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Abstract 

The supplementary motor area (SMA) is believed to contribute to higher-order aspects of motor control. 

To examine this contribution, we employed a novel cycling task and leveraged an emerging strategy: 

testing whether population trajectories possess properties necessary for a hypothesized class of 

computations. We found that, at the single-neuron level, SMA exhibited multiple response features 

absent in M1. We hypothesized that these diverse features might contribute, at the population level, to 

avoidance of ‘population trajectory divergence’ – ensuring that two trajectories never followed the 

same path before separating. Trajectory divergence was indeed avoided in SMA but not in M1. Network 

simulations confirmed that low trajectory divergence is necessary when guidance of future action 

depends upon internally tracking contextual factors. Furthermore, the empirical trajectory geometry – 

helical in SMA versus elliptical in M1 – was naturally reproduced by networks that did, versus did not, 

internally track context. 
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Introduction 

The supplementary motor area (SMA) is implicated in higher-order aspects of motor control1-3. SMA 1 

lesions cause motor neglect4,5, unintended utilization6, and difficulty performing temporal sequences7-9. 2 

Relative to primary motor cortex (M1), SMA activity is less coupled to actions of a specific body part10-12. 3 

Instead, SMA computations appear related to learned sensory-motor associations11, reward 4 

anticipation13, internal initiation and guidance of movement3,14, movement timing15,16, and movement 5 

sequencing7,17,18. Single-neuron responses in SMA reflect a variety of task-specific contingencies. For 6 

example, in a sequence of three movements, a neuron may burst only when pulling precedes pushing. 7 

Another neuron might respond before the third movement regardless of the particular sequence19. 8 

Different response features are observed in different tasks. Single SMA neurons exhibit a mixture of 9 

ramping and rhythmic activity during an interval timing task20, and the SMA population exhibits 10 

amplitude-modulated circular trajectories during rhythmic tapping21. A common thread linking prior 11 

studies is that SMA computations are hypothesized to be critical when pending action depends upon 12 

internal, abstract, and/or contextual factors. An important challenge is linking these high-level ideas to 13 

network-level implementations. What general properties should activity exhibit in networks performing 14 

the hypothesized class of computations? 15 

There exist many quantitative methods for relating population activity and computation (e.g.,22-24). 16 

These include decoding key hypothesized signals (e.g., via regression25), or directly comparing empirical 17 

and simulated population activity (e.g., via canonical correlation26). An emerging strategy is to consider 18 

the geometry of the population response: the arrangement of population states across conditions23,27,28 19 

and/or the shape traced by activity in neural state-space15,26,29-36. A given geometry may be consistent 20 

with some types of computation but not others37. An advantage of this approach is that it is sometimes 21 

possible to measure geometric properties that are expected to hold for a class of computations, 22 

regardless of the exact instantiation. For example, we recently characterized M1 activity using a metric, 23 

‘trajectory tangling’, that assesses whether activity could be generated by noise-robust network 24 

dynamics38. This approach revealed a population-level property that was conserved across tasks and 25 

species. 26 

Here we consider the hypothesis that SMA guides movement by internally tracking contextual factors, 27 

and derive a prediction regarding the population trajectory geometry appropriate for that class of 28 

computations. We predict that SMA trajectories should avoid ‘divergence’; trajectories should be 29 

structured, across time and across conditions, such that it is never the case that two trajectories follow 30 
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the same path and then separate. Low divergence is essential to ensure that neural activity can 31 

distinguish between situations with different future motor outputs, even if the present motor output is 32 

similar. We tested whether this hypothesized geometry is indeed observed in a novel task, and whether 33 

it can account for single-neuron response properties and task-specific population-level features.  34 

We employed a recently developed cycling task that shares some features with sequence / timing tasks 35 

but involves continuous motor output and thus provides a novel perspective on SMA response 36 

properties. We found that the population response in SMA, but not M1, exhibited low trajectory 37 

divergence. The major features of SMA responses, both at the population and single-neuron levels, 38 

could be understood as serving to maintain low divergence. Simulations confirmed that low divergence 39 

was necessary for a network to guide action based on internal / contextual information. Furthermore, 40 

artificial networks naturally adopted low-divergence, SMA-like trajectories when performing 41 

computations that required internally tracking contextual factors. Thus, a broad hypothesis regarding 42 

the type of computation performed by SMA successfully predicts SMA population trajectory geometry, 43 

and provides an explanation for seemingly diverse task-specific response features. 44 

 

Results 

Task and behavior 

We trained two rhesus macaque monkeys to grasp a hand-pedal and cycle through a virtual landscape38 45 

(Fig. 1a). Each trial required the monkey to cycle between a pair of targets. The trial began with the 46 

virtual position stationary on the first target, with the pedal orientation either straight up (‘top-start’) or 47 

straight down (‘bottom-start’). After a 1000 ms hold period, the second target appeared. Second-target 48 

distance determined the number of revolutions that had to be performed: 1, 2, 4, or 7 cycles. Following 49 

a 500-1000 ms randomized delay period, a go-cue (brightening of the second target) was delivered. The 50 

monkey then cycled to that target and remained stationary to receive a juice reward. Because targets 51 

were separated by an integer number of cycles, the second target was acquired with the same pedal 52 

orientation (straight up or down) as for the first target. Landscape color indicated whether forward 53 

virtual motion required ‘forward’ cycling (the hand moved away from the body at the top of the cycle) 54 

or ‘backward’ cycling (the hand moved toward the body at the top of the cycle). Using a block-55 

randomized design, monkeys performed all combinations of two cycling directions, two starting 56 

orientations, and four cycling distances. Averages of hand kinematics, muscle activity and neural activity 57 
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were computed after temporal alignment to account for small trial-by-trial differences in cycling 58 

speed38. 59 

Vertical and horizontal hand velocity displayed nearly sinusoidal temporal profiles (Fig. 1b). Muscle 60 

activity patterns (Fig. 1c) were often non-sinusoidal, and initial-cycle and/or terminal-cycle patterns 61 

often departed from the middle-cycle pattern (e.g., the initial-cycle response is larger for the example 62 

shown). This is an expected consequence of the need to accelerate the arm when starting and to 63 

decelerate the arm when stopping. Muscle activity and hand kinematics differed in many ways, yet 64 

shared the following property: the response when cycling a given distance was a concatenation of an 65 

initial-cycle response, some number of middle cycles with a repeating response, and a terminal-cycle 66 

response. We refer to the middle cycles as ‘steady-state’ cycling, reflecting the fact that kinematics and 67 

muscle activity repeated across such cycles, both within a cycling distance and across distances. Seven-68 

cycle movements had ~5 steady-state cycles and four-cycle movements had ~2 steady-state cycles. Two- 69 

and one-cycle movements involved little or no steady-state cycling. Such structure is reminiscent of a 70 

sequence task (e.g., a four-cycle movement follows an ABBC pattern). However, both movement and 71 

accompanying muscle activity were continuous; cycle divisions are employed simply for presentation 72 

and analysis. 73 

Our motivating hypothesis, derived from prior studies7,11,14-16,19-21,39-41, is that SMA tracks internal and/or 74 

contextual factors for the purpose of guiding action. If so, the SMA population response should be 75 

shaped by the need to consistently distinguish situations that involve different future actions, even if the 76 

current motor output is identical. The cycling task produced multiple instances of this scenario, both 77 

within and between conditions. Consider the second and fifth cycles of a seven-cycle movement (Fig. 78 

1b,c). Motor output is essentially identical at these two phases of the task. Yet in two more cycles the 79 

output will differ. The same is true when comparing the second cycle of seven-cycle and four-cycle 80 

movements. Does the need to distinguish between such situations account for the geometry of the SMA 81 

population response? While this is fundamentally a population-level question, we begin by examining 82 

single-neuron responses. We then describe specific features of the population response. Finally, we 83 

consider a general property of population trajectory geometry required when a network must internally 84 

keep track of context. We use simulations to validate that approach, and then test whether the key 85 

predictions hold for the empirical trajectories. 86 
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Single-neuron responses 

Well-isolated single neurons were recorded sequentially from SMA (77 and 70 recordings for monkeys C 87 

and D) and M1 (109 and 103 recordings). Recording locations were guided via MRI landmarks, 88 

microstimulation, light touch, and muscle palpation to confirm the trademark properties of each region. 89 

M1 recordings included not only sulcal and surface primary motor cortex (M1 proper) but also 90 

recordings from the immediately adjacent aspect of dorsal premotor cortex38. Neurons in both SMA and 91 

M1 were robustly modulated during cycling. Firing rate modulations (maximum minus minimum rate) 92 

averaged 52 and 57 spikes/s for SMA (monkey C and D) and 73 and 64 spikes/s for M1. 93 

In M1, single-neuron responses (Fig 2a-c) were typically complex, yet showed two consistent features. 94 

First, for a given cycling distance, responses repeated across steady-state cycles. For example, for a 95 

seven-cycle movement, the firing rate profile was very similar across cycles 2-638. Second, response 96 

elements – initial-cycle, steady-state, and terminal-cycle responses – were conserved across cycling 97 

distances. Thus, although M1 responses rarely matched patterns of muscle activity or kinematics, they 98 

shared the same general structure. Responses were essentially a concatenation of an initial-cycle 99 

response, a steady-state response, and a terminal-cycle response. Even complex responses that might 100 

be mistaken as ‘noise’ displayed this structure (Fig. 2c).  101 

Neurons in SMA (Fig. 2d-f) displayed a different set of properties. Responses were typically a mixture of 102 

rhythmic and ramp-like features (Fig. 2d). As a result, during steady-state cycling, single-neuron 103 

responses in SMA had a greater proportion of their power well below the ~2 Hz cycling frequency (Fig. 104 

3a,b). Due in part to these slow changes in firing rate, a clear ‘steady-state’ response was rarely reached. 105 

Furthermore, the initial-cycle response in SMA often differed across cycling distances (e.g., compare the 106 

seven-cycle and two-cycle response in Fig. 2e) even when muscle and M1 responses were similar. Yet 107 

terminal-cycle responses were largely preserved across distances. For example, in Figure 2e, the 108 

response during a four-cycle movement is similar to that during the last four cycles of a seven-cycle 109 

movement. 110 

 

Individual-cycle responses are more distinct in SMA 

We compared the response on each cycle with that on every other cycle, both within seven-cycle 111 

movements (Fig. 3c,e), and between seven-cycle and four-cycle movements (Fig 3d,f). For each 112 

comparison, we defined ‘response distance’ as the root-mean-squared difference in firing rate across all 113 
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neurons and times within that cycle. Response distance was normalized by the typical intra-cycle firing-114 

rate modulation for that condition. This analysis thus assesses the degree to which responses differ 115 

across cycles, relative to the response magnitude within a single cycle. Individual-neuron responses 116 

were normalized to avoid analysis being dominated by a few high firing-firing rate neurons. To avoid 117 

response distance being inflated by sampling error, we used principal component analysis (PCA) to de-118 

noise the response of each neuron (Methods). Results were not sensitive to the choice of dimensionality 119 

so long as it was sufficient to capture a majority of the data variance. Response distance was averaged 120 

across the two cycling directions and starting positions (Fig. 3c-f), or shown for each independently (Fig. 121 

3g,h). 122 

Figure 3c-f plots response distance for every comparison in matrix form. For M1 (middle row), responses 123 

were similar among all steady-state cycles, resulting in a central dark block. This block is square for the 124 

within-seven-cycle comparison and rectangular for the seven-versus-four-cycle comparison. Outer rows 125 

and columns are lighter reflecting the fact that initial- and terminal-cycle responses differed both from 126 

one another and from steady-state responses. This analysis confirms that M1 responses involve a 127 

distinct initial-cycle response, a repeating steady-state response, and a distinct terminal-cycle response. 128 

Essentially identical structure was observed for the muscle populations (Fig. 3c-f, top row). These results 129 

agree with the finding that M1 activity relates to the execution of the present movement42-44. 130 

For SMA, the central block of high similarity was largely absent (Fig. 3c-f, bottom row). Instead, distance 131 

grew steadily with temporal separation. For example, within a seven-cycle movement, the second-cycle 132 

response was modestly different from the third-cycle response, fairly different from the fifth-cycle 133 

response, and very different from the seventh-cycle response. The average response distance between 134 

steady-state cycles was 3.1 times larger (monkey C) and 6.1 times larger (monkey D) for SMA versus M1 135 

(p<0.0001 via bootstrap for each monkey). SMA showed dissimilar responses across steady-state cycles 136 

both within a cycling distance (Fig. 3c,e), and when comparing across cycling distances (Fig. 3d,f) 137 

(p<0.0001 in all cases). 138 

For all comparisons among steady-state-cycles, across all conditions, response distance was higher for 139 

SMA (Fig. 3g,h, p<10-10 via paired t-test for each monkey). Yet the magnitude of this effect depended on 140 

the situation. Intriguingly, SMA response distance was modest when comparing cycles equidistant from 141 

movement end (red triangles) – e.g., cycle six-of-seven versus three-of-four. SMA response distance was 142 

not similarly low when comparing cycles equidistant from movement beginning (green triangles) – e.g., 143 

cycle two-of-seven versus two-of-four. This same effect can be observed in Figure 3d,f (bottom): the 144 
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diagonal ending in the bottom-right corner contains smaller values (darker squares) than the diagonal 145 

beginning in the top-left corner. As a result, response distance in SMA was significantly smaller when 146 

comparing the last three cycles versus the first three cycles (p<0.001, for each monkey, bootstrap). This 147 

asymmetry was greater for SMA (p<0.05 for monkey C and p<0.0001 for monkey D) than for M1, where 148 

responses distances were small for all such comparisons. This confirms what can be seen via inspection 149 

of single-neuron examples: SMA responses were often similar, across cycling distances, when viewed 150 

aligned to movement end (Fig 2d-f). 151 

In summary, SMA activity differs across steady-state cycles, even though muscle activity and M1 activity 152 

remain similar. This response specificity in SMA resembles, in some ways, contingency-specific activity in 153 

during movement sequences19 (e.g., a neuron that bursts only when pulling will be followed by turning). 154 

Yet specificity during cycling is manifested rather differently, by responses that evolve continuously, 155 

rather than burst at a key moment. The ramping activity we observed was more reminiscent of pre-156 

movement responses in a timing task20. That said, ramping activity was not the only source of cycle-to-157 

cycle response differences. To further explore the continuous unfolding of activity during cycling, we 158 

consider the evolution of population trajectories. 159 

 

SMA and M1 display different population trajectories 

To gain intuition, we first visualize population trajectories in three dimensions (subsequent analyses will 160 

consider more dimensions). Projections onto the top three PCs are shown for one seven-cycle condition 161 

for M1 (Fig. 4a,b) and SMA (Fig. 4c,d). Traces are shaded light to dark to denote the passage of time. For 162 

the M1 populations, trajectories exited a baseline state just before movement onset, entered a periodic 163 

orbit during steady-state cycling, and remained there until settling back to baseline as movement ended. 164 

To examine within-cycle structure, we also applied PCA separately for each cycle (bottom of each panel). 165 

For M1, this revealed little new; the dominant structure on each cycle was an ellipse, in agreement with 166 

what was seen in the projection of the full response.  167 

In SMA, the dominant geometry was quite different and also more difficult to summarize in three 168 

dimensions. We first consider data for monkey C (Fig. 4c). Just before movement onset, the population 169 

trajectory moved sharply away from baseline (from left to right in the plot). The trajectory then returned 170 

to baseline in a rough spiral, with each cycle separated from the last. The population trajectory for 171 

monkey D was different in some details (Fig. 4d) but it was again the case that a translation separated 172 

cycle-specific features.  173 
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SMA population trajectories appear to have a ‘messier’ geometry than M1 trajectories. In particular, 174 

cycle-specific loops appear non-elliptical and kinked. Yet it should be stressed that a three-dimensional 175 

projection is necessarily a compromise. The view is optimized to capture the largest features in the data; 176 

smaller features can be missed or partially captured and distorted. We thus employed cycle-specific PCs 177 

to visualize the shape of the trajectory on each cycle separately. Doing so revealed near-circular 178 

trajectories, much as in M1. Thus, individual-cycle orbits are present in SMA, but are a smaller feature 179 

relative to the large translation.  180 

In summary, M1 trajectories are dominated by a repeating elliptical orbit while SMA trajectories are 181 

better described as helical. Each cycle involves an orbit, but these are separated by a translation. Also, 182 

unlike an idealized helix, individual-cycle orbits in SMA occur in somewhat different subspaces. This 183 

property is further explored and documented below. 184 

 

The SMA population response occupies different dimensions across cycles 

We applied PCA separately for each cycle and computed ‘subspace overlap’: how well PCs derived from 185 

one cycle capture trajectories for the other cycles. For example, we computed PCs from the response 186 

during cycle one, projected the response during cycle two onto those PCs, and computed the percent 187 

variance explained. This was repeated across all cycle combinations. We employed six PCs, which 188 

captured most of the response variance for a given cycle. Essentially identical results were obtained 189 

using more PCs (Supp. Fig. 1). Variance was normalized so that unity indicates that two cycles occupy 190 

the same subspace. For comparison, we also analyzed muscle and M1 trajectories. As in Figure 3c-f, we 191 

compared within seven-cycle movements (Fig. 5a,c) and between seven- and four-cycle movements (Fig. 192 

5b,d). 193 

For the muscles, subspace overlap was high for all comparisons (Fig. 5a-d, top row). Subspace overlap 194 

was lower for M1 (middle row) yet still high. In particular, overlap was high among steady-state cycles, 195 

resulting in a central block structure. The block structure reveals that the subspace found for any of the 196 

steady-state cycles overlaps heavily with that for all the other steady-state cycles. For SMA, the central 197 

block was largely absent (bottom row). Comparing SMA versus M1, the average subspace overlap 198 

among steady-state cycles was 0.56 versus 0.83 (monkey C, p<0.0001 via bootstrap) and 0.51 versus 199 

0.84 (monkey D, p<0.0001). Note that the changing subspace in SMA is not a consequence of the 200 

translating trajectory (Fig. 4); translation alters where activity is centered, not the subspace in which it 201 

resides. 202 
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For all comparisons among steady-state-cycles, across all conditions, subspace overlap was always lower 203 

for SMA versus M1 (Fig. 5e,f, p<10-10 via paired t-test for each monkey). Yet as with response distance, 204 

the magnitude of this effect depended on the situation. For example, subspace overlap in SMA tended 205 

to be higher when comparing cycles equidistant from movement’s end (red triangles) – e.g., cycle six-of-206 

seven versus three-of-four. This effect can also be observed in Figure 5b,d (bottom): overlap is higher for 207 

the three-element diagonal ending in the bottom-right corner, relative to the diagonal starting in the 208 

top-left corner (p < 0.05 and p<.001 for monkey C and D, via bootstrap). This asymmetry was 209 

significantly greater in SMA versus M1 (p<0.05 for each monkey, via bootstrap). 210 

 

Population trajectories adopted by artificial networks   

Our guiding hypothesis is that the SMA population response is structured to consistently differentiate 211 

between situations that will have different future motor outputs, even if the present motor output is the 212 

same. Such structure would be consistent with the idea that SMA internally tracks ‘motor context’ for 213 

the purpose of guiding future action. Consistent with this hypothesis, SMA activity differs across cycles, 214 

and occupies different subspaces across cycles. Intriguingly, SMA activity shows the least selectivity 215 

when there is no need to differentiate between situations; e.g., between cycle six-of-seven and cycle 216 

three-of-four, which lead to nearly identical future actions.  217 

Yet is the roughly helical structure of the SMA population trajectory a natural solution when a network 218 

must track motor context? Are the properties documented above sufficient to ensure that SMA activity 219 

could consistently track context across times and conditions? To address these questions, we determine 220 

the critical properties of population trajectories displayed by simplified network models, and test 221 

whether those properties are present in the SMA population response. 222 

For practical purposes, we define motor context as information that is important for guiding future 223 

movement but may not impact present motor output. Contextual information may be remembered 224 

(e.g., “I am performing a particular sequence”)19, internally estimated ( “it has been 800 ms since the last 225 

button press”)21, or derived from abstract cues (“this fixation-point color means I must reach quickly 226 

when the target appears”)42. In the cycling task, salient contextual information arrives when the target 227 

appears, specifying the number of cycles to be produced. The current motor context (how many cycles 228 

remain) can then be updated throughout the movement, based on both visual cues and internal 229 

knowledge of the number of cycles already produced. Monkeys successfully used this contextual 230 

information; they essentially never stopped a cycle early or late. To ask how contextual information 231 
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might be reflected in population trajectories, we trained artificial recurrent networks that did, or did 232 

not, need to internally track motor context. 233 

We considered simplified inputs (pulses at specific times) and simplified outputs (pure sinusoids lasting 234 

four or seven cycles). We trained two families of recurrent networks. A family of ‘context-naïve’ 235 

networks received one input pulse, indicating that output generation should begin, and a different input 236 

pulse, indicating that output should be terminated. Initiating and terminating inputs were separated by 237 

four or seven cycles, corresponding to the desired output. Thus, context-naïve networks had no 238 

information regarding context until the arrival of the second input. Similarly, context-naïve networks 239 

had no need to track context; the key information was provided at the critical moment. A family of 240 

‘context-tracking’ networks received only an initiating input. For context-tracking networks only, this 241 

input pulse differed depending on whether a four- or seven-cycle output should be produced. Context-242 

tracking networks then had to generate a sinusoid with the appropriate number of cycles, and terminate 243 

appropriately with no further external guidance. For each family, we trained 500 networks that differed 244 

in their initial connection weights (Methods). 245 

The two network families learned qualitatively different solutions involving population trajectories with 246 

different geometries. Context-naïve networks employed an elliptical limit cycle (Fig. 6a). The initiating 247 

input caused the network trajectory to enter an orbit, and the terminating input prompted the 248 

trajectory to return to baseline. This solution was not enforced but emerged naturally. There was 249 

network-to-network variation in how quickly activity settled into the limit cycle (Supp. Fig 2) but 250 

essentially all networks that succeeded in performing the task employed a version of this strategy.  251 

Context-tracking networks utilized population trajectories that were more helical; the trajectory on each 252 

cycle was separated from the others by an overall translation (Fig. 6b). While there was network-to-253 

network variability in the exact learned trajectory (Supp. Fig 3), all successful context-tracking networks 254 

employed some form of helical or spiral trajectory. This solution is intuitive: context-tracking networks 255 

do not have the luxury of following a repeating orbit. If they did, information regarding context would 256 

be lost, and the network would have no way of ‘knowing’ when to cease producing the output. 257 

For context-tracking networks, trajectories could also occupy somewhat different subspaces on different 258 

cycles. Projected onto three dimensions, this geometry resulted in individual-cycle trajectories of 259 

seemingly different magnitude (first and third examples in Fig. 6b). As with the helical structure, this 260 

geometry creates separation between individual-cycle trajectories. There was considerable variation in 261 

the degree to which this strategy was employed. Some context-tracking networks used nearly identical 262 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/650002doi: bioRxiv preprint 

https://doi.org/10.1101/650002


subspaces for every cycle while others used quite different subspaces. Context-naïve networks never 263 

employed this strategy; the same limit cycle was always followed across steady-state cycles. 264 

The population geometry adopted by context-naïve and context-tracking networks bears obvious 265 

similarities to the empirical population geometry in M1 and SMA, respectively. That said, we stress that 266 

neither family is intended to faithfully model the corresponding area. Furthermore, a number of 267 

reasonable alternative modeling choices exist. For example, rather than asking context-tracking 268 

networks to track progress using internal dynamics alone, one can provide a ramping input that does so. 269 

Interestingly, context-tracking networks trained in the presence / absence of ramps employed very 270 

similar population trajectories (Supp Fig 4). The slow translation that produces helical structure is a 271 

useful computational tool – one that networks produced on their own if needed but were also content 272 

to inherit from upstream sources. For these reasons, we focus not on the details of specific network 273 

trajectories, but rather on the geometric features that differentiate context-tracking from context-naïve 274 

network trajectories, and that might similarly differentiate M1 and SMA population trajectories.  275 

 

Trajectory divergence 

The trajectories displayed by context-tracking networks reflect specific solutions to a general problem: 276 

ensuring that two trajectory segments never trace the same path and then diverge. Avoiding such 277 

divergence is critical when network activity must distinguish between situations that have the same 278 

present motor output, but different future outputs. Rather than assessing the specific path of particular 279 

solutions (which differed across networks), we developed a general metric of trajectory divergence. We 280 

note that trajectory divergence differs from trajectory tangling38, which was very low in both SMA and 281 

M1 (Supp Fig 5). Trajectory tangling assesses whether trajectories are consistent with a locally smooth 282 

flow-field. Trajectory divergence assesses whether similar paths eventually separate, smoothly or 283 

otherwise. A trajectory can have low tangling but high divergence, or vice versa (Supp Fig 6). 284 

To construct a metric of trajectory divergence, we consider times 𝑡 and 𝑡′, associated population states 285 

𝒙𝑡 and 𝒙𝑡′, and future population states 𝒙𝑡+Δ and  𝒙𝑡′+Δ. We consider all possible pairings of 𝑡 and 𝑡′. 286 

For example, 𝑡 and 𝑡′ might occur during different cycles of the same movement or during different 287 

cycling distances. We compute the ratio 
‖𝒙𝑡+Δ−𝒙𝑡′+Δ‖2

‖𝒙𝑡−𝒙𝑡′‖2+𝛼
, which becomes large if 𝒙𝑡+Δ differs from 𝒙𝑡′+Δ 288 

despite 𝒙𝑡 and 𝒙𝑡′ being similar. The constant 𝛼 is small and proportional to the variance of 𝒙, and 289 

prevents hyperbolic growth.  290 
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Given that the difference between two random states is typically sizeable, the above ratio will be small 291 

for most values of 𝑡′. As we are interested in whether the ratio ever becomes large, we take the 292 

maximum, and define divergence for time 𝑡 as: 293 

𝐷(𝑡) =  max
𝑡′,∆

‖𝒙𝑡+Δ−𝒙𝑡′+Δ‖2

‖𝒙𝑡−𝒙𝑡′‖2+𝛼
.                      Eqn. 1 294 

We consider only positive values of Δ. Thus, 𝐷(𝑡) becomes large if similar trajectories diverge but not if 295 

dissimilar trajectories converge. Divergence was assessed using a twelve-dimensional neural state. 296 

Results were similar for all reasonable choices of dimensionality. 297 

𝐷(𝑡) differentiated between context-tracking and context-naïve networks. We compared these two 298 

classes by considering pairs of networks, one context-tracking and one context-naïve. For each time, we 299 

plotted 𝐷(𝑡) for the context-tracking network versus that for the context-naïve network. Trajectory 300 

divergence was consistently lower for context-tracking networks (Fig. 6c, p<0.0001, rank sum test). This 301 

was further confirmed by considering the difference in the values of 𝐷(𝑡), for all times and all network 302 

pairs (Fig. 6d). Both context-tracking and context-naïve trajectories contained many moments when 303 

divergence was low, resulting in a narrow peak near zero. However, context-naïve trajectories (but not 304 

context-tracking trajectories) also contained moments when divergence was high, yielding a large set of 305 

negative differences.  306 

 

Trajectory divergence is lowest for SMA 

The roughly helical structure of the empirical SMA population response (Fig. 4) suggests low trajectory 307 

divergence, as does the finding that SMA responses differ across cycles (Figs. 3 and 5). Yet the complex 308 

shape of the empirical trajectories makes it impossible to ascertain, via inspection, whether divergence 309 

is low. Furthermore, it is unclear whether cycle-to-cycle response differences consistently ensure low 310 

divergence across times and all cycling distances. We therefore directly measured trajectory divergence 311 

for the empirical trajectories. 312 

Plotting SMA versus M1 trajectory divergence for each time (Fig. 7a,b) revealed that divergence was 313 

almost always lower in SMA. We next computed distributions of the difference in divergence, at 314 

matched times, between SMA and M1 (Fig. 7c,d). There was a narrow peak at zero (times where 315 

divergence was low for both) and a large set of negative values, indicating lower divergence for SMA. 316 

Strongly positive values (lower divergence for M1) were absent (monkey C) or very rare (monkey D; 317 
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0.13% of points > 20). Via bootstrap, distributions were significantly negative for both monkeys 318 

(p<0.00001 for each). It was also the case that trajectory divergence was much lower in SMA than in the 319 

muscle populations (Supp Fig 7). The overall scale of divergence values was smaller for the empirical 320 

data versus the networks. Specifically, divergence reached higher values for context-naïve networks 321 

than for the empirical M1 trajectories. This occurs because simulated trajectories can repeat almost 322 

perfectly, yielding very small values of the denominator in equation 1. Other than this difference in 323 

scale, trajectory divergence for SMA and M1 differed in much the same way as for context-tracking and 324 

context-naïve networks (compare Fig. 7c,d with Fig. 6d).  325 

The ability to consider both network and neural trajectories (despite differences across networks and 326 

across monkeys) underscores that the divergence metric describes trajectory geometry at a useful level 327 

of abstraction. Multiple specific features can contribute to low divergence, including ramping activity, 328 

cycle-specific responses, and the use of different subspaces on different cycles. Different network 329 

instantiations may use these different ‘strategies’ to different degrees. Trajectory divergence provides a 330 

useful summary of a computationally relevant property, regardless of the specifics of how it was 331 

achieved. 332 

Because trajectory divergence abstracts away from the details of specific trajectories, it can be readily 333 

applied in new situations. For example, the cycling task involved not only different cycling distances, but 334 

also different cycling directions and different starting positions. The latter is particularly relevant, 335 

because movements ended at the same position (top versus bottom of the cycle) as they started. Thus, 336 

how a movement will end depends on information present at the movement’s beginning. One could ask 337 

whether SMA responses keep track of such information by assessing ‘starting-position-tuning’ in a 338 

variety of ways, following the example of Figures 3 and 5. However, it is simpler, and more relevant to 339 

the hypothesis being considered, to ask whether divergence remains low when comparisons are made 340 

across all conditions including starting positions. This was indeed the case (Supp Fig 8). 341 

 

Computational implications of trajectory divergence 

We considered trajectory divergence because of its expected computational implications. A network 342 

with a high-divergence trajectory can accurately and robustly generate its output on short timescales. 343 

Yet unless guided by external inputs at key moments, such a network may be susceptible to errors on 344 

longer timescales. For example, if a trajectory approximately repeats, a likely error would be the 345 

generation of extra cycles or the inappropriate skipping of a cycle. 346 
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To test whether these intuitions are accurate, we performed additional simulations. We employed an 347 

atypical training approach that enforced an internal network trajectory, as opposed to the usual 348 

approach of training a target output. We trained networks to precisely follow the M1 trajectory, 349 

recorded during a four-cycle movement, without any input indicating when to stop (Fig. 8a). To ensure 350 

that the solutions found were not overly delicate, networks were trained in the presence of additive 351 

noise. Using data from each monkey, we trained forty networks: ten for each of the four four-cycle 352 

conditions. Networks were able to reproduce the cyclic portion of the M1 trajectory. However, without 353 

the benefit of a stopping pulse, networks failed to consistently follow the end of the trajectory. For 354 

example, networks sometimes erroneously produced extra cycles (Fig. 8b) or skipped cycles and stopped 355 

early (Fig. 8c).  356 

We also trained networks to follow the empirical SMA trajectories. Those trajectories contained both a 357 

rhythmic component and lower-frequency ‘ramping’ signals (Figure 8d) related to the translation visible 358 

in Fig. 4c,d. In contrast to the high-divergence M1 trajectories, which were never consistently followed 359 

for the full trajectory, the majority of network initializations resulted in good solutions where the low-360 

divergence SMA trajectory was successfully followed from beginning to end. Thus, in the absence of a 361 

stopping pulse, the empirical SMA trajectories could be produced and could terminate reliably in a way 362 

that the empirical M1 trajectories could not. 363 
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Discussion 

Prior studies argue that SMA contributes to the guidance of action based on internal, abstract or 364 

contextual factors7,11,14-17,19,20. We translated this conceptual hypothesis into a prediction regarding the 365 

geometry of population activity: trajectory divergence should be consistently low. This hypothesis 366 

embodies an essential component of prior ideas. The ability to internally guide action implies that 367 

activity should be structured to reliably differentiate between situations that are the same now but will 368 

soon become different. We tested whether low trajectory divergence was observed in a novel task, 369 

whether low divergence is shared between network models and empirical data, and whether low 370 

divergence might provide a cohesive explanation for diverse features of neural responses. 371 

We employed our recently developed cycling task both because it has proved useful in characterizing 372 

population geometry in M138, and because it produces multiple instances of behavioral divergence: 373 

situations with the same current motor output but different future motor outputs. The cycling task is 374 

neither a sequence task nor a timing task, yet it shares commonalities with both paradigms. Consistent 375 

with this, there were both differences and commonalities in single-neuron response features during 376 

cycling and during other tasks. The ramping firing rates we observed resemble those seen in timing 377 

tasks20. We also observed cycle-specific responses – e.g., different firing rates across repeated cycles – 378 

which may be thought of as a form of sequence selectivity. However, cycle-selectivity was produced not 379 

by response bursts tied to a particular contingency19, but by a combination of ramping and cyclic 380 

activity, with different subspaces being occupied on different cycles. Selectivity for cycling distance (e.g., 381 

different responses when starting a four- versus seven-cycle movement) can also be seen as related to 382 

sequence selectivity. Yet such selectivity was not equally present across all comparisons; it was 383 

pronounced when comparing situations where future motor output would be different. 384 

These diverse response features can be understood in a unified way: they all serve to reduce divergence. 385 

The resulting shape of the SMA population trajectory was a rough helix. This can be seen as a neural 386 

‘strategy’ for avoiding trajectory divergence by reliably differentiating among situations that have the 387 

same present motor output but different future outputs. In contrast, M1 population trajectories traced 388 

out elliptical orbits and had high trajectory divergence. 389 

Simulations confirmed that divergence was naturally high in networks that did not have to internally 390 

track context; context-naïve networks displayed elliptical population trajectories resembling the 391 

dominant structure in M1. Conversely, divergence was low in networks that had to track context. 392 

Context-tracking networks displayed helical population trajectories that resembled simplified SMA 393 
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trajectories. Although some kind of helical structure was universal across such networks, there was 394 

variability in the exact solution. For some networks, low-divergence was achieved solely through the 395 

translation that separated cycles, while in other networks different cycles occupied somewhat different 396 

subspaces (as in the neural data, but typically to a lesser degree). This underscores the value of a metric 397 

such as trajectory divergence, which can abstract away from solution-specific features and summarize 398 

whether a trajectory is appropriate for a type of computation.  399 

The present study builds upon recent studies examining the shape and nature of population activity to 400 

evaluate hypotheses regarding the network-level computation. Most such studies quantify specific 401 

features that relate to how a network might perform the task of interest15,30,37,45-48, and this will remain 402 

an essential strategy. Yet, as noted above, one may also wish metrics of population geometry that are 403 

more general, and quantify properties that may be preserved across a class of computations regardless 404 

of the particular instantiation. Our divergence metric was designed with this goal in mind. As another 405 

example, we recently characterized a different geometric property, trajectory tangling, when examining 406 

the M1 population response38. Low tangling is necessary for a network to robustly generate an output 407 

via internal dynamics. We found that trajectory tangling was much lower for M1 trajectories than for 408 

muscle population trajectories38. That difference was apparent across tasks and species, and helped 409 

explain seemingly paradoxical features of M1 activity. The presence of low tangling in M1, but not 410 

sensory areas, argued that M1 activity is shaped by the need to perform robust pattern generation. In 411 

the present study, we found that trajectory tangling was similarly low in both SMA and M1, consistent 412 

with activity in both areas being strongly shaped by internal dynamics that need to provide a temporally 413 

structured output. However, the nature of the computation performed by those internal dynamics is 414 

likely very different. Only in SMA do population trajectories show low trajectory divergence, consistent 415 

with guidance of movement based on contextual information. 416 

The property of low-divergence might help explain the diversity of SMA response properties both within 417 

and between tasks. In particular, low divergence would be consistent with single-neuron response 418 

properties such as sequence-selectivity (though whether such selectivity actually leads to consistently 419 

low divergence still needs to be confirmed). Conversely, there may be situations where divergence 420 

becomes high in SMA in a revealing way. For example, there are likely limits on the timescales across 421 

which SMA (or the monkey as a whole) can internally track context, and this might be revealed in the 422 

timescales over which divergence stays low. For example, it seems unlikely that cycling for one hundred 423 

cycles would be accompanied by an extended low-divergence helix with one hundred separated loops. 424 
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As another example, trajectory divergence is unlikely to remain low when action is guided by sudden, 425 

unpredictable cues. These predictions are testable, and underscore that the expectation of low 426 

trajectory divergence is not universal. Trajectory divergence is expected to be low only when SMA is in 427 

fact consistently tracking context. This yields predictions that depend, in a useful way, on hypothesized 428 

role of SMA for the task being studied. 429 

A reasonable question is why low trajectory divergence is not a more universal property of movement-430 

related population activity. Why not employ a fully unified strategy, where a low-divergence trajectory 431 

produces the final motor output (as occurs in our simple context-tracking networks)? Why have 432 

separate areas – SMA and M1 – with low and high trajectory divergence? The presence of a high-433 

divergence area may be useful for two reasons. One is that dispensing with divergence-avoiding signals 434 

yields greater dynamic range available for generating the fine features of the motor output. A second is 435 

that a repeating trajectory may allow adaptation that occurs on one cycle to naturally generalize to 436 

other cycles. Thus, the degree of trajectory divergence in a given area has implications regarding what 437 

types of learning are possible, and may indicate the ‘level’ of control provided by a given motor area.  438 
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STAR Methods  

 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for resources and reagents should be directed to and will be fulfilled 439 

by the Lead Contact, Dr. Mark M. Churchland (mc3502@columbia.edu). 440 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Main experimental datasets 

Subjects were two adult male rhesus macaques (monkeys C and D). Animal protocols were approved by 441 

the Columbia University Institutional Animal Care and Use Committee. Experiments were controlled and 442 

data collected under computer control (Speedgoat Real-time Target Machine). During experiments, 443 

monkeys sat in a customized chair with the head restrained via a surgical implant. Stimuli were 444 

displayed on a monitor in front of the monkey. A tube dispensed juice rewards. The left arm was loosely 445 

restrained using a tube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. 446 

The device consisted of a cylindrical rotating grip (the pedal), attached to a crank-arm, which rotated 447 

upon a main axel. That axel was connected to a motor and a rotary encoder that reported angular 448 

position with 1/8000 cycle precision. In real time, information about angular position and its derivatives 449 

was used to provide virtual mass and viscosity, with the desired forces delivered by the motor. The delay 450 

between encoder measurement and force production was 1 ms.  451 

Horizontal and vertical hand position were computed based on angular position and the length of the 452 

crank-arm (64 mm). To minimize extraneous movement, the right wrist rested in a brace attached to the 453 

hand pedal. The motion of the pedal was thus almost entirely driven by the shoulder and elbow, with 454 

the wrist moving only slightly to maintain a comfortable posture.  455 

 

METHOD DETAILS 

Task 

Monkeys performed the ‘cycling task’ as described previously38. The monitor displayed a virtual 456 

landscape, generated by the Unity engine (Unity Technologies, San Francisco). Surface texture and 457 

landmarks provided visual cues regarding movement through the landscape along a linear ‘track’. One 458 
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rotation of the pedal produced one arbitrary unit of movement. Targets on the track indicated where 459 

the monkey should stop for juice reward.  460 

Each trial of the task began with the appearance of an initial target. Each trial began with the monkey 461 

stationary on top of an initial target. After a 1000 ms hold period, the final target appeared at a 462 

prescribed distance. Following a randomized (500-1000 ms) delay period, a go-cue (brightening of the 463 

final target) was given. The monkey then had to cycle to acquire the final target. After remaining 464 

stationary in the final target for 1500 ms, the monkey received a reward. 465 

The full task included 20 conditions distinguishable by final target distance (one-, two-, four-, and seven-466 

cycles), initial starting position (top or bottom of the cycle), and cycling direction (forward or backward). 467 

Half-cycle distances were also included in the task (evoking quite brief movements). Because of the 468 

absence of a full-cycle response, they are not amenable to many of the analyses we employ, and were 469 

thus not analyzed. 470 

Salient visual cues (landscape color) indicated whether cycling must be ‘forward’ (the hand moved away 471 

from the body at the top of the cycle) or ‘backward’ (the hand moved toward the body at the top of the 472 

cycle) to produce forward virtual progress. Trials were blocked into forward and backward cycling. Other 473 

trials types were interleaved using a block-randomized design. For each neural / muscle recording, we 474 

collected a median of 15 trials / condition for both monkeys. 475 

 

Neural recordings during cycling 

After initial training, we performed a sterile surgery during which monkeys were implanted with a head 476 

restraint and recording cylinders (Crist Instruments, Hagerstown, MD). For M1 recordings, cylinders 477 

were placed surface normal to the cortex and centered over the border between caudal PMd and 478 

primary motor cortex. After recording in M1, we performed a second sterile surgery to move the 479 

cylinders over the SMA. SMA cylinders were located over the SMA as determined from a previous 480 

magnetic resonance imaging scan, and were angled at ~20q degrees to avoid the central sulcus vein. The 481 

skull within the cylinders was left intact and covered with a thin layer of dental acrylic. Electrodes were 482 

introduced through small (3.5 mm diameter) burr holes drilled by hand through the acrylic and skull, 483 

under ketamine / xylazine anesthesia. Neural recordings were made using conventional single 484 

electrodes (Frederick Haer Company, Bowdoinham, ME) driven by a hydraulic microdrive (David Kopf 485 

Instruments, Tujunga, CA). The use of conventional electrodes, as opposed to electrode arrays, allowed 486 
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recordings to be made from the medial bank (where most of the SMA is located) and from both surface 487 

and sulcal M1. 488 

Recording locations were guided via microstimulation, light touch, and muscle palpation protocols to 489 

confirm the trademark properties of each region. For motor cortex, recordings were made from primary 490 

motor cortex (both surface and sulcal) and the adjacent (caudal) aspect of dorsal premotor cortex. 491 

These recordings are analyzed together as a single motor cortex population. All recordings were 492 

restricted to regions where microstimulation elicited responses in shoulder and arm muscles.  493 

Neural signals were amplified, filtered, and manually sorted using Blackrock Microsystems hardware 494 

(Digital Hub and 128-channel Neural Signal Processor). A total of 380 isolations were made across the 495 

two monkeys. On each trial, the spikes of the recorded neuron were filtered with a Gaussian (25 ms 496 

standard deviation; SD) to produce an estimate of firing rate versus time. These were then temporally 497 

aligned and averaged across trials as previously described38. Averages were made across a median of 15 498 

trials/condition. 499 

 

EMG recordings 

Intra-muscular EMG was recorded from the major shoulder and arm muscles using percutaneous pairs 500 

of hook-wire electrodes (30mm x 27 gauge, Natus Neurology) inserted ~1 cm into the belly of the 501 

muscle for the duration of single recording sessions. Electrode voltages were amplified, bandpass 502 

filtered (10-500 Hz) and digitized at 1000 Hz. To ensure that recordings were of high quality, signals 503 

were visualized on an oscilloscope throughout the duration of the recording session. Recordings were 504 

aborted if they contained significant movement artifact or weak signal. That muscle was then re-505 

recorded later. Offline, EMG records were high-pass filtered at 40 Hz and rectified. Finally, EMG records 506 

were smoothed with a Gaussian (25 ms SD, same as neural data) and trial averaged (see below). 507 

Recordings were made from the following muscles: the three heads of the deltoid, the two heads of the 508 

biceps brachii, the three heads of the triceps brachii, trapezius, latissimus dorsi, pectoralis, 509 

brachioradialis, extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris, flexor carpi radialis, 510 

and pronator. Recordings were made from 1-8 muscles at a time, on separate days from neural 511 

recordings. We often made multiple recordings for a given muscle, especially those that we previously 512 

noted could display responses that vary with recording location (e.g., the deltoid). 513 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Preprocessing and PCA 

Many of our analyses employ PCA, either as a denoising step or as an essential aspect of the analysis. 514 

Because PCA seeks to capture variance, it can be disproportionately influenced by differences in firing 515 

rate range (e.g., a neuron with a range of 100 spikes/s has 25 times the variance of a similar neuron with 516 

a range of 20 spikes/s). This concern is larger still for EMG, where the scale is arbitrary and can differ 517 

greatly between recordings. The response of each neuron / muscle was thus normalized prior to 518 

application of PCA. EMG data were fully normalized: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ≔ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒/𝑟𝑎𝑛𝑔𝑒(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒), where 519 

the range is taken across all recorded times and conditions. Neural data were ‘soft’ normalized: 520 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ≔ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒/(𝑟𝑎𝑛𝑔𝑒(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) + 5). We standardly38,46,49 use soft normalization to 521 

balance the desire for PCA to explain the responses of all neurons with the desire that weak responses 522 

not contribute on an equal footing with robust responses. Soft normalization is also helpful for other 523 

analyses (e.g,. of response distance) to avoid results being dominated by a few high-firing-rate neurons. 524 

To perform PCA, neural data were formatted as a ‘full-dimensional’ matrix, 𝑋𝑓𝑢𝑙𝑙 , of size 𝑛 × 𝑡, 525 

where 𝑛 is the number of neurons (or muscles) and 𝑡 indexes across the analyzed times and conditions. 526 

PCA was used to find the PCs, 𝑉, and a reduced-dimensional version of the data, 𝑋, such that 𝑋𝑓𝑢𝑙𝑙 ≈527 

𝑉𝑋, where 𝑉 are the PCs (‘dimensions’ upon which the data are projected). The set of times and 528 

conditions considered varied by analyses. We always employed enough PCs to capture the majority of 529 

the data variance for all populations. For example, for analyses of divergence, we employed twelve PCs, 530 

which captured an average of 89% and 87% of the data variance in M1 and SMA respectively.   531 

 

Response distance  

Response distance assesses the degree to which the population response is different for the response 532 

on two different cycles (either within a seven-cycle movement, or between seven-cycle and four-cycle 533 

movements of the same type). Response distance was computed after using PCA to denoise responses. 534 

For each population, we replaced the recorded estimate of firing rate with a denoised estimate of firing 535 

rate reconstructed from the top twelve PCs. This use of PCA denoises the response of each neuron 536 

based on the commonalities present across the entire population.  537 

Response distance – the root-mean-squared difference in the firing rate of each neuron – after 538 

denoising is equivalent to the distance in PCA space. Thus, for practical purposes response distance was 539 
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computed in this manner. Results were virtual identical if PCA was not used to denoise the data, except 540 

that sampling error slightly inflated all response distances (due to sampling error, even cycles with truly 541 

identical responses would not show a zero response distance). 542 

We also wished to ensure that response distance was not inflated if two cycles had similar responses but 543 

different durations. This is of little concern when comparing among steady-state cycles (duration was 544 

highly stereotyped) but becomes a concern when comparing an initial-cycle response with a steady-545 

state cycle response. To avoid misalignment, the response on each cycle was scaled to have the same 546 

duration, with the angular position matched at all times. After alignment, response distance is zero if 547 

two responses are the same except for their time-course. 548 

Comparisons were made within a given seven-cycle condition and between seven-cycle and four-cycle 549 

conditions. Comparisons were always made between conditions of the same type (i.e., the same cycling 550 

direction and starting position). Response distances were normalized by response magnitude (the root-551 

mean-squared difference in firing rate from its mean) within a steady-state cycle of the same condition 552 

type. For simplicity, we chose the fourth cycle of the seven-cycle movement.  553 

 

Subspace overlap 

Subspace overlap was used to measure the degree to which the population response occupied different 554 

neural dimensions on different cycles (different cycles within a distance, or between distances). 555 

Subspace overlap was always computed for a pair of cycles: a reference cycle and a comparison cycle. 556 

PCA was applied to the population response for the reference cycle, to obtain six cycle-specific PCs. 557 

These are the dimensions that best capture the response on that cycle, during that particular distance, 558 

cycling direction, and starting position. The population response for the comparison cycle was then 559 

projected onto those PCs, and the variance captured was computed. This variance was normalized by 560 

the variance captured if comparison-cycle data were projected onto ‘native’ PCs, computed from the 561 

comparison cycle population response. The resulting ‘subspace overlap’ is thus unity if the population 562 

response on the reference and comparison cycles occupies the same dimensions (i.e., are spanned by 563 

the same PCs). 564 

To test for statistical significance, we used a bootstrap procedure. For each population, we resampled all 565 

neurons with replacement and repeated the analysis. Resampling was performed 1000 times. For 566 
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analyses that compared SMA and M1, comparison was performed across all pairs of SMA and M1 567 

bootstrapped datasets (1 million comparisons). 568 

 

Trajectory Divergence 

Consider times 𝑡 and 𝑡′. These times could occur within the same movement. E.g., 𝑡 could be a time near 569 

the middle of the movement and 𝑡′ could be a time near the end. The two times could also occur for 570 

different distances within the same condition type. E.g., if we consider forward cycling that starts at the 571 

top, 𝑡 could occur during a two-cycle movement and 𝑡′ could occur during a seven-cycle movement. 572 

Consider the associated neural states 𝒙𝑡 and 𝒙𝑡′ . The squared distance between these states is 573 

‖𝒙𝑡 − 𝒙𝑡′ ‖2. The squared distance between the corresponding neural states, some time Δ in the future, 574 

is ‖𝒙𝑡+Δ − 𝒙𝑡′+Δ‖2. Divergence assess whether this future distance ever becomes large despite the 575 

present distance being small. We define the divergence for a given time, during a given condition, as: 576 

𝐷(𝑡) =  max
𝑡′,∆

‖𝒙𝑡+Δ − 𝒙𝑡′+Δ‖2

‖𝒙𝑡 − 𝒙𝑡′‖2 + 𝛼  577 

Where 𝑡′ indexes across all times within all movements of the same type, and Δ indexes from one to the 578 

largest time that can be considered: min (𝑇 − 𝑡,  𝑇′ − 𝑡′) where 𝑇 is the duration of the condition 579 

associated with time 𝑡 and  𝑇′ is the duration of the condition associated with time  𝑡′. The states 𝒙 are 580 

rows from the matrix 𝑋, after application of PCA. PCA was applied to a matrix 𝑋𝑓𝑢𝑙𝑙  that contained data 581 

from 100 ms before movement onset until 100 ms after movement ended, for all movements of the 582 

type being considered (e.g., all four distances for forward cycling starting at the top). We employed a 583 

twelve-dimensional 𝒙 (i.e., the projection onto the top twelve PCs). Results were not sensitive to the 584 

choice of dimensionality; divergence was always much lower for SMA versus M1. This was also true if we 585 

did not employ PCA at all, but simply used 𝑋𝑓𝑢𝑙𝑙 . That said, we still preferred to use PCA as a 586 

preprocessing step. Reducing dimensionality makes analysis much faster, and denoising reduces 587 

concerns about the denominator fluctuating due to sampling error. To ensure the denominator was well 588 

behaved (e.g., did not become too close to zero) we also included the constant 𝛼, set to 0.01 times the 589 

variance of 𝑋. Results were essentially identical across a range of reasonable values of 𝛼. For our 590 

primary analysis, divergence was measured separately for each of the four condition types. Thus, 𝑡′ 591 

indexes across times and across distances within the same condition type. The same effect held (SMA 592 

divergence lower than M1 divergence) if 𝑡′ indexed across all other conditions (Supp Fig 8). 593 
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Recurrent Neural Networks 

We trained recurrent neural networks to produce four and seven cycles of a sinusoid in response to 594 

external inputs. A network consisted of 𝑁 =  50 firing-rate units with dynamics: 595 

𝜏
𝑑𝐫
𝑑𝑡 = −𝐫(𝑡) + 𝑓(𝐴𝐫 + 𝐈(𝑡) + 𝐛) 596 

𝑧 = 𝐰out
T 𝐫 597 

where 𝜏 is a time-constant, 𝐫 represents an 𝑁-dimensional vector of firing rates, 𝑓 ≔ tanh is a nonlinear 598 

input-output function, 𝐴 is an 𝑁 × 𝑁 matrix of recurrent weights, 𝐈(𝑡) represents time-varying external 599 

input, and 𝐛 is a vector of constant biases. The network output 𝑧 is a linear readout of the rates. Both 𝐴 600 

and 𝐰out were initially drawn from a normal distribution of zero mean and variance 1/𝑁. 𝐛 was 601 

initialized to zero. Throughout training, 𝐴, 𝐰out, and 𝐛 were modified. 602 

Context-tracking networks were trained to generate a four-cycle versus seven-cycle output after 603 

receiving a short go pulse (a square pulse that lasts for half a cycle duration prior to the start of the 604 

output) without the benefit of a stopping pulse. For context-tracking networks only, go pulses were 605 

different depending on whether four or seven cycles should be produced. The two go pulses were 606 

temporally identical, but entered the network through different sets of random input weights; 𝐈(𝑡) =607 

𝐰4𝐼(𝑡) or 𝐈(𝑡) = 𝐰7𝐼(𝑡), where 𝐼(𝑡) is a square pulse of unit amplitude. 608 

Context-naïve networks received both a go pulse and a stop pulse.  Go and stop pulses were 609 

distinguished by entering the network through different sets of random input weights; 𝐈(𝑡) = 𝐰go𝐼(𝑡) 610 

or 𝐈(𝑡) = 𝐰stop𝐼(𝑡). Go and stop pulses were separated by an appropriate amount of time to compete 611 

the desired number of cycles. We only analyzed outputs when go and stop pulses were separated by 612 

four or seven cycles. Yet we did not wish context-naïve networks to learn overly specific solutions. Thus, 613 

during training, we also included trials where the network had to cycle continuously in the absence of a 614 

stop-pulse. This ensured that context-naïve networks learned a general solution; e.g., could cycle for six 615 

cycles and stop if the go and stop pulses were separated by six cycles. 616 
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We also considered a modification of context-naïve networks, that received an external timing signal. 617 

Rather than a distinct ‘stop pulse’, modified-context-naïve networks received a downward ramping 618 

input through another set of weights 𝐰ramp.  The ramping input has a constant slope but different 619 

starting values for different numbers of desired cycles.  The end of the cycling period in this case was 620 

indicated by the ramp signal reaching zero. 621 

In all three cases, networks were trained using back-propagation-through-time50 using TensorFlow and 622 

an Adam optimizer to adjust 𝐴, 𝐰out, and 𝐛 to minimize the squared difference between the network 623 

output 𝑧 and the sinusoidal target function.   All the input weights, 𝐰4, 𝐰7, 𝐰go, 𝐰stop and 𝐰ramp, were 624 

drawn from a zero-mean unit-variance normal distribution and remain fixed throughout training. The 625 

amplitude of pulses and cycles were set to a value that produced a response but avoided saturating the 626 

units. The height of the ramp signal was set to the same amplitude as the input pulses for the 627 

sevenendnot-cycle condition. For each condition, we trained 500 networks, each initialized with a 628 

different realization of 𝐴 and 𝐰out.  629 

Trajectory-constrained Neural Networks 

To test the computational implications of trajectory divergence, we trained recurrent neural networks 630 

with an atypical approach. Rather than training networks to produce an output, we trained them to 631 

autonomously follow a target internal trajectory38,51. We then asked whether networks were able to 632 

follow those trajectories from beginning to end, without the benefit of any inputs indicating when to 633 

stop. 634 

Target trajectories were derived from neural recordings (M1, and SMA) during the four-cycle 635 

movements for each of the four condition types (forward-bottom-start, forward-top-start, backward-636 

bottom-start, backward-top-start). Target trajectories spanned the time period from movement onset 637 

until 250 ms after movement offset. To emphasize that the network should complete the trajectory and 638 

remain in the final state, we extended the final sample of the target trajectory for an additional 500 ms. 639 

To obtain target trajectories, neural data were mean-centered and projected onto the top six PCs 640 

(computed for that condition). Each target trajectory was normalized by its greatest norm (across 641 

times). We trained a total of eighty networks, each with a different weight initialization. The eighty 642 

networks included ten each for the two cortical areas, two monkeys, and four condition types. 643 

Network dynamics were governed by: 644 
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𝒗(𝑡 + 1)  = 𝒗(𝑡) + ∆𝑡/𝜏 (−𝒗(𝑡) + 𝐴 𝑓(𝒗(𝑡)) + 𝒘(𝑡)) 645 

With the learning rule for synaptic input trajectories: 646 

𝐴𝑓(𝒗(𝑡)) ≈ 𝒔targ(𝑡) = 𝐺𝒚targ(𝑡) 647 

where 𝑓 ≔ tanh, and 𝒘~𝒩(𝟎, 𝜎𝑤
2 𝐼) adds noise. 𝒗 can be thought of as the membrane voltage and 648 

𝑓(𝒗(𝑡)) as the firing rate. 𝐴𝑓(𝒗(𝑡)) is then the network input to each unit: the firing rates weighted by 649 

the connection strengths. 𝐴 was initialized such that 𝐴𝑖𝑗 ∼ 𝒩(0, 1
√𝑁

) and trained using recursive least 650 

squares.  𝒚targ is the six-dimensional target trajectory. 𝐺 is an 𝑁 × 6 matrix of random weights, sampled 651 

from 𝒰[−.5, .5], that maps the target trajectory onto a target input of each model unit. The entries of 𝐴 652 

were initialized by draws from a centered normal distribution with variance 1/𝑁 (where 𝑁 =  50, the 653 

number of network units). Simulation employed 4 ms time steps. 654 

To begin a given training epoch, the initial state was set with 𝒗(0) based on 𝒔targ(0) and 𝐴.  The 655 

network was simulated, applying recursive least squares52 with parameter 𝛼 = 1 to modify 𝐴 as time 656 

unfolds. After 1000 training epochs, stability was assessed by simulating the network 100 times, and 657 

computing the mean squared difference between the actual and target trajectory. That error was 658 

normalized by the variance of the target trajectory, yielding an 𝑅2 value. An average (across the 100 659 

simulated trials) 𝑅2 < 0.9 was considered a failure. 660 

Because population trajectories never perfectly repeated, it was trivially true that networks could follow 661 

the full trajectory, for both M1 and SMA, in the complete absence of noise (i.e., for 𝜎𝑤 = 0). For the 662 

larger value of 𝜎𝑤 used for our primary analysis, all networks failed to follow the M1 trajectories while 663 

most networks successfully followed the SMA trajectories (though there were still some network 664 

initializations that never resulted in good solutions). It is of course unclear what value of 𝜎𝑤 is 665 

physiologically relevant. We therefore also performed an analysis where we swept the value of 𝜎𝑤 until 666 

failure. The level of noise that was tolerated was much greater when networks followed the SMA 667 

trajectories. Indeed, some M1 trajectories (for particular conditions) could never be consistently 668 

followed even at the lowest noise level tested.  669 

To visualize network activity (Fig 8 b-d) we ‘decoded’ the network population. To do so, we 670 

reconstructed the first three dimensions of the trajectory (which should match the first three 671 

dimensions of the target trajectory) by inverting 𝐺. 672 
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Figure 1. Task schematic, behavior, and muscle activity during cycling. 
a) Schematic of the cycling task. Monkeys grasped a hand pedal and cycled through a virtual 
environment for a number of cycles prescribed by target distance. The schematic illustrates forward 
cycling, instructed by a green environment. Backward cycling was instructed by an orange, 
desert-like environment.
b) Trial-averaged hand velocity (vertical and horizontal) for seven-cycle, four-cycle, two-cycle and 
one-cycle movements. Data are for forward cycling, starting at cycle’s bottom (monkey C). Vertical 
velocity traces are colored from tan to black to indicate time with respect to the end of movement. 
Black dots indicate the time of target appearance. Gray box with shading indicates the period of 
time where the pedal was moving (preceding go cue is not shown). Shading indicates vertical hand 
position; light shading indicates cycle apex. Tick marks indicate cycle divisions (used for analysis, 
and not an overt aspect of the task or behavior). Task schematic panels (right) indicate how target 
distance indicated the number of cycles to be produced.
c) Muscle activity, recorded from the medial head of the triceps (monkey D). Intra-muscularly 
recorded voltages were rectified, filtered, and trial averaged. Data are shown for the four distances, 
backward cycling, starting at cycle’s top. Same plotting conventions as in b. Labels at top indicate, 
for the seven-cycle movement, the initial cycle, the terminal cycle, and the intervening steady-state 
cycles.
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Figure 2. Responses of example neurons.
a-c) Firing rates for three example M1 neurons. Same plotting conventions as in Fig. 1c. The label in 
each panel indicates the region, monkey (C or D), and the cycling direction for which the data were 
recorded. All data are for conditions where cycling started from the bottom position. All calibrations 
are 40 spikes/s. Gray envelopes around each trace (typically barely visible) give the standard error of 
the mean.  
d-f) Firing rates for three SMA neurons. Same format as (a-c).
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Figure 3. SMA responses show greater cycle-to-cycle differences 
a) Histogram of the proportion of firing-rate power <1 Hz during steady state cycling. Because cycling occurred at ~2 Hz, power 
below 1 Hz corresponds to slower across-cycle changes such as firing-rate ramps. For each neuron, power was computed for each of 
the 7-cycle conditions (two cycling directions by two starting positions). Power was computed after mean centering (ensuring no 
power at 0 Hz). The proportion of power < 1 Hz was then averaged across conditions to yield one value per neuron. Data are for 
monkey C.
b) Same for monkey D.
c) Matrices of response distances when comparing cycles within a seven-cycle movement. For each comparison (e.g., cycle two versus 
cycle three) normalized response distance was computed for each of the four conditions (forward and backward cycling, starting at 
the top and bottom) and then averaged across conditions. Data are for monkey C. Note that the matrix is symmetric; response 
distance between cycle two and three is the same as between three and two. The diagonal is necessarily zero; the response on cycle 
three cannot differ from itself when compared within a seven-cycle movement.
d) Matrices of response distances when comparing seven-cycle and four-cycle movements. Data are for monkey C. Matrices are not 
symmetric (they are not even square) and there is no diagonal of values that are necessarily zero.
e) Same as panel c, but for monkey D.
f) Same as panel d, but for monkey D.
g) Response distance for SMA versus M1 for all comparisons among steady-state cycles. This includes comparisons within seven-cycle 
movements (circles) and between seven-cycle and four-cycle movements (triangles). Each symbol corresponds to one comparison; 
e.g., the third cycle of a four-cycle movement with the fourth cycle of a seven-cycle movement. Data for each condition (different 
cycling directions and starting positions) are plotted separately. For each of the four conditions, there are ten total comparisons 
within the seven-cycle movement, and an additional ten when comparing seven- and four-cycle movements, resulting in eighty total 
comparisons. Red triangles highlight comparisons between cycles equidistant from movement end: six-of-seven versus three-of-four 
and five-of-seven versus two-of-four. Green triangles highlight comparisons between cycles equidistant from movement beginning: 
two-of-seven versus two-of-four and three-of-seven versus three-of-four. Data are for monkey C.
h) Same for monkey D.
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Figure 4. Visualization of population trajectories
a) M1 population trajectory corresponding during a seven-cycle movement (cycling forward from the 
bottom). The trajectory at top is the projection onto the top three PCs, and is shown from 1500 ms before 
movement onset until 500 after. The trajectory is shaded from tan (movement beginning) to black (move-
ment end). PCs were found using all four seven-cycle conditions, using data from 200 ms before movement 
onset until 200 ms after movement ended (narrower than the plotted range, to prioritize dimensions that 
capture movement-related activity). Small plots at bottom show projections of each steady-state cycle 
(~500 ms of data) onto the first two PCs, founding using data from that cycle alone (with different PCs used 
for each steady-state cycle). This reveals the dominant structure on that cycle. Labels indicate cycle number 
(2-6).
b) Same for monkey D, data corresponds to seven-cycle forward, top-start condition.
c) SMA population trajectory for monkey C, corresponding to the same condition as in panel a. Analysis and 
plotting conventions are the same as for the analysis of M1.
d) SMA population trajectory for monkey D, corresponding to the same condition as in panel b. Analysis 
and plotting conventions are the same as for the analysis of M1.
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Figure 5. Subspace overlap between responses on different cycles
a) Matrices of subspace overlap when comparing cycles with a seven-cycle movement. Each matrix entry shows 
subspace overlap for one comparison. Matrix rows indicate the cycle used to find the PCs, and matrix columns indicate 
the cycle for which the variance captured is computed. For example, the entry in the second column / first row was 
found by projecting the population response for the second cycle onto the PCs found based on the first cycle. Data are 
averaged across conditions (two pedaling directions and two starting positions). Data are for monkey C. Diagonal 
entries necessarily have unity values, but matrices are not enforced to be symmetric (the subspace overlap measure is 
not symmetric).
b) Subspace overlap when comparing between seven-cycle and four-cycle movements. Data are for monkey C.
c) Same as panel a but for monkey D.
d) Same as panel b but for monkey D.
e) Subspace overlap for SMA versus M1 for all comparisons among steady-state cycles, both within seven-cycle 
movements (circles) and between seven-cycle and four-cycle movements (triangles). Each symbol corresponds to one 
comparison; e.g., the third cycle of a four-cycle movement with the fourth cycle of a seven-cycle movement. Data for 
each condition (different cycling directions and starting positions) are plotted separately. For each of the four 
conditions there are twenty within-seven-cycle comparisons (every steady-state cycle with every other steady-state 
cycle, excluding itself ) and ten seven-versus-four-cycle comparisons. Red triangles highlight comparisons between 
cycles equidistant from movement end: six-of-seven versus three-of-four and five-of-seven versus two-of-four. Green 
triangles highlight comparisons between cycles equidistant from movement beginning: two-of-seven versus 
two-of-four and three-of-seven versus three-of-four. Data are for monkey C.
f) Same for monkey D.
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Figure 6. Trajectory geometry and divergence in simulated networks. 
a) Population trajectories for three example context-naïve networks during the four-cycle condition. For all 
examples, lower-left, lower-right, and vertical axes correspond to PC1, PC2, and PC3 respectively. 
b) Population trajectories for three example context-tracking networks. 
c) Trajectory divergence for context-tracking networks versus context-naïve networks. Comparison involves 500 
networks of each type, paired arbitrarily. Each dot plots Dtracking versus  Dnaïvefor one time during one pairing. Blue 
line indicates unity.
d) Distribution of the differences in trajectory divergence between context-naïve and context tracking networks. 
Same data as in panel c, but for each time / network pair we computed Dtracking – Dnaïve.
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Figure 7. Trajectory divergence in M1 and SMA
a) Trajectory divergence for SMA versus M1 (monkey C). Each dot corresponds to one time 
during one condition. Divergence was computed considering all times for all conditions within a 
given starting position / pedaling direction. Data for all conditions is then plotted together. Blue 
tick mark on the vertical axis denotes 90th percentile trajectory divergence for SMA. Black tick 
mark along the horizontal axis denotes 90th percentile trajectory divergence for M1. 
b) Same for monkey D
c) Distribution of the differences in trajectory divergence between SMA and M1 for monkey C. 
Same data as in panel a, but for each time / condition we computed the difference in divergence.
d) Same for monkey D
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Figure 8. Example behavior of networks trained to follow the empirical M1 or SMA population trajectory.
a) Illustration of the trajectory-constrained neural networks. Networks were trained to autonomously follow a 
target trajectory defined by the top six PCs of the empirical population trajectory, during a four-cycle 
movement, from movement onset until 250ms after movement offset. Dashed lines show the target trajectory 
for three PCs for one example: the M1 trajectory for monkey D, cycling backward starting at the bottom. The 
activity of every neuron in the network was trained to follow a random combination of the projection onto the 
top six PCs. This ensured that the simulated population trajectory matched the empirical trajectory.
b) Example target (dashed) and produced (solid) network trajectories on one trial, after training is complete. 
Target trajectory was the empirical M1 trajectory. The trajectory produced by the network initially matches the 
target, but continues ‘cycling’ past when it should have ended. This resulted in an R2 (variance in the target 
accounted for by the produced trajectory) considerably below unity. 
c) As in panel b, but for an example trial where the opposite error was made: the network trajectory stops 
cycling earlier than it should have. This trajectory is produced by the same network as in b, and is attempting to 
match the same target. The only difference is the additive noise on that particular trial.
d) Example target (dashed) and produced (blue) network trajectories on one trial for a network trained to 
produce the empirical SMA trajectory. The level of additive noise was the same as for the network in panels b 
and c, but the network does not fail to follow the trajectory to the end. 
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Supplementary Figure 1. Cycle-to-cycle analysis of subspace overlap in twelve dimensions
Same as Figure 5 but the analysis considered the top twelve PCs. Results are very similar.
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Supplementary Figure 2 . Additional examples of context-naïve network trajectories
Format as for Figure 6a. Nine examples of context-naïve networks trained with 
different initializations. Activity corresponds to the four-cycle condition.
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Supplementary Figure 3 . Additional examples of context-tracking 
Format as for Figure 6b. Nine examples of context-tracking networks trained with 
different initializations. Activity corresponds to the four-cycle condition.
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Supplementary Figure 4. Examples of context-tracking networks trained with a ramping input
Format as for Figure 6b. Nine examples of context-tracking networks trained with different 
initializations in the presence of a ramping input.  
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Supplementary Figure 5. Neural versus muscle population trajectory tangling. 
a) Neural trajectory tangling versus muscle trajectory tangling (as in Russo et al. 2018) for SMA (blue) 
and M1 (gray). Both cortical areas show very low trajectory tangling relative to the muscle population 
trajectories. Data for monkey C.
b) Same as panel a but for monkey D. 
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Supplementary Figure 7. SMA trajectory divergence is low relative to muscle trajectory divergence.
a) Format as for Figure 7a,b. Blue dots plot SMA trajectory divergence versus trajectory divergence 
for the muscle population. The orange tick on the horizontal axis plots the 90th percentile of 
trajectory divergence for the muscle population. The blue tick on the vertical axis plots the same 
for SMA. SMA trajectory divergence is much lower than muscle trajectory divergence. Black dots 
plot M1 trajectory divergence versus trajectory divergence for the muscle population. The black 
tick on the vertical axis plots the 90th percentile of trajectory divergence for M1. This is modestly 
lower than for the muscles. Data are for monkey C.
b) Same but for monkey D.
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Supplementary Figure 8. Trajectory divergence in M1 and SMA computed by indexing across all conditions.
The analyses of divergence in Figure 7a,b indexed t' across all times within conditions of the same type: 
e.g., across the four distances when cycling forward starting from the top. Those analyses thus assessed 
whether SMA trajectories track contextual factors related to the number of cycles to be performed. If SMA 
does so, divergence will be low. One can also ask whether trajectory divergence remains low when 
considered across all conditions. For example, is SMA activity during steady-state cycles different 
depending on whether the movement started at the bottom (and will thus end at the bottom) or started 
at the top (and will thus end at the top). Steady state cycles for bottom-start and top-start conditions have 
essentially identical patterns of muscle activity, but future muscle activity (on the last cycle and after 
stopping) will be different. To ask whether divergence remains low when considering all conditions 
(including both cycling directions) together, the present analysis indexes t' across all times within all 
conditions. Same plotting format as Figure 7a,b. Left and right panels plot data for monkeys C and D.
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