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Abstract

In the brain, high-order and low-order areas are connected via bottom-up
connections (from low-order to high-order areas) and top-down connections
(from high-order to low-order areas). While bottom-up signals are thought
to be critical in generating perception, functions of top-down signals have not
been clearly delineated. One popular theory is that top-down inputs modify
the activity of specific cell assemblies to modulate responses to bottom-up
inputs. However, a different line of studies proposes that not all top-down
inputs are specifically delivered. As the leading theories cannot account for
nonspecific top-down inputs, we seek potential functions of nonspecific top-
down signals using network models in our study. Our simulation results
suggest that top-down inputs can regulate low-order area responses by pro-
viding temporal information even without spatial specificity. Specifically,
the temporal information in nonspecific top-down inputs can weaken the
undesired bottom-up connections, contributing to bottom-up connections’
learning. Further, we found that cortical rhythms (synchronous oscillatory
neural responses) are critical in the proposed learning process of bottom-up
connections in our model.
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1. Introduction

The brain is thought to have hierarchical structures [1, 2, 3, 4, 5, 6],
in which high-order areas rely on low-order areas for their functions. For
instance, the prefrontal cortex needs the outputs of the visual cortices to
access visual information. This hierarchy of the brain has inspired deep
neural networks (DNN) [7, 8], in which information propagates from input
to output layers in a feedforward fashion. However, the brain is not just
a group of feedforward networks. Instead, high- and low-order areas in the
brain are reciprocally and intensively connected [3, 5, 9, 10], and a line of
studies suggests that both bottom-up (i.e., feedforward), from low-order to
high-order areas, and top-down (i.e., feedback) signals, from high-order to
low-order areas, are critical in cognitive functions [11, 12, 13, 14]. Bottom-up
signals have been considered responsible for sensory signal processing, but
functions of top-down signals remain poorly understood.

A few leading theories propose potential functions of top-down signals.
One theory is that top-down inputs mediate selective attention or endogenous
contexts, allowing sensory areas to respond selectively to more behaviorally
important stimuli [15, 16]. Specifically, it is proposed that top-down inputs
promote responses of a selected population of homogeneous neurons (i.e., an
assembly) to win the competition among cell assemblies in low-order sensory
areas; see [17] for a review. A second theory is that top-down inputs mediate
expectations according to predictive coding theory [18, 19]. These theories
assume that top-down signals can target specific cell assemblies. However,
a different line of studies suggests that some top-down signals may not be
target-specific [20, 21, 22, 23, 24]. Without target specificity, they cannot
mediate attention or expectation, as the earlier theories suggest, indicating
that nonspecific top-down inputs could play a different role. In this study,
we use network models to pursue their potential functions.

Even without spatial specificity/information, top-down signals can still
mediate temporal information onto target assemblies and evoke disparate
responses depending on their exact arrival times. Importantly, the time-
dependent efficacy of spikes can be profoundly impacted when target neurons
are in synchronous and oscillatory states such as PING rhythms (oscillations
at a gamma frequency generated by the interplay between excitatory and
inhibitory neurons); see [25]. If top-down signals arrive immediately after in-
hibitory neurons fire synchronously, they will hardly entrain target neurons
due to strong inhibition. In contrast, if top-down inputs arrive right before
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a rhythm’s cycle, they will entrain target neurons quite reliably. Further,
we note that coordinated rhythmic activity is thought to mediate interareal
communications in the brain [26] and allow reliable learning via spike-time
dependent plasticity (STDP) [27]. Inspired by this line of ideas, we hypoth-
esize that temporal information encoded in nonspecific top-down signals can
help bottom-up signals propagate effectively by modulating the strength of
bottom-up connections.

To address this hypothesis, we construct a network model consisting of
one low-order and one high-order area. Specifically, we consider two inhomo-
geneous cell assemblies in a low-order area and test the effects of nonspecific
top-down signals on the evolution of connections from the two assemblies to
a high-order area. Our simulation results suggest that 1) nonspecific top-
down connections can suppress undesired bottom-up connections and 2) the
power of gamma rhythms in lower-order areas is correlated with the change
in connection strength of connections between lower-order areas to higher-
order areas, which reflects the degree of learning. These results suggest that
even without spatial specificity, temporal information mediated by top-down
inputs can change the strength of bottom-up signals. Furthermore, we note
that STDP connections are known to generate runaway neural activity [28],
which prevents spiking neural networks (SNNs) from learning practical tasks.
Since in our simulations, nonspecific top-down inputs suppress undesired con-
nections, we propose that nonspecific top-down inputs can help SNNs learn
by preventing runaway activity in them; see Discussion.

2. Methods

To seek potential roles of nonspecific top-down inputs in bottom-up con-
nections’ learning, we used network models to study nonspecific top-down
inputs’ contribution to the formulation of selectivity in bottom-up connec-
tions.

2.1. Network Model

Our network model consists of three cell assemblies (Fig. 1). Two assem-
blies (PA, NPA) represent a low-order area, and the other (HA) represents
a high-order area. PA and NPA are different only in their external inputs
mimicking sensory inputs (Fig. 1). Based on the observations [3, 9] that
bottom-up connections mainly target the granular layer (L4) and that top-
down connections avoid L4, we constructed each assembly with two layers,
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Table 1: Connections in the network model. Below, the connection probability and
strength of each connection type are shown in parentheses. TD, BU, and LGN repre-
sent top-down, bottom-up, and lateral geniculate nucleus connections, respectively. In
the model, we consider both low-order and high-order areas. Only low-order areas, which
model sensory cortices, receive LGN inputs. Additionally, Pyr and PB neurons receive
1050 Hz and 1000 Hz background inputs, respectively, via 100 pA connections.

Presynaptic
Neurons

Postsynaptic Neurons
L2/3 Pyr L2/3 PV L4 Pyr L4 PV

L2/3 Pyr (0.4, 40 pA) (0.6, 40 pA) N/A N/A
L2/3 PV (1.0, -40 pA) (1.0,-40 pA) N/A N/A
L4 Pyr (0.6, 80 pA) (0.4, 40 pA) (0.4, 40 pA) (0.6, 40 pA)
L4 PV N/A N/A (1.0, -40 pA) (1.0, -40 pA)

Across assemblies and external inputs
TD to Pyr (0.3, 15 pA) BU to PV (0.3, 20 pA)
TD to PV (0.3, 20 pA) LGN to Pyr (0.3, 60 pA)
BU to Pyr (0.3, 40 pA) LGN to PV (0.3, 30 pA)

superficial layer (L2/3) and L4. In each layer, excitatory neurons inter-
act with inhibitory neurons. Commonly, excitatory neurons are referred to
as pyramidal neurons due to their shape, and most inhibitory neurons are
known to express parvalbumin (PV). Thus, excitatory and inhibitory neu-
rons are referred to as Pyr and PV neurons in this study. Each neuron type is
connected to other neuron types in the same assembly. The connections are
randomly established using connection probabilities determined by pre- and
postsynaptic neuron types. The strengths of connections also depend on pre-
and postsynaptic neuron types. The selected values for connection probabil-
ities and strengths are listed in Table 1. The three assemblies in the model
are connected with one another via inter-assembly (i.e., interareal) connec-
tions (Table 1). We used the peer-reviewed open-source simulation platform
NEST [29] to build the network models. All parameters not specified here
are taken from the default parameters of the NEST package [29].

2.2. Neuron Model

In the model, all neurons are current-based leaky-integrate fire (LIF)
neurons. The dynamics of subthreshold membrane potentials are described
by Eq. 1.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/649798doi: bioRxiv preprint 

https://doi.org/10.1101/649798


dV

dt
= −V

τ
+
I

C
,where I =

∑
i

w+ exp

(
− t

τsyn+

)
+ w− exp

(
− t
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)
(1)

where w+ and τsyn+ represent the synaptic strengths and synaptic time
scales of excitatory synapses and where w− and τsyn− represent the synaptic
strengths and synaptic time scales of inhibitory synapses. The parameters
used in this study are listed in Table 2.

2.3. Synapse Model

Excitatory (inhibitory) synaptic events evoke instantaneous jumps (dips)
of membrane potentials V and their decay over time. The inhibition and ex-
citation decays over different time scales were adopted from an earlier work
[30]. The strengths of synaptic connections within assemblies are static over
time, whereas the strengths of connections across assemblies are either static
or dynamic depending on simulation conditions. When synaptic connections
are dynamic, the connections’ strengths follow the spike-time dependent plas-
ticity (STDP) rule summarized in Eq. 2.

∆w =

{
−αλf− ×K(∆t) if ∆t ≤ 0; where K(∆t) = exp(−|t|

τ
) ,

λf+ ×K(∆t) if ∆t ≥ 0,
(2)

where ∆t = tpost − tpre and f+(w) = (1 − w)µ, f−(w) = αµ. In this study,
we used default values included in the NEST package (α = 1, τ = 20.0 ms,
µ = 1.0, λ = 0.01).

Table 2: Parameters for neurons and synaptic inputs. Synaptic inputs decay at time scales
(τs) depending on the identities of presynaptic and postsynaptic neurons.

Param Value Param Value
Membrane constant 10 ms τs (Pyr → PV ) 2 ms
Spike threshold -50 mV τs (PV → Pyr) 6 ms
Reset potential -65 mV τs (PV → PV ) 4.3 ms
Refractory Period 2 ms Pyr cell # 320
τs (Pyr → Pyr) 2 ms PV cell # 80
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2.4. Simulation of local field potentials

Local field potentials (LFPs) reflect population responses. While their
origins remain poorly understood, synaptic inputs have been thought to be
crucial. Consequently, we simulated LFPs by summing up all (excitatory
and inhibitory) synaptic inputs to L2/3 Pyr neurons in PA [31, 32]. The
spectral power was calculated by the ‘signal.welch’ routine included in the
scipy package [33].

3. Results

As shown in Fig. 1, the two assemblies in the low-order area project to
the high-order area (HA), and HA projects back to them via nonspecific top-
down connections. Initially, the bottom-up connections from both low-order
area assemblies are identical and strong enough to drive the HA assembly,
when the low-order area assemblies generate sufficiently strong outputs. With
these bottom-up connections, when any of the low-order area assemblies be-
come active, HA will fire; that is, the selected low-order assembly and HA
will fire together. We assume that as a result, these bottom-up connections
will be selectively strengthened via a Hebbian learning rule proposed [34].
Spike-time-dependent-plasticity (STDP) has been suggested as a mechanism
that underlies Hebbian learning in the brain [35]. We incorporate STDP
in all bottom-up connections in the model and examine the contribution of
nonspecific top-down inputs to learning in the bottom-up connections.

3.1. Nonspecific top-down signals can sharpen bottom-up connections

In our model, we randomly choose a preferred assembly (PA) to which
we introduce 500 Hz external inputs, and a non-preferred assembly (NPA),
which receives 100 Hz external inputs, unless stated otherwise; these inputs
model sensory inputs from the lateral geniculate nucleus (LGN). The bottom-
up connections from PA to HA are expected to grow according to Hebbian
learning rule. For the sake of brevity, bottom-up connections from PA and
NPA will be referred to as Conn PA and Conn NPA, respectively, hereafter.
Due to the observations that inter-area connections are layer-specific, all
three assemblies consist of superficial (L2/3) and granular (L4) layers, in
which excitatory and inhibitory neurons interact with one another via ran-
domly established connections (Table 1). We refer to excitatory neurons
as ‘Pyr’ neurons, since most excitatory neurons are shaped like pyramids,
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L2/3

L4

L2/3

L4

L2/3

L4

Preferred Assembly

(PA)
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High-order Assembly
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500 Hz spks

100 Hz spks

Excitatory connection within an assembly 

Inhibitory connection within an assembly 

Top-down connections  

Bottom-up connections

Figure 1: Schematics of the model. The model consists of three assemblies (PA, NPA,
and HA). In superficial (L2/3) and granular (L4) layers, Pyr (red triangles) and PV (blue
circles) interact with one another. PA and NPA together represent the low-order area,
and they receive disparate external inputs. HA represents the high-order area. All three
assemblies interact through layer-specific top-down and bottom-up connections.

and inhibitory neurons as ‘PV’ neurons, since the most common molecular
marker of inhibitory neurons is parvalbumin (PV).

We simulate the network for 20 seconds (s) to estimate how Conn NPA
and Conn PA evolve over time with and without nonspecific top-down inputs
onto both NPA and PA (Fig. 1). Fig. 2A, B, and C show the spikes from
PA, HA, and NPA for the first 3 s; Pyr and PV neurons are shown in red and
blue, respectively. As shown in the figures, Pyr and PV neurons within each
assembly fire synchronously several times. We note that the synchronous
activity appears first in PA, which receives 500 Hz afferent inputs, and it
subsequently appears in L4 neurons of HA and L2/3 neurons of NPA (Fig.
2D). This pattern can be readily explained by the pattern of bottom-up and
top-down connections in the model. More importantly, when such sequen-
tial activations occur, according to the STDP rule, Conn PA grow stronger,
whereas Conn NPA grow weaker. Indeed, this sequential activation occurs
throughout the simulation. Consequently, Conn PA grow stronger gradually,
but Conn NPA grow weaker gradually (Fig. 3A), suggesting that bottom-
up connections can be selectively strengthened with nonspecific top-down
inputs.

To further examine the functions of nonspecific top-down inputs, we re-
peat the simulation without top-down inputs (both to PA and NPA). When
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Figure 2: Raster plots of an example simulation. (A), (B), (C), spikes generated in L2/3
and L4 of PA, HA and NPA, respectively. Each dot represents a spike, and spikes from
Pyr and PV neurons are shown in red and blue, respectively. For clarity, we show only the
first 3 seconds of the simulation. (D), spikes from L2/3 of NPA and PA and those from
L4 of HA, between 1320 and 1360 ms.

top-down connections are removed from the model, Conn PA increase as
before, but Conn NPA remain unchanged (Fig. 3B). These results suggest
that nonspecific top-down connections can reduce the strengths of undesired
bottom-up connections (i.e., connections from NPA to HA in this model),
keeping the total strength of bottom-up connections at roughly the same
level. We further test the effects of top-down inputs on bottom-up connec-
tions by varying the strengths of top-down connections to Pyr and PV in L2/3
of PA and NPA. To reduce statistical biases, we conduct 20 simulations, in
which networks are independently constructed using the same connectivity
rules (see Methods). Fig. 4 shows the total change in bottom-up connec-
tion strengths induced during 20-second-long simulations depending on the
strengths of top-down connections to PV and Pyr, respectively; the mean
and standard deviations from 20 independent simulations (see Methods) are
displayed in the figure.

We make two observations. First, without top-down inputs to Pyr neu-
rons, the reduction of Conn NPA is not pronounced (Fig. 4A), confirm-
ing that the delayed activity of Pyr neurons in NPA is essential to making
Conn NPA weaker. Second, top-down inputs to PV neurons also have an im-
pact on bottom-up connections’ learning (both Conn PA and Conn NPA).
As shown in Fig. 4B, the stregnths of Conn NPA decrease depending on both
top-down inputs to Pyr and PV neurons. Additionally, we note that the ef-
fect of top-down inputs to PV neurons on Conn NPA is not monotonic(Fig.
4C). As the strength of top-down connections to PV increases to a threshold
of approximately 20 pA, the magnitude of the change in NPA connection
weight increases, but after 20 pA, the magnitude decreases.
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Figure 3: Time course of the change in strength of bottom-up connections. (A), the mean
change in weight of bottom-up connections as a function of time. The blue and orange
lines represent the mean values for connections from PA to HA and those from NPA to
HA, respectively. The mean values are calculated every 5 ms during simulations. (B), the
same as (A) but with top-down connections removed.

In contrast, the (positive) change in strength of PA connections monoton-
ically decreases as the strength of top-down connections to PV increases (Fig.
4C). We also note that the difference between Conn PA and Conn NPA af-
ter 20-second-long simulations is maximal when PV and Pyr neurons receive
almost the equivalent amount of top-down inputs (Fig. 4D).

3.2. The strength of synchronous oscillatory activity is correlated with the
quality of learning

The simulation results above suggest that synchronous activity may be
essential in bottom-up connections’ learning. Because the degree of syn-
chronous activity is commonly measured via spectral power of local field
potentials (LFPs), we simulate LFPs (Methods) and calculate their spec-
tral power. As shown in Fig. 5A, PA generates oscillatory activity at
two frequency bands, 0-20 Hz and 40-80 Hz. To assess how much syn-
chronous oscillatory activity contributes to bottom-up connections’ learning,
we quantify the changes in strengths of bottom-up connections (Conn PA and
Conn NPA) and the total power of the two frequency bands (0-20 and 40-80
Hz) for all 20 simulations. Fig. 5B shows that the magnitudes of changes in
bottom-up connections are positively correlated with the oscillatory power
in PA, supporting that cortical rhythms (i.e., synchronous oscillatory neural
activity) drive bottom-up connections’ learning.

In the model, if NPA, instead of PA, generates synchronous outputs,
Conn NPA, instead of Conn PA, become stronger. If the inputs to NPA are
not strong enough, the growth of undesired connections (from NPA to HA)
are negligible, on average. Then, how sensitive is this learning mechanism to
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Figure 4: Dependency of the strength of bottom-up connections on the strength of top-
down connections. (A), The total change in connection strength of connections from PA
and NPA (blue and orange bars, respectively), showing dependence on the strength of top-
down inputs to Pyr neurons. Mean values and standard deviations are calculated from
20 independent simulations (see Methods). (B), The total change in connection strength
of bottom-up connections from NPA, showing dependence on the strength of top-down
connections to both Pyr and PV neurons. (C), The total change in connection strength of
connections from PA and NPA, showing dependence on the strength of top-down inputs
to PV neurons. (D), The difference in connection strengths of PA and NPA, showing
dependence on the strength of top-down connections to both Pyr and PV neurons. The
values in all of the figures are calculated using 20 independent 20-second simulations.

the inputs to NPA? To answer this question, we increase external inputs to
NPA up to 475 Hz. Fig. 5C shows that the growth of Conn PA decreases
as the frequency of inputs to NPA increases. But importantly, despite the
reduction in magnitude, the Conn PA grow stronger, whereas Conn NPA
grow weaker, on average, even when the external inputs to NPA are 90% of
those to PA. This result suggests that nonspecific top-down connections can
be useful to selectively strengthen the connections even when all low-order
assemblies receive relatively similar afferent inputs.

3.3. Top-down connections can also evolve in a target-specific way via learn-
ing

So far, we have assumed that only bottom-up connections have plastic-
ity, but top-down connections can also have plasticity. That is, top-down
connections can evolve over time. Naturally, two questions arise. First, will
bottom-up connections change the same way when top-down connections are
given plasticity? Second, how do top-down connections change? To answer
these questions, we give top-down connections STDP mechanisms and repeat
the same experiments. In simulation, we impose the maximum strength of
top-down connections to be 30 pA; without such limitation, the system can
show run-away excitation due to strong positive feedback loops established
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Figure 5: Contribution of synchronous oscillatory activity to learning and the robustness
of the learning process. (A), Spectral power of LFPs in PA, normalized to the maximum
value. (B), Correlations between total change in connection strength and spectral power
of LFPs in PA in two frequency bands (0-20 and 40-80 Hz). For each simulation (out of
20), we quantify the spectral power and total change in bottom-up connection strength.
Spectral power in each frequency band is normalized to the maximum power obtained
during 20 simulations. Blue and orange dots represent connections originating from PA
and NPA, respectively. (C), Total change in connection strength, showing dependence on
the frequency of external inputs to NPA; the default inputs to PA and NPA are 500 and
100 Hz.

between PA (NPA) and HA. We note (1) that bottom-up connections change
in the same ways as they do with stationary top-down connections (Fig. 6A
and B) and (2) that top-down connections change depending on their targets
(Fig. 6C and D). Specifically, top-down connections targeting NPA grow
stronger, while top-down connections targeting PA grow weaker, consistent
with experimental findings [36].

3.4. Learning of STDP connections can be dynamically turned on or off

Neural networks operate in two different modes, ‘training’ and ‘infer-
ence’. In the inference mode, weights are frozen, and actual functions are
performed by neural networks. The switching between the two modes is fun-
damental to the neural networks’ operations, raising the possibility that the
brain can turn on or off learning depending on the context. We note that
recent experimental studies [37, 38] suggest that vasoactive intestinal peptide
(VIP)-expressing inhibitory neurons play important roles in the brain’s learn-
ing. Together with the observation [39] that somatostatin (SST)-expressing
inhibitory neurons and VIP neurons mutually inhibit each other, we hypoth-
esize that the interplay between SST and VIP neurons regulates the learning
of bottom-up connections from PA and NPA to HA. To address this hy-
pothesis, we incorporate SST and VIP neurons into the model. Based on
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Figure 6: Simulation results with dynamically evolving top-down connections. (A),
Change in bottom connection strength induced during long simulations, showing depen-
dence on initial strength of top-down connections to Pyr. Blue and orange colors represent
bottom-up connections originating from PA and NPA, respectively. (B), the same as (A),
but showing dependence on initial strength of top-down connections to PV. (C), Change
in top-down connection strengths induced during simulations, showing dependence on ini-
tial strength of top-down connections to Pyr. Blue and orange colors represent top-down
connections targeting PA and NPA, respectively. (D), the same as (C), but showing de-
pendence on initial strength of top-down connections to PV.

experimental observations [39, 40], we set SST neurons to inhibit all other
neuron types except themselves and VIP neurons to inhibit SST neurons
exclusively (Fig. 7A); see Table 3 for model connectivity.

In our simulations, when SST neurons receive sufficient external (1450
Hz) inputs and became active, Pyr neurons become quiescent and do not
fire synchronously (Fig. 7B). In contrast, when VIP cells are sufficiently de-
polarized by the external (1450 Hz) inputs, SST activity is suppressed, and
Pyr neurons fire synchronously (Fig. 7C). As Pyr synchronous firing is es-
sential in STDP connections’ learning in the model, VIP cell activity could
play an important role in the bottom-up connections’ learning. To test this
possibility, we vary external inputs to SST and VIP neurons and quantified
the changes in strengths of Conn PA and Conn NPA. As the frequency of in-
puts to SST neurons increase, the changes in the strengths of Conn PA and
Conn NPA become smaller (Fig. 7D). While maintaining 1450 Hz inputs
to SST neurons, we gradually increase the frequency of inputs to VIP neu-
rons. The changes in the strengths of Conn PA and Conn NPA are positively
correlated with the frequency of inputs to VIP neurons (Fig. 7E). These re-
sults support that the interplay between VIP and SST cells can dynamically
regulate learning in the brain.
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Figure 7: Simulation results with three inhibitory neuron types. (A), Connectivity among
Pyr and three inhibitory neuron types; see Table 3 for details. All neuron types have
identical sub-threshold dynamics (Table 2). (B), An example of simulation without exter-
nal inputs to VIP neurons. (C), the same as (B), but with external inputs (1450 Hz) to
VIP neurons. (D), ∆W of Conn PA and Conn NPA with varying external inputs to SST
neurons. The x-axis represents the frequency of external inputs to SST neurons. In these
simulations, no external inputs are introduced to VIP neurons. (E), ∆W with varying
external inputs to VIP neurons; in all these simulations shown in (E), SST neurons always
receive 1450 Hz external inputs.
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Table 3: Connections in the network model consisting of Pyr and three inhibitory neu-
rons. Below, the connection probability and strength of each connection type is shown
in parentheses; the unit for connection strength is pA. TD, BU, LGN and Bg represent
top-down, bottom-up, LGN inputs and Background inputs, respectively. The external
inputs to neurons (Bg) deliver 100 pA at their peaks.

Within L2/3

Presynaptic

postsynaptic
L2/3 Pyr L2/3 PV L2/3 SST L2/3 VIP

L2/3 Pyr (0.4,40) (0.6,40) (0.2,40) (0.1,40)
L2/3 PV (1.0,-40) (1.0,-40) N/A N/A
L2/3 SST (1.0,-40) (0.5,-40) N/A (0.5,-40)
L2/3 VIP N/A N/A (0.5,-40) N/A

Within L4

presynaptic

L4 Pyr L4 PV L4 SST L4 VIP
L4 Pyr (0.4,40) (0.6,40) (0.3,40) (0.1,40)
L4 PV (1.0,-40) (1.0,-40) N/A N/A
L4 SST (1.0,-40) (0.5,-40) N/A (0.5,-40)
L4 VIP N/A N/A (0.5,-40) N/A

L4 → L2/3

presynaptic
L2/3 Pyr L2/3 PV

L4 Pyr (0.6,80) (0.4,40)
Across assemblies, external inputs and synaptic parameters
TD to Pyr (0.3,15) LGN to Pyr (0.3,60)
TD to PV (0.3,20) LGN to PV (0.3,30)
BU to Pyr (0.3,40) BU to PV (0.3,20)
Bg to PA/NPA PV: 1050, PV: 1000, L2/3 SST/VIP: 1450 L4 SST/VIP: 1000 (Hz)
Bg to HA PV:1050, PV:1000, SST:1000, VIP 1000 (Hz)
τexc 2.0 ms
τPV→Pyr, τPV→Pyr 6.0, 4.3 ms
τSST→Pyr,PV,V IP 7.5 3.4, 3.4 ms
τV IP→SST 10.4 ms
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Figure 8: Simulation results with two low-order areas. (A), The schematics of the model.
Each assembly consists of Pyr, PV, SST and VIP neurons. The assemblies are identical
to those used to generate the results in Fig. 7. (B), ∆W of areas 1 and 2 when the
control signals are projected to area1 only. (B), ∆W of areas 1 when the control signals
are projected to area2 only. The mean values and standard deviations are estimated from
20 independent simulations, each of which lasted 20 seconds.

3.5. Brain areas can be independently trained even with shared top-down con-
nections

Our simulation results suggest that nonspecific connections can selectively
enhance connections from one brain area to another. If one assembly in a
high-order area (HA) is exclusively connected to a single low-order area, non-
specific top-down connections can exclusively sharpen the desired bottom-up
connections without perturbing the bottom-up connections from other low-
order areas. However, it is well known that brain areas are densely intercon-
nected and that individual neurons receive inputs from multiple areas; see
[9] for a review. Thus, we cannot exclude the possibility that a single HA is
reciprocally connected with multiple low-order areas. If so, the activity in a
low-order area can change the bottom-up connections from other low-order
areas to the HA, which can create undesired crosstalk between two low-order
areas. For instance, if a HA integrates auditory and visual inputs, continu-
ous auditory inputs will make the HA insensitive to visual inputs, which can
be harmful. Thus, it seems natural to assume that the brain can selectively
turn on learning in individual brain areas. Then, how does the brain control
individual areas’ learning?

Inspired by our simulation results (Fig. 7), we hypothesize that afferent
inputs to VIP neurons can serve as control signals for learning. To inves-
tigate this hypothesis, we construct a model in which two identical areas
(areas 1 and 2) are connected to the same HA. As shown in Fig. 8A, ar-
eas 1 and 2 are identical in terms of the structure and external inputs, with
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each containing a PA and an NPA. In each assembly, Pyr neurons interact
with PV, SST and VIP neurons (Table 3), and we introduce afferent inputs
(control signals, 1450 Hz) to VIP in either areas 1 or 2, while maintaining
the 1450 Hz inputs to L2/3 SST neurons. As SST neurons are known to
mediate lateral inhibition via di-synaptic connections [39], we connect L2/3
Pyr neurons in one assembly to L2/3 SST neurons in another. Similarly, the
lateral excitatory connections are also implemented by connecting L2/3 Pyr
neurons across assemblies. The connection probability and strength of both
lateral connections are 0.05 and 10 pA. It should be noted that these lateral
connections exist only within the same area.

Fig. 8B shows the mean values and standard deviations of 20 independent
simulations with control signals given to either area 1 or area 2. When area
1 VIP neurons receive control signals (1450 Hz), only connections (Conn PA
and Conn NPA) from area 1 to HA change. Similarly, when control signals
are introduced to area 2, only bottom-up connections from area 2 change.
These results support that the learning of STDP connections can be dynam-
ically regulated via inputs to VIP neurons.

3.6. Simulation results are not sensitive to neuron models

First, a different variation of current-based LIF neurons is used. In
our reference model discussed above, synaptic currents caused instantaneous
jumps in membrane potentials. These instantaneous jumps in membrane
potentials do not capture the gradual increase in membrane potentials of
biological neurons evoked by spikes. Thus, we set LIF neurons to have an
‘alpha postsynaptic function’ (Eq. 3) that generates gradual increases in
membrane potentials.

I = w
t− tk
τ

exp

[
1− t− tk

τ

]
(3)

where w is the strength of weights and tk and τ are a spike time and a time
constant for synaptic inputs, respectively. As LIF neurons with alpha postsy-
naptic functions have different response properties, we modify the parameters
of the model, which are listed in Table 4. After the modifications, we measure
the changes in strengths of Conn PA and Conn NPA from 20 independent
simulations and found the results to be equivalent to those described above
(Fig. 9A).

C
dV

dt
= gL(EL − V ) + ge(Ve − V ) + gi(Vi − V )
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Table 4: Connections in the network model with alternative LIF neurons, which have
‘alpha’ postsynaptic function. Below, the connection probability and strength of each
connection type is shown in parentheses; the unit of connection strength is pA. TD, BU,
LGN, and Bg represent top-down, bottom-up, LGN inputs, and Background inputs, re-
spectively. The external inputs to neurons (Bg) deliver 100 pA at their peaks. Except α,
all parameters for STDP connections are the same as those used above.

Presynaptic

Postsynaptic
L2/3 Pyr L2/3 PV L4 Pyr L4 PV

L2/3 Pyr (0.4,40) (0.6,40) N/A N/A
L2/3 PV (1.0,-40) (1.0,-40) N/A N/A
L4 Pyr (0.6,40) (0.4,40) (0.4,40) (0.6,40)
L4 PV N/A N/A (1.0,-40) (1.0,-40)

Across Assemblies and external inputs
TD to Pyr (0.3,15) LGN to Pyr (0.3,20)
TD to PV (0.3,20) LGN to PV (0.3,30)
BU to Pyr (0.3,40) τexc 1.0 ms
BU to PV (0.3,40) τPV→Pyr 3.0 ms
Bg to Pyr 1050 Hz τPV→PV 2.1 ms
Bg to PV 1100 Hz STDP param α = 1.5

ge,i = gmaxe,i

t− tk
τe,i

exp

[
1− t− tk

τe,i

]
(4)

where ge, gi, gL represent the conductances of excitatory synaptic inputs, in-
hibitory synaptic inputs, and leak currents, respectively; Ve, Vi, EL repre-
sent the reversal potentials for excitatory synaptic inputs, inhibitory synap-
tic inputs, and leak currents, respectively; τe,i represent the time constants
for synaptic inputs; C is the capacitance of the neuron; and gmaxe,i corre-
spond to the synaptic weights in Table 5. All parameters are taken from
the default values of the NEST native implementations (‘iaf psc alpha’ and
‘iaf cond alpha’).

These results support that our findings are not contingent upon the se-
lection of neuron models.

4. Discussion

In this section, we describe the implications of our simulation results in
more detail.
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Figure 9: Simulation results with alternative neuron models (A) ∆W of Conn PA and
Conn NPA using current-based LIF neurons with alpha-function. We display the mean
values and standard deviations of ∆W in all 20 simulations, each of which lasted 20
seconds. (B), ∆W of Conn PA and Conn NPA with conductance-based LIF neurons with
alpha-function. We display the mean values and standard deviations of ∆W in all 20
simulations, each of which lasted 50 seconds.

4.1. Implications for learning of Spiking Neural Networks

Spiking neural networks (SNNs) are the building blocks of the brain and
are known to be power-efficient. With the brain’s general intelligence in mind,
it seems only natural to construct artificial SNNs to advance ML; see [41]
for a review. However, training SNNs can be challenging, and their exact
operating principles remain elusive; see [42] for a review. In principle, an
understanding of the mechanisms by which the brain learns could be used to
develop learning algorithms for SNNs. STDP has been thought to underlie,
in part, the brain’s learning capabilities [43]. However, STDP (in general,
variations of Hebbian plasticity) are known to drive SNNs into highly active
states [28]. This causes the neurons to become insensitive to external inputs
and the synaptic weights to increase continuously, rendering SNNs useless.
Zenke et al. [28] propose that the homeostatic process, which regulates the
growth of synaptic strengths, is necessary to block SNNs from moving into a
persistent state of high activity. As nonspecific top-down inputs can suppress
undesired connections effectively, we propose that experimentally-observed
nonspecific top-down connections can serve as homeostatic processes critical
for STDP-based learning of SNNs.

4.2. Functions of top-down inputs to PV neurons

In the model, nonspecific top-down inputs to Pyr neurons can reduce
undesired bottom-up connections from NPA by inducing delayed activity in
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NPA. Additionally, the results in Fig. 4 suggest that top-down inputs to
PV neurons also contribute to bottom-up connections’ learning. How do PV
neurons contribute to this learning process?

We propose that PV neurons prevent Pyr neurons from firing in a way
that disrupts the temporal order of spiking across assemblies, thus allowing
for the strengthening of PA bottom-up connections and the weakening of
NPA bottom-up connections. For example, PV neurons may prevent L2/3
Pyr neurons in PA from firing continuously. If L2/3 Pyr neurons in PA
fired continuously when driving HA, they could fire either before or after
the firing of HA neurons and thus by STDP mechanisms, Conn PA could
be either strengthened or weakened. Similarly, if L2/3 Pyr neurons of NPA
fired continuously after the firing of HA neurons, they could potentially fire
just before the firing of L4 Pyr neurons of NPA, leading to an increase in the
strength of Conn NPA by STDP mechanisms. The PV neurons may prevent
these phenomena, thus allowing STDP to produce an increase in Conn PA
and a decrease in Conn NPA, as observed.

We note that PV neurons in PA and NPA have different responses to local
and HA inputs (Fig, 2D). In PA, PV neurons (not Pyr neurons) respond to
top-down inputs. Since PV neurons in PA fire in response to top-down inputs,
Pyr neurons receive inhibition which prevents them from firing in response
to top-down inputs. This minimizes the chance of the reduction of Conn PA.
In NPA, on the other hand, PV neurons respond mostly to local inputs from
NPA, not top-down inputs. That is, PV neurons in NPA provides negative
feedback inputs to Pyr neurons in NPA, making the active period of NPA
Pyr neurons to be brief. Interestingly, the undesired firing of Pyr neurons
occurs more frequently when top-down inputs are strong. Consequently, top-
down inputs to PV should be proportionally increased to ensure the proper
learning of bottom-up connections; this is consistent with the balanced top-
down inputs to Pyr and PV neurons observed experimentally [44].

4.3. The function of synchronous activity in interareal connections

The communication-through-coherence (CTC) theory proposes that cor-
tical rhythms (synchronous and oscillatory neural activity) subserve inter-
areal interactions by increasing the efficacy of afferent inputs to target areas
[26]. Consistent with this theory, synchronous activity in our model reliably
propagates across assemblies via stochastic connections. More importantly,
we note that synchronous activity in our model not only enhances the efficacy
of interareal communications, but also contributes to interareal connections’
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learning in two ways. First, when synchronous activity is generated and
propagates among areas, postsynaptic neurons in the target area fire reliably
after presynaptic neurons fire. This ensures the temporal gaps between pre-
and postsynaptic neurons, allowing the synaptic weights connecting them to
change robustly. Second, the induced inhibition during synchronous firing
prevents Pyr from incorrectly firing, which makes the learning process more
reliable. Thus, our simulation results propose a possible extension of CTC
theory [26].

4.4. Potential coordination between specific and nonspecific top-down inputs

We find that two conditions need to be satisfied for reliable learning of
bottom-up connections. First, a selected assembly should be active (or ac-
tivated) more than other assemblies. Second, the most active cell assembly
needs to generate synchronous activity. Conversely, the proposed learning
process will not be effective when multiple assemblies receive almost the
equivalent amount of afferent inputs or when the desired assembly (i.e., PA
in the model) does not generate synchronous activity. However, these lim-
its may not be fundamental and may be dynamically regulated by selective
attention, which is known to be capable of biasing competition and amplify-
ing synchronous activity. If selective attention is directed to NPA, the syn-
chronous activity of NPA is amplified, and Conn NPA, rather than Conn PA,
become stronger. In contrast, the growth of Conn PA accelerates if selective
attention is directed to PA. Interestingly, an earlier study proposed that
top-down inputs impinging onto deep layers are target-specific [45]. Thus,
selective attention may regulate this learning process via stimulation of deep
layers. In the future, we plan to address this possibility by extending our
model to incorporate deep layers and inhibitory neuron types known to be
associated with interlayer interactions.

5. Conclusion

The brain is a group of recurrent networks, in which high and low order
areas interact reciprocally with one another. It is generally accepted that
bottom-up processing is central to generating perception as demonstrated in
deep learning [7]. However, the functions of top-down inputs remain poorly
understood. Since most theories assume that top-down inputs are target spe-
cific, they cannot explain the functions of experimentally reported nonspecific
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Table 5: Connections in the network model with conductance-based LIF neurons. Below,
the connection probability and strength of each connection type are shown in parentheses;
the unit of connection strengths is nS. TD, BU, LGN, and Bg represent top-down, bottom-
up, LGN inputs, and Background inputs, respectively. The external inputs to neurons (Bg)
deliver 15 nS at their peaks. LA refers to both PA and NPA. Except α, all parameters for
STDP connections are the same as those used above.

Presynaptic

Postsynaptic
L2/3 Pyr L2/3 PV L4 Pyr L4 PV

L2/3 Pyr (0.05,2) (0.5,1.0) N/A N/A
L2/3 PV (0.8,-12) (0.5,-8) N/A N/A

L4 Pyr
LA: (0.4,6)
HA: (0.4,2)

(0,2,2) (0.05,2) (0.5,10)

L4 PV N/A N/A
LA: (0.8,-12)
HA: (0.8,-12)

LA: (0.5,-8)
HA: (0.5,-2)

Across Assemblies and external inputs
TD to Pyr (0.05,3) LGN to Pyr (0.3,20)
TD to PV (0.05,4) LGN to PV (0.3,10)
BU to Pyr (0.08,25) τexc 1.0 ms
BU to PV (0.08,25) τPV→Pyr 3.0 ms
Bg to Pyr 25 Hz τPV→PV 2.1 ms
Bg to PV 25 Hz STDP param α = 3.0

top-down inputs [21, 20, 22, 23, 24]. Here, we employ network models to in-
vestigate how nonspecific top-down connections contribute to the dynamic
organization of bottom-up connections. Our simulation results propose 1)
that nonspecific top-down inputs mediate temporal information to low-order
areas to induce the specificity in bottom-up connections and 2) that cortical
rhythms are essential in this learning process.

We will extend this study in two different directions. First, we will fur-
ther study how the coordination between superficial and deep layers can
contribute to the brain’s learning. Second, we will examine if nonspecific
top-down connections can help SNNs learn practical tasks.
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