
Eschbach, Fushiki et al. 2019

Multilevel feedback architecture for adaptive
regulation of learning in the insect brain
Claire Eschbachf,1, Akira Fushikif,1,2, Michael Winding∧,1, Casey M. Schneider-Mizell∧,1,3, Mei Shao∧,1,
Rebecca Arruda1, Katharina Eichler1,4, Javier Valdes-Aleman1, Tomoko Ohyama1,5, Andreas S. Thum6,
Bertram Gerber7, Richard D. Fetter1,8, James W. Truman1,9, Ashok Litwin-Kumarc,2,10, Albert Cardonac,1,11,
Marta Zlaticc,1,12

Modulatory (e.g. dopaminergic) neurons provide “teaching signals” that drive associative learning
across the animal kingdom, but the circuits that regulate their activity and compute teaching signals
are still poorly understood. We provide the first synaptic-resolution connectome of the circuitry
upstream of all modulatory neurons in a brain center for associative learning, the mushroom body
(MB) of the Drosophila larva. We discovered afferent pathways from sensory neurons, as well as an
unexpected large population of 61 feedback neuron pairs that provide one- and two-step feedback
from MB output neurons. The majority of these feedback pathways link distinct memory systems
(e.g. aversive and appetitive). We functionally confirmed some of the structural pathways and found
that some modulatory neurons compare inhibitory input from their own compartment and excitatory
input from compartments of opposite valence, enabling them to compute integrated common-currency
predicted values across aversive and appetitive memory systems. This architecture suggests that the
MB functions as an interconnected ensemble during learning and that distinct types of previously
formed memories can regulate future learning about a stimulus. We developed a model of the circuit
constrained by the connectome and by the functional data which revealed that the newly discovered
architectural motifs, namely the multilevel feedback architecture and the extensive cross-compartment
connections, increase the computational performance and flexibility on learning tasks. Together our
study provides the most detailed view to date of a recurrent brain circuit that computes teaching
signals and provides insights into the architectural motifs that support reinforcement learning in a
biological system.

Introduction
To behave adaptively in an ever-changing environment,
animals must not only be able to learn new associ-
ations between conditioned stimuli (CS) and rewards
or punishments (in Pavlovian terms, aversive and ap-
petitive unconditioned stimuli, US), but also contin-
uously update previous memories, depending on their
relevance and reliability1−14. For example, memo-
ries can be consolidated into a persistent form and
maintained5,6,8,15−17, extinguished5,7,9,11,14,18, or ex-
panded and combined into chains of associations (as in
higher-order conditioning7,19,20). Furthermore, learning
can itself be flexible and depends both on present con-
text and past history14,21,22. These are fundamental brain
functions across the animal kingdom, but the learning al-
gorithms used by brains and their circuit implementations
are still unclear.
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Modulatory neurons (e.g. dopaminergic, DANs) con-
vey information about rewards and punishments and pro-
vide the so-called teaching signals for updating the valence
associated with CS in learning circuits across the animal
kingdom (e.g. in the vertebrate basal ganglia, or in the
insect mushroom body, MB)12,14,21,23−25. In the simplest
models of associative learning, learning is driven by cor-
relations between CS and US, and modulatory neuron ac-
tivity represents just the received US26,27. To account for
more complex behavioral phenomena, theories have been
developed in which learning can be regulated by previously
formed associations and modulatory neuron responses to
CS are adaptively modified by prior learning4,12,21,28−36.
For example, in reinforcement learning, learning is driven
by errors between predicted and actual US (so-called
prediction errors)21,28−35, which are represented by the
activity of modulatory neurons. Indeed, responses of
many modulatory neurons have been shown to be adap-
tive, in monkeys21,31,32,34,37, rodents12,25,36,38−41, and
insects13,23,42−44, although the extent to which this is the
case in insects has been less extensively investigated. De-
spite recent progress12−14,41,45−49, the basic principles by
which modulatory neuron activity is adaptively regulated,
and what teaching signals they compute and encode, are
not well understood.

A prerequisite for the adaptive regulation of modu-
latory neuron activity is convergence of afferent path-
ways that convey information about received rewards and
punishments12,21 with feedback pathways that convey in-
formation about previous experience. In the rodent basal
ganglia, DANs have indeed been shown to receive feed-
back from striatum and striatal neurons have been im-
plicated in prediction error computations12,39,50−52. In
the Drosophila mushroom body (MB), some DANs have
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also been shown to receive direct feedback input from MB
output neurons and specific output neurons have been im-
plicated in memory updating13,14,46−49,53−55. However,
we still know very little about the nature of these feed-
back circuits and the way in which they compute features
such as predictions and prediction errors. How much in-
put do modulatory neurons receive from afferent vs. feed-
back pathways? Do these pathways converge on modula-
tory neurons themselves, or at multiple levels upstream?
Distinct types of memories (e.g. aversive and appetitive,
short-term and long-term) are often formed in distinct lo-
cations, in both flies14,24,56−58 and rodents59−61, but are
there feedback pathways that enable memories of one type
to influence the formation of memories of a different type?
How are integrated common-currency predictions across
aversive and appetitive memory systems computed? How
many distinct types of feedback motifs are there and what
computational advantages do they offer? Addressing these
questions is essential for understanding how learning algo-
rithms are implemented in neural circuits. However, such
a comprehensive characterization of feedback pathways re-
quires a synaptic-resolution connectivity map of the com-
plete set of modulatory neurons, their target output neu-
rons, and of all of their pre- and post-synaptic partners,
which has previously been out of reach.

Insects, especially their larval stages, have small and
compact brains that have recently become amenable to
large-scale electron microscopy (EM) circuit mapping47,62.
Both adult8,14,27,48,63−67 and larval47,57,58,68−70 insect
stages possess a brain center essential for associative
learning, the MB. The MB contains parallel fiber neu-
rons called Kenyon Cells (KCs) that sparsely encode
CS66,71−74; MB modulatory neurons (collectively called
MBINs) that provide the teaching signals for updat-
ing the valence associated with CS13,14,42,46,47,55−58,74−84;
and MB output neurons (MBONs) whose activity repre-
sents learnt valences of stimuli14,58,66,85−93. Most mod-
ulatory neurons are dopaminergic (we called this subset
DANs, adding a letter that indicates their target com-
partment in the MB, e.g. DAN-g1), some are octopamin-
ergic (OANs, e.g. OAN-g1), and some have uniden-
tified neurotransmitters (so we refer to this subset by
their generic name, e.g. MBIN-e1). Modulatory neu-
rons and MBONs project axon terminals and dendrites,
respectively, onto the KC axons in a tiled manner, defin-
ing MB compartments, in both adult14,45,48,66,75,94 and
larval47,58,95 Drosophila. In adult Drosophila, it has
been shown that co-activation of KCs and DANs re-
duces the strength of the KC-MBON synapse in that
compartment14,55,66,85,90,91,96,97. Different compartments
have been implicated in the formation of distinct types of
memories, for example aversive and appetitive, or short-
and long-term14,24,56−58,66,74,76,81,83,84,89−91,98−100. How-
ever, the extent to which learning in a specific compart-
ment is regulated by the output from its own compartment
or from other compartments is still unclear. A few direct
anatomical connections from MBONs to modulatory neu-
rons have been identified13,14,45−49,53,54, but possible indi-
rect connections via intermediate feedback neurons have
not been investigated. In total, despite a good under-
standing of the structure and function of the core com-
ponents of the MB14,47,48,58, the circuits presynaptic to
modulatory neurons that regulate their activity have re-

mained largely uncharacterized, in both adult and larval
Drosophila.

We therefore reconstructed all neurons upstream of all
modulatory neurons in an EM volume that spans the en-
tire nervous system of a 1st instar Drosophila larva, in
which we had previously reconstructed all the core com-
ponents of the MB (including 145 KCs, 48 MBONs and
28 modulatory neurons)47. Working in the same EM vol-
ume enabled us to not only identify all the neuron types
upstream of the modulatory neurons, but also to precisely
determine which MBONs they receive input from. The
present EM reconstruction effort was even larger than re-
constructing the core components, because of the large
number of neuron types presynaptic to modulatory neu-
rons. We reconstructed a total of 431 previously unknown
neurons, of which 102 pairs of homologous neurons (i.e.
present in each brain hemisphere) make at least 3 synaptic
connections onto the modulatory neurons. We also deter-
mined which individual modulatory neurons are activated
by punishments and reconstructed their afferent US path-
ways from nociceptive and mechanosensory neurons. We
characterized the neurotransmitter profiles of some of the
neurons in the network and functionally confirmed some
of the identified structural connections. Finally, we de-
veloped a model of the circuit constrained by the con-
nectome, the neurotransmitter data, and the functional
data and used it to explore the computational advantages
offered by the newly discovered architectural motifs for
performing distinct learning tasks.

Surprisingly, we found that the majority of neuron
types (61 out of 102) presynaptic to modulatory neurons
provide one-step or two-step feedback from MBONs. Fur-
thermore, modulatory neurons received extensive input
not only from MBONs in their own compartment, but also
from many other compartments. In our model the mul-
tilevel and cross-compartment feedback architecture im-
proves computational performance on learning tasks that
rely on the adaptation of modulatory neuron responses.
These pathways may therefore form the neural architec-
ture that permits previously formed associations to in-
struct future learning, a critical computation in brain cir-
cuits that implement reinforcement learning algorithms.

Results

Larval MB modulatory neurons for aversive and
appetitive memory formation

To more easily interpret the circuitry for regulating mod-
ulatory neuron activity and to better constrain models
of the circuit, we explored the functional diversity of lar-
val modulatory neurons and identified individual compart-
ments of the larval MB whose modulatory neuron acti-
vation paired with odor can evoke aversive or appetitive
memory. Previous studies have already shown that pair-
ing of an odor with activation of all, or individual DANs,
which target the MB medial lobe (ML), induces appetitive
memory47,57,58. Another study has shown that pairing an
odor with the activation of all DANs that target the verti-
cal lobe (VL), the lateral appendix (LA), and the pedun-
cle (P) (with a broadly-expressing TH-GAL4 driver line)
induces aversive memory56. To disentangle the role of in-
dividual modulatory neuron types in aversive learning, we
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Figure 1 ∥ Individual vertical lobe DANs can induce aver-
sive memory and represent different kinds of punishments
in Drosophila larva.
a Schematic diagram of the larval mushroom body (MB) compart-
ments with an example Kenyon cell (black), all Mushroom Body
Output Neurons (MBONs, purple) and modulatory neurons (green),
named based on neurotransmitter expression and compartmental lo-
calisation: dopaminergic neurons (DANs), octopaminergic (OANs),
or unknown (MBINs). CA: calyx; LP, IP: lower and intermediate
peduncle; LA: lateral appendix; VL: vertical lobe; UVL, IVL, LVL:
upper, intermediate and lower vertical lobe; SHA, UT, IT, LT: shaft,
upper, intermediate and lower toe of the medial lobe.
b Schematic diagram of the one-odor associative memory optoge-
netic training protocol consisting of three training trails (3 min each).
Larvae from ”paired” groups are trained to associate an odor (ethyl
acetate) with optogenetic activation (red light) of a pair of mod-
ulatory neurons expressing CsChrimson. Larvae from ”unpaired”
groups undergo bouts of odor presentation intercalated with bouts
of modulatory neuron activation. A preference index (PI) was com-
puted for each group: PI = [N(larvae on the odor side) - N(larvae
on the no-odor side)] /N(total). The learning performance score
(LPS) was then computed: LPS = [PI(paired) - PI(unpaired)] /2.
Positive learning performance scores result from a higher fraction of
larvae on the odor side in the paired group than in the unpaired
group, indicating appetitive memory; negative learning performance
scores indicate aversive memory.
c Activation of vertical or medial lobe DANs induces memories of
opposite valence. Figure shows learning performance scores ob-
tained with CsChrimson-mediated activation of one or a few pair(s)
of modulatory neurons using Split-GAL4 in a one-odor associative

memory protocol: OAN-a1 (SS24765, n=11), DAN-c1 (SS02160,
n=12), OAN-e1 (SS01958, n=16), combined MBIN-e2 and DAN-
c1 (SS01702, n=18), DAN-f1 (MB145B, n=14 and SS02180,
n=12), combined DAN-f1 and DAN-c1 (MB065B, n=14), DAN-g1
(SS01716, n=12), OAN-g1 (SS04268, n=16), combined DAN-f1 and
DAN-g1 (MB054B, n=12), DAN-d1 (MB143B, n=14 and MB328B,
n=12), combined DAN-h1, DAN-i1, DAN-k1 (SS01948, n=12), con-
trol (w;attP40;attP2, n=21). Pairing of odor with optogenetic ac-
tivation of individual DAN-f1, -g1 and -d1 in VL or LA induces
aversive memory. In contrast, pairing of odor with the combined
optogenetic activation of DAN-h1, -i1 and -k1 in the ML induces ap-
petitive memory. MB compartments for aversive memory (negative
performance scores) are outlined in red; compartments for appetitive
memory (positive performance scores) are outlined in blue.
Each data point represents the learning performance score for one
reciprocal experiment involving one ”paired” and one ”unpaired”
group. Mean and standard deviations are plotted. *: significant dif-
ference from the scores obtained in the control group (open circles,
Mann-Whitney U test P-values compared to threshold of 0.05 ad-
justed with a Holm-Bonferroni correction for multiple comparisons).
d Different types of somatosensory neurons induce distinct types of
innate escape responses. Optogenetic or thermogenetic activation
of mechanosensory neurons (chordotonal, Ch, brown), nociceptive
multidendritic class IV neurons (MD IV, orange), or multisensory
interneurons (Basins, blue) induces turning, fast forward crawling or
rolling, respectively (Ohyama et al. 2013, 2015, Jovanic et al. 2016).
e Optogenetic activation of nociceptive MD IV (ppk1.9-GAL4,
n=33), Basins (GMR72F11-GAL4, n=52), or the ascending neuron
A00c (postsynaptic to Basins, GMR71A10-GAL4,ppk-GAL80,repo-
(Continues into the next page.)
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(Continues from prior page, Figure 1.)
GAL80, n=21 or SS00883-Split-GAL4, n=14) induces aversive mem-
ory when paired with odor (ethyl acetate). Learning performance
scores were computed as described in b. The larvae were tested
under constant optogenetic activation, as depicted in the schematic
diagram, to ensure the expression of aversive memory (See Extended
Data Fig. 2 for details). Mean and standard deviations are plotted,
as well as significant differences from the scores of the respective
control group (w;;attP2, n=25 or w;attP40;attP2, n=10, according
to the driver line, open circles), in the same way as in c.
f DANs whose activation paired with odor induces aversive memory
respond consistently to optogenetic activation of somatosensory neu-
rons. DAN-f1 preferentially responds to Ch and MD IV stimulations,
DAN-d1 to MD IV and Basins stimulations, and DAN-g1 responds
to all three types of stimulation. Plots show calcium transients

in selected modulatory neurons evoked by optogenetic activation
of Ch (iav-LexA>LexAop-CsChrimson, top row), MD IV (ppk1.9-
LexA>LexAop-CsChrimson, middle row) and Basin (GMR72F11-
LexA>LexAop-CsChrimson, bottom row) neurons. GCaMP6f was
expressed in OAN-e1 (SS01958), MBIN-e1 (SS01702), DAN-f1
(MB145b), DAN-g1 (SS01716), DAN-d1 (MB143b), or DAN-i1
(SS00864) using Split-GAL4. In each plot, thin lines are the av-
eraged responses for one brain, from 3 repeats (triplet trial); thick
lines are the median across all animals tested. Black plots indicate
the median peak δF/F0 of the individual curves in the following time
windows: 1 sec before, 1 sec during, and 2 sec following the stimu-
lation. Errorbars show the 25th and 75th percentile of peak δF/F0
of the individual curves. *, P<0.05 Mann-Whitney U-test. Outline
color corresponds to the type of memory induced by the neuron, as
described in c.

generated Split-GAL4 lines101,102 that drive expression se-
lectively in one or two modulatory neurons per hemisphere
(Fig. 1a, Extended Data Fig. 1, Supplementary Table 1).
We then paired an odor (CS) with Chrimson-mediated op-
togenetic activation103 of these modulatory neurons in a
three-trial, one-odor, associative memory paradigm (Fig.
1b). Because we tested larvae immediately after the last
training trial, and less than 20 min after the first train-
ing trial, we assume the test reveals mainly short-term
memory70.

We found that pairing an odor with the activation
of DAN-f1 (projecting to the intermediate vertical lobe,
IVL), DAN-g1 (projecting to lower vertical lobe, LVL), or
DAN-d1 (projecting to LA) established aversive memory
(Fig. 1c and Extended Data Fig. 2a). In contrast, and as
previously reported47,57,58, pairing an odor with the acti-
vation of DANs that project to the ML (DAN-h1, DAN-i1,
and DAN-k1) led to the formation of an appetitive mem-
ory (Fig. 1c and Extended Data Fig. 2a). Thus, similar
to findings in the adult fly14,24,66,74,76−78,84,104,105, larval
DANs that innervate distinct lobes are functionally dis-
tinct from each other, in that their activation signals oppo-
site valences. Activation of larval PAM-cluster DANs that
innervate the ML signals positive valence, whereas activa-
tion of larval DL-cluster95 DANs that innervate the VL
and the LA signals negative valence. Our results also sug-
gest, in accordance with other studies7,8,13,106, that pre-
senting an odor unpaired with the activation of some of
these DANs induces memory of opposite valence to the
paired presentation (Extended Data Fig. 2b).

We found that pairing of an odor with the activation
of DAN-c1 that projects to lower peduncle (LP) induced
neither appetitive nor aversive memory (Fig. 1c and Ex-
tended Data Fig. 2a). Similarly, no memory was induced
by pairing an odor with activation of any OANs, or of
MBIN-e2 (which was immunonegative for dopamine, oc-
topamine, acetlylcholine, GABA, and glutamate47). Thus,
DAN-c1, OANs, and MBIN-e2 appear to be functionally
distinct from the lobe DANs (with a possible caveat that
the GAL4 lines for these neurons may be weaker than
the ones for lobe DANs). What role, if any, these neu-
rons play in learning remains to be uncovered in the larva
(for some roles of the OAN system see42,56,79,107). In any
case our analysis has revealed at least three functionally
distinct classes of compartments in the larval MB: ML
compartments whose DANs can induce appetitive mem-
ory when their activation is paired with odor; LA, LVL
and IVL compartments whose DANs can induce aversive

memory when their activation is paired with odor; and
others whose modulatory neurons were not sufficient to
induce memory (Fig. 1c).

Punishment encoding across larval MB modula-
tory neurons

Next, we asked whether there is any functional diversity
within the population of VL/LA DANs whose activation
signals punishment. In principle, multiple DANs that
project to distinct VL/LA compartments could represent
a functionally uniform population and redundantly signal
any type of aversive US, as proposed for DANs that sig-
nal reward in the mammalian ventral tegmental area12,40.
Alternatively, distinct DANs could signal distinct types
of aversive US, as proposed for DANs that signal rewards
in Drosophila larva and adult58,74,78,79,82,83,108,109. In the
adult, the same DANs can convey the teaching signals for
different aversive stimuli77,81,104,110−112, and respond to
multiple aversive stimuli75,110−113, but some DANs also
appear to be preferentially tuned to some aversive stim-
uli, but not others75,111,112. The extent to which indi-
vidual DANs that signal aversive stimuli are functionally
diverse and whether and how punishment quality or pun-
ishment salience may be encoded by DANs in Drosophila
are therefore open questions.

Larvae sense multiple types of innately aversive so-
matosensory stimuli that evoke distinct types of in-
nate responses62,114−124 (Fig. 1d). Vibration or opto-
genetic activation of the vibration-sensing mechanosen-
sory neurons evokes hunching (startle) and turning
(avoidance)62,114,119,121,123,124. Optogenetic activation of
nociceptive neurons evokes a more vigorous escape re-
sponse: fast crawling62,116,119,123. Wasp attack that
stimulates both nociceptive and mechanosensory neu-
rons, or optogenetic activation of Basin interneurons
that integrate mechanosensory and nociceptive inputs,
evokes the most vigorous and fastest escape response:
rolling62,115,119,122,125. Already the mildest of these pun-
ishments, vibration, induces aversive associative mem-
ory in an olfactory learning paradigm126. Fittingly, we
found that the stronger forms of punishment, namely, op-
togenetic activation of the nociceptive sensory neurons,
Basins, or the A00c neurons that are directly down-
stream of Basins, also induce aversive associative mem-
ory when paired with odor (Fig. 1e and Extended Data
Fig. 2a). We therefore asked how individual modulatory
neurons respond to each type of punishment administered
by optogenetic activation of specific somatosensory-related
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Figure 2 ∥ Comprehensive
EM reconstruction of pre-
modulatory neurons re-
veals a multilayered recur-
rent architecture for regu-
lating learning.
a-c Comprehensive EM recon-
struction of all neurons presy-
naptic to all modulatory neu-
rons reveals a large previoulsy
unknown population of feed-
back neurons.
a, The newly discovered 102
neuron pairs presynaptic to
the modulatory neurons. Of
these, the majority (61) relays
inputs from mushroom body
output neurons (MBONs): 40
first-order feedback neuron
pairs (FBNs, light blue) receive
direct input from MBONs and
provide one-step feedback to
modulatory neurons; and 21
second-order feedback neuron
pairs (FB2Ns, yellow) receive
one-step MBON input via
FBNs and provide two-step
feedback to modulatory
neurons. The remaining 41
are tentatively classified as
feedforward neurons (FFNs,
light green) that may represent
unconditioned stimuli (US).
Projections of EM reconstruc-
tions of all neurons within
each category are shown.
The complete set of neurons
presynaptic to modulatory
neurons amounts to 211 left-
right pairs and 5 bilaterally
projecting unpaired neurons
(not shown). Of these, only
204 neurons (102 pairs) make
at least 3 synapses onto
any particular modulatory
neuron and together as left-
right pairs make at least 10
synapses onto any particular
left-right pair of homologous
modulatory neurons, and are
therefore considered reliably
and strongly connected.

b, Connectivity matrix showing normalized synaptic input (ex-
pressed as % input) each postsynaptic (columns) neuron receives
from each presynaptic (rows) neuron in the extended MB circuit,
comprising modulatory neurons (green), MBONs (purple), and the
different types of pre-modulatory neurons.
The normalization is done by computing the % of total input a post-
synaptic neuron receives from a presynaptic neuron i.e. by dividing
the number of synapses from a presynaptic neuron to a postsynaptic
neuron by the total number of input synapses of that postsynaptic
neuron and multiplying by 100. The average for left and right ho-
mologs is shown. Only reliable connections for which both the left
and right homologous connections have at least 3 synapses and their
sum is at least 10 are shown.
Note that among the pre-modulatory neurons, FBNs (blue) and
FB2Ns (yellow) are more interconnected to each other than to FFNs
(light green).
c, Layers of feedback neurons reveal the highly recurrent architecture
of the circuits. Figure shows a schematic wiring diagram of the core
components of the MB together with the newly discovered compo-
nents upstream of modulatory neurons and downstream of MBONs.
Most modulatory neurons receive one-step and two-step within and
cross-compartment feedback.
d Fraction of total dendritic input each modulatory neuron receives
from MBONs, FBNs, FB2Ns, FFNs, and from other weakly con-
nected partners (i.e. those that make less than 3 synapses onto a
modulatory neuron and less than 10 synapses onto any left-right
pair of homologous modulatory neurons). Many modulatory neu-

rons, including most of the DANs, receive more than half of their
total dendritic input from the feedback pathways (i.e. from MBONs,
FBNs, and FB2Ns), indicating the likely importance of these path-
ways for governing modulatory neuron activity and thereby learning.
The OANs in the calyx (CA), intermediate peduncle (IP) and low
vertical lobe (LVL), are drastically different from other modulatory
neurons in that they receive a large fraction of input from many
weakly connected partners (i.e. neurons that connect to modulatory
neurons with very few synapses as explained in a), and relatively lit-
tle feedback from MBONs. These OANs may therefore encode very
different features from the rest of the modulatory neurons. Some
DANs extend their dendritic arbors to the KCs which accounts for
a small proportion of KC dendritic input. We also note that KCs
can modulate the output of modulatory neurons through axo-axonic
connections (Eichler et al. 2017, Cervantes-Sandoval et al. 2017,
Takemura et al. 2017), but the presynaptic modulatory input likely
has a very distinct functional role from the dendritic input and we
do not consider it further in this study.
Bottom: Table shows percent of inputs onto dendrites of modulatory
neurons from (I.) all known feedback types (direct MBON feedback,
one-step FBN feedback, and two-step FB2N feedback), (II.) FFNs
(likely conveying feedforward input from US pathways), and their
ratio. Note that for most modulatory neurons this ratio is greater
than 1 (color coded in blue), suggesting feedback input may be at
least as important as feedforward input for regulating modulatory
neuron activity.
(Continues into the next page.)
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(Continues from prior page, Figure 2.)
e Connectivity matrix showing normalized synaptic input (expressed
as % input, computed as in b) each modulatory neuron (columns)
receives from each pre-modulatory neuron (rows). Only reliable con-
nections are shown for which both the left and right homologous
connections have at least 3 synapses, and their sum is at least 10.
Modulatory neurons are color-coded as in c according to the type of
memory they can induce, red for aversive and blue for appetitive).
Many pre-modulatory neurons (rows) synapse onto a single mod-
ulatory neuron, or onto modulatory neurons of similar function
(columns). Functionally distinct modulatory neurons (e.g. DANs
whose activation signals positive and negative valence, Fig. 1b)
that innervate distinct MB lobes receive inputs from distinct sub-
sets of pre-modulatory neurons (See also Extended Data Fig. 3).
Interestingly, two UVL MBINs (OAN-e1 and MBIN-e2), whose acti-
vation paired with odor did not induce memory in our paradigm and
that were not significantly activated by fictive punishments share a

higher fraction of their input with the VL/LA DANs than with other
modulatory neurons. This raises the possibility that the UVL mod-
ulatory neurons map be recruited by similar stimuli to the VL/LA
DANs, but only in specific circumstances.
f US pathways converge with feedback pathways from MBONs
at multiple levels: at the modulatory neurons themselves, and at
FB2Ns. The EM connectivity map shows the shortest identified
pathways from distinct types of US pathways from somatosensory
neurons to VL modulatory neurons. US pathways target both FFNs
and FB2Ns. The hexagonal shape denotes a group of left-right ho-
molog neurons. Connections with less than 10 synapses are not
included (see Supplemental Adjacency Matrix for complete con-
nections). Orange, Nociceptive MD IV specific pathway; brown,
Mechanosensory Ch specific pathway; blue, multimodal Basins 2&4
pathway. Thickness of the arrow is proportional to normalized
synaptic input that a postsynaptic neuron type receives from a presy-
naptic neuron type at the source of the arrow, defined as in b.

neurons, by monitoring their calcium transients (using
GCaMP6f127) (Fig. 1f). We performed these experiments
in isolated nervous systems to avoid any movement-related
responses55.

In each of the VL/LA-DANs whose activation paired
with odor induced aversive memory, we found reliable
responses to at least two of the three fictive punish-
ment types. Each punishment type evoked reliable and
statistically significant responses in at least two out of
three VL/LA-DANs (Fig. 1f). Nevertheless, individual
VL/LA-DANs differed in terms of which punishment types
evoked reliable and statistically significant responses (Fig.
1f). Specifically, DAN-g1 responded non-selectively to
all three punishment types, DAN-f1 responded preferen-
tially to mechanosensory and nociceptive neuron activa-
tion, and DAN-d1 to nociceptive and Basin neuron acti-
vation. Therefore, considering one of these DANs alone
would not allow decoding punishment type, but consider-
ing all three would. Thus, the three VL/LA DANs could
combinatorially encode punishment type or punishment
salience.

For comparison, we also tested the response of a few
modulatory neurons whose activation paired with odor did
not induce aversive memory. As expected, we found that
DAN-i1 (projecting to ML) whose activation paired with
odor induced appetitive memory was not activated by the
fictive punishments (Fig. 1f). Modulatory neurons that
project to UVL (OAN-e1 and MBIN-e2) and whose acti-
vation paired with odor induced neither aversive nor ap-
petitive memory were not significantly activated by the
fictive punishments, although we observed occasional re-
sponses to nociceptive neuron activation (Fig. 1f).

Comprehensive EM reconstruction of all input
neurons to larval MB modulatory neurons

To provide a basis for understanding how the activity and
function of modulatory neurons is regulated we sought
to comprehensively identify all the neurons presynaptic
to them. We have previously reconstructed all of the
KCs, olfactory projection neurons (PNs), MBONs, and
modulatory neurons in an EM volume of a 1st instar
larval nervous system47. Here we systematically recon-
structed all neurons presynaptic to all modulatory neu-
rons in the same EM volume (Fig. 2a-e). We identified
213 left-right homologous pairs and 5 unpaired neurons
presynaptic to modulatory neurons (that we collectively

called pre-modulatory neurons). Out of these, we consider
102 homologous pairs to be reliably connected, since both
the left and right homologous connections have at least
3 synapses and their sum is at least 10 (thresholds were
chosen to make the likelihood of a false positive connec-
tion extremely small62,128, Fig. 2a-b and e, Supplemen-
tary Adjacency Matrix, Supplementary Atlas, Materials
and Methods). We refer to the remaining pre-modulatory
neurons as “other weakly connected partners”. While they
could also influence modulatory neuron activity, especially
in combination with each other, we focus our study mainly
on the reliably and numerically more strongly connected
102 pre-modulatory neuron pairs.

Relationship between functional diversity and
input diversity of MB modulatory neurons

We wondered how the functional diversity of modulatory
neurons relates to their input diversity. As expected, func-
tionally distinct DANs (whose activation leads to aversive
or appetitive memory for paired odors; Fig. 1c) that inner-
vate distinct lobes receive inputs from distinct subsets of
pre-modulatory neurons (Fig. 2e and Extended Data Fig.
3). We found that even some functionally distinct modula-
tory neurons that innervate the same compartment receive
inputs from drastically different subsets of pre-modulatory
neurons: for example DAN-g1 and OAN-g1 that express
different neuromodulators and differ in their ability to in-
duce memory (e.g. Fig. 1c, 2e and Extended Data Fig.
3). Such difference in input structure suggests that some
modulatory neurons that innervate the same compartment
may be differentially recruited during learning.

In contrast, functionally similar VL/LA-DANs (whose
activation leads to aversive memory for paired odors) share
a higher fraction of presynaptic partners with each other
than with other DANs (Fig. 2e and Extended Data Fig.
3). Nevertheless, even these functionally similar VL/LA
DANs receive input from distinct combinations of input
neurons (Fig. 2e), potentially explaining why they have
similar, but not identical tuning properties to different
punishment types (Fig. 1f).

In summary, we found that each modulatory neuron
type that is distinguishable based on the compartment it
innervates, or based on neurotransmitter expression, re-
ceives input from a unique combination of neurons and
thus potentially encodes a unique set of features.
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Feedback neurons reveal a highly recurrent
architecture for computing teaching signals

We aimed to characterize the pre-modulatory neurons
based on the inputs they receive. Specifically, we asked
whether they can convey feedback information about
previously formed memories (via input originating from
MBONs), or about received US (via afferent input from
sensory neurons), or both. Surprisingly, we found that
the majority (61/102) of pre-modulatory neurons receive
feedback input from MBONs (Fig. 2a-c, Extended Data
Fig. 4a-c). 40 left-right homologous neuron pairs receive
reliable (as defined above) direct input from MBONs, pro-
viding one-step feedback from MBONs to modulatory neu-
rons (we call these one-step feedback neurons, FBNs, Fig.
2a-c, Extended Data Fig. 4a). Another 21 pre-modulatory
neuron pairs receive reliable direct input from FBNs (but
not MBONs) and provide two-step feedback from MBONs
to modulatory neurons (we call these two-step feedback
neurons, FB2Ns, Fig. 2a-c, Extended Data Fig. 4b). The
majority of FBNs also receive input from other FBNs, pro-
viding two-step, as well as one-step feedback (Fig. 2b-c
and Extended Data Fig. 4a). The remaining (41/102) pre-
modulatory input neuron pairs do not receive reliable di-
rect MBON, FBN, nor FB2N input, so we classified them
tentatively as “feedforward neurons” (FFNs, Fig. 2a-c).

To determine the likelihood that MBONs could influ-
ence modulatory neuron activity, via the feedback path-
ways we also analyzed the fraction of total input that
FBNs and FB2Ns receive from MBONs, and that modu-
latory neurons receive from feedback pathways. In previ-
ous studies we have demonstrated functional connections
even when neurons received 2% of their input from an-
other neuron62,124. We found that individual FBNs re-
ceive on average 12% of their total synaptic input from
MBONs and 26% from MBONs and FBNs combined (Ex-
tended Data Fig. 4a and c). Similarly, individual FB2Ns
receive on average 17% of their total synaptic input from
FBNs and 28% from FBNs and FB2Ns combined (Ex-
tended Data Fig. 4b and c). Based on these input frac-
tions we expect that MBONs can significantly influence
FBN and FB2N activity. Strikingly, we found that many
modulatory neurons receive more than 50% of their total
dendritic input from feedback pathways, including directly
from MBONs, one-step, and two-step feedback (Fig. 2d).
This suggests that modulatory neuron activity could be
strongly modulated by MBON activity, via the newly dis-
covered one-step and two-step feedback neurons.

Multilevel convergence of afferent US pathways
with feedback pathways

We investigated how the feedback pathways from MBONs
converge with afferent pathways from US sensory neu-
rons. We focused on the VL/LA-DANs that we identi-
fied as responding to nociceptive and/or mechanosensory
neuron activation (Fig. 1f) and asked whether they re-
ceive the somatosensory and MBON input via distinct
or overlapping pre-modulatory neurons. In the larva, the
early portions of the somatosensory circuits that process
aversive cues are well characterized62,124,129,130. We had
previously reconstructed all 1st order PNs downstream of
nociceptive and mechanosensory sensory neurons, a sub-
set of 2nd order PNs, and a few 3rd order PNs62,124.

This enabled us to search for shortest pathways from the
nociceptive and mechanosensory sensory neurons to the
VL/LA-modulatory neurons. We note that the pathways
identified in this way represent only a subset of existing
pathways, because not all of the 2nd, 3rd and 4th order
somatosensory PNs have been reconstructed. Neverthe-
less, we were able to identify two-, three-, and four-step
pathways from the nociceptive and mechanosensory sen-
sory neurons to six different pre-modulatory neurons that
target the VL/LA-modulatory neurons: three FFNs and
three FB2Ns (Fig. 2f, Extended Data Fig. 5, Supplemen-
tary Adjacency Matrix, Supplementary Atlas). Thus, the
afferent US pathways converge with feedback pathways
from MBONs at multiple levels: both onto the modu-
latory neurons themselves (via FFNs) and onto the pre-
modulatory FB2Ns.

Modulatory neurons receive convergent one-step
feedback from multiple MBONs from functionally
distinct compartments

Next, we analyzed in more detail the types of one-step
feedback motifs formed by FBNs (Fig. 2a-c, 3a-c, Ex-
tended Data Fig. 6a-b, Supplementary Adjacency Ma-
trix, and Supplementary Atlas). Specifically, we asked
whether FBNs mostly provide input to their own com-
partment, or whether they link multiple compartments
for forming distinct types of memories. We observed a
surprising diversity of one-step FBNs that linked unique
combinations of MBONs with unique combinations of
modulatory neurons (Fig. 3a and Extended Data Fig.
6a-b). Some (7/40) FBNs provide exclusively within-
compartment feedback (Fig. 3a). Some (13/40) provide
exclusively cross-compartment feedback (we named indi-
vidual neurons of this subset of FBNs, FANs, for feed-
across neurons, Fig. 3a). Some (8/40) FBNs synapse onto
multiple modulatory neurons from multiple compartments
(Fig. 3a and Extended Data Fig. 6b). Interestingly, the
largest class of FBNs (17/40, Fig. 3a, 3d, and Extended
Data Fig. 6a) receives input from multiple MBONs and
appears to be well suited for comparing odor drive to func-
tionally distinct compartments of the MB (Fig. 1c). Thus,
almost all of these FBNs (at least 13/17, and potentially
more, but the neurotransmitters of all MBONs are not
known) receive GABAergic (inhibitory) or glutamatergic
(potentially also inhibitory131,132 in insects) input from
MBONs from compartments implicated in memory for-
mation, and cholinergic (excitatory) inputs from MBONs
from other compartments (Fig. 3a, 3d, and Extended
Data Fig. 6a). The comparison of inhibitory and exci-
tatory input may enable these FBNs to more accurately
read out the results of learning-induced plasticity55,85,133

in memory compartments, relative to other compartments.
We also found that most modulatory neurons receive

input from multiple FBNs. For example, all ML-DANs
and VL-DANs capable of evoking olfactory memory (Fig.
1c) received input from at least three different FBNs (Fig.
2e, 3a, and Extended Data Fig. 6b). Clustering FBNs
based on the pattern of output to modulatory neurons
revealed that some UVL, LVL and LA modulatory neurons
stand out as prominent targets of feedback input, receiving
significant input from clusters of 7 or more different FBNs
(e.g. neurons forming aversive memory DAN-d1, DAN-
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Figure 3 ∥ Modulatory neurons receive convergent one-step
feedback from multiple MBONs from functionally distinct
compartments
a Connectivity of each of the 40 feedback neuron (FBN) pairs that
provide one-step feedback from MBONs to DANs. Each diagram
represents the connectivity of a single left-right pair of homologous
FBNs. Each box indicates a separate compartment. Purple, com-
partment(s) of the presynaptic MBON(s). Green, compartment(s)
of the postsynaptic modulatory neuron(s).

FBNs are ordered according to the modulatory neuron they inner-
vate, starting with peduncle modulatory neurons and ending with
the medial lobe ones. Classical neurotransmitter profiles of the
MBONs and FBNs are indicated by the arrow (cholinergic, exci-
tatory connection), vertical line (GABAergic, inhibitory connection)
or square (glutamatergic, probably also inhibitory connection) for
the neurons for which they are known from immunostaining (For
images, see Extended Data Fig. 10 for FBNs and Eichler et al. 2017
(Continues into the next page.)

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/649731doi: bioRxiv preprint 

https://doi.org/10.1101/649731


Eschbach, Fushiki et al. 2019

(Continues from prior page, Figure 3.)
Extended Data Fig. 2b for MBONs), or by a circle when they are un-
known. 7 FBNs provide exclusively within-compartment feedback.
13 FBNs provide exclusively cross-compartment feedback (named
FANs, for feed-across). 8 FBNs synapse onto multiple modulatory
neurons from multiple compartments. The largest class of FBNs (17)
receives input from multiple MBONs, with the majority (at least 13
and maybe more) receiving input of potentially opposite sign from
MBONs from functionally distinct compartments.
b Modulatory neurons receive input from multiple MBONs from
functionally distinct compartments via the FBNs. Connectivity ma-
trix shows connections between MBONs and modulatory neurons
via the indirect one-step feedback pathways obtained by multiplying
the MBON→FBN, and FBN→modulatory neuron connectivity ma-
trices (normalized as in Fig. 2b and including all connections where
the presynaptic neuron accounts for at least 1% of input onto the
postsynaptic neuron). A connectivity index was computed by tak-
ing the square root of the numbers in the resulting matrix product.
A connectivity index of 1, 10, and 100 means that for both con-
nections comprising that indirect feedback pathway the presynaptic
neuron accounts for 1%, 10%, and 100% of input onto that post-
synaptic neuron, respectively. When the neurotransmitters of both
the MBON and the FBN(s) that comprise a connection are known,
the circle is color-coded to represent types of connection: excitatory
(ChAT and ChAT), disinhibitory (GABA and GABA), probably dis-
inhibitory (GluT and GABA/GluT), inhibitory (GABA and ChAT),
probably inhibitory (GluT and ChAT). Color shades represent the
valence of the memory formed in a given compartment (red: aver-
sive memory, blue: appetitive memory). True within-compartment
feedback connections from an MBON that receives direct synaptic
input from that modulatory neuron are boxed in bold (e.g. from
MBON-g1 and MBON-g2 onto DAN-g1). Some multicompartment
MBONs provide feedback to modulatory neurons from the same
compartment that do not synapse onto them directly, and we do
not consider these to be true within-compartment feedback connec-
tions (e.g from MBON-m1 onto DAN-d1). Note that all four true
within-compartment feedback connections with known neurotrans-
mitters are potentially inhibitory: MBON-g1 to DAN-g1, MBON-
g2 to DAN g2, MBON-i1 to DAN-i1 and MBON-j1 to DAN-j1. In

contrast, many cross-compartment connections are potentially exci-
tatory or disinhibitory.
c All compartments except CA and IP receive one-step feedback
from multiple compartments and from each of the three function-
ally distinct regions of the MB. Matrix shows the relative one-step
connection strength index from a row compartment to a column
compartment via FBNs. Strength is calculated as in b, but pooled
(summed and normalized) for all MBONs from a compartment and
all modulatory neurons from a compartment, and then multiplied
by 100. Note the compartments of the VL (vertical lobe: UVL, IVL,
LVL) and LA (lateral appendix) are strongly interconnected. The
color shades are as in b.
d-e Summary diagram of commonly observed convergence motifs.
Feedback connections of opposite sign from functionally distinct
compartments converge onto FBNs and DANs. In each diagram,
the FBN (blue) receives direct input from one or more MBON(s)
(purple), and connects with the postsynaptic modulatory neuron(s)
(green). Each box denotes a separate compartment. The type of
connection (GABAergic, glutamatergic, cholinergic, or unknown) is
represented by different arrowheads as described in the legend in
a. d More than a quarter of FBNs (at least 12, and potentially
more) receive direct GABAergic (inhibitory) or glutamatergic (also
potentially inhibitory) input from MBONs from one compartment
and direct cholinergic (excitatory) input from MBONs from a func-
tionally distinct compartments enabling them to compare the odor
drive to these MBONs. e Many DANs (DAN-f1, d1, i1, j1, and k1)
receive potentially inhibitory (excitatory FBN downstream of an in-
hibitory MBON) one-step feedback from MBONs from one compart-
ment and potentially disinhibitory (inhibitory FBN downstream of
an inhibitory MBON) or excitatory (excitatory FBN downstream of
an excitatory MBON) one-step feedback from MBONs from a func-
tionally distinct compartment. A common pattern for the lobe DANs
implicated in memory formation may be a likely inhibitory connec-
tion from an MBON from their own compartment and a likely disin-
hibitory connection from an MBON from a compartment of opposite
valence (observed for both DAN-g1 and i1), that could enable these
DANs to compare the odor drive to MBONs from compartments of
opposite valence.

g1, and neurons of unknown function MBIN-l1, MBIN-
e1 and -e2, Extended Data Fig. 6b and 7). Similarly,
clustering FBNs based on the input from MBONs revealed
that specific VL-MBONs stood out as prominent sources
that provide output to clusters of FBNs (for example, the
cholinergic UVL MBON-e1 strongly targets a cluster of 13
different FBNs, Extended Data Fig. 6a and 8).

Since most FBNs receive input from multiple MBONs,
and most modulatory neurons receive input from multiple
FBNs, we analyzed the connections from all MBONs to
all modulatory neurons via all possible one-step feedback
pathways (by multiplying normalized MBON-to-FBN and
FBN-to-modulatory neuron connectivity matrices from
Supplementary Adjacency Matrix). We found that most
modulatory neurons received indirect one-step feedback
from many MBONs (Fig. 3b). Most compartments there-
fore received one-step feedback from many other compart-
ments (Fig. 3c). All modulatory neurons except those
that innervate CA and IP received one-step feedback from
each of the three functionally distinct regions of the MB:
UVL (unknown function), VL aversive memory compart-
ments, and ML appetitive memory compartments (Fig.
3b-c). This is in stark contrast to the direct connectivity
from MBONs to modulatory neurons, which is very sparse
and connects very few compartments (Extended data fig.
9a-b). Thus, the newly discovered FBNs greatly increase
the connectivity between MBONs and modulatory neu-
rons, enabling the output from multiple functionally dis-
tinct regions of the MB to influence the activity of a single
modulatory neuron during memory formation.

A modulatory neuron receives inhibitory and ex-
citatory feedback from compartments of opposite
valence

To gain a better understanding of how feedback motifs
could influence modulatory neuron activity we wanted
to determine which feedback neurons were excitatory
and which inhibitory. We were able to identify GAL4
lines134 that drive expression in eight different FBNs
and three FB2Ns. We could therefore label these feed-
back neurons with GFP135 and test whether they express
GABA136, vesicular glutamate transporter (vGlut)137, or
choline acetyl transferase (ChAT)138 using immunohisto-
chemistry. Unfortunately, while these GAL4 lines were
selective enough to allow visualization of the relevant neu-
rons, most lines were not selective enough to enable tar-
geted manipulation for functional connectivity and behav-
ioral analysis. We found that four of the tested FBNs
were cholinergic (i.e. excitatory), three were GABAergic
(i.e. inhibitory), and one was glutamatergic (possibly also
inhibitory131,132, Fig. 3a and Extended Data Fig. 10).
Two FB2Ns were glutamatergic and one was cholinergic
(Extended Data Fig. 10).

For a few cases where we could identify the neurotrans-
mitter profiles of both the MBON47 and the FBN in a
one-step feedback connection, we attempted to predict the
signs of these connections (Fig. 3b). All of the true within-
compartment feedback connections with known neuro-
transmitters were potentially inhibitory (4/4), comprising
a GABAergic or glutamatergic MBON and an excitatory

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/649731doi: bioRxiv preprint 

https://doi.org/10.1101/649731


Eschbach, Fushiki et al. 2019

Figure 4 ∥ Functional inhibitory and excitatory feedback
connections from compartments of opposite valence con-
verge onto a DAN.
a Schematic diagram showing indirect inhibitory within-
compartment feedback and disinhibitory feedback from a
compartment of opposite valence converging onto the same
DAN, as predicted based on connectivity and neurotransmitter
profiles. These two types of predicted connections are tested sepa-
rately using optogenetic activation of the MBONs and patch-clamp
recording of a DAN (b-d and e-g). Boxes denote compartments.
Blue and red outlines, appetitive and aversive memory compart-
ments, respectively. Purple, light blue, and green, MBONs, FBNs,
and DANs, respectively.
b The cholinergic FBN-7 downstream of the glutamatergic me-
dial lobe MBON-i1 could mediate inhibitory one-step within-
compartment feedback onto DAN-i1.
c Whole-cell patch-clamp recording of DAN-i1 (medial lobe) dur-
ing optogenetic activation of the medial lobe MBON-i1 of the same
compartment reveals inhibitory feedback at the onset or offset of
MBON-i1 activation. The action potentials of all 180 electrophys-
iologically recorded traces from 9 animals in response to MBON-i1
activation (purple bar) are shown as raster plots. Dashes on the left
separate rasters belonging to distinct animals. We observed two
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types of inhibitory responses in DAN-i1 to MBON-i1 activation: a
long-latency inhibitory response to the onset of MBON-i1 activation
in 3/9 animals (shown at the top, 55.3 ± 17.3 ms, n=60 traces from
3 animals), and an even longer latency inhibitory response to the
offset of MBON-i1 activation in 4/9 animals (shown in the middle,
95.3 ± 43.5 ms, n=80 trials from 4 animals).
In two animals (shown at the bottom) DAN-i1 showed no response to
MBON-i1 activation (n=40 trials). Inhibition at the onset in some
animals but not others might result from distinct baseline states of
FBN, as shown in the model in Extended Data Fig. 11b. Inhibi-
tion at the offset might be result of post-inhibitory rebound within
a two-step feedback pathway as shown in Extended Data Fig. 11c.
d An example individual trace from c. More examples are shown in
Extended Data Fig. 11a.
e The GABAergic FBN-23 downstream of the GABAergic vertical
lobe MBON-m1 could mediate a disinhibitory one-step connection

onto the medial lobe DAN-i1. The vertical lobe MBON-m1 receives
input from DAN-g1, whose activation can induce aversive memory.
In contrast, the medial lobe DAN-i1 activation induces appetitive
memory.
f Whole-cell patch-clamp recording of DAN-i1 during optogenetic
activation of the medial lobe MBON-m1 from a compartment of
opposite valence reveals an excitatory cross-compartment feedback
connection. The action potentials of all the 45 electrophysiologi-
cally recorded traces from the 3 animals in response to MBON-m1
activation (purple bar) are shown as raster plots. In response to
optogenetic activation of MBON-m1, we observed a long-latency ex-
citatory response in DAN-i1 in 3/3 animals tested (51.3 ± 7.7 ms,
n=45 trials from 3 animals).
g An example individual trace from f (more examples in Extended
Data Fig. 11d).

FBN (Fig. 3b and 3e, MBON-g1 to DAN-g1, MBON-g2 to
DAN-g1, MBON-i1 to DAN-i1 and MBON-j1 to DAN-j1).
In contrast, most of the (8/11) cross-compartment con-
nections with known neurotransmitters were potentially
functionally excitatory, either disinhibitory (comprising
an inhibitory MBON and an inhibitory FBN), or excita-
tory (comprising an excitatory MBON and an excitatory
FBN, Fig. 3b and 3e). Out of those, all of the connections
between compartments of opposite valence (4/4) were po-
tentially disinhibitory (Fig. 3b and 3e). Furthermore,
we observed that some modulatory neurons (e.g. DAN-g1
and DAN-i1) received both potentially inhibitory feedback
from their own compartment and potentially excitatory
feedback from compartments of opposite valence (Fig. 3b
and 3e).

We designed experiments to functionally confirm the
two types of predicted feedback connections onto the same
DAN (Fig. 3e, 4a-g). We were able to identify a strong
LexA line for DAN-i178. DAN-i1 receives potentially in-
hibitory one-step feedback from the glutamatergic MBON-
i1 in its own compartment (via the excitatory FBN-7,
Fig. 4a-b), and potentially disinhibitory one-step feed-
back from the GABAergic MBON-m1 from compartments
of opposite valence (via the GABAergic FBN-23, Fig. 4a
and 4e). Neither of these MBONs synapses directly onto
DAN-i1. We also generated Split-GAL4 lines to selectively
express Chrimson in MBON-i1 or in MBON–m1. We ac-
tivated these MBONs optogenetically while recording in-
tracellularly from DAN-i1 (labelled with GFP using the

LexA line).
Activating the glutamatergic MBON-i1 evoked long-

latency (55ms +/- 17) inhibitory responses in DAN-i1 on
9/27 trials (on all 3 trials in 3/9 animals, Fig. 4c-d, Ex-
tended Data Fig. 11a). The inter-animal variability could
potentially be due to different baseline activity levels of
FBNs mediating this connection: activating an inhibitory
MBON can only lead to detectable inhibition of the DAN
if the excitatory FBN targeted by the MBON has baseline
activity, as illustrated by the simple rate-model in Ex-
tended data Fig. 11b. On 12/27 trials (on all 3 trials in
4/9 animals, Fig. 4c and Extended Data Fig. 11a) we ob-
served very long latency inhibitory responses to the offset
of MBON-i1 activation only. These inhibitory responses
to the offset had a longer latency (95 ms +/- 44) than
the inhibitory responses to the onset (55 ms +/- 17) of
MBON-i1 activation and could therefore be mediated by
a longer two-step feedback pathway (as proposed in the
Extended Data Fig. 11c).

In contrast, we found that activating the GABAer-
gic MBON-m1 evoked excitatory responses in DAN-i1 on
9/9 trials (on all 3 trials in 3/3 animals) with a sim-
ilar latency (47 ms +/- 9) to the inhibitory responses
evoked by MBON-i1 activation (Fig. 4e-g and Extended
Data Fig. 11d). In summary, we confirmed with physi-
ological recording an inference we had made from struc-
tural connectivity and neurotransmitter information: that
functionally inhibitory and excitatory MBON connections
from compartments of opposite valence converge onto the
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Figure 5 ∥ Two-step feedback from most MBONs to most
modulatory neurons further increases inter-compartment
connectivity.
a Schematic diagram of a two-step feedback motif involving an FBN
(blue) and an inhibitory FB2N (yellow). The FBN provides one-step
feedback to some compartments and two-step feedback to others via
the FB2N.
b Two example two-step within-compartment feedback motifs in-
volving FB2Ns with identified neurotransmitters. In the first exam-
ple, FBN-4 integrates opposite drives from MBON-e1 and MBON-j1
and transmits its signal directly to ML DAN-j1 and indirectly to VL
modulatory neurons via the glutamatergic FB2N-18. In the second
example, FBN-18 distributes a disinhibitory signal from MBON-b2
to many modulatory neurons both via one-step feedback and two-
step feedback involving the cholinergic FB2N-19. Arrowheads de-
note the type of synaptic connection as in a.
c Schematic diagram of a two-step feedback motif involving two
FBNs (blue) rather than an FBN and an FB2N. The FBN provides
one-step feedback to some compartments and two-step feedback to
others via another FBN.

d Five example two-step within-compartment feedback motifs in-
volving FBNs with identified neurotransmitters. In these examples,
FBN-23, FAN-7 or FBN-25 provide within-compartment two-step
feedbacks onto DAN-i1, DAN-d1 and MBIN-l1 respectively. FAN-
10 and FBN-7 distribute the signal of their presynaptic FBN to
modulatory neurons in other compartments. The type of synaptic
connection is symbolized by different arrowheads as in a.
e Most modulatory neurons receive two-step feedback from most
MBONs via the FBNs and FB2Ns. Connectivity matrix shows
connections between MBONs and modulatory neurons via two-
step feedback pathways, obtained by multiplying the MBON→FBN,
FBN→FB2N/FBN and FB2N/FBN→modulatory neuron connec-
tivity matrices (normalized as in Fig. 2b and including all con-
nections where the presynaptic neuron accounts for at least 1% of
input onto the postsynaptic neuron). The connectivity index was
computed by taking the cubic root of the numbers in the resulting
matrix product. A connectivity index of 1, 10, and 100 means that
for the three connections comprising that indirect feedback pathway
the presynaptic neuron accounts for 1%, 10%, and 100% of input
onto that postsynaptic neuron, respectively.

same DAN (Fig. 4a-g). DANs that receive this pattern
of feedback could compare the odor-evoked excitation of
MBONs in compartments of opposite valence and thereby
compute the integrated predicted value of an odor across
aversive and appetitive memory systems.

Two-step feedback from most MBONs to most
modulatory neurons further increases inter-
compartment connectivity

Next, we investigated in more detail the two-step feed-
back motifs (Fig. 2a-c, 5a-e, Extended Data Extended
Data Fig. 12, 13a-d, and 14, Supplementary Adjacency
Matrix and Supplementary Atlas). We found 21 FB2N
pairs, which do not themselves receive direct MBON in-
put, but do receive input from FBNs, thus providing two-
step feedback from MBONs to modulatory neurons (Fig.
2a-c, 5a-b, Extended Data Fig. 4b-c, Extended Data Fig
12 and 13b-c, Supplementary Adjacency Matrix and Sup-

plementary Atlas). Many FBNs also receive input from
other FBNs (Fig. 5c-d, Extended Data Fig. 4a, 4c, 13a
and 14) and provide both two-step and one-step feedback.
We therefore also analyzed the connections between all
MBONs to all modulatory neurons via the two-step path-
ways (by multiplying the MBON-FBN, FBN-FB2N/FBN
and FB2N/FBN-modulatory neuron normalized connec-
tivity matrices from Supplementary Adjacency Matrix).
We found two-step feedback from most MBONs to most
modulatory neurons further increases inter-compartment
connectivity (Fig. 5e and Extended Data Fig. 9b). We
were able to determine neurotransmitter profiles for seven
neurons that provide two-step feedback: three (FBN-25,
FBN-7, and FB2N-19) were cholinergic, two (FBN-23 and
FAN-7) were GABAergic, and two (FAN-10 and FB2N-
18) were glutamatergic (Fig. 5b and d, Extended Data
Fig. 10). In summary we found a diverse set of two-
step feedback motifs that could support within- and cross-
compartment computations.
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Figure 6 ∥ Feedback neurons can drive associative memory
formation.
We were able to generate Split-GAL4 lines that drive expression in
a single pair of neurons, or in very few cell types, for three different
pairs of FBNs or FB2Ns that target VL DANs (a-c). We used these
lines to optogenetically activate these neurons instead of a US during
an associative learning paradigm (d-f).
a-c Identification of driver lines for EM-reconstructed neurons. i)
Skeletons of specific feedback neurons reconstructed in the EM. Red
dots, presynaptic sites. Blue dots, postsynaptic sites. Grey, mush-
room body vertical lobe (MB vl) for reference. d, dendritic arbor.
ii) Maximum intensity projections of confocal stacks of larval brains
showing the same neurons visualized with reporters targeted using
specific Split-GAL4 lines. For some lines multicolor FLP-outs were
used to visualize each neuron in a different color to facilitate identi-
fication and comparison with EM. Grey, neuropil visualized with N-
cad. Dashed line, brain outline. iii) Maximum intensity projections
of confocal stacks of the entire nervous system showing the complete
expression pattern of each line revealed by driving UAS-myr-GFP.
Grey, neuropil visualized with N-cad. Dashed line, nervous system
outline.
a, The SS02401-Split-GAL4 line drives expression in FB2N-19 (i) in
the brain (ii), and very weakly and stochastically (not reproducibly
in all samples) in a few ascending neurons and ensheathing glia in the

nerve chord that are unlikely to have an ability to evoke associative
memory, due to weak and stochastic expression (iii).
b, The SS02108-Split-GAL4 line drives expression in FAN-7 and
MB2ON-86 (i) in the brain visualized with multicolor flp-outs in (ii).
Complete expression pattern of SS02108-Split-GAL4 visualized with
UAS-myr-GFP shows additional expression in a few somatosensory
interneurons in the nerve cord, called ladders, that mediate avoid-
ance behavior and are hence unlikely to have a positive valence and
evoke an appetitive memory. We identified the SS04330-Split-GAL4
line as driving expression specifically in the MB2ON-86 neuron and
used it as an additional control in e.
c, The SS01778-Split-GAL4 line drives expression in both FB2N-18
and FB2N-11, which have very similar morphology and very similar
connectivity (Extended Data Fig. 12 and 13b-d). They both connect
strongly to DAN-f1 and weakly (but reliably) to MBIN-e2; FB2N-
18 also connects weakly (but reliably) to DAN-g1 (Extended Data
Fig. 13c). The SS02181-Split-GAL4 line (ii shows multi-color flp-
outs) drives expression in FB2N-18 and in MB2IN-207, one of the
weakly connected pre-modulatory neurons from lineage DAMv12.
Notice the ventrally projecting dendrite (d), a distinctive feature of
MB2IN-207 neuron (i). UAS-myr-GFP expression patterns of the
two lines show that they do not drive expression in any other neurons
in the nerve cord (iii).
(Continues into the next page.)
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(Continues from prior page, Figure 6.)
d-f Pairing the optogenetic activation of the neurons in these lines
with the odor ethyl acetate as a CS (as in Fig. 1b-c) induces asso-
ciative memory. Plotted are the learning performance scores (com-
puted as described in Fig. 1b) obtained after paired or unpaired
optogenetic activation of these neurons with odor, compared to a
corresponding empty line w;attp40;attP2>UAS-CsChrimson (open
circle) as a control. Horizontal lines indicate means and standard
deviations of the individual data points; *P < 0.05 Mann-Whitney
U-test comparison between groups.
d, Optogenetic activation of the excitatory cholinergic FB2N-19 that
is presynaptic to DAN-f1 and MBIN-e2 (with SS02401-Split-GAL4
line) induces aversive memory (yellow), same as the activation of its
presynaptic DAN-f1 (Fig. 1c). Note that FB2N-19 has to be acti-
vated during the test for memory expression as is the case for many
punishing stimuli for Drosophila larva (Gerber et al., 2009).

e, Optogenetic activation of the inhibitory GABAergic FAN-7 (
SS02108-Split-GAL4 line) induces appetitive memory (dark blue),
opposite to the aversive memory induced by the activation of its
presynaptic DAN-d1(Fig. 1c). SS02108-Split-GAL4 line drives ex-
pression both in FAN-7, as well as in MB2ON-86, but pairing the ac-
tivation of MB2ON-86 alone with odor (to disambiguate) (using the
SS04330-Split-GAL4 line) did not evoke any memory (dark grey).
f, Optogenetic activation of the glutamatergic FB2N-18 and FB2N-
11 together (with the SS01778-Split-GAL4 line) induces appeti-
tive memory (yellow), opposite to activation of their presynaptic
DANs-f1 and -g1 (Fig. 1c). Even activation of the glutamater-
gic FB2N-18 without FB2N-11, but with another weakly connected
pre-modulatory neuron which is unlikely to be able to significantly
influence modulatory neuron activity (with the SS02181-Split-GAL4
line) induces appetitive memory.

Feedback neurons can drive memory formation

So far, we have shown that at least some of the indirect
feedback connections from MBONs to DANs are func-
tional (Fig. 4b-g). However, we also wanted to test
whether the feedback neurons can sufficiently influence
DAN activity to actually induce learning. We succeeded
in generating Split-GAL4 lines102 that drive expression in
one or very few neuron types for: a cholinergic FB2N, a
glutamatergic FB2N, and a GABAergic FBN that project
onto DANs whose activation can induce aversive memory
(Fig. 6a-c, Extended Data Fig. 1). We asked whether
optogenetic activation of these feedback neurons (without
directly activating any modulatory neurons) was sufficient
to induce memory in our olfactory training paradigm (Fig.
6d-f). We found that pairing of an odor with activation of
the excitatory cholinergic FB2N-19 induces aversive mem-
ory (Fig. 6d and Extended Data Fig. 2a-b), similar to
direct activation of its postsynaptic DAN-f1 (Fig. 1c).
In contrast, pairing of an odor with the activation of the
GABAergic FAN-7 induces appetitive memory (Fig. 6e
and Extended Data Fig. 2a-b), opposite to direct activa-
tion of its post-synaptic DAN-d1 (Fig. 1c). The line that
drives expression in FAN-7 also drives expression in an-
other neuron pair in the brain (MB2ON-86, Fig. 6c), but
pairing an odor with the activation of that neuron alone
did not induce memory (Fig. 6e and Extended Data Fig.
2a-b). The line also drives expression in a few somatosen-
sory interneurons in the nerve cord, but somatosensory
pathways are expected to induce aversive memory (Fig.
1e). Similarly, pairing of an odor with the activation of
the glutamatergic FB2N-18 and FB2N-11 (likely also in-
hibitory) induces appetitive memory (Fig. 6f, and Ex-
tended Data Fig. 2a-b), opposite to direct activation of
their post-synaptic DAN-f1 and DAN-g1 (Fig. 1c). Thus,
at least some feedback neurons can induce memory for-
mation. Interestingly, activation of inhibitory feedback
neurons induces memories of opposite valence to the acti-
vation of the DANs that they inhibit.

Connectivity-constrained model of the circuit
reveals feedback neurons improve performance on
complex learning tasks

To explore the computational consequences of the feed-
back neurons, we developed a model of the circuit con-
strained by i) the connectome, ii) the known neurotrans-
mitter identities of MBONs47 and pre-modulatory neurons
(Extended Data Fig. 10), and iii) the valences of compart-
ments whose modulatory neuron activation evokes aver-

sive or appetitive memory when paired with odor (Fig.
1c). We modeled modifications of KC to MBON connec-
tions using a synaptic plasticity rule that depends on the
timing of KC and modulatory neuron activity, consistent
with findings in larval58 and adult Drosophila84,133,139.
We optimized the model using gradient descent to perform
various associative learning tasks140 (see Materials and
Methods) and assessed the contributions of different feed-
back types by repeating the optimization procedure for
networks lacking such feedback and comparing their per-
formance. Tasks included first-order conditioning, second-
order conditioning, extinction, and context-dependent
conditioning (Fig. 7a-b). First-order conditioning and
extinction have been demonstrated in adult5,13,14,53 and
larval Drosophila141. While second-order7,20 and context-
dependent22,142,143 conditioning have so far been inves-
tigated only in adult insects, we used these as example
tasks to probe the ability of the circuit to support condi-
tioning paradigms requiring additional computations. In
the case of second-order conditioning, a reinforcement pre-
dicting conditioned stimulus is used to reinforce a second
stimulus, while in context-dependent conditioning, the US
valence depends on a previous contextual input.

We found that the performance on all tasks was signif-
icantly degraded in the absence of all feedback, including
direct MBON feedback, one-step feedback via FBNs, and
two-step feedback via FB2Ns and FBNs (Fig. 7a-b). The
removal of the indirect feedback alone (with intact direct
MBON feedback) also significantly degraded the perfor-
mance on all tasks, with especially strong effects on the
more complex tasks (Fig. 7a-b). Even the removal of two-
step feedback alone significantly diminished performance
on two of the more complex tasks (second-order condi-
tioning and context-dependent conditioning), with a dras-
tic effect on context-dependent conditioning (Fig. 7a-b).
Thus, each additional feedback layer improves the per-
formance of the network when it is tested on challenging
associative learning tasks.

We also constructed networks lacking one- and two-
step feedback only within or only across compartments.
Removal of within-compartment feedback diminished per-
formance on all tasks, while removal of cross-compartment
communication substantially reduced performance for
second-order conditioning (Fig. 7a-b). In total, each of the
feedback pathways identified by the reconstruction may be
important for associative learning paradigms that require
computations such as prediction, prediction error, or con-
text dependence.
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Figure 7 ∥ Model of the cir-
cuit reveals how each type
of feedback connection im-
proves performance on dis-
tinct learning tasks.
a Normalized error (mean-
squared difference between
actual and and target PI, nor-
malized to the error for control
networks) after optimizing
models to perform first-order
conditioning, extinction, and
second-order conditioning. Error
is shown for six cases: Control:
full network, No FB: networks
in which all feedback onto mod-
ulatory neurons, including direct
MBON connections, is removed,
No FB neurons: networks in
which indirect FBN/FB2N
feedback is removed but direct
MBON connections are intact,
No 2-step: networks in which
only FB2Ns and all FBN-to-FBN
connections are removed, No
cross: networks in which indirect
cross-compartment connec-
tions are removed, No within:
networks in which indirect
within-compartment connections
are removed.
b Similar to a, but for net-
works optimized only to perform
a context-dependent conditioning
task.

c Adaptive response index for the networks in a, defined as the mag-
nitude of the change in firing rate responses to CS+ presentation
before and after conditioning, averaged over modulatory neurons.
The results are normalized by the value for control networks.
d Selected example responses of DANs from networks in a to US
alone (US), CS+ paired with US following training (CS+ w/ US),
to CS+ alone after training (CS+), and to CS prior to training (CS).
Row i: A DAN selective only to US that does not show adaptive
responses to CS+.
Row ii: A DAN selective to US that acquires a CS+ response after
conditioning.
Row iii and iv: DANs with ”prediction-error” like responses. CS+

responses are opposite in sign to US responses.
Row iii: a neuron that is inhibited by the US is activated when that
US is omitted (e.g. when the CS+ is presented alone after training).
Row iv: a neuron that is excited by the US is inhibited when that
US is omitted (e.g. when the CS+ is presented alone after training).
Note that the negative CS+ response is prolonged compared to the
response to CS prior to training.
e CS+/US response overlap before and after conditioning. The over-
lap is computed using the dot product of the vectors of firing rate
changes across the modulatory neuron population during CS+ and
US presentations. p-values represent a comparison to control net-
works, after conditioning.

Feedback neurons enable adaptive responses of
modulatory neurons in the model

The high fraction of feedback input originating from
MBONs onto modulatory neurons suggests that their ac-
tivity could be adaptively regulated by prior learning. To
test this idea, we computed an index that quantifies the
mean change in modulatory neuron firing rates in response
to CS+ (i.e. the CS that was paired with the US) pre-
sentations before and after conditioning in the model and
found that it is indeed substantially enhanced by the pres-
ence of feedback neurons (Fig. 7c). The optimized net-
works exhibit a diversity of adaptive modulatory neuron
responses (some examples are shown in Fig. 7d).

After a CS/US pairing, many modulatory neurons ac-
quired responses to CS+ that resemble their responses
to the US that had been paired with that CS+ (Fig.
7e and 7d-ii). These responses were significantly at-
tenuated in networks that lacked feedback, including
those that lacked just indirect feedback, and just cross-
compartment feedback (Fig. 7e). Such responses have
been observed in modulatory neurons of species across
the animal kingdom12,23,32, including adult and larval
Drosophila43,44,144. They are consistent with a computa-

tion of the valence of the US that is predicted by the CS+
(i.e. a predicted value associated with the CS+) and could
drive the formation of an association between a novel CS
and a CS+ during higher-order conditioning.

Additionally, some modulatory neurons acquired CS+
responses that were opposite in sign to their responses
to that US (Fig. 7d-iii and 7d-iv). Some of those ap-
pear to be activated by the omission of a predicted US
whose valence is opposite that of neuron’s preferred US
(Fig. 7d-iii). Such responses have been proposed to sup-
port extinction by inducing a parallel memory of opposite
valence following US omission9,13,14,53. Consistent with
this idea, in adult flies, DANs of opposite valence and di-
rect cross-compartment MBON-to-DAN connections have
been implicated in extinction13,14,53, but the role of in-
direct feedback pathways has not been investigated. In
our model we find that removing indirect feedback sig-
nificantly reduces performance of networks optimized to
extinguish a previous association (Fig. 7a). Some mod-
ulatory neurons also showed prolonged inhibition in re-
sponse to the omission of a predicted US whose valence
is the same as the neuron’s preferred US (Fig. 7d-iv).
Such responses have been proposed to support extinction
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in mammals by erasing the memory formed by the activa-
tion of that modulatory neuron9,28,145. Thus, our model
raises the possibility that extinction could be implemented
via multiple mechanisms in this circuit9.

Discussion

Modulatory neurons (e.g. dopaminergic, DAN) are
key components of higher-order circuits for adaptive be-
havioral control, such as the vertebrate basal ganglia
or the insect mushroom body (MB), and they pro-
vide teaching signals that drive memory formation and
updating12,14,21,24,25,49,58,66. Here, we provide the first
synaptic-resolution connectivity map of a recurrent neu-
ral network that regulates the activity of all modulatory
neurons in a higher-order learning center, the Drosophila
larval MB (Fig. 2a-f). We discovered an unexpected com-
ponent of the insect MB: a large population of 61 feedback
neuron pairs that provide one- and/or two-step feedback
from the MB output neurons (MBONs) to modulatory
neurons (Fig. 2a-d, 3a-b and 5a-e). The majority of these
one- and two-step feedback pathways link distinct mem-
ory systems, suggesting that the entire MB functions as
an interconnected ensemble during learning (Fig. 3b and
5e). We also systematically determined which modula-
tory neurons evoke aversive and appetitive memories and
functionally tested some of the newly identified structural
pathways (Fig. 1c-f, 4b-g, and 6a-f). We developed a
model of the circuit constrained by the connectome and
by our functional data and explored the roles of the newly
discovered architectural motifs in different learning tasks
(Fig. 7a-e). Our study provides a basis for understanding
the circuit implementation of learning algorithms in the
tractable insect nervous system.

Feedback pathways enable adaptive regulation of
learning by prior learning

Adaptive regulation of modulatory neuron activity has
been proposed to underlie aspects of learning and memory
in both vertebrates31,32,146,147 and insects23,42−44, includ-
ing long-term memory consolidation46,49,100,148, memory
reconsolidation11,13,14, extinction13,14,53,149, and higher-
order conditioning21,150. However, the architecture and
functional principles of the circuits that support this regu-
lation are not well understood. Furthermore, the extent to
which modulatory neuron activity is regulated by previous
memories in insects is still unclear. Strikingly, we found
that many modulatory neurons, including the ones that
provide teaching signals for appetitive and aversive olfac-
tory memory formation (Fig. 1c), receive more than 50%
of their total dendritic input from feedback pathways that
relay MBON signals (Fig. 2d). We confirmed that some
of the identified indirect feedback pathways are functional
and that feedback neurons can induce memory formation
(Fig. 4b-g and 6a-f). These results suggest that prior
memories as represented by the pattern of MBON activ-
ity can strongly influence modulatory neuron activity in
Drosophila larva. Indeed, in our connectivity-constrained
model, modulatory neuron responses to CS are modified
after pairing with US, and this modulation is reduced in
the absence of feedback neurons (Fig. 7c-e). While further

model constraints are likely required to directly compare
model neurons to recordings, the model demonstrates that
feedback supports such adaptive responses.

Learning and memory systems in vertebrates151,152
and insects45,47,48,55,84,94,153 are often organized into dis-
tinct compartments implicated in forming distinct types
of memories (e.g. aversive and appetitive or short- and
long-term). However, the extent and nature of interac-
tions between distinct memory systems during memory
formation is still an open question. Here, we provide the
first comprehensive view of an extensive set of anatomical
feedback pathways that can mediate interactions between
distinct memory systems (Fig. 3b-c, 5e, and Extended
Data Fig. 9b). The cross-compartment feedback path-
ways identified here suggest that prior memories formed
about an odor in one compartment can influence the for-
mation and updating of future memories about that odor
in many other functionally distinct compartments.

Interestingly, we also found that the feedback neurons
receive input from brain areas other than MB (Extended
Data Fig. 4a-c). They could therefore play a role in encod-
ing variables determined by these areas, such as context
or internal state. Consistent with this, our model revealed
that the performance on a context-dependent condition-
ing task was significantly reduced in the absence of these
neurons (Fig. 7b). The feedback neurons could therefore
provide a substrate for flexible and adaptive regulation of
learning, based on both previous experience and context
or internal state.

Circuit motifs for computing integrated predicted
value signals across aversive and appetitive mem-
ory systems

The use of internal predictions to inform future learn-
ing can dramatically increase the flexibility of a learn-
ing system28,29. Indeed, modulatory neurons in
vertebrates12,21,32 and insects23, including adult and lar-
val Drosophila43,44,144, show adaptive responses consistent
with the idea that they encode predictions. However, the
circuit properties that permit the computation of predic-
tions are not well understood. In particular, the way in
which integrated common-currency predicted value signals
across appetitive and aversive memory systems are com-
puted is unclear. Our study reveals candidate circuit mo-
tifs that could implement this computation and mediate
more complex tasks that require it, such as second-order
conditioning. While second-order conditioning has not yet
been investigated in the larva, adult Drosophila has been
shown to be capable of it20.

A prominent motif revealed by our analysis of con-
nectivity and neurotransmitter expression is convergence
of potentially excitatory and inhibitory connections from
MBONs from compartments of opposite valence onto some
DANs (Fig. 3b-e). We confirmed that DAN-i1 (whose ac-
tivation can induce appetitive memory for paired odor)
receives functionally inhibitory input from its own com-
partment and functionally excitatory (likely disinhibitory)
input from compartments of opposite valence profile (Fig.
4a-g). By integrating these inputs, such DANs may com-
pute a comparison between the odor-evoked excitation of
MBONs in compartments of opposite valence. In naïve an-
imals, odor-evoked MBON excitation in all compartments
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is thought to be similar. However, associative learning se-
lectively depresses conditioned odor MBON excitation in
compartments whose modulatory neuron activation has
been paired with the odor14,66,85,90,133. The valence pre-
dicted by the conditioned odor is therefore thought to be
encoded as a skew in the relative excitation of MBONs
in compartments of opposite valence. We propose that
by comparing the conditioned odor-evoked MBON exci-
tation in compartments of opposite valence via the cross-
compartment feedback connections, modulatory neurons
could compute an integrated common-currency predicted
value signal across appetitive and aversive domains. Our
model results are consistent with this idea. Some mod-
ulatory neurons in the model acquire responses to condi-
tioned odors that resemble their responses to US (Fig. 7d-
ii and 7e), consistent with a value prediction, and these re-
sponses, as well as performance on second-order condition-
ing, were degraded in the absence of cross-compartment
feedback (Fig. 7a and 7e).

Convergence of feedback and US pathways could
allow the computation of prediction errors

An important aspect of reinforcement learning theories
is the idea that modulatory neurons compare predicted
and actual US (compute the so-called prediction errors)
and drive memory formation or extinction depending on
the sign of the prediction error. Computing prediction
errors requires structural convergence between feedback
pathways, which carry information about predicted US
valence, and afferent US pathways. However, the site of
this convergence is still an open question. Feedback and
afferent US pathways could converge at the modulatory
neurons themselves, upstream of modulatory neurons, or
both.

While Drosophila modulatory neurons have not
yet been directly shown to represent prediction er-
rors, adult and larval Drosophila are capable of
extinction5,13,53,141,154, and our study reveals candidate
motifs that could support the comparison of expected and
actual US. We found that modulatory neurons receive con-
vergent input from feedback pathways from MBONs and
from US pathways (Fig. 2d-f). Modulatory neurons could
therefore potentially compute prediction errors by com-
paring inhibitory drive from the feedback pathways to the
excitatory drive from the US pathways, or vice versa, ex-
citatory drive from the feedback pathways and inhibitory
drive from the US pathways. Consistent with this idea,
we observed in our model some DANs that are inhibited
by US alone and activated by CS+ alone, or vice versa
(Fig. 7d-iii and 7d-iv).

Our study also revealed that US pathways and feed-
back pathways converge at two levels: not only at the
modulatory neurons themselves, but also at the two-step
feedback neurons (FB2Ns, Fig. 2f). Actual and expected
outcomes could therefore also be compared by FB2Ns. A
recent study in the mouse VTA used retrograde labelling
and electrophysiology to characterize the response proper-
ties of some of the neurons presynaptic to the DANs12,41
and found that a fraction of the analyzed pre-DAN neu-
rons encoded only actual, or only expected reward, while
the remainder encoded both variables41. Thus, both in
vertebrates and in insects, comparing predicted and actual

outcomes may be a complex computation involving mul-
tiple levels of integration that eventually converges onto
an ensemble of modulatory neurons41. The connectome of
such a network presented here provides a basis for under-
standing the circuit implementation of this computation.

The multilevel and cross–compartment feedback
increase performance and flexibility

Our connectivity and modeling studies revealed two ar-
chitectural features of the circuit that provides input to
the modulatory neurons that increase its computational
performance and flexibility on learning tasks (Fig. 7a-b).
The first is the multilevel feedback architecture that in-
cludes not only the previously known direct MBON feed-
back, but also multiple levels of indirect feedback. The
second is the extensive set of cross-compartment connec-
tions. Our results also reveal modulatory neurons receive
a diverse set of feedback inputs (Fig. 2e) that could en-
able each modulatory neuron to compute a unique set of
features. Consistent with this, we observed a diversity of
adaptive response types in the modulatory neurons in our
model. This suggests that instead of computing a single
global reward prediction error that is distributed to all
modulatory neurons21, the network uses a range of dis-
tinct compartmentalized and distributed teaching signals.

In adult Drosophila, functional connections between
some MBONs and DANs13,46,49,53−55,153, as well as be-
tween KCs and DANs48,155 have been reported, and
some of these have been shown to play a role in
short-term memory formation49,153, long-term memory
consolidation46,54, re-consolidation13, extinction53, or in
synchronizing DAN ensemble activity in a context-
dependent manner55. For some of these cases, direct
within- or cross-compartment MBON-to-DAN connec-
tions have been demonstrated13,46,49. While direct axo-
dendritic connections from several MBONs onto DANs ex-
ist in the larva47 (Extended Data Fig. 9a), we find that
indirect connections via the feedback layer account for a
much larger fraction of a modulatory neuron’s dendritic in-
put than direct MBON synapses (Fig. 2d), suggesting that
adaptive DAN responses may be largely driven by such
indirect feedback. Additionally, direct axo-axonic connec-
tions from KCs could modulate modulatory neuron output
in both larva47 and adult48,155, but they cannot convey
learning-related changes in the strengths of KC-to-MBON
connections, so they likely play a very different role to the
feedback from MBONs. Since many aspects of connectiv-
ity between the core components of the MB (modulatory
neurons, KCs and MBONs) are shared between larval and
adult Drosophila stages and other insects47,48,67, we ex-
pect that the indirect feedback motifs discovered here are
also shared across insects.

Some of the within-compartment feedback motifs we
found are reminiscent of the feedback motifs so far de-
scribed for the DANs in the vertebrate midbrain. Rabies
tracing studies have shown that DANs receive input from
their direct targets in the striatum (analogous to direct
MBON to DAN connections), as well as from the direct
targets of striatal neurons (analogous to the one-step feed-
back described here)12,39,41,50. While the diversity and the
inputs of striatal feedback neurons have not yet been fully
explored, in the future it will be interesting to determine
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whether many of the striatal feedback neurons also link
distinct memory systems.

In summary, we present the first complete circuit dia-
gram of a recurrent network that computes teaching sig-
nals in a biological system, providing insights into the ar-
chitectural motifs that increase the computational power
and flexibility of the learning center. Our connectome-
constrained model provides numerous predictions that can
be tested in the future in a tractable model organism,
for which genetic tools can be generated to monitor and
manipulate individual neurons102,134,156,157. The connec-
tome, together with the functional and modelling studies
therefore provides exciting opportunities for elucidating
the biological implementation of reinforcement learning
algorithms.
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Materials and Methods

Fly lines

In the main text and figures, short names are used to de-
scribe genotypes for clarity. We used GAL4, Split-GAL4
lines to direct the expression of the red-shifted channel-
rhodopsin 20XUAS-CsChrimson-mVenus103 (Blooming-
ton Drosophila Stock Center BDSC 55134, gift of
V. Jayaraman) or the Calcium indicator 20xUAS-IVS-
GCaMP6f 127 in pairs of neurons or subsets of neurons.
Split-GAL4 lines restrict expression of the effector to a
few cells, under the double control of two enhancers (in-
serted in the attP2 and attP40 docking sites), selected
by us or others in Janelia Research Campus (HHMI, VA,
USA) based on their GAL4 expression pattern101,102,158.

Modulatory MBINs

We used SS24765-Split-GAL4 to optogenetically activate
OAN-a1 in the calyx. We generated SS02160-Split-GAL4
to activate DAN-c1 in the lower peduncle. For the verti-
cal lobe, we generated SS01702-Split-GAL4 to activate or
image calcium transients in MBIN-e2 (DAN-c1 was also
covered by this line) and SS01958-Split-GAL4 to acti-
vate or image calcium transients in OAN-e1 in the UVL.

We used SS02180-Split-GAL4, MB145B-Split-GAL4 (used
for activation and calcium imaging, gift of G. Rubin and
Y. Aso) and MB065B-Split-GAL445 (which also covered
DAN-c1) to target DAN-f1 in the IVL. We used SS01716-
Split-GAL458 to induce or image DAN-g1 activity in the
LVL, and we generated SS04268-Split-GAL4 to activate
OAN-g1, also in the LVL. MB054B-Split-GAL4 (gift of
G. Rubin and Y. Aso) was also used to co-activate DAN-
g1 and DAN-f1. We used two lines to target DAN-d1 in
the lateral appendix: MB143B-Split-GAL4 (used for ac-
tivation and calcium imaging) and MB328B-Split-GAL4
(both gifts of G. Rubin and Y. Aso). In the medial lobe,
we generated a broad line SS01948-GAL4 which allows co-
activation of DAN-h1, DAN-i1, DAN-k1, and sometimes
DAN-j1. We also imaged calcium transients in DAN-i17
using the more specific GAL4 SS00864-Split-GAL4.

Neurons presynaptic to the modulatory MBINs

We optogenetically activated multidendritic Class IV neu-
rons (MD IV) with the driver line ppk-1.9-GAL48 (gift of
D. Tracey); Basin interneurons with GMR72F11-GAL462;
the ascending neuron A00c with GMR71A10-GAL462,123

crossed to ppk-GAL80160, repo-GAL80161 (to prevent ex-
pression in MD IV and glial cells, respectively). We
also activated A00c with the more specific GAL4 line
SS00883-Split-GAL4. We generated SS01778-Split-GAL4
and SS02181-Split-GAL4, which target FB2N-11 and/or
FB2N-18. SS02108-Split-GAL4 targets FAN-7; SS02401-
Split-GAL4 targets FB2N-19.

Control lines

As a control for the GAL4 lines inserted at the attP2 site,
we used the empty control stock y w;;attP2102,158 crossed
to the effector line. As a control for Split-GAL4 lines with
AD at attP40 and DBD at attP2, we used the empty stock
y w;attP40;attP2102,158 crossed to the effector line.

Lines for recording neuronal activity

Calcium transients in modulatory neurons were imaged
using the following constructs to verify functional in-
put of mechano-ch neurons: w; iav-LexA62 in attP40;
20xUAS-IVS-GCaMP6f 15.693127 in attP2, 13XLexAop2-
CsChrimson-tdTomato103 in VK00005. For Basins multi-
sensory interneurons: w; GMR72F11-LexA158 in JK22C ;
20xUAS-IVS-GCaMP6f 15.693127 at attP2, 13XLexAop2-
CsChrimson-tdTomato103 at VK00005. And for MD class
IV nociceptive neurons: w; 13XLexAop2-CsChrimson-
mVenus103 at attP40 (BDSC 55138); ppk-1kb-hs43-lexA-
GAD10 at attP2, 20xUAS-IVS-GCaMP6f 127 at VK00005.
All the effectors used in these stocks are a gift from V. Ja-
yaraman. Transvection was tested by bathing some sam-
ples in 100 mM mecamylamine and observing the disap-
pearance of responses to optogenetic stimulation (data not
shown). If a response remained during mecamylamine ap-
plication, the experiments were repeated using a spatially
defined photo-stimulation using spatial light modulator
(SLM) technology (see functional connectivity section for
details of the procedure and the lines concerned).

For patch-clamp recording we crossed the genetic
driver lines for MBON-m1 (SS02163-Split-GAL4) or for
MBON-i1 (SS01726-Split-GAL4) to 58E02-LexAp65 at
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attP4078; 13xLexAop2-IVS-GCaMP6f-p10 15.693127

at VK00005 (BDSC 44276), 20xUAS-CsChrimson-
mCherry103 at su(Hw)attP1 in order to activate MBONs
and visualize the medial lobe DANs (ML-DANs) for
patch-clamping. Only data for DAN-i1, which was the
most frequently hit by the recording pipette, as revealed
by post hoc identification, are shown.

The reporter pJFRC29-10xUAS-IVS-myr::GFP-
p10135 at attP2 was used for immunostaining.

Learning experiments

Learning experiments were performed as previously
described58,47,56. The larvae were reared in the dark at
25°C in food vials supplemented with 1:200 retinal. The
experimenter selected two groups of 30 third-instar larvae
and was blind to their specific genotype. The two groups
underwent a training procedure involving odor and light
exposures, either fully overlapping in time (paired group),
or fully non-overlapping (unpaired group). The paired
group was placed for 3 minutes on 4% agarose plates and
exposed to constant red-light illumination (wavelength:
629 nm, power: 350 µW/cm2; except for ppk-1.9-GAL4,
which targets neurons at the surface of the body and for
which a light power of 35 µW/cm2 was used) paired with
the presentation of 12 µl of odor ethyl-acetate (10−4 di-
lution in distilled water) absorbed on two filter papers
located on the plate lid. These larvae were then trans-
ferred to a new plate with no odor and in the dark for
3 minutes. This paired training cycle was repeated three
times in total. The unpaired group of larvae underwent
odor presentation in the dark and red light without odor
following the same protocol. After a 3-minute test with
odor presentation on one side of the plate lid, larvae were
counted on the side of the odor, on the opposite side, and
in the 1 cm-wide midline of the plate. Preference and per-
formance indices were calculated as in a previous study57.
Briefly, a preference index (PI) was first computed, for
each group as: PI = [N (larvae on the odor side) - N (lar-
vae on the no-odor side)]/N(total), N(total) includes lar-
vae in the middle of the plate. The Learning Performance
Score (LPS) was then computed as LPS = [PI (paired) –
PI (unpaired)]/2.

Circuit mapping and electron microscopy

We reconstructed neurons and annotated synapses in a
single, complete central nervous system from a 6 hr old
female [iso] Canton S G1 x w1118 [iso] 5905 larva, ac-
quired with serial section transmission EM at a resolution
of 3.8 x 3.8 x 50 nm, that was first published along with
the detailed sample preparation protocol62. Briefly, the
CNS was dissected and placed in 2% gluteraldehyde 0.1
M sodium cacodylate buffer (pH 7.4). An equal volume
of 2% OsO4 was added and the larva was fixed with a
Pelco BioWave microwave oven with 350-W, 375-W and
400-W pulses for 30 sec each, separated by 60-sec pauses,
and followed by another round of microwaving but with
1% OsO4 solution in the same buffer. Next, samples
were stained en bloc with 1% uranyl acetate in water
and microwaved at 350 W for 3x3 30 sec with 60-sec
pauses. Samples were dehydrated in an ethanol series,
transferred to propylene oxide, and infiltrated and em-
bedded with Epon resin. After sectioning the volume with

a Leica UC6 ultramicrotome, sections were imaged semi-
automatically with Leginon162 driving an FEI Spirit TEM
(Hillsboro, OR), and then assembled with TrakEM2163
using the elastic method164. The volume is available at
https://l1em.catmaid.virtualflybrain.org/?pid=1.

To map the wiring diagram we used the web-based soft-
ware CATMAID165, updated with a novel suite of neuron
skeletonization and analysis tools128, and applied the it-
erative reconstruction method128. All annotated synapses
in this wiring diagram fulfill the four following criteria of
mature synapses62,128: (1) There is a clearly visible T-bar
or ribbon on at least two adjacent z-sections. (2) There
are multiple vesicles immediately adjacent to the T-bar or
ribbon. (3) There is a cleft between the presynaptic and
the postsynaptic neurites, visible as a dark-light-dark par-
allel line. (4) There are postsynaptic densities, visible as
dark staining at the cytoplasmic side of the postsynaptic
membrane.

We validated the reconstructions as previously
described62,128, a method successfully employed in mul-
tiple studies62,124,128,132,166,167. Briefly, in Drosophila, as
in other insects, the gross morphology of many neurons
is stereotyped and individual neurons are uniquely iden-
tifiable based on morphology167−169. Furthermore, the
nervous system in insects is largely bilaterally symmetric
and homologous, with mirror-symmetric neurons repro-
ducibly found on the left and the right side of the an-
imal. We therefore validated neuron reconstructions by
independently reconstructing synaptic partners of homol-
ogous neurons on the left and right side of the nervous
system. With this approach, we have previously estimated
the false positive rate of synaptic contact detection to be
0.0167 (1 error per 60 synaptic contacts)56. Assuming the
false positives are uncorrelated, for an n-synapse connec-
tion the probability that all n are wrong (and thus that
the entire connection is a false positive) occurs at a rate of
0.0167n. Thus, the probability that a connection is a false
positive reduces dramatically with the number of synaptic
contacts contributing to that connection. Even for n = 2
synaptic contacts, the probability that a connection is not
true is 0.00028 (once in every 3,586 two-synapse connec-
tions). We therefore consider ‘reliable’ connections those
for which the connections between the left and right ho-
mologous neurons have at least 3 synapses each and their
sum is at least 10. See62,128 for more details.

Immunostaining

Dissected brains were fixed in phosphate buffered saline
(PBS, NaCl 137 mM, KCl 2.7 mM, Na2HPO4 8.1 mM,
KH2PO4 1.5 mM, pH7.3) containing 4% paraformalde-
hyde (Merck) for 30-min at room temperature. After two
15-minute washes with PBT (PBS with 1% or 3% Triton
X-100; Sigma-Aldrich), the brains were blocked with 5%
normal goat serum (Vector Laboratories) in PBT and in-
cubated for at least 24 hours with primary antibodies at
4°C. Before application of the secondary antibodies for at
least 24 hours at 4°C or for 2 hours at room tempera-
ture, brains were washed several times with PBT. After
that, brains were again washed with PBT, mounted in
Vectashield (Vector Laboratories) and stored at 4°C in
darkness. Images were taken with a Zeiss LSM 710M
confocal microscope. The resulting image stacks were
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projected and analyzed with the image processing soft-
ware Fiji170. Primary antibodies were used at the fol-
lowing dilutions: rabbit anti-GFP (cat# Af2020, Fron-
tier Institute; 1:1000), chick anti-GFP (ab13970, abcam,
1:1000), rabbit anti-GABA (A2052, Sigma; 1:100), mouse
anti-ChAT (ChAT4B1, DSHB Hybridoma Product de-
posited by P.M. Salvaterra; 1:50). Rabbit anti-DVGlut137
was diluted 1:1000. Secondary antibodies were used at
the following dilutions: Alexa Fluor 568-conjugated goat
anti-rabbit IgG (A-11036, Invitrogen Molecular Probes;
1:300), Alexa Fluor 633-conjugated goat anti-mouse IgG
(A-21050, Invitrogen Molecular Probes; 1:300) and Alexa
Fluor 488-conjugated goat anti-chicken IgG (A-11039, In-
vitrogen Molecular Probes; 1:300).

Identifying GAL4 lines that drive expression in
modulatory neurons and their presynaptic part-
ners

To identify GAL4 lines (listed in Supplementary Table 1)
that drive expression in specific neurons, we performed
single-cell FlpOut experiments (for FlpOut methodol-
ogy see 62,171) of many candidate GAL4 lines134. We
generated high-resolution confocal image stacks of indi-
vidual neuron morphology (multiple examples per cell
type). Most MBONs and MBINs were uniquely iden-
tifiable based on the dendritic and axonal projection
patterns (which MB compartment they project to and
the shape of input or output arbor outside the MB).
These were also compared to previously reported single-
cell FlpOuts of dopaminergic and octopaminergic neurons
in the larva57,95,123,172,173. For the neurons upstream of
MBINs (FBNs/FANs/FB2Ns), we used morphology and
cell body position to identify the lineage of the neuron.
The precise shape and 3D location of dendritic and ax-
onal projections were then examined and compared to all
potential candidates in the lineage which have been fully
reconstructed from the electron microscopy volume. In
some cases, two neurons had very similar morphology at
both light and EM level, and in such cases they also had
nearly identical connectivity (e.g. FB2N-11 and FB2N-
18).

Functional connectivity assays

Central nervous systems were dissected in a cold buffer
containing 103 mM NaCl, 3 mM KCl, 5 mM TES, 26
mM NaHCO3, 1 mM NaH2PO4, 8 mM trehalose, 10 mM
glucose, 2 mM CaCl2, 4 mM MgCl2 and adhered to poly-L-
lysine (SIGMA, P1524) coated cover glass in small Sylgard
(Dow Corning) plates.

For optogenetic activation, red illumination (617nm
High-Power Lightguide Coupled LED Source, Mightex)
was positioned above the sample to depolarize the axon
terminal parts of the sensory neurons (MD IV or chor-
dotonal) or the second order interneurons (Basins). Light
stimulations were performed with 1 or 15 sec duration and
in 40 and 600 cycles of laser on/off pulses of 20 msec/5
msec. Each preparation underwent three types of light
stimulation of increasing power: ca. 390 µW/mm2, 920
µW/mm2 and 4.6 mW/mm2. Only the data for the high-
est light power during 1 sec is displayed (Fig.1f). The same
stimulus was spaced with 30 sec for a total of three pre-
sentations in each scan. Each scan consisted in imaging

dopaminergic neurons on a two-photon scanning micro-
scope (Bruker) using a 60x 3 1.1 NA objective (Olympus).
A mode-locked Ti:Sapphire laser (Chameleon Ultra II, Co-
herent) tuned to 925 nm was used for photo-activation of
the GCaMP6f. Fluorescence was collected with photo-
multiplier tubes (Hamamatsu) after band-pass filtering.
Images were acquired in line scanning mode (5.15 fps) for
a single plane of the CNS.

To overcome transvection observed between the trans-
genes at the attP40 landing site of the MB143B-Split-
GAL4 line (targeting DAN-d1) crossed to w; 13XLexAop2-
CsChrimson-mVenus103 in attP40; ppk-1kb-hs43-lexA-
GAD10 in attP2, 20xUAS-IVS-GCaMP6f2 in VK00005,
we used 3-dimension spatially defined photo-stimulation.
MD IV neurons expressing CsChrimson were photo-
activated by a holographic pattern generated by a two-
photon 1040 nm laser (femtoTrain, Spectra-Physics) cou-
pled to a phase-only SLM (Intelligent Imaging Innova-
tions). GCaMP6f signal was imaged by a laser tuned to
925 nm (Insight DS+ Dual, Spectra-Physics). The optoge-
netic stimulations were 50 cycles of laser on/off pulses of 2
msec/18 msec, ranging from 1 to 1.5 mW/mm2. Off-target
(equidistant from the Chrimson-expressing DAN-d1 neu-
ron, but not targeting Chrimson-expressing MD IV neu-
rons) and on-target stimulations were alternatively per-
formed and the difference between transvection-only gen-
erated calcium signals and transvection + MD IV neuron
activation-generated signal was computed and used as the
fluorescence signal. DAN-d1 neurons were imaged at a
frame rate of ca. 5 fps on a two-photon scanning micro-
scope (Vivo, Intelligent Imaging Innovations) using a 25x
2 1.1 NA objective (Nikon).

For image analysis, image data were processed by Fiji
software170 and analyzed using custom code in Matlab
(The Mathworks, Inc). Specifically, we manually deter-
mine the regions of interest (ROIs) from maximum inten-
sity projection of entire time series images, and measure
the mean intensity. In all cases, changes in fluorescence
were calculated relative to baseline fluorescence levels (F0)
as determined by averaging over a period of at least 2 sec.
just before the optogenetic stimulation. The δF/F0 values
were calculated as δF/F0 = (Ft-F0)/F0, where Ft is the
fluorescent mean value of a ROI in a given frame. Analy-
ses were performed on the mean δF/F0 of the consecutive
3 stimulations.

Whole-cell patch-clamp recordings from DANs on
optogenetic activation of MBONs

For recording, the isolated brain attached with VNC
were dissected from third instar larvae in Baines ex-
ternal solution174, which contained (mM): 135 NaCl, 5
KCl, , 2 CaCl2.2H2O, 4 MgCl2.6H2O, 5 2-[(2-Hydroxy-
1,1-bis(hydroxymethyl)ethyl)amino] ethanesulfonic acid,
5 N-[Tris(hydroxymethyl) methyl]–2-aminoethanesulfonic
acid, and 36 sucrose. The pH was adjusted to 7.15 with
NaOH, and osmolarity was 310-320 mOsm. The prepa-
ration was viewed with a 60x 1 NA water-immersion ob-
jective equipped with an Olympus microscopy (BX51WI;
Olympus). GCaMP6f–labeled DANs were visualized
with a 470-nm wavelength LED. The glial sheath above
the targeted DANs was ruptured using 0.1% pro-
tease (Protease XIV; Sigma-Aldrich). Recording elec-
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trodes were pulled from thick-wall glass pipet (O.D.
1.5mm, I.D. 0.86mm) using P-97 puller (Sutter Instru-
ments) and fire-polished to resistances of 10–15 Mω.
The Baines intracellular solution174 contained (mM): 140
potassium gluconate, 5 KCl, 2 MgCl2.6H2O, 2 EGTA, 20
HEPES. The pH was adjusted to 7.4 with KOH, and the
osmolarity was 280 mOsm. Biocytin was dissolved in in-
tracellular solution at 0.5% for further post hoc morpho-
logical identification of recorded DANs. The data were
acquired and processed using Digidata 1550, Multiclamp
700B, and Clampex 10.4 software (Molecular Devices).
The recording was sampled at 20 kHz and filtered at 6 kHz
under current-clamp mode. CsChrimson was activated by
617-nm wavelength LED.

DAN identification: After the electrophysiology
recording, the preparation containing the VNC and brain
was fixed in 4% paraformaldehyde in 0.1 M phosphate
buffer saline (PBS) overnight at 4ºC, and then trans-
ferred to PBS until staining. After rinsing in PBS,
the CNS preparations were placed in Streptavidin Alexa
Fluor 647 (1:200) in PBS with 10% Triton X (overnight,
room temperature). After rinsing, the preparations were
dehydrated and mounted with DPX. The confocal images
were captured with Zeiss 800 confocal laser microscope.
Alexa Fluor 647 was excited with 633 nm-wavelength
light, and mCherry-tagged CsChrimson neurons were ex-
cited with 567 nm-wavelength light.

Statistical analysis

As most fluorescence and behavioral data were non-
normally distributed (according to a Shapiro-Wilk test),
we opted for non-parametric tests for paired comparisons.

For behavioral experiments, the performance scores
obtained for each line tested in optogenetic reinforce-
ment were compared to the ones of its corresponding
empty line (i.e. w;;attP2 or w;attP40;attP2 for GAL4
or Split GAL4, respectively) using a non-parametric
Mann-Whitney U test for independent sets of data.
For multiple comparisons, the probability values were
compared to a threshold of 0.05 adjusted with a Holm-
Bonferroni correction to balance for Type I and Type
II statistical errors, unless otherwise stated. Across
GAL4 lines, comparisons of performance scores were
done using the same methodology. Data were plot-
ted using the Matlab script errorbarjitter, available at
http://www.mathworks.com/matlabcentral/fileexchange/
33658-errorbarjitter.

Fluorescence analyses were done using a non-
parametric Wilcoxon test for paired comparisons between
the maximum δF/F0 plus one standard deviation during
1 sec before photostimulation onset and the maximum
δF/F0 at two time windows: during the 1 sec of the stim-
ulation, and from 1 to 3 seconds after its onset.

For the clustering analysis, we looked for clusters
among FBNs/FANs based on the similarity of their synap-
tic partners separately for input and output. To find
clusters based on synaptic inputs, we defined the simi-
larity between a pair of FBN/FANs as the cosine simi-
larity of the vector of inputs they receive from MBONs
where the weight of a given connection is measured as the
fraction of total input synapses on the postsynaptic neu-
ron. Specifically, for vi and vj being the input vectors

for FBN/FANs i and j, the similarity between them is
defined Sij =

vi.vj
∥vi∥∥vj∥ . Hierarchical clustering on the sim-

ilarity matrix was done with Scipy using average linkage.
We chose the top five clusters to highlight, which included
all clearly differentiated groups of FBN/FANs. Cluster-
ing on the output patterns was done identically using the
vectors of connectivity from FBN/FANs onto MBINs.

For the input-clustered groups, we assessed the similar-
ity of the patterns of synaptic outputs and vice versa for
the synaptic input patterns for output-clustered groups.
We measured the overall group similarity as the median
of all unique pairwise cosine similarities between neurons
within the group. We used a permutation test to assess
the significance of the observed similarities by randomizing
the relationship between input pattern and output pattern
for each FAN/FBN. For example, for each input-clustered
group of size n, we randomly chose n output patterns and
computed their median output similarity in the same way.
A one-sided p-value was computed from the distribution
of 10,000 random permutations with a Holm-Sidak correc-
tion for multiple comparisons across the groups.

Rate model of the MBON-i1-FBN-7-DAN-i1 one-
step feedback motif for Extended Data Fig. 11b

To illustrate the potential effects of different FBN-
baselines we modeled the isolated MBON-i1-FBN-7-DAN-
i1 feedback motif shown in Fig. 4b with rate equations
where the output of neuron type (MBON, FBN, DAN),
, changed over time according to the equation τi

dri
dt =

−ri+f(
∑
j

wijrj+Itonici )+Istimi where f(x) = s
1+e−k(x−xh) ,

W was a matrix with positive and negative values corre-
sponding to the direct interactions between neurons as
shown in the circuit schematic of Fig. 4b, Itonici was a
nonnegative tonic input into neuron i, Istimi is a stimu-
lus input provided only to MBON, τi is a time constant,
and parameters s, k and xh set the shape of the sigmoidal
response. Equations were solved using ode45 in Matlab
(The Mathworks, Inc).

Connectivity-constrained model of the entire
mushroom body with the feedback neurons

Model dynamics

We constructed a recurrent network model of the larval
MB containing MBONs, DANs and other feedback neu-
rons. The network receives input from 70 KCs, and ex-
ternal cues, such as US. The normalized firing rate ri of
neurons i is modeled as a threshold-linear function of its
input:

dri
dt

= −ri(t) + f

∑
j

Wijrj(t) + bi + Ii(t)

 , (1)

where f represents positive rectification. Time is modeled
in units of effective time constant (representing combined
synaptic and membrane timescales). The connectivity ma-
trix Wij is constrained using the EM reconstruction. The
vector bi represents the static bias input to each neuron
which determines its excitability, while Ii(t) represents
time-varying external input. For MBONs, this includes
external input from KCs, Ii(t) =

∑
k W

KC
ik rKC

k .
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KCs are initially silent, but during the presentation of
an odor CS, the activity of a random fraction f of KCs is
set to 1, leading to MBON activation. We assume all-to-
all KC-to-MBON connectivity. Weights WKC are initially
set equal to their maximum value of 1/(NKCf), but are
modified according to a DAN-dependent synaptic plastic-
ity rule. A weight W (t) from KC k to an MBON in com-
partment i evolves according to:

dw

dt
= −r̄kdi + rkd̄i, (2)

τW
dW

dt
= w(t)−W (t), (3)

where di represents the level of dopamine in the com-
partment (a weighted sum of DAN inputs according to
the DAN-to-MBON connectivity matrix), and rk repre-
sents the firing rate of the KC (note that modifications of
weights onto MBONs depend only on KC and DAN ac-
tivity). The terms r̄k and d̄i represent the firing rate rk
and dopamine level di, respectively, low-pass filtered with
time constant τ , which leads to an anti-Hebbian timing-
dependent synaptic weight update in Equation 2. The
second equation results in W (t) following these updates
with a time constant of τW (Equation 3). For simplicity,
we assume that all modulatory neurons induce plasticity
according to this rule.

Weights among DANs, MBONs, and feedback neurons
are constrained by the EM reconstruction. Weight ma-
trices are initialized using synapse counts from the EM
data, scaled so that the ℓ2 norm of the inputs received by
each neuron

∑
j W

2
ij = 1.5. Only reliable connections, as

defined previously, are included. Weights from neurons
known to communicate using an inhibitory neurotrans-
mitter, are then multiplied by −1. As optimization pro-
gresses, weights from neurons of known neurotransmitter
identities are constrained to maintain a consistent sign by
clipping at 0. At the beginning of a trial, MBON rates
are initialized to 0 while DAN and feedback neuron rates
are initialized to 0.1. This promotes networks in which
MBONs are primarily odor-driven, but some DANs and
feedback neurons exhibit baseline levels of activity.

Tasks

Neuron i’s external input Ii(t) represents either KC in-
put in the case of MBONs (as described above), or US or
contextual signals (depending on the task) in the case of
DANs and FB neurons. We assume that Ii(t) = WE

j ej(t),
where WE is initialized as a random standard Gaussian
variable and ej(t) = 0 or 1 depending on whether signal
j is active. For most tasks, there are two signals (positive
or negative US).

A linear readout of the MBONs determines the pref-
erence index via PI(t) =

∑
i∈MBON WM

i ri, where WM

is initialized as a random Gaussian variable with vari-
ance 1/NMBON. Entries of WM corresponding to MBONs
whose activation is known to produce positive or negative
PIs are constrained to be consistent with this sign.

Trials consist of 80 time units. In a first-order condi-
tioning trial, a CS+ is presented for 3 time units starting
randomly between t = 5 and t = 15, followed by a posi-
tive or negative US with a delay of 2 time units. A test
CS+ presentation occurs between t = 65 and t = 75, and

the system must output the appropriate PI of +1 or -1
depending on the US valence during this second presen-
tation. For extinction, an additional CS+ presentation
occurs randomly between t = 35 and t = 45, and the
magnitude of the PI is halved for the final test CS+ pre-
sentation. For second-order conditioning, a new CS2 is
presented at this time, followed by the original CS+, and
the test occurs for CS2. Finally, for context-dependent
conditioning, a contextual signal that determines the US
valence is presented 3 time units prior to the first CS. At
t = 30 and t = 60 firing rates are reset to their initial
conditions to model an arbitrary time delay between CS
presentations and preventing networks from using persis-
tent activity, rather than synaptic plasticity, to maintain
associations.

For networks trained on first-order conditioning,
second-order conditioning, and extinction, training con-
sists of random second-order conditioning and extinction
trials (for which first-order conditioning is a subcompo-
nent). On each trial, there is a 50% probability that one
of the signals (e.g. the US) will be omitted, or a CS- odor
will replace a CS+ odor, and the network report a PI of 0
in these cases, ensuring that only valid CS-US contingen-
cies are learned.

Optimization

The network parameters, including all weights except
for KC-to-MBON weights, as well as the biases b, are
optimized using PyTorch using the RMSprop optimizer
(www.pytorch.org). Optimization consists of 1500 epochs
of 30 trials each. The cost to be minimized is equal
to the squared distance between the actual and tar-
get PI summed over timesteps, plus a regularization
term for DAN activity. The regularization term equals∑

t,i∈DAN [ri(t)−0.1]2+, which penalizes DAN activity that
exceeds a baseline level of 0.1. We used a timestep of
∆t = 0.5, although we verified that our qualitative results
hold for smaller timesteps.
Parameter Notation Value
KC coding level f 0.1
Max. KC-to-MBON synaptic weight wmax 1/(NKCf)
Timing-dependent plasticity window τ 5
Timescale of weight modifications τW 5
Initial MBON rate m0 0
Initial DAN rate d0 0.1
Initial FB neuron rate x0 0.1
CS/US presentation length Tstim 3
CS-US delay ∆TUS 2
Trial length T 80
Timestep ∆t 0.5
RMSprop learning rate η 0.002
Batch size B 30
Number of epochs Nepochs 1500
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Extended Data Figure 1
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Extended Data Figure 1: Expression patterns of Split-GAL4 lines.
Each panel shows a confocal maximum intensity projection of the complete CNS of third-instar larvae (indicated by the dotted
line in the first pannel), with the neuropil labeled with anti-N-Cad antibody (blue) and the Split-GAL4 line expression pattern
revealed by driving UAS-myr-GFP (green). Arrowheads indicate cell bodies of identified neurons.
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Extended Data Figure 2
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Extended Data Figure 2: Continues from prior page.
a With some natural punishments, aversive memory is behaviorally expressed by trained Drosophila larvae only if the punishment
is present at the moment of the test (Hendel and Gerber, 2006; Eschbach et al. 2011; Schleyer et al. 2011). Here we assayed
olfactory aversive memories in two ways: both with or without optogenetic punishment (red and black bars, respectively) during
the retention test. We found that, aversive memory formed by DAN activation (green) was expressed to the same extent with or
without the DANs activated during the retention test. Similarly memories evoked by Basins activation (blue) can be expressed
without activation of Basins during test. However memory evoked by the activation of nociceptive MD IV neurons (orange)
or FB2N-19 (yellow) was fully expressed only if these neurons were active again during the retention test. Mean and standard
deviations are shown, *: p-value from a Mann-Whitney test comparison to the scores of the corresponding control group (open
circles) compared to the value 0.05 adjusted with a Holm-Bonferroni correction for multiple comparisons.
b Preference scores for the trained odor, ethyl acetate, when it was paired (paired group, closed circles) or not paired (unpaired
group, open circles) with optogenetic punishments or rewards. Odor preference was decreased and increased, respectively,
relative to genetic controls, after pairing the odor with the presence and absence of the following optogenetic punishments: co-
activation of the aversive DAN-f1 and DAN-g1, co-activation of DAN-f1 and DAN-c1, or activation of Basins. On the contrary,
odor preference was increased and decreased, respectively, relative to genetic controls, after pairing the odor with the presence
and absence of the following optogenetic rewards: the co-activation of DAN-h1, -i1, and -k1 (dark green); the activation of
FB2N-18 and FB2N-11 (yellow), or activation of FAN-7 (blue-gray). Thus, both absence of odor in the unpaired group of
animals, as well as the presence of odor in the paired group of animals can be associated with the activation of some DANs or
some of their afferent neurons. For other DANs or afferent neurons, only paired (e.g. A00c, purple)) or only unpaired (e.g. the
modulatory DAN-f1, the nociceptive MD IV sensory neuron, or FB2N-19) contingency significantly affected odor preference
with respect to the control group. Ether of these two observed types of effects can contribute to the negative or positive learning
performance indexes plotted in Fig. 1c, 1e, 5f’, 5g’ and 5h’. Black *: p-value<0.05 from a Wilcoxon test comparison between
paired and unpaired group. Grey *: p-value<0.05 from a Mann-Whitney U test comparison between the preference scores for a
given group (paired or unpaired) and the preference scores (for paired or unpaired protocol, respectively) obtained by the control
line shown on the left of each set of data. Sample sizes: N = 42, 11, 17, 16, 12, 14, 12, 13, 12, 16, 12, 14, 12, 12, 15, 14, 12, 11,
14, 13, 12, 14, 11, 11, 11, 18, 11, 20, 25, 33, 52, 14, 21, 14, 14, 18, 18, 31, 52, 27, 11, 11, 13, 10, 20 (control groups in bold).
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Extended Data Figure 3
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Extended Data Figure 3: Matrix of similarity be-
tween modulator neurons based on the amount
of common input.
Similarity is obtained by counting the total number
of inputs onto a row modulator neuron that are also
inputs of the column modulator neurons, and divide
by the total number of inputs onto the column mod-
ulator neurons. An input here is a connection, con-
sisting typically of many synapses, from a specific
cell type onto the modulator neuron. Inputs onto a
modulator neuron type are considered if the pair of
left and right neurons presynaptic to the pair of left
and right modulator neurons is each above a thresh-
old of 1% (e.g. the presynaptic neuron makes 3
synapses onto a neuron with 300 postsynaptic sites)
and the sum of both is over 3.3% (e.g. the sum of
both connections is above 10 synapses for receiving
neurons with 300 postsynatic sites).
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Extended Data Figure 4
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Extended Data Figure 4: Input onto feedback neurons. Figure shows the fractions of total dendritic input each pre-modulatory
neuron (FBN, FB2N or FFN) receives from KCs, modulatory neurons, MBONs, FBNs, FB2Ns, FFNs, and from other non-MB
neurons (others). a FBNs receive on average 12% of their inputs directly from MBONs and most of them also receive inputs
from other FBNs, with an average of 26% from MBONs and other FBNs combined (see also Extended Data Fig. 13a). b FB2Ns
receive inputs both from FBNs (on average 17%) and from other FB2Ns (on average 28% from FBNs and FB2Ns combined).
Many feedback neurons also receive a significant fraction of input from other unknown neurons from other brain areas (other
than MB), suggesting that the feedback about the learnt valences of stimuli is integrated with or modulated by other information.
c Tables show percent of inputs onto FBNs (top) and FB2Ns (bottom) from MBONs, FBNs, FB2Ns, FFNs, modulatory neurons,
and Kenyon cells.
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Extended Data Figure 5
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Extended Data Figure 5: (related to Fig. 2f) EM reconstruction of feedforward pathways from sensory neurons to the VL
modulatory neurons.
Figure shows reconstructed neurons in the nociceptive (orange), multisensory Basin (blue) and mechanosensory (brown) path-
ways projecting to the VL modulatory neurons (green).
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Extended Data Figure 6

FB
N

-1
FB

N
-2

FB
N

-3
FB

N
-4

FB
N

-5
FB

N
-6

FB
N

-7
FB

N
-8

FB
N

-9
FB

N
-1

0
FB

N
-1

1
FB

N
-1

2
FB

N
-1

3
FB

N
-1

4
FB

N
-1

5
FB

N
-1

6
FB

N
-1

7
FB

N
-1

8
FB

N
-1

9
FB

N
-2

0
FB

N
-2

1
FB

N
-2

2
FB

N
-2

3
FB

N
-2

4
FB

N
-2

5
FB

N
-2

6
FB

N
-2

7
FB

N
-2

8
FA

N
-1

FA
N

-2
FA

N
-3

FA
N

-4
FA

N
-5

FA
N

-6
FA

N
-7

FA
N

-8
FA

N
-9

FA
N

-1
0

FA
N

-1
1

FA
N

-1
2

MBON-a1
MBON-a2
MBON-b1
MBON-b2
MBON-b3
MBON-c1
MBON-d1
MBON-d2
MBON-d3
MBON-e1
MBON-e2
MBON-f1
MBON-g1
MBON-g2
MBON-h1
MBON-h2
MBON-i1
MBON-j1
MBON-k1

MBON-m1
MBON-n1
MBON-o1
MBON-p1
MBON-q1

a

C
A

 L
P

IP
U

V
L

 IV
L

LA
LV

L
IT

U
T

S
H

A
LT

LA
/V

L
ChAT

ChAT

GABA

GABA

n.a.

ChAT

GABA

n.a.

n.a.

ChAT

GLUT

n.a.

GABA

GABA
GABA/

GABA/

GLUT

GLUT

GLUT

GABA

n.a.

n.a.

n.a.

n.a.

GLUT

GLUT

7
1 3

5
4 3

1 2 13 3
17 3

2 5 2 6 7 1
1 7 4 4 3 6 5 5 4 3 7 8 8 10
2 2 2 4 4 2

6
4

10
9

1 2 5
6 1 3 2

1 1 2 1 6 2 7 3 5
4 3 15 16 5 4
2 2 11 3
4 3 2 4 9 2 1
3 8 10 6 6

3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
A

N
-a

1
O

A
N

-a
2

M
B

IN
-b

1
M

B
IN

-b
2

D
A

N
-c

1
D

A
N

-d
1

O
A

N
-e

1
M

B
IN

-e
1

M
B

IN
-e

2
D

A
N

-f1
D

A
N

-g
1

O
A

N
-g

1
M

B
IN

-l1
D

A
N

-i1
D

A
N

-j1
D

A
N

-k
1

FBN-1
FBN-2
FBN-3
FBN-4
FBN-5
FBN-6
FBN-7
FBN-8
FBN-9

FBN-10
FBN-11
FBN-12
FBN-13
FBN-14
FBN-15
FBN-16
FBN-17
FBN-18
FBN-19
FBN-20
FBN-21
FBN-22
FBN-23
FBN-24
FBN-25
FBN-26
FBN-27
FBN-28

FAN-1
FAN-2
FAN-3
FAN-4
FAN-5
FAN-6
FAN-7
FAN-8
FAN-9

FAN-10
FAN-11
FAN-12

4
7 2

2
2

2 2 2
1

2 3
2
1 1 1 3

2
3

4 1
3

1
1

3 3 2 3
3

2 2
1

4
1

2
3 2

7
5

1 3
5

1
1

6
2

1 1
4 2

3
1

4
2

5
1 5

2

b

0

2

4

6

8

10

CA  LPIP UVL  IVL LVL ITUT LTLA VL
LA/

Extended Data Figure 6: (related to Fig. 3) Connectivity matrices between MBONs, FBNs, and modulatory neurons.
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Extended Data Figure 6: Continues from prior page.
Connectivity matrix showing normalized synaptic input (expressed as % input, computed as in Fig. 2b) each postsynaptic neuron
(columns) receives from each presynaptic neuron (rows).
Only reliable connections are shown for which both the left and right homologous connections have at least 3 synapses, and their
sum is at least 10, and for which the postsynaptic neuron receives at least 1% of input from the presynaptic neuron.
MBONs and modulatory neurons are grouped by MB lobe. CA, Calyx; IP, Intermediate peduncle; LP, Lower peduncle; LA, Lat-
eral appendix; UVL, Upper vertical lobe; IVL, Intermediate vertical lobe; LVL, Lower vertical lobe; SHA, Shaft; UT, Upper toe;
IT, Intermediate toe; LT, Lower toe. a Each row and column represents MBONs (presynaptic neurons) and FBNs (postsynaptic
neurons), respectively. b Each row and column represents FBNs (presynaptic neurons) and modulatory neurons (postsynaptic
neurons), respectively.
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Extended Data Figure 7

FBN output to 
modulatory neurons

FBN input from MBONs

Extended Data Figure 7: Clustering FBNs based on output onto modulatory neurons.
a Heat map of FBN similarity based on the pattern of FBN synaptic output across all modulatory neurons. The similarity between
a pair of FBNs was computed as the cosine similarity between the vectors of normalized synaptic output onto all modulatory
neurons. Indices were ordered by agglomerative clustering with average linkage (dendrogram shown at top). We highlight six
groups of FBNs defined by similarities in their output patterns (bold lines in dendrogram, numbered).
b Heat maps showing patterns of synaptic output from FBNs to modulatory neurons for output groups highlighted in a. Each
group corresponds to several FBNs strongly targeting one or a small number of modulatory neurons, suggesting that some
modulatory neurons are more strongly modulated than others.
c Heat maps showing patterns of input onto FBNs from MBONs for the output groups highlighted in a.
d The observed similarity in the input patterns between FBNs within each group, compared to shuffled data. For each group (as
defined by output patterns), we computed the observed median of cosine similarity of the input vectors across all pairs of neurons
(red line). In Groups 1–5, the neurons clustered by outputs had more input output patterns than would be expected by chance.
To determine significance, we compared the observed similarity to the distribution of the median cosine similarity for randomly
permuted samples from the observed population of input vectors (black histograms, n=10000 randomized trials). A Holm-Sidak
correction was applied to p-values to correct for multiple comparisons.
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Extended Data Figure 8
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Extended Data Figure 8: Clustering FBNs based on input from MBONs.
a Heat map of FBN similarity based on the pattern of FBN synaptic inputs from MBONs. The similarity between a pair of FBNs
was computed as the cosine similarity between the vectors of their normalized synaptic inputs from all MBONs. Indices were
ordered by agglomerative clustering with average linkage (dendrogram shown at top). We highlight six groups of FBNs defined
by similarities in their input patterns (bold lines in dendrogram, numbered).
b Heat maps showing patterns of input from MBONs onto FBNs for the input groups highlighted in a. In all cases, connectivity
is measured in normalized synaptic input on the postsynaptic neuron. Most input groups receive dominant input from a single
specific MBON (Groups 1,2, 5) or small group of MBONs (Groups 3 and 4), while Group 6 is not well-clustered and contains a
variety of dissimilar input patterns.
c Heat maps showing the patterns of synaptic output from FBNs to modulatory neurons for the input groups highlighted in a.
d The observed similarity in the output patterns between FBNs within each group, compared to shuffled data. For each group
clustered by input pattern, we computed the observed median of cosine similarity of the output vectors across all pairs of neurons
(red line). In Groups 1,2, and 3, the neurons clustered by inputs had more similar output patterns than would be expected by
chance. To determine significance, we compared the observed similarity to the distribution of the median cosine similarity for
randomly permuted samples from the observed population of output vectors (black histograms, n=10000 randomized trials). A
Holm-Sidak correction was applied to p-values to correct for multiple comparisons.
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Extended Data Figure 9
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Extended Data Figure 9: Direct MBONs to modulatory neuron connectivity is very sparse, in contrast to the very dense
connectivity via one-and two-step feedback pathways.
a Connectivity matrix showing normalized synaptic input (expressed as % input, computed as in b) each modulatory neuron
(columns) receives from each MBON (rows). Only reliable connections for which the postsynaptic neuron receives at least 1%
of input from the presynaptic neuron are shown.
When the neurotransmitter of the MBON is known, the circle is color-coded to represent type of connection: excitatory (ChAT)
or probably disinhibitory (GluT). Color shades represent the valence of the memory formed in a given compartment (red: aversive
memory, blue: appetitive memory). True within-compartment feedback connections from an MBON that receives direct synaptic
input from that modulatory neuron are boxed in bold.
Very few modulatory neurons receive direct input from MBONs, in contrast to the dense connectivity between MBONs and
modulatory neurons via the indirect one- and two-step feedback pathways (b).
b Connectivity matrix showing indirect connections between MBONs and modulatory neurons via one-step and/or two-step
feedback pathways. The matrix was obtained by summing the matrices from Fig. 3b and Fig. 5e. The color indicates the type of
indirect connection existing between a given MBON and a given DAN. Bubble size represents a connectivity index computed as
in Fig. 3b and Fig. 5e. A connectivity index of 1 or 10 means that for all connections comprising that indirect feedback pathway
the presynaptic neuron accounts for 1% and 10% of input onto that postsynaptic neuron, respectively.
One- and two-step feedback drastically increases the connectivity between MBONs and modulatory neurons, compared to direct
connections (a).
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Extended Data Figure 10
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Extended Data Figure 10: Identification of neurotransmitters expressed in some FBNs/FB2Ns. Neurotransmitter expression
detected in neuron somata using antibody labelling. We identified GAL4 lines that drive gene expression in some of the FBN
or FB2N neurons and used them to express GFP in these neurons. We stained central nervous systems with antibodies against
GFP and either ChAT (choline acetyltransferase), GABA (gamma aminobutyric acid) or GLUT (vesicular glutamate transporter).
Each row shows from left to right: the name of the individual neuron, anti-GFP (green), anti-ChAT (magenta), and both antibody
stainings combined; anti-GFP (green), anti-GABA (magenta), and both antibody stainings combined; anti-GFP (green) and anti-
GLUT (magenta), and both antibody stainings combined. Whether a cell is cholinergic, GABAergic or glutamatergic is listed at
the beginning of each row under the neuron name. Images show confocal maximum intensity projections of specific neuronal
cell bodies. Scale bars: 5 µm.
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Extended Data Figure 11
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Extended Data Figure 11: (related to Fig. 4) Electrophysiological recording of DAN-i1 during optogenetic stimulation of
MBON-i1 or MBON-m1.
a Raw electrophysiological traces of whole-cell patch-clamp recording of DAN-i1 (medial lobe) during optogenetic activation
of the medial lobe MBON-i1 of the same compartment. Left: 3/9 animals had a long-latency inhibitory responses in DAN-i1 at
the onset of MBON-i1 activation (55.3 ± 17.3 ms, n=60 traces from 3 animals). For each of them, three individual traces are
shown. Inhibition at the onset in some animals but not others might result from distinct baseline states of FBN, as modeled in b.
Right: 4/9 animals had even longer latency inhibitory responses in DAN-i1 at the offset of MBON-i1 activation (95.3 ± 43.5 ms,
n=80 trials from 4 animals). Traces from 3 example animals are shown. Inhibition at the offset might be result of post-inhibitory
rebound within a two-step feedback pathway like the one shown in c. b Simple rate model of the circuit comprising the MBON-
i1, FBN-7 and DAN-i1, as shown in Fig. 4b illustrating how distinct FBN-7 baseline states could result in an inhibitory response,
or no inhibitory response to the onset of MBON-1 activation in DAN-i1. Neuronal activity was modeled as a leaky integrator
with logistic function response. The high and low baseline states are modeled as a stronger or weaker tonic excitatory input into
the FBN-7. Purple bar indicates MBON activation. In the model, in the high-FBN-7 and low-FBN-7 baseline states, onset of
MBON-1 activation evokes an inhibitory response and no response in DAN-i1, respectively. c Schematic diagram showing a
putative two-step feedback pathway between MBON-i1 and the DAN-i1 that could mediate inhibition at the offset of MBON-i1
activity. This proposed mechanism would involve post-inhibitory rebound in the neuron postsynaptic to MBON-i1. An example
two-step feedback pathway that could mediate this response comprises FBN-9 and FB2N-3, but the neurotransmitters of these
neurons have not yet been identified due to the lack of appropriate GAL4 lines. d Raw electrophysiological traces of whole-cell
patch-clamp recording of DAN-i1 (medial lobe) during optogenetic activation of the vertical lobe MBON-m1. Three out of three
animals had a long-latency excitatory response in DAN-i1 to optogenetic activation of MBON-m1 (51.3 ± 7.7 ms, n=45 trials
from 3 animals). For each of them, three individual traces are shown. Red rectangles indicate time of optogenetic stimulation.
Numbers indicate absolute baseline potential.

41

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/649731doi: bioRxiv preprint 

https://doi.org/10.1101/649731


Eschbach, Fushiki et al. 2019

Extended Data Figure 12
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Extended Data Figure 12: (related to Fig. 5) All identified within- and cross-compartment two-step feedback pathways,
via FB2Ns. 21 FB2N pairs receive indirect input from MBONs and direct input from FBNs and synapsed onto modulatory
neurons. Some FB2Ns synapsed onto modulatory neurons in their own compartment (true second-order feedback), as well as
in other compartments, while other FB2Ns synapsed onto modulatory neurons in other compartments (pure second-order feed-
across pathways). Thickness of the arrows is proportional to normalized synaptic input (as in (Fig. 2e-f). Arrowhead, line,
square, and circle denote excitatory (ChAT), inhibitory (GABA), probably inhibitory (GLUT), and unknown neurotransmitter
identity, respectively.
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Extended Data Figure 13
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Extended Data Figure 13: (related to Fig. 5) Connectivity matrices of feedback neurons with each other and with modu-
latory neurons.
Connectivity matrix showing normalized synaptic input (expressed as % input, computed as in Fig. 2b) each postsynaptic neuron
(columns) receives from each presynaptic neuron (rows). Only reliable connections are shown for which both the left and right
homologous connections have at least 3 synapses, and their sum is at least 10, and for which the postsynaptic neuron receives at
least 1% of input from the presynaptic neuron.
a FBNs (rows) synapsing onto FBNs (columns). b FBNs (rows) synapsing onto FB2Ns (columns). c FB2Ns (rowss) synapsing
onto FB2Ns (columns). d FB2Ns (rows) synapse onto modulatory neurons (columns). Modulatory neurons are grouped by their
compartments and lobes. CA, Calyx; IP, Intermediate peduncle; LP, Lower peduncle; LA, Lateral appendix; UVL, Upper vertical
lobe; IVL, Intermediate vertical lobe; LVL, Lower vertical lobe; SHA, Shaft; UT, Upper toe; IT, Intermediate toe; LT, Lower toe.
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Extended Data Figure 14
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Extended Data Figure 14: (related to Fig. 5) Two-step feedback via FBNs. The interconnections among FBNs enable them to
also provide two-step (in addition to one-step) feedback to modulatory neurons, similarly to FB2Ns (but the latter by definition
do not receive direct inputs from MBONs). Left-right homologous neurons have been grouped as a type, and only connections
with 10 or more synapses are shown. With this stringent connectivity criterium, almost all identified FBNs participate in two-step
feedback motifs, except for FBN-12, FBN-13, FBN-15, FBN-18, FBN-20, FBN-27, FBN-28 and FAN-9, which do not receive
inputs from other FBNs. All modulatory neurons receive two-step feedback via FBNs, except for OAN-a1 and OAN-a2.
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