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Abstract 
Alzheimer’s disease (AD) is the most common cause of dementia and, despite decades of effort, 
there is no effective treatment. In the last decade, many association studies have identified 
genetic markers that are associated with AD status. Two of these studies suggest that an epistatic 
interaction between variants rs1049296 in the Transferrin (TF) gene and rs1800562 in the 
Homeostatic Iron Regulator (HFE) gene, commonly known as “the hemochromatosis gene”, is in 
genetic association with AD. TF and HFE are involved in the transport and regulation of iron in 
the brain, and disrupting these processes exacerbates AD pathology through increased 
neurodegeneration and oxidative stress. However, by using a significantly larger dataset from the 
Alzheimer’s Disease Genetics Consortium (ADGC), we fail to detect an association between TF 
rs1049296 or HFE rs1800562 with AD risk (TF rs1049296 p=0.38 and HFE rs1800562 p=0.40). 
In addition, logistic regression with an interaction term and a Synergy Factor Analysis (SFA) 
both failed to detect epistasis between TF rs1049296 and HFE rs1800562 (SF=0.94; p=0.48) in 
AD cases. Each of these analyses had sufficient statistical power (Power>0.99), suggesting that 
previously-reported associations may be the result of more complex epistatic interactions, 
genetic heterogeneity, or were false-positive associations due to limited sample sizes.  
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Introduction 
 
Alzheimer’s disease (AD) is the most common cause of dementia and inflicts an estimated 24 to 
35 million people worldwide, with incidences predicted to increase dramatically as the 
population ages ("2018 Alzheimer's disease facts and figures," 2018). Although decades of 
research have been spent investigating the causes and architecture of this neurodegenerative 
disease, it still inflicts an estimated 5.7 million people in the United States alone. This number is 
projected to increase to 13.8 million by mid-century ("2018 Alzheimer's disease facts and 
figures," 2018). Association studies have accurately identified single-nucleotide polymorphisms 
(SNPs) associated with AD (D. Harold et al., 2009; Denise Harold et al., 2009; Hollingworth et 
al., 2011; J.-C. Lambert et al., 2009; J. C. Lambert et al., 2013; Seshadri et al., 2010; Shen et al., 
2015; Shuai et al., 2015; Yan et al., 2015). However, these genetic loci account for only a 
fraction of AD heritability, (Ridge, Mukherjee, Crane, Kauwe, & Alzheimer’s Disease Genetics, 
2013) suggesting that much of AD’s unexplained genetic make-up may be due to epistasis 
(Bullock et al., 2013; Combarros, Cortina-Borja, Smith, & Lehmann, 2009; M. T. Ebbert et al., 
2014; Infante et al., 2004). Epistasis occurs when multiple genes interact to create a single 
phenotype (Cordell, 2002). These kinds of synergetic relationships play a critical role in the 
etiology of complex diseases, yet remain vastly understudied in AD pathology ("2018 
Alzheimer's disease facts and figures," 2018; M. T. W. Ebbert, Ridge, & Kauwe, 2015; 
Raghavan & Tosto, 2017). 
 
The Transferrin (TF) gene and the Homeostatic Iron Regulator (HFE) gene, commonly known as 
“the hemochromatosis gene”, have been reported to show epistasis and play a role in the 
development of AD (Robson et al., 2004; Tisato et al., 2018). TFs are a group of non-heme iron-
binding glycoproteins found in fluids and cells of vertebrates. The main role of TF is to maintain 
iron homeostasis in the body (Gkouvatsos, Papanikolaou, & Pantopoulos, 2012). In the brain, TF 
interacts with the Amyloid Precursor Protein (APP) (Belaidi et al., 2018) and tau (Jahshan, 
Esteves-Villanueva, & Martic-Milne, 2016), two of the major protein families implicated in AD 
pathology. Since iron is essential for oxygen transport, its mis-regulation in the brain can lead to 
oxidative stress and neurodegeneration (Dias, Junn, & Mouradian, 2013; Matak et al., 2016; 
Yarjanli, Ghaedi, Esmaeili, Rahgozar, & Zarrabi, 2017). HFE encodes for a transmembrane 
glycoprotein that binds to a TF receptor, subsequently regulating iron in the cell (Bennett, 
Lebron, & Bjorkman, 2000; Feder et al., 1996; Lebron et al., 1998). Mutations in HFE are 
associated with neurodegenerative diseases through increasing neuroinflammation and 
production of free radicals in the brain (Andersen, Johnsen, & Moos, 2014; Lull & Block, 2010). 
In addition, other studies suggest that TF and HFE are involved in the transport and regulation of 
iron in the brain, and disrupting these processes potentially affects AD pathology through 
increased neurodegeneration and oxidative stress (Ali-Rahmani, Schengrund, & Connor, 2014; 
Lehmann et al., 2006). 
 
Robson et al. (2004) suggested that epistasis between TF variant rs1049296 and HFE variant 
rs1800562 is associated with AD. Although neither SNP alone was a risk factor for AD, the 
presence of both alleles resulted in a five times greater risk of developing AD. (Robson et al., 
2004). Since the sample size for that study was relatively small (191 cases and 269 controls), a 
replication of these findings on a slightly larger dataset (1,161 cases and 1,342 controls) was 
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conducted and corroborated a significant association with AD risk among bi-allelic carriers of 
rs1049296 and rs1800562 (Kauwe et al., 2010).  
 
Our study expands on these previous studies and attempts to detect statistical epistasis between 
TF rs1049296 and HFE rs1800562 with respect to AD risk using 25,666 individuals from the 
Alzheimer’s Disease Genetics Consortium (ADGC), which is an expansion of the dataset 
employed by Kauwe et al. (2010). 
 
Material and Methods 
 
Dataset and Filtering 
Our analysis started with GWAS data from all 28,730 individuals in the Alzheimer’s Disease 
Genetic Consortium (ADGC) dataset as described by Naj et al. (A. C. Naj et al., 2011). ADGC is 
a collection of 30 merged datasets spanning 1984 to 2012, and was established to help identify 
genetic markers of late onset AD. (Boehme, Mukherjee, Crane, & Kauwe, September 2014). 
ADGC imputed the 30 datasets to the Haplotype Reference Consortium (HRC) reference panel, 
which includes 64,976 haplotypes and 39,235,157 SNPs (Loh et al., 2016; Adam C. Naj et al., 
2017). Genotyped markers with a minor allele frequency less than 1% and a deviation from 
Hardy Weinberg Equilibrium (HWE) where α<10-6 were removed. All aspects of the study were 
approved by institutional review boards, and each applicant signed a written form of consent for 
their genetic data to be used for research purposes. 
 
We followed the same filtering protocols established by Ridge et al. (Ridge et al., 2013) by 
genotyping markers with a minor allele frequency less than 1% and removing markers with a 
HWE p-value less than 10-6. Principle components were calculated using Eigensoft (Patterson, 
Price, & Reich, 2006; Price et al., 2006) to account for population specific variations in allele 
distribution. After filtering, 12,532 cases and 13,134 control subjects contained genotypic 
information for TF rs1049296 and HFE rs1800562. 
 
Genetic Analyses 
The main effects of TF rs1049296 and HFE rs1800562 on AD risk were measured using a 
multivariate nonparametric logistic regression analysis. Each SNP was first analyzed as a single 
term and then as an interaction term in a subsequent analysis. We included sex, age of onset, 
APOE e4 allele status, AD status, and 10 principle components as covariates in our analysis. In 
addition, we performed a chi-square analysis to determine odds ratios between AD status in each 
SNP as a single term and as an interaction term, respectively. Lastly, we performed a Synergy 
Factor Analysis (SFA) (Cortina-Borja, Smith, Combarros, & Lehmann, 2009). These analyses 
were performed for each of the 30 cohorts separately and for the entire ADGC dataset combined 
as a single cohort.  
 
Furthermore, we calculated the power of analysis for the ADGC dataset using G*Power (Faul, 
Erdfelder, Lang, & Buchner, 2007). The computations for power of the previous analysis 
performed by Kauwe et al. (2010) revealed that for a sample size of 2,503 and an alpha of 0.05, 
their logistic regression model had power of 0.95 to detect an effect size of 0.86.  
The power of our analysis reveals that for a sample size of 25,666 and the same alpha of 0.05, 
our logistic regression model has power of >0.99 to detect a similar effect size of 0.86.  
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Results 
 
The nonparametric logistic regression analysis using ADGC as one cohort demonstrated that 
when testing the main effects, neither TF rs1049296 nor HFE rs1800562 was associated with 
AD risk (TF rs1049296 p=0.38; HFE rs1800562 p=0.40). The logistic regression analyses 
including an interaction term for the two variants also failed to show significant association 
(p=0.23). Similarly, the SFA analysis did not find epistasis between TF rs1049296 and HFE 
rs1800562 (SF=0.94; p=0.48). 
 
We performed logistic regression on all 30 individual cohorts (see Figure 1). We detected a 
significant epistatic association between the interaction term and AD status in the ACT cohort 
(p=0.038) and a suggested association in the ADC1 cohort (p=0.063). In addition, the individual 
effect of HFE rs1800562 shows a suggested association with AD status in the ADC6 (p=0.099), 
WHICAP (p=0.052), ADC4 (p=0.076), and ROSMAP (p=0.094) cohorts. Furthermore, logistic 
regression for the individual effect of TF rs1049296 determined a significant association with 
AD status in the WASHU cohort (p=0.016). However, none of these associations remained 
significant after a Bonferroni correction for multiple tests.  
 
In addition, chi-squared analyses between terms and AD status demonstrated a non-significant 
likelihood for any single term or interaction. The odds ratio for rs1049269 was 0.97 with a 95% 
confidence interval (CI) between 0.92 and 1.03, while rs1800562 had an odds ratio of 1.06 with 
a CI of 0.98 to 1.15, and the interaction term had an odds ratio of 0.99 with a CI of 0.86 to 1.14. 
The odds ratios and confidence intervals for main effects and the interaction in each cohort are 
displayed in Figure 2. 
 
Discussion 
 
We failed to detect evidence of epistasis between TF rs1049296 and HFE rs1800562 as a risk for 
AD in the ADGC dataset. These findings do not support the conclusions drawn in the previous 
reports by Robson et al. (2004) and Kauwe et al. (Kauwe et al., 2010). The cause for this 
variability among studies could be a result of genetic heterogeneity, the complex nature of 
epistasis, or false positives in these previous studies due to limited sample size. 
 
Although recent literature suggests that much of the unidentified genetic makeup of AD is due to 
epistasis (Bullock et al., 2013; Combarros et al., 2009; M. T. Ebbert et al., 2014; Infante et al., 
2004; Mez, 2016), the complex nature of these gene-gene interactions makes it difficult for them 
to be accurately measured and defined (Gilbert-Diamond & Moore, 2011; Kouyos, Silander, & 
Bonhoeffer, 2007; Urbanowicz, Kiralis, Fisher, & Moore, 2012). Models for epistatic 
interactions are challenging to create because the models require large datasets to analyze 
combinations of variables simultaneously (Moore & Williams, 2009). When an insufficient 
number of samples are used, results have poor statistical power, which leads to frequent false 
negatives in gene-gene interaction studies. Likewise, the numerous comparisons required to 
assess epistasis may generate false positive findings (Mackay & Moore, 2014). Inadequate 
sample size can also result in false positives and is identified through statistical power analyses 
(Christley, 2010). The experiments performed by Robson et al. (2004) and Kauwe et al. (Kauwe 
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et al., 2010) used datasets with much fewer individuals than the dataset used in this manuscript, 
and consequently have lower statistical power than our analysis. Although Kauwe et al. (2010) 
appeared to have sufficient power for their study (0.95), it is still possible that their results were 
false positive findings. Current research suggests a troubling phenomenon known as the 
“winner’s curse,” which occurs when the estimated effect of an association is inflated compared 
to the true genetic effect and the effects later measured in follow-up studies (Huang, Ritchie, 
Brozynska, & Inouye, 2018; Palmer & Pe'er, 2017). The level of power necessary to accurately 
detect epistasis is currently unknown, and as such, replication studies are a necessary part of 
validating epistasis. As our results show, even studies that appear to have sufficient power, such 
as Kauwe et al. (2010), should be re-evaluated when larger datasets become available. 
 
Heterogeneity in the genetic causes of AD is certainly present (Mez, 2016), and further erodes 
power to detect statistical epistasis. Finally, even when statistical evidence for epistasis is 
detected, it does not necessarily indicate the presence of a physical biological interaction 
between the implicated proteins (M. T. W. Ebbert et al., 2015). Statistical patterns can be a 
product of a variety of underlying mechanisms. Therefore, the complexity of biological and 
statistical epistasis could also account for disparities in replication studies. Increasing sample 
sizes gives us better statistical power. Likewise, increasing the amount of multidimensional -
omics data will help us focus our efforts on specific candidate interactions. We anticipate that as 
more multidimensional -omics data become available, our ability to understand the role of 
epistasis in AD risk will improve and help in the development of novel approaches to prevent 
and treat the disease.  
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