 + τrefν0). In fact, this mean rate is equal to the

ratio of the total number of spikes to observation time Tobs, given that Tobs >> τref , T0. It is also

useful to introduce the asymptotic value of the average probability of spike generation at each step,

p̄s = ν△t = ps/(1 + nrefps), such that, by the analogy with the formula for ν0,

ν = p̄s/△t = ps/(△t+ psτref ). (1)

An algorithm for simulating the neuron’s dynamics is extremely simple and as follows. Dividing

the observation interval Tobs by N equal steps △t, Tobs = N△t, these time steps are numbered
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by a sequence of natural numbers starting with 1. At each step, a random number ξ, uniformly

distributed from zero to one, is generated and compared with the given probability ps of generating

a spike. If ξ ≤ ps, it is assumed that spike has been generated at this time step. After the spike

generation, the neuron cannot emit a next spike during refractory period τref = nref△t. The event

of spike generation at an arbitrary k-th step is further denoted by Ak. For definiteness, the initial

state of the neuron is chosen as a moment when the neuron has just left the refractory state after

emitting a spike.

Performing either a large number of repeated passes of the observation interval Tobs for a sin-

gle neuron or a single pass for the large ensemble of independent neurons, one gets a statistical

distribution of the occurrence of events in the entire sequence of N time intervals. Normalizing

this distribution by the number of either the passes or the neurons in the ensemble, one obtains

the probability distribution Pk of spike generation at k-th elementary time step of the observation

interval. Due to the refractory period, the event probability, as a function of time, exhibits damped

oscillations with the average period equal to τref (Fig. 1).

In turn, the analytical problem consists in finding the probability Pk ≡ P (Ak) of spike generation

at each k-th elementary time step so that in the asymptotic limit k → ∞ one would obtain Pk → p̄s.

3. Derivation of the exact analytical formula for Pk

The probability of spike generation at k-th time step (k = 1, N), Pk = P (Ak), is equal to the

product of ps and the probability that in the interval from k − nref to k − 1 inclusively no spike

was emitted,

Pk = ps
[
1− P (Ak−nref

+Ak−nref+1 + ...+Ak−1)
]
. (2)

Spike generation events in nref consecutive time intervals are pairwise incompatible events. There-

fore, according to the summation theorem for the probabilities of pairwise incompatible events, the

probability of the sum in Eq. (2) equals the sum of probabilities

P (Ak−nref
+Ak−nref+1 + ...+Ak−1) =

k−1∑
j=k−nref

P (Aj), (3)

and the sought-for probability at the k-th step is determined in a recurrent manner, with the

recursion period equal to the refractory period,

Pk = ps(1−
k−1∑

j=k−nref

Pj) = ps
[
1− (Sk−1 − Sk−nref−1)

]
, (4)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 11, 2019. ; https://doi.org/10.1101/649392doi: bioRxiv preprint 

https://doi.org/10.1101/649392


4

Figure 1: Numerical simulation of time dependence of the event probability, where an event is spike gener-

ation, for 104 disconnected stochastically-spiking neurons at time step △t = 0.01 ms. Top: Raster of events

(gray dots, scale on the right) and the corresponding time dependence of the statistical probability of an

event (blue line, scale on the left) at ps = 0.1 and τref = 2 ms. It is seen that the period of damped oscil-

lations of probability is τref . The asymptotic probability value to which the damped oscillations converge

corresponds to the calculated value p̄s = 4.76 · 10−3 (or the average event frequency ν = 476 Hz, see (1)).

Bottom: Similar graphs for ps = 0.01 and τref = 5 ms. For this case, p̄s = 1.67 · 10−3 and ν = 167 Hz.

Note that the parameters of the neuron model (in particular, nonphysiologically large value of ps) are chosen

solely for the illustrative purpose.

where, by definition,

Sm =


0, m ≤ 0,

m∑
j=1

Pj , m > 0.
(5)

Such a definition of Sm allows us to directly generalize the formula for Pk to the range 1 ≤ k ≤ nref .

The closed formula for Sk has the form of a linear recurrent sequence

Sk = Pk + Sk−1 = ps(1 + Sk−nref−1) + (1− ps)Sk−1. (6)
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Figure 2: Comparison of the results of numerical simulations (see Fig. 1) with the calculation by mutually

equivalent analytical formulas (4), (9), (15), (20) and (21). Top: Time dependence of the statistical proba-

bility of an event (blue line, data taken from the top panel of Fig. 1) and the corresponding analytic curve

Pk (red line) at ps = 0.1 and τref = 2 ms. The asymptotic value P∞ = p̄s = 4.76 · 10−3 is shown by the

green horizontal line. Inset: Partial analytical curves for the first three refractory intervals calculated by

formulas (7), (10) and (12). Bottom: Similar graphs (main graph and inset) for the parameter values ps =

0.01 and τref = 5 ms, giving the asymptotic probability P∞ = 1.67 · 10−3.

The resulting formula (4) accurately describes the numerical statistics (Fig. 2).

One should note three important consequences.

First, for 1 ≤ k ≤ nref + 1, where

Sk = ps + (1− ps)Sk−1,

the sum Sk can be easily found explicitly, as it is an arithmetic-geometric progression of the form

Sk = rSk−1 + d,
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where S1 = ps, r = 1− ps и d = ps. According to the formula for the explicit form of the k-th term

of this progression,

Sk = rk−1

[
S1 +

d

r − 1

]
− d

r − 1
= 1− (1− ps)

k.

Hence, the probability of spike generation in the interval 1 ≤ k ≤ nref + 1 is equal to

Pk ≡ P
(1)
k = ps [1− Sk−1] = ps(1− ps)

k−1. (7)

Here and below, the upper index in parentheses indicates the number of the refractoriness interval,

counted from the initial moment t = 0. Given the initial condition, this probability naturally

coincides with the probability of the first spike generation at an arbitrary k-th step, such that
∞∑
k=1

P
(1)
k = 1, and refers to the geometric distribution.

Second, the formula (4) makes it easy to obtain the asymptotic probability value Pk at k → ∞.

The difference Sk−1 − Sk−nref−1 contains nref terms. At k → ∞ the probability at the k-th step

remains practically unchanged. Denoting it as P∞, from the general formula (4) one gets

P∞ = ps [1− nrefP∞] ,

whence

P∞ = ps/(1 + nrefps). (8)

Third, calculating the adjacent terms Pk+1 or Pk−1 similarly to the formula (6), one can exclude

sums (5) from the formula (4) and obtain a linear recurrent sequence for Pk:

Pk =


ps(1− ps)

k−1, k ≤ nref + 1,

psPk−nref−1 + (1− ps)Pk−1, k > nref + 1.
(9)

This formula is completely equivalent with Eq. (4) and using it one can easily find the expression

for Pk in an explicit form within the intervals of k multiples of nref + 1.

For example, at nref + 1 ≤ k ≤ 2(nref + 1) one gets

P
(2)
k = (k − nref − 1)p2s(1− ps)

k−nref−2 + P
(1)
k = P

(1)
k [1 + (k − nref − 1)q], (10)

where q = ps(1− ps)
−(nref+1).

Next, at 2(nref + 1) ≤ k ≤ 3(nref + 1) one gets

P
(3)
k =

1

2
(k − 2nref − 2)(k − 2nref − 1)p3s(1− ps)

k−2nref−3 + P
(2)
k = (11)

= P
(1)
k [1 + (k − nref − 1)q +

1

2
(k − 2nref − 2)(k − 2nref − 1)q2]. (12)
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It is worth noting that the numerical coefficient in the highest-order term with respect to q is the

so-called triangular number j(j+1)/2 at j = k− 2nref − 2. The inset in Fig. 2 shows the plots for

P
(1)
k , P (2)

k and P
(3)
k .

Using the induction method, one can obtain a formula for P
(m+1)
k , valid within the range

m(nref + 1) ≤ k ≤ (m+ 1)(nref + 1):

P
(m+1)
k = [

1

m!

m∏
j=1

(k −m · nref − j)]qmP
(1)
k + P

(m)
k . (13)

The general explicit expression for Pk in the polynomial form is as follows:

Pk = P
(1)
k [1 + a

(1)
k ps(1− ps)

−(nref+1) + a
(2)
k p2s(1− ps)

−2(nref+1) + . . .] = (14)

= P
(1)
k [1 +

m∑
i=1

a
(i)
k qi], (15)

where m is the integer part of the rational number k/nref rounded off to a smaller value, q =

ps(1− ps)
−(nref+1), and the coefficients

a
(m)
k ≡

θ(k −m(nref + 1))

m!

m∏
j=1

(k −m · nref − j), (16)

where the unit step function θ(x) = 1 at x ≥ 0 and θ(x) = 0 otherwise.

Taking into account the equality

1

m!

m∏
j=1

(n− j) =
(m+ 1)

n
Cm+1
n = Cm

n−1, n > m ≥ 1, (17)

where Ck
n is the standard binomial coefficient,

Ck
n =

n!

k!(n− k)!
=

(
n

k

)
, (18)

the coefficients a
(m)
k are directly expressed through the binomial coefficients:

a
(m)
k = Cm

k−m·nref−1θ(k −m(nref + 1)). (19)

Another equivalent formula for Pk can be found in a different way, as follows. Denote P (Ak|Aj)

the conditional probability of spike generation at the k-th step, provided that the previous spike

was generated at the j-th step. At times greater than the refractory period, i.e. at k > nref ,

the probability of generating a subsequent spike depends only on the moment of a previous spike.

Therefore, taking into account the initial condition, P (Ak|Aj) = P
(1)
k−j−nref

, if k − j > nref , and

P (Ak|Aj) = 0, if k − j ≤ nref .
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At k > nref +1, the probability Pk can be written as the sum of two terms: the probability P
(1)
k

that a spike will be emitted for the first time at the k-th step and the probability that at least one

spike has been emitted previously. The latter has the form of a convolution and follows from the

total probability formula.

Pk = P
(1)
k +

k−1∑
j=1

Pj · P (Ak|Aj) = P
(1)
k +

k−nref−1∑
j=1

Pj · P (1)
k−j−nref

. (20)

Notably, using substitution i = k − j − nref , one can virtually swap the indices of the multipliers

under the sign of the sum in (20), while the formula does not change its numerical value:

Pk = P
(1)
k +

k−nref−1∑
i=1

Pk−i−nref
· P (1)

i . (21)

Despite the different appearance in relation to the formulas (4) and (9), the formulas (20), (21) lead

to the same numerical results and can be derived from the recurrent formula (9). In particular, the

formula (21) can be straightforwardly obtained from (9) by successively substituting in the latter

the values Pk−1, Pk−2, . . . , Pk−nref−1 and taking into account the definition (7) for P
(1)
k .

4. Damping of the oscillations

The formulas (10) and (12) allow one to analytically calculate the relative damping of the

second and third peaks of Pk. Finding the location of these peaks corresponds to solving a linear

and quadratic algebraic equation, respectively. In particular, for (nref + 1) ≤ k ≤ 2(nref + 1),

calculating dP
(2)
k /dk = 0 by the explicit formula (10) we get the location of the second peak,

kmax 2 = nref + 1 +R, (22)

where

R = 1/u− 1/q, (23)

q = ps(1− ps)
−(nref+1), (24)

u = ln
1

(1− ps)
. (25)

Substituting kmax 2 into Eq. (10), we get the amplitude of the second peak

P (2)
max ≡ P

(2)
kmax 2

= P
(1)
kmax 2

q

u
=

p2s
u
(1− ps)

R−1. (26)

The damping can be traced simply by the ratio of amplitudes for the adjacent peaks,

Di+1 = P (i+1)
max /P (i)

max. (27)
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Given that kmax 1 = 1 and P
(1)
kmax 1

= ps, for the second peak we get

D2 =
ps
u
(1− ps)

R−1. (28)

For the third refractory interval, 2(nref + 1) ≤ k ≤ 3(nref + 1), calculation of dP (3)
k /dk = 0 by the

formula (12) results in a quadratic equation,

xk2 − yk − z = 0, (29)

where

x =
1

2
q2u, (30)

y = q2 + (2nref +
3

2
)q2u− qu, (31)

z = −(2nref +
3

2
)q2 − (nref + 1)(2nref + 1)q2u+ q + (nref + 1)qu− u. (32)

A suitable solution of this equation is the root

kmax 3 =
y +

√
y2 + 4xz

2x
= 2(nref + 1) +R+X, (33)

where

X = −1

2
+

√
1

4
+

1

u2
−

(2nref + 1)

q
− 1

q2
. (34)

Substituting kmax 3 into the formula (12) for P
(3)
k yields

P
(3)
kmax 3

= P
(1)
kmax 3

[1 + (nref + 1 +R+X)q +
1

2
(R+X)(1 +R+X)q2]. (35)

After elementary but cumbersome calculations one can get a compact analytical expression for the

damping coefficient of the third peak,

D3 = P
(3)
kmax 3

/P
(2)
kmax 2

= ps(1− ps)
X · ( 1

u
+X +

1

2
). (36)

Numerical calculations have confirmed the validity of the obtained formulas. Below we have also

listed the numerical values of the relevant quantities, calculated by the above formulas, for the two

examples shown in Figs. 1 and 2.

For the first example, at τref = 2 ms (nref = τref/△t = 200 at △t = 0.01 ms) and ps = 0.1,

we get q ≈ 1.6 × 108, u ≈ 0.1, R ≈ 9.5, kmax 2 = 210, P (2)
kmax 2

≈ 0.04, kmax 3 = 420, P (3)
kmax 3

≈ 0.03,

D2 ≈ 0.39, and D3 ≈ 0.74.
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For the second example, at τref = 5 ms (nref = 500) and ps = 0.01, we get q ≈ 1.5, u ≈ 0.01,

R ≈ 99, kmax 2 = 599, P (2)
kmax 2

≈ 0.004, kmax 3 = 1196, P (3)
kmax 3

≈ 0.003, D2 ≈ 0.37, and D3 ≈ 0.75.

It is seen that the numerical values D2 ≈ 0.4 and D3 ≈ 0.75 are fairly robust against changing

the parameters. Thus, the magnitude of the second peak is approximately equal to 40% of the

magnitude of the first. In turn, the value of the third peak is approximately 75% of the value of

the second or 30% of the value of the first peak.

5. Comparison with the renewal theory

In the framework of the renewal theory [1, 2], when the intervals between events are indepen-

dent random variables, knowing the distribution density of such intervals, one can find the time

dependence of the event probability, provided that an event occurred at the initial moment in time.

In particular, the sought-for probability is expressed through the so-called renewal density h(t),

P
(rd)
k = h(k△t)△t. (37)

In turn, the renewal density h(t) is determined by the density f(τ) of the distribution of intervals

τ between successive events [1, 2],

h(t) =

∞∑
n=1

fn(t), (38)

where f1(t) ≡ f(t) and for n ≥ 2 functions fn(t) are given by the recursive convolution

fn(t) =

+∞∫
0

fn−1(x)f(t− x)dx. (39)

Qualitatively, functions fn(t) are the distribution densities of so-called n-th order intervals between

events [2]: denoting as a first-order interval the elapsed time from some given event to the next

following event, the second-order interval is defined as the elapsed time between the given event

and the second following event, etc. An n-th order interval is therefore the sum of n consecutive

first-order intervals and is spanned by (n+ 1) consecutive events.

At asymptotically large time t → +∞, h(t) is saturated [1],

lim
t→+∞

h(t) = ρ. (40)

Here ρ is the mean rate of events, defined as the inverse mean interval between the successive events,

ρ−1 =

+∞∫
0

τf(τ)dτ. (41)
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Figure 3: Comparison of the time dependencies for the event probability Pk calculated by mutually equivalent

formulas (4), (9), (15), (20), (21) in Section 3 (red curves) and the event probability P
(rd)
k calculated within

the renewal theory approach by formula (37) in Section 5 (blue curves). The red and blue curves, accurate

to an offset equal to the refractory period, completely coincide. The offset arises due to the different initial

condition (exit from the refractory period for the red curves and spike generation for the blue ones) and is

left intentionally in order to make the curves distinguishable. Top plot is for ps = 0.1 and τref = 2 ms.

Bottom plot is for ps = 0.01 and τref = 5 ms.

There are many, likely independent, examples of applying the renewal theory results to the

case, where the events occurrence is the Poisson process modulated by the constant time of inop-

erativeness (dead time or, in our notations, absolute refractory period τref ) or, equivalently, the

distribution density of intervals between events has the form of a displaced exponential distribution,

f(t) = ν0 exp(−ν0(t− τref ))θ(t− τref ), (42)

where ν0 = ps/△t and θ(. . .) is the Heaviside step function. In particular, to the best of our

knowledge, the first relevant paper dates back to 1947 [5] and has been followed by both in-depth

studies [1, 6–9, 12–14] and applied studies for neuroscience [2, 10, 11, 15–20] (see also [21] and [22]).

Below, we briefly outline and compare the previous results with our findings.

For f(t) given by (42), using the Laplace transform, one can reduce the formula (39) to the

following expression

fn(t) = ν0
(ν0(t− nτref ))

n−1

(n− 1)!
exp(−ν0(t− nτref ))θ(t− nτref ), (43)
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which is the probability density function for the Erlang/gamma distribution, enabling computation

of the renewal density h(t) and the sought-for probability (37). The plot of the function P
(rd)
k with

h(t) =

nmax∑
n=1

fn(t), (44)

where nmax = 103 and fn(t) is determined by (43), is shown in Fig. 3. The time dependence,

accurate to an offset equal to the refractory period, completely coincides with that of Pk calculated

by mutually equivalent formulas (4), (9), (15), (20), (21) in Section 3. The offset arises due to the

different initial condition: an exit from the refractory period at t = 0 in our model and an event

occurrence at t = 0 in the standard renewal-density approach.

Finally, using (40), (41) and (42), one gets the asymptotic value of h(t),

lim
t→+∞

h(t) = ν0/(1 + ν0τref ), (45)

which is consistent with formulas (1) and (8) for ν and P∞, respectively.

6. Collation with spiking activity data for real neurons

Though stochastic spiking activity of the neuron serves only as an illustration of the obtained

mathematical results, it seems worthwhile to provide the reader with references to experimental

data and to discuss the conformity.

Qualitatively, the model studied in the paper can be applied to the case where the neuron

is externally stimulated by a relatively strong direct current implemented via a standard patch-

clamp interface. The spike train variability-inducing noise could be either added to the stimulating

current or be naturally ascribed to fluctuations of the neuronal potential due to incoming synaptic

signals, imperfect ion channels etc. Alternatively to the stimulation by current, the neuron can

have receptive field subject to an intense and nearly constant stimulus (a similar case of the fly

photoreceptor is considered in [23], see Figs. 5 and 6 there). Finally, the neuron can be a pacemaker

with spontaneous high-frequency tonic spiking activity. For the reference, some examples of relevant

experimental data are as follows: Fig. 4 in [24], Fig. 1 in [25], Figs. 1, 3, 4, 5, and 6 in [26], Fig. 3

in [27], Fig. 2B in [28], Figs. 2H and 8E in [29], Figs. 4A and 4B in [30], Fig. 2A in [31], Fig. 4A

in [32], and Fig. 4A in [33].

In turn, a quantitative comparison of the obtained results with the experimental findings is hin-

dered by such additional factors as (i) the relative refractory period, which may be time-dependent,

and (ii) uncontrollable interaction of the neuron with the surrounding cells [34, 35]. These factors
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often have a dominant influence on the heights, widths and locations of the experimental autocor-

relogram peaks, especially if the stimulus magnitude is relatively small. In general, the damped

oscillations studied in this paper are well-pronounced only if the absolute refractory period is a

dominantly large timescale in the system’s dynamics responsible for the event occurrence.

It should also be noted that in most cases of multi-unit systems, such as neuronal networks

with neurons as the units, the absolute refractory period is not exactly the same for each unit. For

instance, it may be randomly distributed so that each neuron has its own value of the absolute

refractory period (e.g., see Fig. 2a in [36]). Alternatively, the absolute refractory period could

be updated randomly after each event. Then increasing the variance of the refractory period

distribution would apparently blur the damped oscillations. Solving this problem was beyond the

scope of the present paper.

7. Conclusion

The model considered in this paper is a Bernoulli scheme supplemented by the condition of

absolute refractoriness. This formally refers to the renewal theory. However, being quite simple,

the model allows obtaining useful results without invoking this formalism. In particular, four

equivalent analytical descriptions of the damped oscillations of the event probability have been

given: (i) recurrent formula (4) through the difference of two sums, (ii) closed recurrent formula (9),

(iii) explicit formula (15) in the form of a polynomial, and (iv) recurrent convolution-type formulas

(20), (21). It has also been shown that for the Poisson approximation these results accurately

coincide with that of the renewal theory. Finally, using the closed recurrent formula, the relative

damping coefficients for the second and third peaks of the event probability have been found in the

exact analytical form.

It should be noted that a model analogous to that has been considered in this paper was pre-

viously briefly discussed in [37], where a recurrent formula for the event probability, similar to the

formula (4), was presented without derivation.

One of the authors (A.V.P.) thanks Evgeny Z. Meilikhov, Laureline Logiaco, and Dylan Festa

for stimulating discussions.
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