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Single-cell transcriptional diversity is a hallmark of developmental potential 
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Abstract 
 
Single-cell RNA-sequencing (scRNA-seq) is a powerful approach for reconstructing cellular 
differentiation trajectories. However, inferring both the state and direction of differentiation 
without prior knowledge has remained challenging. Here we describe a simple yet robust 
determinant of developmental potential—the number of detectably expressed genes per cell—
and leverage this measure of transcriptional diversity to develop a new framework for predicting 
ordered differentiation states from scRNA-seq data. When evaluated on ~150,000 single-cell 
transcriptomes spanning 53 lineages and five species, our approach, called CytoTRACE, 
outperformed previous methods and ~19,000 molecular signatures for resolving experimentally-
confirmed developmental trajectories. In addition, it enabled unbiased identification of tissue-
resident stem cells, including cells with long-term regenerative potential. When used to analyze 
human breast tumors, we discovered candidate genes associated with less-differentiated 
luminal progenitor cells and validated GULP1 as a novel gene involved in tumorigenesis. Our 
study establishes a key RNA-based correlate of developmental potential and provides a new 
platform for robust delineation of cellular hierarchies (https://cytotrace.stanford.edu). 
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Main Text 
 
In multicellular organisms, tissues are hierarchically organized into distinct cell types and 
cellular states with intrinsic differences in function and developmental potential1. Common 
methods for studying cellular differentiation hierarchies, such as lineage tracing and functional 
transplantation assays, have revealed detailed roadmaps of cellular ontogeny at scales ranging 
from tissues and organs to entire model organisms2-4. However, despite the power of these 
technologies, they cannot be applied to human tissues in vivo and generally require prior 
knowledge of cell type-specific genetic markers2. These limitations have made it difficult to study 
the developmental organization and cell fate decisions of primary human tissues under normal 
physiological conditions and during disease.  
  
Single-cell RNA-sequencing (scRNA-seq) has recently emerged as a promising approach to 
study tissue architecture5,6 and cellular differentiation trajectories at high resolution in primary 
tissue specimens7. Although a large number of computational methods for predicting lineage 
trajectories have been described, they generally rely upon (1) a priori knowledge of the starting 
point (and thus, direction) of the inferred biological process8-14 and (2) the presence of 
intermediate cell states to reconstruct the trajectory15,16. These requirements, although 
reasonable in well-established systems and in time-series experiments, can be challenging to 
satisfy in tissues with poorly understood developmental biology, such as human neoplasms17. 
Moreover, it remains difficult to distinguish quiescent (non-cycling) adult stem cells with long-
term regenerative potential from more specialized cells using existing in silico approaches. 
While gene expression-based models can potentially overcome these limitations (e.g., 
transcriptional entropy18-20, pluripotency-associated gene sets21 and machine learning 
strategies22), their relative utility across diverse developmental systems and single-cell 
sequencing technologies is still unclear.  
  
Here, we profiled nearly 19,000 features of single-cell gene expression data to discover factors 
that accurately predict cellular differentiation states independently of tissue type, species, and 
platform. Among the top-performing features, we identified a simple yet surprisingly effective 
determinant of developmental potential—the number of detectably expressed genes per cell. By 
leveraging this measure of transcriptional diversity, which was noisy at the single-cell level, we 
developed a new unsupervised framework for determining ordered differentiation states from 
single-cell transcriptomes, called CytoTRACE (Cellular (Cyto) Trajectory Reconstruction 
Analysis using gene Counts and Expression). We show that our approach (1) substantially 
outperforms leading computational methods and 18,706 molecular signatures for predicting 
differentiation states in 53 experimentally-confirmed developmental trajectories, (2) reveals 
cellular hierarchies in whole tissues and whole organisms, and (3) identifies key genes 
associated with stemness and differentiation in both healthy tissues and human cancer. Our 
results suggest that CytoTRACE can complement existing lineage trajectory tools and aid the 
identification of immature cells in diverse multicellular systems.  
 
 
Results 
 
RNA-based correlates of single-cell differentiation states 
 
We sought to identify robust, RNA-based determinants of developmental potential without the 
need for a priori knowledge of developmental direction or intermediate cell states marking cell 
fate transitions. Toward this end, we evaluated ~19,000 potential correlates of cell potency in 
scRNA-seq data, including all available gene sets in the Molecular Signatures Database (n = 
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17,810)23, 896 gene sets covering transcription factor binding sites from ENCODE24 and 
ChEA25, an mRNA-expression-derived stemness index (mRNAsi)22, and three computational 
techniques that infer stemness as a measure of transcriptional entropy (StemID, SCENT, 
SLICE18-20). We also explored the utility of ‘gene counts’, or the number of detectably expressed 
genes per cell, which has been anecdotally observed to correlate with differentiation status26-28, 
but not yet comprehensively evaluated (Methods).  
 
To assess these features, we compiled a training cohort consisting of nine gold standard 
scRNA-seq datasets with experimentally-confirmed differentiation trajectories. These datasets 
were selected to prioritize commonly used benchmarking datasets from prior studies12,18-20,26,29 
and to ensure a broad sampling of unique developmental states from the mammalian zygote to 
terminally differentiated cells26,30. Overall, the training cohort encompassed 3,174 single cells 
spanning 49 phenotypes, six tissue types, and three scRNA-seq platforms (Fig. 1A; Methods). 
To determine performance, the mean value of each feature for all previously annotated cellular 
phenotypes was calculated and correlated against ground-truth differentiation states. The 
resulting coefficients (Spearman) were then averaged across the nine training datasets to yield 
a final score and rank for every feature (Fig. 1B; Methods).  
 
This systematic screen revealed many known and unexpected correlates of differentiation 
status (Fig. 1C; Fig. S1A). However, one feature in particular showed surprisingly strong 
performance – the number of detectably expressed genes per cell (‘gene counts’). Appearing in 
the top 1% of the ranked list (104 out of 18,711), this data-driven feature compared favorably to 
well-established stemness programs, including cell cycle and pluripotency signatures21,22, yet 
also showed evidence of unique biology and broader applicability. For example, regardless of 
whether we examined cycling cells, non-cycling cells, or the earliest stages of human 
embryogenesis prior to the upregulation of pluripotency factors, gene counts generally 
decreased with successive stages of differentiation (Fig. 1D, left; Fig. S2). Pluripotency genes, 
by contrast, showed an arc-like pattern during human development, characterized by 
progressively increasing expression until the emergence of embryonic stem cells, followed by 
decreasing expression (Fig. 1D, right). 
 
These findings suggested that gene counts might extend beyond isolated experimental systems 
to recapitulate the full spectrum of cellular ontogeny. To formally test this possibility, we 
compiled, remapped, and normalized a set of mouse lineage trajectories profiled in vivo by five 
plate-seq experiments encompassing 5,059 cells and 30 phenotypes that together span all 
major potency levels31 (Methods). Indeed, when averaged by known phenotypes and assessed 
across independent studies, the relationship between gene counts and differentiation was 
robustly maintained (R2 = 0.89, P < 0.0001; Fig. 1E; Methods).  
 
Given these striking results, we performed a series of experiments to better understand the 
biological basis of gene counts and the factors that influence its measurement. 
 
Robustness and biological basis of gene counts 
 
We started by characterizing the robustness of gene counts to variation in two key technical 
parameters: (1) sparsity in single-cell gene expression data and (2) the number of sequenced 
reads per cell. To investigate the former, we compared gene counts derived from single-cell 
transcriptomes with gene counts derived from bulk RNA-seq profiles32, pooled single-cell 
transcriptomes, and single-cell transcriptomes following missing value imputation33. Regardless 
of the approach, we observed significantly reduced performance for predicting differentiation 
states when attempting to overcome sparsity (Fig. S3A-D). This suggests that sparsity in 
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scRNA-seq data is driven by real biological heterogeneity in addition to technical noise. Such 
heterogeneity, while informative for gene counts as a measure of developmental potential, is 
lost or severely degraded at the population level (Fig. S3B, E).  
 
We next examined the relationship between gene counts and the number of reads per cell. 
Reanalysis of seven scRNA-seq experiments profiled by plate-based protocols showed that 
even when down-sampling to 10,000 reads per cell, the predictive performance of gene counts 
was largely maintained (Fig. S4A-C). Moreover, the mean number of detectably expressed 
genes per dataset was linearly related to the logarithm of the mean number of reads (mean R2 = 
0.99; Fig. S4D). As a result, for most datasets, variation in gene counts due to fluctuations in 
the number of reads was minimal. Furthermore, predictive performance was only modestly 
impacted when varying the expression threshold for calculating the number of expressed genes 
per cell and was unaffected by the removal of potential doublets (Fig. S5A, B). 
  
To investigate potential biological correlates of gene counts, we next compared it with the 
number of detectable mRNA molecules per cell, as measured by unique molecular identifiers 
(UMIs), external spike-in standards (ERCCs), and Census, a statistical approach to infer the 
number of mRNA transcripts that are available for capture following cell lysis34. By analyzing 
UMI (n = 14 datasets) and ERCC (n = 7 datasets) data from previously published droplet-based 
and plate-based experiments, respectively, we found that a large proportion of the variance in 
gene counts could be attributed to single-cell mRNA content alone (UMI: mean R2 = 0.84; 
ERCC: mean R2 = 0.29; Fig. S6A, B). This relationship was further confirmed in 17 non-UMI 
datasets that lack external standards using Census34, which produced estimates that were 
nearly perfectly correlated with the number of unique detectable genes (i.e., canonical 
transcripts) per cell (mean R2 » 1) (Fig. S6C; Methods). We also measured the linear 
association between gene counts and the number of unique protein-coding splice isoforms per 
cell. As expected, across 10 plate-seq datasets, gene counts and mRNA diversity were tightly 
interrelated (mean R2 = 0.98; Fig. 2A; Fig. S6D). 
 
Since the transcriptional output of a cell is associated with its genome-wide chromatin profile, 
we hypothesized that single-cell gene counts might ultimately be a surrogate for global 
chromatin accessibility, which has been previously shown to decrease with differentiation35-38. 
To test this, we compared single-cell gene counts derived from scRNA-seq data with paired bulk 
ATAC-seq (assay for transposase-accessible chromatin sequencing) profiles obtained from a 
recent study of in vitro mesodermal differentiation from human embryonic stem cells (hESCs)32 
(Fig. 2B; Fig. S7A). In support of our hypothesis, genome-wide chromatin accessibility was 
observed to progressively decrease with differentiation of hESCs into paraxial mesoderm and 
lateral mesoderm lineages (Fig. 2B; Fig. S7A). Moreover, when segregated by developmental 
lineage, we observed strong concordance between the number of accessible peaks and the 
mean number of detectably expressed genes per phenotype (Fig. 2C; Fig. S7B, C). 
 
Development of CytoTRACE 
 
Although gene counts generally showed robust performance when averaged by known 
phenotypes, in some datasets, such as the in vitro differentiation of hESCs into the gastrulation 
layers39, it exhibited considerable intra-phenotypic variation (Fig. 3A, left). In fact, when 
evaluated at a single-cell level, 412 predefined gene sets from our in silico screen outperformed 
gene counts (Fig. S1B). Since scRNA-seq was designed to capture single-cell gene expression, 
we reasoned that genes whose expression patterns correlate with gene counts might better 
capture differentiation states. Remarkably, by simply taking the geometric mean of genes that 
were most correlated with gene counts in each dataset (Fig. S8A-C; Methods), the resulting 
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dataset-specific ‘gene counts signature’ (GCS) became the top-performing measure in the 
screen, outranking every pre-defined molecular profile and computational tool that we assessed 
(Fig. S1B).  
 
Although GCS is likely to be influenced by multi-lineage priming in some settings40, it is derived 
from all detectably expressed genes per cell in a given dataset. It is therefore inherently robust 
to drop-out events, agnostic to prior knowledge of developmentally regulated genes, and not 
solely attributable to a previously defined molecular signature (e.g., pluripotency; Fig. 1D). 
Nevertheless, GCS was still moderately noisy in some datasets (e.g., Fig. 3A, center; Fig. 
S8A-C). We therefore implemented a novel two-step procedure to directly smooth GCS on the 
basis of transcriptional covariance among single cells (Fig. 3A, right; Fig. S8A-D; Methods). 
The resulting method, which we call CytoTRACE (Cellular (Cyto) Trajectory Reconstruction 
Analysis using gene Counts and Expression), not only significantly outperformed GCS and gene 
counts (Fig. S8A), but also outperformed all evaluated features by a considerable margin (Fig. 
S1B).  
 
Performance evaluation across tissues, species, and platforms 
 
To validate our findings, we assembled a greatly expanded compendium of 33 additional 
scRNA-seq datasets. These data were selected to represent diverse experimentally-confirmed 
developmental lineages and consisted of 141,267 single cells spanning 266 phenotypes, 11 
tissue types, five species, nine scRNA-seq platforms (three droplet-based and six plate-based 
protocols, ranging from an average of ~10,000 to ~1M UMIs or reads per cell, respectively; Fig. 
S4A), and 26 studies (Fig. 3B; Methods). As before, performance was determined using 
Spearman correlations to determine concordance against ground truth data at the single-cell 
level and by phenotype (Methods).  
 
When assessed at the single-cell level, CytoTRACE markedly outperformed existing methods 
and gene sets (Fig. 3C, D; Fig. S9A), and was positively correlated with the direction of 
differentiation in 88% of datasets (P = 7 x 10–7, Binomial test). These results were consistent 
with our findings in the training cohort (Fig. 3C; Fig. S9B). Moreover, comparable results were 
obtained on datasets with discontinuous developmental processes lacking transitional cells (Fig. 
S10A, C). These data distinguish CytoTRACE from RNA velocity, a recently described kinetic 
model that can predict future cell states, but is limited to scRNA-seq data with continuous fate 
transitions and genes with mRNA half-lives on the order of hours15 (Fig. S10B, D). Importantly, 
no significant biases in CytoTRACE performance were observed in relation to tissue type, 
species, the number of cells analyzed, time-series experiments versus snapshots of 
developmental states, or plate-based versus droplet-based technologies (Fig. S11).  
 
Differentiation-associated genes and cellular hierarchies 
 
Given CytoTRACE’s ability to faithfully recover the direction of differentiation in nearly every 
evaluated dataset, we asked whether it might prove useful for discovering genetic markers of 
immature cells without prior knowledge of cellular phenotypes. Toward this end, we rank-
ordered all genes in each benchmarking dataset based on their correlation with CytoTRACE 
and defined ‘ground truth’ gene sets that marked the least and most differentiated cells as 
annotated in the original studies. In 86% of datasets, these gene sets were significantly skewed 
in the correct direction toward the extreme ends of the ranked transcriptome (adjusted P < 0.05, 
GSEA41; Fig. 3E; Fig. S12). Moreover, CytoTRACE automatically prioritized well-established 
stem and progenitor markers, including Kit and Stmn1 in the mouse bone marrow42 and Axin2 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/649848doi: bioRxiv preprint 

https://doi.org/10.1101/649848


 7 

and Lgr5 in mouse intestinal crypts43, underscoring the utility of CytoTRACE for the de novo 
discovery of developmentally-regulated genes (Fig. 3E). 
  
We next explored the potential of CytoTRACE to complement existing techniques for trajectory 
visualization and branch detection. By combining it with a two-dimensional force-directed layout 
algorithm to analyze 39,505 cells from zebrafish embryos, CytoTRACE readily revealed 
complex branching patterns arising during whole organism development from a fertilized egg 
(Fig. S13)44. Likewise, when applied to 3,427 unselected mouse bone marrow cells42, 
CytoTRACE enabled reconstruction of the directionality and lineage structure of hematopoietic 
development (Fig. 4A).  
 
Complex lineage relationships in scRNA-seq data can also be determined by dedicated branch 
detection tools14, such as Monocle 234, however these approaches do not predict the starting 
point of the biological process. For example, when applied to 4,442 bone marrow cells42, 
Monocle 2 identified 23 possible “roots” from which to calculate pseudotime values (Fig. 4B, 
left). Only 1 of these 23 states is correct (4% of possibilities), which we define as the state that 
is most enriched for previously annotated stem and progenitor cells (state 12 in Fig. 4B). By 
integrating CytoTRACE with Monocle 2, the correct root was readily identified without user input 
(Fig. 4B, right; Fig. S14A, B). This facilitated identification of lineage-specific regulatory factors 
and marker genes during granulocyte, monocyte, and B cell differentiation (Fig. S14C). 
Similarly, when CytoTRACE and Monocle 2 were applied to 4,581 mouse intestinal cells43, we 
were able to automatically determine the root, developmental ordering, and branching 
processes of stem and progenitor cells differentiating into enterocyte and secretory lineages 
(Fig. S14D-E).  
 
Dissection of stem cell and progenitor populations 
 
We next asked whether CytoTRACE could distinguish cycling and long-term/quiescent stem 
cells from their downstream progenitors45,46. As these populations are well-characterized in the 
bone marrow3, we investigated this question in the mouse hematopoietic system. While both 
cycling and quiescent hematopoietic stem cell (HSC) subpopulations45,46 were correctly 
predicted to be less differentiated, only proliferative HSCs were significantly ranked above early 
progenitors (Fig. 4C). This result was not unexpected, however, since quiescent cells have 
reduced metabolic activity and low RNA content1. By devising a simple approach to visualize 
inferred RNA content as a function of CytoTRACE, we observed a distinct valley in RNA 
abundance that coincided with elevated expression of Hoxb5, a recently described marker of 
long-term/quiescent HSCs47 (Fig. 4D, E). This analysis further confirms the value of 
CytoTRACE and suggests a novel approach for elucidating tissue-specific stem cells from 
scRNA-seq data. 
 
Application to neoplastic disease 
 
Having validated CytoTRACE’s technical performance, we next applied it to a system where 
developmental trajectories are less well-characterized. A growing body of evidence suggests 
that human breast tumors are hierarchically organized and originate from subpopulations of 
cancer cells, called tumor-initiating cells, which are less differentiated, resistant to therapy, and 
implicated in relapse and metastasis48,49. In breast cancer, subpopulations of tumor cells within 
the luminal progenitor (LP) epithelium are thought to give rise to aggressive basal-like breast 
cancers, such as triple-negative breast cancer (TNBC)50,51, and possibly also to estrogen 
receptor positive (ER+) breast cancers52. However, the differentiation states and tumor-initiating 
properties of LP subsets remain incompletely understood53. 
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To test whether CytoTRACE can facilitate new insights into immature LP cells and their 
associated genes in breast cancer, we performed scRNA-seq profiling of breast tumor epithelial 
cells and adjacent normal epithelial cells from 8 patients with basal-like (n = 2) or luminal-like (n 
= 6) breast cancer. Using a Smart-seq2 protocol combined with fluorescence-activated cell 
sorting (FACS), we index-sorted and sequenced cells from three major human epithelial 
subpopulations: basal (CD49fhighEPCAMmed-low), luminal progenitor (CD49fhighEPCAMhigh), and 
mature luminal subpopulations (ML) (CD49flowEPCAMhigh) (Fig. S15A). After removing low 
quality cells and applying principal component analysis to visualize the data, we confirmed three 
well-separated clusters of basal, LP, and ML cells, each with characteristic expression patterns 
of previously described lineage markers (Fig. 5A; Fig. S15B). No obvious clustering was 
observed for tumor/normal differences or by patient (Fig. 5A).  
 
To validate the ability of CytoTRACE to define LP differentiation states, we started by rank-
ordering genes in adjacent normal LPs by their correlation with CytoTRACE (Fig. 5B, top). We 
found that previously described marker genes of less differentiated normal LPs (ALDH1A3 and 
MFGE8)54,55 and more differentiated normal LPs (GATA3, FOXA1, and AR54,56) were 
successfully enriched by this approach (Fig. 5B, bottom). Moreover, genes that were 
upregulated in highly clonogenic normal LPs54 were skewed toward genes predicted to mark 
less differentiated cells (Fig. 5B, bottom).  
 
Given these favorable results, we next sought to identify LP genes associated with 
tumorigenesis. By rank-ordering LP genes in malignant cells by their correlation with 
CytoTRACE (Fig. 5C, top), we observed a highly significant enrichment of genes whose 
knockdown by RNA interference (RNAi) led to decreased viability of tumor cells in patient-
derived xenograft (PDX) models of TNBC57 (Q = 0.002, GSEA; Fig. 5C, bottom; Fig. S16). 
Moreover, when we applied CytoTRACE to prioritize genes in tumor LPs as compared to tumor 
MLs, the latter of which are developmentally downstream of LPs in normal breast54,58, the top 15 
genes included known members of tumorigenic pathways in breast cancer (e.g., MET, JAK1, 
and XBP159-61), as well as novel candidates (e.g., GULP1) (Fig. 5D, top). To further refine this 
list, we focused on genes that were (1) more highly expressed in tumor LPs than MLs and (2) 
expressed in a subpopulation of tumor LPs (<20% of cells) (Fig. 5D, bottom). After applying 
this filter, GULP1 emerged as the top candidate (Fig. 5D, bottom right).  
 
GULP1 is an engulfment adaptor protein and is the human homolog of Drosophila Ced662. 
Moreover, the murine homolog of GULP1 is a specific marker of mouse HSCs, suggesting a 
possibly conserved role of this gene in other immature cell states (Fig. S17A). Since the role of 
GULP1 in human breast cancer has not been established, we measured the effect of GULP1 
knockdown on the proliferation of metastatic TNBC cell lines, MDA-MB-231 and MDA-MB-468, 
compared to an empty vector control (Fig. S17B-E). GULP1 knockdown significantly reduced 
proliferation of MDA-MB-231 and MDA-MB-468 as measured by a colorimetric assay for 
metabolic activity (Fig. S17E). Next, we tested the effect of GULP1 knockdown in PDXs from 
ER+ and TNBC patients from our single-cell cohort (Fig. 5E). We found that knockdown of 
GULP1 significantly reduced tumor growth in the TNBC sample and completely abrogated the 
ER+ tumor compared to empty vector control (Fig. 5F).  
 
Taken together, these data suggest a novel role for GULP1 in human breast cancer 
tumorigenesis and demonstrate the promise of CytoTRACE for the discovery of malignant cell 
differentiation states and new therapeutic targets.   
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Discussion 

Efforts to characterize single-cell transcriptomes in diverse tissues, organs, and whole 
organisms42,63 have underscored the need for robust RNA-based determinants of 
developmental potential. In our analysis of ~19,000 features across 42 developmental 
processes and nearly 150,000 single cells, we found that gene counts, or the number of 
detectably expressed genes per cell, powerfully associates with transcriptional diversity and 
differentiation status. Although anecdotally observed in specific experimental systems (mouse 
alveolar epithelial development, zebrafish thrombopoiesis, and neuron differentiation from 
hESCs26-28), we demonstrate for the first time that this association (1) outperforms most 
stemness inference tools and pre-defined molecular signatures from a compendium of nearly 
19,000 RNA-based features, (2) is generally independent of species, platform, and tissue type, 
and (3) is broadly applicable throughout cellular ontogenesis.  
 
Although previous studies have demonstrated a global reduction in chromatin accessibility 
and/or plasticity during lineage commitment in specific developmental settings (e.g. embryonic 
stem cells, intestinal stem cells, and neural stem cells35,36,38,64), our quantitative findings extend 
the scope of this result. Moreover, as has been previously shown65, our data indicate that 
variability in gene counts between phenotypically identical single cells is not exclusively due to 
drop-out events, but also due to differential sampling of the transcriptome (Fig. S3). Our data 
are therefore consistent with a model in which less mature cells maintain looser chromatin to 
permit wider sampling of the transcriptome, while more differentiated cells generally restrict 
chromatin accessibility and transcriptional diversity as they specialize (Fig. S6C)66. Future 
studies will be needed to further confirm the validity of this model and assess its relevance 
across diverse tissue compartments, developmental time points, and phenotypic states.  
 
The identification of gene counts as a leading measure of cellular differentiation status 
motivated the development of CytoTRACE, a computational framework that leverages and 
significantly improves upon gene counts for resolving differentiation states at the single-cell 
level. Unlike most existing methods for lineage trajectory analysis8-15, however, CytoTRACE can 
predict both the relative state and direction of differentiation in a manner that is independent of 
specific timescales or the presence of continuous developmental processes in the data. 
CytoTRACE is also agnostic to tissue type, species, and scRNA-seq platform.  
  
We anticipate that these advantages will enable significant applications. For example, by using 
CytoTRACE to analyze scRNA-seq profiles of human breast tumors, we identified new 
candidate genes associated with less-differentiated luminal progenitor cells and established a 
novel role for GULP1 in breast tumorigenesis. These data emphasize the utility of CytoTRACE 
for characterizing tumor differentiation hierarchies and for discovering novel biomarkers and 
therapeutic targets. Furthermore, by integrating RNA content with CytoTRACE, we 
demonstrated, for the first time to our knowledge, that quiescent adult stem cells can be 
distinguished from downstream progenitors using an unsupervised in silico approach. Given the 
immense regenerative potential of quiescent stem cells, their identification in human tissues has 
broad implications in regenerative medicine and cancer treatment.  
 
While CytoTRACE can recapitulate developmental orderings from single lineages to whole 
organisms, several challenges remain. For example, although the direction of differentiation was 
predicted correctly in nearly all datasets, 12% of cases were mischaracterized. These datasets 
also proved problematic for other approaches, suggesting there may be opportunities for future 
enhancements. In addition, CytoTRACE is currently expressed in rank space, which is not 
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directly comparable across different datasets. Efforts to overcome these challenges are 
underway. 
 
In summary, we conclude that the number of expressed genes per cell is a hallmark of 
developmental potential. By exploiting this data-driven property of scRNA-seq data, we 
developed a broadly applicable framework for resolving single-cell differentiation hierarchies. 
We envision that our approach will complement existing scRNA-seq analysis strategies, with 
implications for the identification of immature cells and their developmental trajectories in 
complex tissues throughout multicellular life.  
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data generated in this study are hosted at https://cytotrace.stanford.edu with a GEO accession 
number pending.  
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Figure 1 RNA-based determinants of developmental potential. (A-C) In silico screen for 
correlates of cellular differentiation status in scRNA-seq data. (A) Composition of the training 
cohort. (B) Left: Summary of evaluated features (top) and gold standard scRNA-seq datasets 
from the training cohort (bottom). In total, 17,810 gene sets from MSigDb, 896 transcription 
factor (TF) binding sites from ENCODE and ChEA, three measures of transcriptional entropy 
(StemID, SCENT, and SLICE), a machine learning model (mRNAsi), and gene counts (number 
of detectably expressed genes per cell) were assessed. Right: Depiction of the scoring scheme. 
Each phenotype was assigned a rank based on its known differentiation status (less 
differentiated = lower rank) and the values of each feature were mean-aggregated by rank for 
each dataset (higher value = lower rank). Performance was calculated as the mean Spearman 
correlation between known and predicted ranks across all nine training datasets. (C) 
Performance of all features for predicting differentiation states in the training cohort, ordered by 
mean Spearman correlations. (D) The developmental ordering of 12 human cell phenotypes 
during early embryogenesis, shown as a function of single-cell gene counts (left) and the 
expression of pluripotency genes21 (right). Points and error bars denote means and 95% 
confidence intervals, respectively. Phenotypes are ranked according to their known 
developmental potential relative to other cell types (phenotype labels are provided in Methods). 
The coefficient of determination (R2) is shown for gene counts (left) and a smooth spline is 
shown for pluripotency gene enrichment scores (right). ssGSEA, single sample gene set 
enrichment analysis. (E) Same as in D (left panel) but showing the ontological ordering of 30 
mouse cell phenotypes across 17 developmental stages versus single-cell gene counts. For 
further details and information on datasets, see Methods. 
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Figure 2 Association between gene counts, RNA diversity, and chromatin accessibility. 
(A-C) Analysis of the association between single-cell gene counts, transcriptional diversity, and 
chromatin accessibility in cells from an in vitro differentiation series of purified phenotypes from 
the human paraxial mesoderm lineage (Methods; also see Figure S7). (A) Scatterplot showing 
the association of gene counts with the number of unique protein-coding splice isoforms 
detected per cell. (B) Top: Scatterplot showing the association of gene counts (y-axis) with 
paraxial mesoderm differentiation at the single-cell level (x-axis). Each point represents a cell 
colored by known phenotype (below). Center: Heat map depicting each single-cell transcriptome 
in the above scatterplot, but ordered from top-to-bottom by decreasing gene expression (log2 
TPM). Cells are ordered left to right by increasing differentiation status. Bottom: Heat map 
showing chromatin accessibility profiles (bulk ATAC-seq) for the same cell phenotypes as 
above. Peaks are centered by their summit, defined as the base with maximum coverage, 
shown within a window of 1 kb (±0.5 kb), and ordered top to bottom within each phenotype by 
decreasing total signal per peak. (C) Scatterplot showing the concordance between the average 
number of single-cell gene counts per phenotype and the number of ATAC-seq peaks per 
phenotype. Points indicate cell types and are colored as in B. Linear relationships in A and C 
were evaluated by linear regression (R2) and corresponding P values were determined by a t-
test. hESC, human embryonic stem cell; APS, anterior primitive streak; PXM, paraxial 
mesoderm; SMTRS, somitomeres; ESM, early somites; SCLRT, sclerotome. 
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Figure 3 Development and validation of CytoTRACE. (A) Schematic overview of the 
CytoTRACE framework applied to the in vitro differentiation of hESCs into the gastrulation 
layers39 (Methods). (B-D) Validation and benchmarking of CytoTRACE. (B) Composition of the 
validation cohort. In total, 33 scRNA-seq datasets with known differentiation states were 
analyzed. (C) Scatterplot showing predictive performance of 18,706 gene sets, four stemness 
inference methods18-20,22, gene counts, and CytoTRACE, in the training cohort (y-axis) and 
validation cohort (x-axis). Results reflect the average single-cell performance per cohort. (D) 
Boxplots showing the single-cell level performance of CytoTRACE against the features and 
methods from Fig. 1B in the validation cohort (n = 33 datasets). Each point represents the 
Spearman correlation, weighted by number of cells per phenotype, between predicted and 
known differentiation states for a given dataset, calculated as described in Methods. Features 
and computational methods are ordered from left to right by median. Statistical significance was 
assessed by a one-sided paired Wilcoxon signed-rank test against CytoTRACE. (E) 
Developmental marker gene prioritization without prior knowledge of cellular phenotypes. Plots 
showing the enrichment of key stemness-associated (red) and differentiation-associated (blue) 
genes by CytoTRACE in bone marrow (n = 4,897 cells), intestine (n = 7,216 cells), pancreatic 
alpha cells; (n = 338 cells), and peripheral glia (n = 369 cells) (source data are described in 
Methods). Select markers of differentiation are indicated for each dataset. Also see Figure 
S12.  
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Figure 4 Characterization of developmental hierarchies and quiescent stem cells using 
CytoTRACE. (A-E) Application of CytoTRACE to dissect the mouse hematopoietic hierarchy by 
integrative analysis. (A) Mouse bone marrow scRNA-seq data visualized by CytoTRACE versus 
a force-directed layout (FD1 vs. FD2). (B) Combined application of CytoTRACE and Monocle 2 
to delineate complex branches during mouse bone marrow differentiation without any prior 
information of the root. Multi-lineage tree inferred by Monocle 2 showing all 23 possible 
pseudotimes when the root is unknown (left) and automatic selection of the correct root by 
CytoTRACE (right). (C-E) Prioritization of quiescent and cycling hematopoietic stem cells 
(HSCs) in index-sorted scRNA-seq data of hematopoietic stem and progenitors (KIT+SCA1+LIN–

) and developing B cells (TER119–B220+). All plots are identically ordered, left to right, by 
CytoTRACE. (C) Boxplots showing CytoTRACE values for candidate cycling HSCs (n = 31) and 
long-term/quiescent HSCs (n = 30) versus early immature B cells (n = 285), late immature B 
cells (n = 863), and mature B cells (n = 700). HSC subgroups were defined based on 
expression of Fgd5, a reporter gene for HSCs67, Hoxb5, a reporter gene for long-term HSCs47, 
and Mki67, a marker of proliferation. Although boxplots represent all analyzed cells, for clarity, a 
maximum of 50 cells per phenotype are displayed as points. Statistical significance was 
assessed by an unpaired Wilcoxon signed-rank test. **P<0.01. (D) Relative RNA content per 
cell, shown as a function of CytoTRACE (‘Analysis of total RNA content and transcriptional 
diversity’ in Methods) and displayed as the moving average of 200 cells. (E) Expression of Fgd5 
and Hoxb5 ordered by CytoTRACE and displayed as a smoothing spline over the moving 
average of 200 cells. Data from monocytes and granulocytes (TER119–MAC1+GR1high) are 
consistent with the above results. Data in A and B-E are from ‘Bone marrow (10x)’ and ‘Bone 
marrow (Smart-seq2)’ datasets generated by Tabula Muris42, respectively (Methods).   
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Figure 5 Identification of immature cell markers in normal and malignant human breast 
luminal progenitor cells using CytoTRACE. (A) Principal component analysis (PCA) plots 
showing scRNA-seq profiles of human basal cells (n = 660 cells), luminal progenitors (n = 532 
cells) and mature luminal cells (n = 710 cells) from 8 breast cancer patients (2 basal-like and 6 
luminal-like), colored by epithelial subpopulations (top), tumor vs. paired adjacent normal 
tissues (center), and patient (bottom). (B) Prediction of differentiation-associated genes in 
normal luminal progenitors (LPs) profiled by scRNA-seq. Top: Heat map showing normal LP 
genes ordered by their Pearson correlation with CytoTRACE. Bottom: Heat map depicting the 
association of each gene in the above plot with a ‘clonogenicity index’, defined as the log2-fold 
change in expression between highly and lowly clonogenic LPs from normal human breast54 
(Methods). The clonogenicity index is displayed as a moving average of 200 genes. Key genes 
associated with less (ALDH1A3, MFGE8) and more (GATA3, FOXA1, AR) differentiated normal 
LPs are indicated. (C) Prediction of differentiation-associated genes in malignant luminal 
progenitors profiled by scRNA-seq. Top: Same as panel B (top) but showing genes from 
malignant rather than normal LPs. Bottom: Pre-ranked gene set enrichment analysis68 of 43 
genes found to decrease human breast tumorigenesis in an RNAi dropout viability screen57 in 
relation to LP genes ranked by CytoTRACE (same order as above). NES, normalized 
enrichment score; ES, enrichment score. (D) Identification of candidate tumorigenic genes 
associated with less differentiated malignant human LPs. Top: Genes rank-ordered by the 
difference in their correlations with CytoTRACE in malignant LPs versus malignant mature 
luminal cells (MLs). The top 15 genes that are predicted to be specifically associated with less 
differentiated LPs are indicated (left). Bottom: Schema for the identification of genes that are 
ranked as above, but that are also more highly expressed in malignant LPs than MLs (log2

 fold 
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change > 0; Benjamini-Hochberg adjusted P < 0.05, unpaired two-sided t-test) and that are 
expressed by a subpopulation of LPs (<20% of cells). The top 5 filtered genes are shown (right). 
(E) Schema for shRNA knockdown of GULP1 in a human breast cancer xenograft model. 
Lineage-depleted breast cancer epithelia cells from patient-derived xenografts were transduced 
with lentivirus containing either an empty vector control or shRNA targeting GULP1 and 
transplanted into immunodeficient NSG mice in triplicates. Tumors were monitored weekly until 
control tumors reached a size of 1500-2000 mm3. (F) Growth of human breast cancer 
xenografts from two patients, one with ER+ luminal-type cancer (left) and one with triple-
negative breast cancer (right) after lentiviral transduction with empty vector or shRNA targeting 
GULP1. Mean tumor volume with 95% confidence interval is shown for 6 time points (n = 3 
mice). **** P < 0.0001. 
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