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Abstract

Widefield calcium imaging enables recording of large-scale neural activity
across the mouse dorsal cortex. In order to examine the relationship of these
neural signals to the resulting behavior, it is critical to demix the recordings
into meaningful spatial and temporal components that can be mapped onto
well-defined brain regions. However, no current tools satisfactorily extract
the activity of the different brain regions in individual mice in a data-driven
manner, while taking into account mouse-specific and preparation-specific
differences.

Here, we introduce Localized semi-Nonnegative Matrix Factorization (Lo-
caNMF), a method that efficiently decomposes widefield video data and
allows us to directly compare activity across multiple mice by outputting
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mouse-specific localized functional regions that are significantly more inter-
pretable than more traditional decomposition techniques. Moreover, it pro-
vides a natural subspace to directly compare correlation maps and neural
dynamics across different behaviors, mice, and experimental conditions, and
enables identification of task- and movement-related brain regions.

Author summary

While recording from multiple regions of the brain, how does one best
incorporate prior information about anatomical regions while accurately rep-
resenting the data? Here, we introduce Localized semi-NMF (LocaNMF), an
algorithm that efficiently decomposes widefield video data into meaningful
spatial and temporal components that can be decoded and compared across
different behavioral sessions and experimental conditions. Mapping the in-
ferred components onto well-defined brain regions using a widely-used brain
atlas provides an interpretable, stable decomposition. LocaNMF allows us to
satisfactorily extract the activity of the different brain regions in individual
mice in a data-driven manner, while taking into account mouse-specific and
preparation- specific differences.

Introduction

A fundamental goal in neuroscience is to simultaneously record from as
many neurons as possible, with high temporal and spatial resolution (1).
Unfortunately, tradeoffs must be made: high-resolution recording methods
often lead to small fields of view, and vice versa. Widefield calcium imaging
(WFCI) methods offer a compromise: this approach offers a global view of
the (superficial) dorsal cortex, with temporal resolution limited only by the
activity indicator and camera speeds. Single-cell resolution of superficial
neurons is possible using a “crystal skull” preparation (2) but simpler, less
invasive thinned-skull preparations that provide spatial resolution of around
tens of microns per pixel have become increasingly popular (2; 3; 4; 5; 6; 7;
8; 9; 10; 11; 12; 13; 14); of course there is also a large relevant literature on
widefield voltage and intrinsic signal imaging (15; 16; 17; 18).

How should we approach the analysis of WFCI data? In the context of
single-cell-resolution data, the basic problems are clear: we want to denoise
the CI video data, demix this data into signals from individual neurons, and
then in many cases it is desirable to deconvolve these signals to estimate the
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underlying activity of each individual neuron; see e.g. (19) and references
therein for further discussion of these issues.

For data that lacks single-neuron resolution, the relevant analysis goals re-
quire further reflection. One important goal (regardless of spatial resolution)
is to compress and denoise the large, noisy datasets resulting from WFCI ex-
periments, to facilitate downstream analyses (20). Another critical goal is to
decompose the video into a collection of interpretable signals that capture all
of the useful information in the dataset. What do we mean by “interpretable”
here? Ideally, each signal we extract should be referenced to a well-defined
region of the brain (or multiple regions) – but at the same time the decompo-
sition approach should be flexible enough to adapt to anatomical differences
across animals. The extracted signals should be comparable across animals
performing the same behavioral task, or presented with the same sensory
stimulus; at the very least the decomposition should be reproducible when
computed on data collected from different comparable experimental blocks
from the same animal.

Do existing analysis approaches satisfy these desiderata? One common
approach is to define regions of interest (ROIs), either automatically or man-
ually, and then to extract signals by averaging within ROIs (7). However, this
approach discards significant information outside the ROIs, and fails to demix
multiple signals that may overlap spatially within a given ROI. Alternatively,
we could apply principal components analysis (PCA), by computing the sin-
gular value decomposition (SVD) of the video (8). The resulting principal
components serve to decompose the video into spatial and temporal terms
that can capture the majority of available signal in the dataset. However,
these spatial components are typically de-localized (i.e., they have support
over the majority of the field of view, instead of being localized to well-defined
brain regions). In addition, the vectors output by SVD are constrained to be
orthogonal by construction, but there is no a priori reason to expect this or-
thogonality constraint to lead to more interpretable or reproducible extracted
components. Indeed, in practice SVD-based components are typically not re-
producible across recording sessions from the same animal: the PCs from one
session may look very different from the PCs from another session (though
the vector subspace spanned by these PCs may be similar across sessions).
Non-negative matrix factorization (NMF) is a decomposition approach that
optimizes a similar cost function as SVD, without orthogonality constraints
but with additional non-negativity constraints on the spatial and/or tem-
poral components (21; 6); unfortunately, as we discuss below, many of the
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same criticisms of PCA also apply to NMF. Finally, seed-pixel correlation
maps (7) provide a useful exploratory approach for visualizing the correlation
structure in the data, but do not provide a meaningful decomposition of the
full video into interpretable signals per se.

In this work we introduce a new approach to perform a localized, more
interpretable decomposition of WFCI data. The proposed approach is a
variation on classical NMF, termed localized semi-NMF (LocaNMF), that
decomposes the widefield activity by (a) using existing brain atlases to ini-
tialize the estimated spatial components, and (b) limiting the spread of each
spatial component in order to obtain localized components. We provide
both CPU and GPU implementations of the algorithm in the code here.
Running LocaNMF allows us to efficiently obtain temporal components lo-
calized to well-defined brain regions in a data-driven manner. Empirically,
we find that the resulting components satisfy the reproducibility desiderata
described above, leading to a more interpretable decomposition of WFCI
data. In experimental data from mice expressing different calcium indicators
and exhibiting a variety of behaviors, we find that (a) spatial components
and temporal correlations (measured over timescales of tens of minutes) are
consistent across different sessions in the same mouse, (b) the frontal areas
of cortex are consistently useful in decoding the direction of licks in a spatial
discrimination task, and (c) the parietal areas of cortex are useful in decod-
ing the movements of the paws during the same task. We begin below by
describing the model, and then describe applications to a number of datasets.

Results

Model

Here, we summarize the critical elements of the LocaNMF approach that
enable the constrained spatiotemporal decomposition of WFCI videos; full
details appear in the Methods section. Our proposed decomposition approach
takes NMF as a conceptual starting point but enforces additional constraints
to make the extracted components more reproducible and interpretable. Our
overall goal is to decompose the denoised, hemodynamic-corrected, motion-
corrected video Y into Ŷ = AC, for two appropriately constrained matrices
A = {ak} and C = {ck} (Figure 1). In more detail, we model

Ŷ (n, t) =
∑
k

ak(n)ck(t), (1)

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/650093doi: bioRxiv preprint 

https://github.com/ikinsella/locaNMF
https://doi.org/10.1101/650093


~
x

+ x

a1

+ x...

ak  : spatial component
ck : temporal component

~

c1

a2 c2

aK cK

Figure 1: Overview of LocaNMF: a decomposition of the WFCI video into spatial com-
ponents A and temporal components C, with the spatial components soft-aligned to an
atlas, here the Allen Institute Common Coordinate Framework (CCF) atlas.

i.e., we are expressing Ŷ as the sum over products of spatial components
ak and temporal components ck. It is understood that each imaged pixel
n in WFCI data includes signals from a population of neurons visible at n,
which may include significant contributions from neuropil activity (22). Here,
we assume that the term ak(n) represents the density of calcium indicator at
pixel n governed by temporal component k, and is therefore constrained to be
non-negative for each n and k. Y , on the other hand, corresponds directly to
the mean-adjusted fluorescence of every pixel (∆F/F ), and as such may take
negative values. Therefore, we do not constrain the temporal components C
to be non-negative. Note that we are not making any assumption here about
the cellular compartmental location of this calcium indicator density (e.g.,
somatic versus neuropil). For example, if the indicator is localized to the
neuropil (or if the neuropil of the labeled neural population is superficial but
the cell bodies are located more deeply), then a strong spatial component
ak in a given brain region may correspond to somatic activity in a different
brain region.

The low-rank decomposition of Y into a non-negative spatial A matrix
and a corresponding temporal C matrix falls under the general class of “semi-
NMF” decomposition (23). However, as detailed below, the components
that we obtain using this decomposition are not typically interpretable; the
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spatial components can span the entire image due to the spatial correlations
in the data. (Similar comments apply to principal components analysis or
independent components analysis applied directly to Y ). To extract more
interpretable components as well as to compare activity across sessions and
subjects, we would like to match each of them to a well-defined brain region.
This corresponds to each component ak being sparse, but in a very specific
way, i.e., sparse outside the functional boundaries of a specific region. We
use the Allen CCF brain atlas (24) to guide us while determining the initial
location of the different brain regions, and constrain the spatial components
to not stray too far from these region boundaries by including an appropriate
penalization as we minimize the summed square residual of the factorization.
Note that a different brain atlas could easily be swapped in here to replace
the Allen CCF atlas, if desired.

To develop this decomposition, we first introduce some notation. We
provide a summary of the notation in Table 1. We use a 2D projection
of the Allen CCF map here, as in (8), which is partitioned into J disjoint
regions Π = {π1, · · · , πJ}. Using LocaNMF, we identify K components.
Specifically, each atlas region j gets kj components, possibly corresponding
to different populations displaying coordinated activity, and K :=

∑
j kj.

Each component k maps to a single atlas region.
We solve the following optimization problem, where Y ∈ RN×T :

minA,C ‖Y − AC‖2
F (2)

s.t. A ≥ 0, ‖ak‖∞ = 1 ∀k ∈ [1, K], A ∈ RN×K (3)

C ∈ RK×T (4)
N∑
n=1

|dk(n)ak(n)|2 ≤ Lk ∀k ∈ [1, K], (5)

where N is the number of pixels and T the number of frames in the video,
‖ak‖∞ signifies maxn |ak(n)|, and Eq. 5 signifies a L2 distance penalty term,
where dk(n) quantify the smallest euclidean distance from pixel n to the atlas
region corresponding to component k. {Lk} are constants used to enforce
localization.

Application to simulated data

We begin by applying LocaNMF to decompose simple simulated data
(Figure 2). We simulate each region k to be modulated with a Gaussian
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Figure 2: LocaNMF can accurately recover the spatial and temporal components in simu-
lated WFCI data. (A) Left column: two example ground truth spatial components; Mid-
dle and Right columns: the corresponding spatial components as recovered by (Middle
column) LocaNMF; (Right column) SVD. (B) Correlation between ground truth spatial
components and those recovered by (Top) LocaNMF; (Bottom) SVD.

spatial field centered at the region’s spatial median, with a width proportional
to the size of the region. The temporal components Creal for the K regions
were simulated to be sums of sinusoids with additional Gaussian noise. Full
details about the simulations are included in the Methods.

We ran the LocaNMF algorithm with localization threshold 70% (i.e.,
at least 70% of the mass of each recovered spatial component was forced to
live on the corresponding Allen brain region; see Methods for details), and
recovered the spatial and temporal components as shown in Figure 2. We
also ran SVD for comparison, and aligned the recovered and true components
(by finding a matching that approximately maximized the R2 between the
real A matrix and the recovered A matrix). While LocaNMF recovered A
and C accurately, SVD did not; there is a poor correspondence between the
true A and the A recovered by SVD. Similar results held for vanilla NMF
(here, vanilla semi-NMF; i.e., semi-NMF with no localization constraints);
results are shown in Figure SI 1.
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Figure 3: Spatial and temporal maps of all regions in three different recording sessions
from two different mice, as found with LocaNMF. Note that LocaNMF outputs multiple
components per atlas region. Left: the first, second and third component extracted from
each region provided in each row, colored by region. Right: The trial-averaged temporal
components for Session 1, Mouse 1 (aligned to lever grab), with the same color scheme as
the spatial components. Link to a decomposed video of one trial here.

Application to experimental data

Next we applied LocaNMF to two real WFCI datasets. Data type (1)
consisted of WFCI videos of size [540×640×T ], with T ranging from 88, 653
to 129, 445 time points (sampling rate of 30Hz), from 10 mice expressing
GCaMP6f in excitatory neurons. For each mouse, we analyzed movies from
two separate experimental sessions recorded over different days. LocaNMF
run on one GPU card (NVIDIA GTX 1080Ti) required a median of 29 min-
utes per session (on recordings of median length 1 hour) for this dataset.
Data type (2) consisted of WFCI videos of size [512× 512× 5990] (sampling
rate of 20Hz) from two sessions from one Thy1 transgenic mouse expressing
jRGECO1a. See the Methods section for full experimental details. Unless
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mentioned explicitly, the analyses below are performed on data type (1).
We show an example LocaNMF decomposition for one trial with the

mouse performing a visual discrimination task in this video, with localiza-
tion threshold 80%. This shows the denoised brain activity for reference,
and the modulation of the first two components LocaNMF extracted from
each region, with different regions assigned different colors. We also display
the rescaled residual as the normalized squared error between the denoised
video and the LocaNMF reconstruction, as a useful visual diagnostic; in this
case, we perceive no clear systematic signal that is being left behind by the
LocaNMF decomposition.

In Figure 3 (left), we examine the top three components of the spatial
maps of all regions across three different sessions from two different mice; we
can see that the spatial maps are similar across sessions and mice (quantified
across sessions in Figure 6, below). The trial-averaged temporal components
on the right show modulations of a large number of components, time-locked
to task-related behavioral events during the trial, consistent with recent re-
sults (8).

Comparison with existing methods

Comparison with Region-of-Interest Analysis

We implemented a decomposition that computes the mean denoised ac-
tivity in each atlas brain region, otherwise known as a ‘region-of-interest’
(ROI) analysis with the atlas regions providing the ROIs. On a typical ex-
ample session in dataset (1), this led to a mean R2 = 0.65 (computed on the
denoised data) as compared to the corresponding LocaNMF R2 = 0.99; thus
simply averaging within brain regions discards significant signal variance.

It is important to emphasize that the spatial components we obtain using
LocaNMF are not simply confined to the atlas boundaries. To illustrate this
point, we show two spatial components of one mouse in Figure 4A that
extend past the corresponding atlas boundaries. Here, we show two spatial
components anchored to the same atlas region that have very different spatial
footprints A1 and A2, and moreover, have significantly different temporal
components C1 and C2, respectively. The temporal components are also
significantly different from Cave, which is the temporal component that is
obtained by simply averaging over the pixel-wise ∆F

F
in that atlas region (left

hand side primary visual cortex), illustrating that an ROI analysis discards
significant spatiotemporal structure present in the data.
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Figure 4: Comparison with ROI analysis. A. LocaNMF spatial components that are an-
chored to an Allen region show further specificity that may be lost if considering the
average fluorescence in the Allen region as per an ROI analysis. B. The mean number of
components recovered by LocaNMF. The bars are colored according to the cortical region
they belong in, but note that there is one bar per subregion (ex. primary somatosen-
sory cortex, right hand side upper limb). The dashed line at 1 signifies the number of
components found with an ROI analysis.

Comparison with Singular Value Decomposition

Above we noted that simple SVD does a poor job of extracting the true
spatial components from simulated data. In real data, we find that in many
cases the SVD-based components are highly de-localized in space. In Figure
5, we see an example of an SVD component that represents activity across
two distinct regions in the primary somatosensory cortex: the left hand side
lower limb region and the right hand side upper limb region. In these cases
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Figure 5: LocaNMF can capture long range correlations that are difficult to analyze via
SVD. Top left: example de-localized spatial component recovered by SVD. This component
places significant weight on multiple widely-separated brain regions. The corresponding
temporal component is shown in the lower left panel. In the same dataset, two separate
components are recovered by LocaNMF, capturing activity in each of the two distant
brain regions activity (top middle and right panels). LocaNMF recovers two separate
time courses here (lower right), allowing us to quantify the correlation between the regions
(R=0.79).

LocaNMF simply outputs multiple components with correlated temporal ac-
tivity, as shown in Figure 5. This allows us to quantify the correlations across
regions (by computing correlations across the output temporal components),
rather than just combining these activities into a single timecourse. See fig-
ures 6 and 7 for additional examples of de-localized components output by
SVD.

Comparison with vanilla NMF

LocaNMF can be understood as a middle ground between two extremes.
If we enforce no localization, we obtain vanilla NMF with an atlas initial-
ization. Alternatively, if we enforce full localization (i.e., force each spatial
component ak to reside entirely within a single atlas region), we obtain a so-
lution in which NMF is performed independently on the signals contained in
each individual atlas region. (Note that even in this case we typically obtain
multiple signals from each atlas region, instead of simply averaging over all
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pixels in the region.) Across the 20 sessions in 10 mice in dataset (1), this
fully-localized per-region NMF requires an average of 452 total components
to reach our reconstruction accuracy threshold (R2

thr = 0.99) on denoised
data, while vanilla NMF requires on average 188 components to capture
the same proportion of variance. Meanwhile, LocaNMF with a localization
threshold of 80% outputs an average of 205 components (with the same ac-
curacy threshold); thus enforcing locality on the LocaNMF decomposition
does not lead to an over-inflation of the number of components required to
capture most of the variance in the data. The results for all figures showing
SVD are also shown using vanilla NMF in the Supplementary Materials.

LocaNMF outputs localized spatial maps that are consistent across experimen-
tal sessions

When recording two different sessions over different days in the same
mouse while the mouse is performing the same behavior, it is natural to
expect to recover similar spatial maps. To examine this hypothesis, we an-
alyzed the decompositions of two different recording sessions in the same
mouse (Figure 6); we then repeated this analysis using a different mouse
from dataset (2) (Figure 7). In both datasets, LocaNMF outputs localized
spatial maps that are consistent across experimental sessions, as shown in
Figures 6C,D and 7C,D, whereas both SVD and vanilla NMF outputs com-
ponents that are much less localized and much less consistent across sessions.
The results for vanilla NMF are shown in Figures SI 3 and SI 4.

Correlation maps of temporal components show consistencies across animals

Next, we wanted to examine the relationship between the temporal ac-
tivity extracted from different mice. We apply LocaNMF to all 10 mice in
dataset (1) and examine the similarities in correlation structure in the tem-
poral activity across sessions and mice. Since LocaNMF provides us with
multiple components per atlas region, and we wish to be agnostic about
which components in one region are correlated with those in another region,
we use Canonical Correlation Analysis (CCA) to summarize the correlations
from components in one region to the components in another region. CCA
maps for four sessions of 49− 65 minutes each, from two different mice, are
shown in Figure 8A. In all sessions, the mice were engaged in either a visual
or an audio discrimination task. We see that we recover clear similarities
across CCA maps computed at the timescale of tens of minutes in different
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Figure 6: LocaNMF extracts localized spatial components that are consistent across two
recording sessions across different days (session length = 49 and 64 minutes; in each case
the mouse was performing a visual discrimination task). Example spatial components
extracted from three different regions and two different sessions for one mouse expressing
GCaMP6f, using A. SVD, and B. LocaNMF as in Algorithm 1. Note that LocaNMF
components are much more strongly localized and reproducible across sessions. Cosine
similarity of spatial components across two sessions in the same mouse using C. SVD after
component matching using a greedy search, and D. LocaNMF. As in the simulations, note
that LocaNMF components are much more consistent across sessions.
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Figure 7: LocaNMF applied to data from a mouse expressing jRGECO1a, with sessions
of length 5 minutes. Legend and conclusions similar to Figure 6.
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recording sessions, and different animals. We find that CCA maps of differ-
ent sessions in the same mouse tend to be more similar than are CCA maps
of sessions across different mice, as quantified in Figure 8C.

Event-driven temporal modulation of brain regions is consistent across mice
and is time-locked to key behavioral markers

How are the components extracted by LocaNMF related to behaviorally
relevant signals? To examine this question, we begin by examining the trial-
averaged components extracted from each region (Figure 9A). We see signif-
icant lateralized modulation of the primary visual cortex following the onset
of visual stimulation (see top row of Figure 9A for right side; similar results
for left side not shown). We also see a significant bilateral modulation of the
primary somatosensory cortex (upper limb area) time-locked to lever grab
behavior (bottom row).

Next, we take the trial-averaged response of the LocaNMF components of
each functional region while the mouse is licking the spout in the Left vs Right
direction, and form a [Direction×Components×Time] tensor. We wanted
to assess the dependence of the different regions’ activity on the lick direction,
and to quantify the consistency of this dependence across sessions. Demixed
Principal Component Analysis (25) is a method designed to separate out the
variance in the data related to trial type (e.g., lick direction) vs. variance
related to other aspects of the trial such as time from lick event. We show
the top dPCs of the trial-averaged response of the right hand side primary
somatosensory area, mouth region (SSp-m1:R), and the right hand side of
the secondary motor cortex (MOs1:R), of one mouse during two different
sessions (Figure 9 C). These can be interpreted as 1D latent variables for
the two lick directions, here capturing 87%± 4% of the variance in the trial-
averaged components. We see that these latents start modulating before lick
onset, and continue modulating well past lick onset. Moreover, we see that
the latents in these two areas modulate consistently across different sessions
before and after a lick.

Finally, we use the activity of different brain regions to decode the di-
rection of individual lick movements, i.e. the left (lickL) or right (lickR)
direction on each instance of the lick movement. The input to the decoder
on each lick instance consists of all of the temporal components from a given
brain region, from 0.67s before each lick, up to lick onset (corresponding to
21 timepoints per temporal component). We build an L2 regularized logis-
tic decoder based on this input to decode the direction of each lick (using
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Figure 8: Correlation maps of temporal components extracted by LocaNMF show con-
sistencies across sessions and animals. A. Top canonical correlation coefficient between
the temporal components of any two regions, shown for four different sessions of 49 to
64 minutes each, recorded across two mice. B. Example traces of two highly correlated
regions. C. Violin plot of mean squared difference between the correlation maps of the
20 different sessions across 10 mice; on average, within-mice differences are smaller than
across-mice differences (One-tailed t-test p = 0.0025).
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Figure 9: Brain areas show consistencies in their activity around task-related behavior,
and in their ability to decode direction of licking activity.A. The LocaNMF components
of the trial-averaged activity of the right hand side primary visual cortex (VISp) under
left and right visual stimulus, and of the primary somatosensory area, upper limb area
(SSp-ul), left and right hand sides, before and after the lever grab. Each color indicates
a different component in the same region. Standard error of the mean is shaded. B. The
top demixed Principal Component of the trial-averaged activity of the right hand side
primary somatosensory area, mouth (SSp-m1:R) and right hand side secondary motor
cortex (MOs1:R) before and after the onset of a lick to the left or right spout (onset at
time 0). Standard error of the mean is shaded. The activity around licking left or right
in both regions is consistent across the two sessions. C. Decoding accuracy on held-out
data for the direction of lick (Left vs. Right spout) using only components in a shaded
brain region. A logistic decoder was used on the time courses on data from 0.67s before
and 0.33s after the event (lick left or lick right).

5-fold cross-validation to estimate the regularization hyperparameters). For
data from held-out lick instances, we test the ability of each region’s compo-
nents to decode the lick direction (Figure 9C); we see that the frontal regions
contain significant information that can be used to decode the lick direction.
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Decoding of behavioral components quantifies the informativeness of signals
from different brain regions

Finally, we examine how the activity of different brain regions is related
to continuous behavioral variables, rather than the binary behavioral fea-
tures (i.e., lick left or right), addressed in the preceding section. We tracked
the position of each paw using DeepLabCut (DLC) (26) applied to video
monitoring of the mouse during the behavior; an example frame is shown
in Figure 10. We decoded the position of these markers using the temporal
components extracted by LocaNMF (Figure 10 Bottom). (See Methods for
full decoder details.) We found (a) that LocaNMF components are better
at decoding paw locations than ROI components (mean R2 = 0.29 with Lo-
caNMF vs. 0.22 with ROI), and (b) that temporal signals extracted from
the primary somatosensory cortex, the olfactory bulb, or the visual cortex
lead to the highest decoding accuracy (Figure 10, top right). The primary
somatosensory cortex may be receiving proprioceptive inputs resulting from
the movements of the paws, and the olfactory bulb is known to encode move-
ments of the nose which may be correlated with the movements of the paws.

Conclusion

Widefield calcium recordings provide a window onto large scale neural
activity across the dorsal cortex. Here, we introduce LocaNMF, a tool to
efficiently and automatically decompose this data into the activity of dif-
ferent brain regions. LocaNMF outputs reproducible signals and enhances
the interpretability of various downstream analyses. After having decom-
posed the activity into components assigned to various brain regions, this
activity can be directly compared across sessions and mice. For example,
we build correlation maps that can be compared across different sessions and
mice. Recently, several studies have shown the utility of having a fine-grained
gauge of behavior alongside that of WFCI activity (8; 14). We highlight that
in order to have a more complete understanding of how the cortical activity
may be leading to different behaviors, we first need an interpretable low di-
mensional space common to different animals in which the cortical activity
may be represented.

Although we used the Allen atlas to localize and analyze the WFCI ac-
tivity in this paper, LocaNMF is amenable to any atlas that partitions the
field of view into distinct regions. As better structural delineations of the
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Figure 10: Decoding paw position from WFCI signals. Top Left: One frame of the
DeepLabCut output, with decoded positions of left and right paws in blue and red. Top
right: Relative decoding accuracy when the decoder was restricted to use signals from just
one brain region, as a fraction of the R2 using all signals from all brain regions. Area
acronyms are provided in Table 2. Bottom: Decoding of DLC components using data
from all brain regions for one mouse. Link to corresponding real-time videos for a few
trials here, with DLC labels in black, and decoded paw location in blue and red for left
and right paw respectively.
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brain regions emerge, the anatomical map for an average mouse may be re-
fined. In fact, it is possible to test different atlases using the generalizability
of the resulting LocaNMF decomposition on different trials as a metric. As
potential future work, LocaNMF could also be adapted to refine the atlas
directly by optimizing the atlas-defined region boundaries to more accurately
fit functional regions.

Analyses using other imaging modalities, particularly fMRI, have also
been faced with the issue of needing to choose between interpretability (for
example, as provided by more conventional atlas-based methods) and efficient
unsupervised matrix decomposition (for example, as in PCA, independent
component analysis, NMF, etc) (27). Typically, diffusion tensor tractogra-
phy (28) or MRI (29; 30) can be used for building an anatomical atlas, and
seed-based methods are used for obtaining correlations in fMRI data. In
all these methods, a registration step is first performed on structural data
(typically, MRI), thus providing data that is well aligned across subjects.
More recently, graph theoretic measures as well as other techniques for char-
acterizing the functional connections between different anatomical regions
have become increasingly popular in fMRI (31; 32; 33); these first perform a
parcellation of the across-subject data into regions of interest (ROIs), then
average the signals in each ROI before pursuing downstream analyses. Par-
cellations combining anatomical and functional data have also been pursued
(34).

We view LocaNMF as complementary to these methods; here we perform
an atlas-based yet data-driven matrix decomposition; importantly, instead
of simple averaging of signals within ROIs we attempt to extract multiple
overlapping signals from each brain region, possibly reflecting the contribu-
tions of multiple populations of neurons in each region. One very related
study is (35), where the authors perform NMF on fMRI data, and introduce
group sparsity and spatial smoothness penalties to constrain the decompo-
sition. LocaNMF differs in the introduction of an atlas to localize the com-
ponents; this directly enables across-subject comparisons and assigns region
labels to the components (while still allowing the spatial footprints of the
extracted components to shift slightly from brain to brain), which can be
helpful for downstream analyses. Furthermore, recent studies have shown
that the spatial and temporal activity recorded from WFCI and fMRI dur-
ing spontaneous activity show considerable similarities (3; 36). Given these
conceptual similarities, we believe there are opportunities to adapt the meth-
ods we introduced here to fMRI or other three-dimensional (3D) functional
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imaging modalities (37; 38), while using a 3D atlas of brain regions to aid in
localization of the extracted demixed components. We hope to pursue these
directions in future work.

Methods

Experimental details

Data type (1). Detailed experimental details are provided in (8); we briefly
summarize the experimental procedures below.

Ten mice were imaged using a custom-built widefield macroscope. The
mice were transgenic, expressing the Ca2+ indicator GCaMP6f in excitatory
neurons. Fluorescence in all mice was measured through the cleared, in-
tact skull. The mice were trained on a delayed two-alternative forced choice
(2AFC) spatial discrimination task. Mice initiated trials by making contact
with their forepaws to either of two levers that were moved to an accessible
position via two servo motors. After one second of holding the handle, sen-
sory stimuli were presented for 600 ms. Sensory stimuli consisted of either
a sequence of auditory clicks, or repeated presentation of a visual moving
bar (3 repetitions, 200 ms each). For both sensory modalities, stimuli were
positioned either to the left or the right of the animal. After the end of the
600 ms period, the sensory stimulus was terminated and animals experienced
a 500 ms delay with no stimulus, followed by a second 600 ms period contain-
ing the same sensory stimuli as in the first period. After the second stimulus
period, a 1000 ms delay was imposed, after which servo motors moved two
lick spouts into close proximity of the animal’s mouth. Licks to the spout
corresponding to the stimulus presentation side were rewarded with a water
reward. After one spout was contacted, the opposite spout was moved out
of reach to force the animal to commit to its initial decision. Each animal
was trained exclusively on a single modality (5 vision, 5 auditory).

Widefield imaging was done using an inverted tandem-lens macroscope
(Grinvald et al., 1991) in combination with an sCMOS camera (Edge 5.5,
PCO) running at 60 fps. The top lens had a focal length of 105 mm (DC-
Nikkor, Nikon) and the bottom lens 85 mm (85M-S, Rokinon), resulting in
a magnification of 1.24x. The total field of view was 12.4 x 10.5 mm and
the spatial resolution was ∼20um/pixel. To capture GCaMP fluorescence, a
500 nm long-pass filter was placed in front of the camera. Excitation light
was coupled in using a 495 nm long-pass dichroic mirror, placed between
the two macro lenses. The excitation light was generated by a collimated
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blue LED (470 nm, M470L3, Thorlabs) and a collimated violet LED (405
nm, M405L3, Thorlabs) that were coupled into the same excitation path
using a dichroic mirror (#87-063, Edmund optics). From frame to frame, we
alternated between the two LEDs, resulting in one set of frames with blue and
the other with violet excitation at 30 fps each. Excitation of GCaMP at 405
nm results in non-calcium dependent fluorescence (Lerner et al., 2015), we
could therefore isolate the true calcium-dependent signal as detailed below.

Motion correction was carried out per trial using a rigid-body image regis-
tration method implemented in the frequency domain, with a given session’s
first trial as the reference image (39). Denoising was performed separately
on the hemodynamic and the GCaMP channels. The denoising step out-
puts a low-rank decomposition of Yraw = UV + E represented as an N × T
matrix; here UV is a low-rank representation of the signal in Yraw and E rep-
resents the noise that is discarded. The output matrices U and V are much
smaller than the raw data Yraw, leading to compression rates above 95%,
with minimal loss of visible signal. We use an established regression-based
hemodynamic correction method (4; 40; 8), with an efficient implementation
that takes advantage of the low-rank structure of the denoised signals. In
brief, the hemodynamic correction method consists of low pass filtering a
hemodynamic channel Yh (405nm illumination), then rescaling and subtract-
ing this signal from the GCaMP channel Yg (473nm illumination), in order
to isolate a purely calcium dependent signal. We utilize the low-rank struc-
ture of the denoised data in order to perform the hemodynamic correction
efficiently, i.e., we perform the low-rank decomposition separately for each
channel, and then perform hemodynamic correction using the low rank ma-
trices. Specifically, we obtain Yh = UhVh + Eh and Yg = UgVg + Eg. We
low pass filter Vh (2nd order Butterworth filter with cutoff frequency 15Hz)
to get V lpf

h , and estimate parameters bi and ti for each pixel i such that

(Ug)iVg = bi(Uh)iV
lpf
h + ti using linear regression. We now obtain our hemo-

dynamic corrected GCaMP activity Y as the residual of the regression, i.e.
Y = UgVg − BUhV lpf

h + T , where B is a diagonal matrix with the terms bi’s
in the diagonal, and T is a vector made by stacking the terms ti. In fact, we
keep the low rank decomposition of Y as UV , with U = [Ug −BUh T ] and

V = [Vg; V
lpf
h ; 1], where U ∈ RN×Kd , V ∈ RKd×T . We then convert this

value into a mean-adjusted fluorescence value of every pixel (∆F/F ).

Data type (2). For this dataset we imaged adult Thy1-jRGECO1a mice (line
GP8.20, purchased from Jackson Labs) (41). In preparation for widefield
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imaging, a thinned-skull craniotomy was performed over the cortex, in which
the mouse was anesthetized with isoflurane, had its skull thinned, and was
implanted with an acrylic headpiece for restraint. The mouse underwent a
two-day post operative recovery period and were habituated to head-fixation
and wheel running for two days. To perform the imaging, we head-fixed
the mouse on a circular wheel with rungs. The mouse was free to run for
approximately 5 minutes at a time, while an Andor Zyla sCMOS camera
was used to capture widefield images 512x512 pixels in size, at 60 frames
per second, with an exposure time of 23.4 ms. To collect fluorescence data
along with hemodynamic data, we used three LEDs which were strobed syn-
chronously with frame acquisition, producing an effective frame rate of 20fps.
Two LEDs were strobed to capture hemodynamic fluctuations (green: 530nm
with a 530/43 bandpass filter and red: 625nm), and a separate LED (lime:
565 nm with a 565/24 bandpass filter) was strobed to capture fluorescence
from jRGECO1a. A 523/610 bandpass filter placed in the path of the camera
lens to reject emission LED light. Once collected, images were processed to
account for hemodynamic contamination of the neural signal. Red and green
reflectance intensities were used as a proxy for hemodynamic contribution to
the lime fluorescence channel. The differential path length factor (DPF) was
estimated and applied to calculate the DF/F neural signal. We performed
hemodynamic correction as in (18), and then performed the denoising by
performing SVD and keeping the top 200 components. Note that this also
outputs a low-rank decomposition Yraw = UV + E. Although the resulting
Y = UV is an efficient decomposition of the data, it consists of delocalized,
uninterpretable components, as shown in the Results section.

Details of simulations

We use LocaNMF to decompose simulated data (Figure 2). We simulate
each region k to be modulated with a gaussian spatial field with centroid
at the region’s median, and a width proportional to the size of the region
(σk = 0.2

√
(dk), where dk is the number of pixels in region k). The spatial

components are termed Areal(k), and were 534x533 pixels in size. The tem-
poral components for the K regions in simulated datasets (1) and (2) were
specified as the following.
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Creal(k) ∼ N

(
3∑
j=1

αjk sin(βjkt), 0.1

)
∀k ∈ [1, K] (6)

αjk ∼ U(−1.5, 1.5) ∀j, k (7)

βjk ∈ {β′1, . . . , β′10}, β′i ∼ U(0.5, 0.63) ∀i ∈ [1, 10]. (8)

We simulated 10, 000 time points at a sampling rate of 30Hz, and specified
the decomposition U = Areal, and V = Creal.

Preprocessing: motion correction, compression, denoising, hemodynamic cor-
rection, and alignment

We analyze two datasets in this paper; full experimental details are pro-
vided above. After motion correction, imaging videos are denoted as Yraw,
with size N × T , where N is the total number of pixels and T the total
number of frames. NT may be rather large (≥ 1010) in these applications; to
compress and denoise Yraw as detailed above, we experimented with simple
singular value decomposition (SVD) approaches as well as more sophisticated
penalized matrix decomposition methods (20). We found that the results of
the LocaNMF method developed below did not depend strongly on the de-
tails of the denoising / compression method used in this preprocessing step.

As is well-known, to interpret WFCI signals properly it is necessary
to apply a hemodynamic correction step, to separate activity-dependent
from blood flow-dependent fluorescence changes (18; 42). We applied hemo-
dynamic correction to both datasets as detailed above. Finally, for both
datasets, we rigidly aligned the data to a 2D projection of the Allen Com-
mon Coordinate Framework v3 (CCF) (40) as developed in (8), using four
anatomical landmarks: the left, center, and right points where anterior cortex
meets the olfactory bulbs and the medial point at the base of retrosplenial
cortex. We denote the denoised, hemodynamic-corrected video as Y (i.e.,
Y = UV after appropriate alignment).

More information about the Allen CCF is provided below.

Details of Localized Non-Negative Matrix Factorization (LocaNMF)

Here, we provide the algorithmic details of the optimization involved in
LocaNMF, as detailed in Equations 2-5; provided here again for the reader’s
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convenience.

minA,C ‖Y − AC‖2
F (2)

s.t. A ≥ 0, ‖ak‖∞ = 1 ∀k ∈ [1, K], A ∈ RN×K (3)

C ∈ RK×T (4)
N∑
n=1

|dk(n)ak(n)|2 ≤ Lk ∀k ∈ [1, K], (5)

We denote D ∈ RN×K as the distance matrix comprising the entries dk(n).
A summary of the notation for this section is provided in Table 1.

Spatial and Temporal Updates

Hierarchical Alternating Least Squares (HALS) is a popular block coor-
dinate descent algorithm for NMF (23) that updates A and C in alternating
fashion, updating each component of the respective matrices at a time. It
is straightforward to adapt HALS to the LocaNMF optimization problem
defined above. We apply the following updates for the spatial components
in A (where we are utilizing the low-rank form of Y = UV ):

ak ←
[
ak +

1

cTk ck

(
(Y CT )k − A(CCT )k − λkdk

)]
+

(6)

=

[
ak +

1

cTk ck

(
U(V CT )k − A(CCT )k − λkdk

)]
+

(7)

Here, [x]+ = max{0, x}, k ∈ {1, . . . , K}, and λk is a Lagrange multiplier
introduced to enforce equation 5; we will discuss how to set λk below. We
normalize the spatial components {ak} after every spatial update, thus sat-
isfying the constraint ‖ak‖∞ = 1 for each k in Equation 3.

The corresponding updates of C are a bit simpler:

ck ← ck +
1

aTk ak

(
ATYk − (ATA)kC

)
(8)

= ck +
1

aTk ak

(
(ATU)kV − (ATA)kC

)
. (9)

We can simplify these further by noting that each temporal component ĉk
for a given solution Ĉ is contained in the span of V ∈ RKd×T . Using this
knowledge, we can avoid constructing the full matrix C ∈ RK×T , and instead
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Variable Dimensions Description
N 1× 1 Number of pixels in video
T 1× 1 Number of time points in video
Kd 1× 1 Rank of denoised video
Y N × T Denoised video; Y = UV
U N ×Kd Low-rank denoised spatial components
V Kd × T Low-rank denoised temporal components
L Kd ×Kd Lower triangular matrix in the LQ decomposition of V ; V = LQ
Q Kd × T Orthogonal matrix in the LQ decomposition of V ; V = LQ
J 1× 1 Number of regions predefined in the brain atlas.
kj 1× 1 Number of LocaNMF components in jth region

K 1× 1 Total number of components found by LocaNMF; K =
∑J

j=1 kj
A N ×K LocaNMF spatial components
C K × T LocaNMF temporal components

Ŷ N × T LocaNMF decomposed video; Ŷ = AC
B K ×Kd Multiplicative matrix in the decomposition of C; C = BQ
Lk 1× 1 Localization constant for the kth component
Λ K × 1 Lagrangian parameters for the localization constraint in Equation 5.

Table 1: A summary of the notation for LocaNMF, with the corresponding matrix dimen-
sions and descriptions.

use a smaller matrix B ∈ RK×Kd by representing each component within a
Kd-dimensional temporal subspace spanned by the columns of V . Specifi-
cally, we can apply an LQ-decomposition to V , to obtain V = LQ where
L ∈ RKd×Kd is a lower triangular matrix of mixing weights and Q ∈ RKd×T

is an orthonormal basis of the temporal subspace. If we decompose C as
C = BQ, it becomes possible to avoid ever using Q in all computations per-
formed during LocaNMF (as detailed below). Thus, we can safely decompose
V = LQ, save Q and use L in all computations of LocaNMF to find A and
B, and finally reconstruct C = BQ as the solution for the temporal compo-
nents. In the case where Kd � T , this leads to significant savings in terms
of both computation and memory.

Hyperparameter selection

To run the method described above, we need to determine two sets of
hyperparameters. One set of hyperparameters consists of the number of
components in each region k = (k1, · · · , kJ), which dictate the rank of each
region. Each component k maps to a single atlas region. φ : {1, · · · , K} 7→
{π1, · · · , πJ} (surjective K ≥ J). The second set of hyperparameters consists
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of the Lagrangian weights for each component Λ = (λ1, · · · , λK), chosen to
be the minimum value such that the localization constraint in Equation 5
is satisfied. These two sets of hyperparameters intuitively specify (1) that
the signal in each region is captured well, and (2) that all components are
localized, respectively. These hyperparameters can be set based on two sim-
ple, interpretable goodness-of-fit criteria that users can set easily: (1) the
variance explained across all pixels belonging to a particular atlas region,
and (2) how much of a particular spatial component is contained within its
region boundary. These can be boiled down to the following easily specified
scalar thresholds.

1. R2
thr: a minimum acceptable R2 to ensure the neural signal for all pixels

in an atlas region’s boundary is adequately explained

2. Lthr: the percentage of a particular region’s spatial component that is
constrained to be inside the atlas region’s boundary

The procedure consists of a nested grid search wherein a sequence of pro-
posals k(0),k(1), . . . are generated and for each k(n) a corresponding sequence
Λ(i,0),Λ(i,1), . . . are proposed. We term kj the local-rank of region j. Intu-
itively, we wish to restrict the local-rank in each region as much as possible
while still yielding a sufficiently well-fit model. Moreover, for each proposed
k(n), we wish to select the lowest values for Λ, while still ensuring that each
component is sufficiently localized. In order to achieve this, each layer of this
nested search uses adaptive stopping criteria based on the following statistics
for the jth region and kth component.

R2(j) := 1− 1

|πj|
∑
n∈πj

‖Y (n)− Ŷ (n)‖2
2

‖Y (n)− Ȳ (n)‖2
2

= 1− 1

|πj|
∑
n∈πj

‖U(n)L− A(n)B‖2
2

‖U(n)L− U(n)L̄‖2
2

(10)

L(k) :=

∑
n∈φ(k) ak(n)2

‖ak‖2
2

(11)

Here, Y (n) and A(n) denote the value of these matrices at pixel n. Note that
the right hand side term in Equation 10 is computationally less expensive,
as detailed in the following subsection. The algorithm terminates as soon as
a pair (k(n),Λ(n,m)) yields a fit satisfying R2(j) ≤ R2

thr ∀j and L(k) ≥ Lthr
∀k.

Details of the LQ decomposition of V . We show here that we can perform
LQ decomposition of V at the beginning of LocaNMF, proceed to learn A,B
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using LocaNMF as in Algorithm 1, and reconstruct C = BQ at the end
of LocaNMF, without changing the algorithm or the optimization function.
The term C is traditionally used in (1) the spatial updates, (2) the temporal
updates, and (3) computing the optimization function. Here, we address how
we can replace C by B in each of these computations.

1. For the spatial updates in Equation 7, we need two quantities; namely
(1) U(V CT ) and (2) A(CCT ). We can use the decompositions V = LQ
and C = BQ to the two quantities; (1) U(V CT ) = U(LQQTBT ) =
U(LBT ) and (2) A(CCT ) = A(BQQTBT ) = A(BBT ).

2. For the temporal update in Equation 9, using the LQ decomposition,
we set C = BQ = (ATA)−1ATULQ; thus it suffices to update B to
(ATA)−1ATUL. The spatial and temporal updates are also detailed in
Algorithms 3 and 4.

3. Finally, we need to compute the errors in Equation 10. We note that
‖Y (n) − Ŷ (n)‖2

2 = ‖U(n)V − A(n)C‖2
2 = ‖(U(n)L − A(n)B)Q‖2

2 =
‖U(n)L − A(n)B‖2

2. While computing UV and AC have a computa-
tional complexity of O(NKdT ) and O(NKT ) respectively, this opera-
tion decreases the computational cost to O(NK2

d) and O(NKKd); for
T large, this denotes a significant saving in both memory and time
taken for the algorithm.

Thus, we do not need the term Q for the bulk of the computations involved
in LocaNMF, making the algorithm considerably more efficient.

Adaptive number of components per region. We wish to restrict the local-
rank in each region as much as possible while still yielding a sufficiently
well-fit model. In order to do so, we gradually move from the most to least-
constrained versions of our model and terminate as soon as the region-wise
R2 is uniformly high as determined by the threshold R2

thr. Specifically, we
iteratively fit a seqeunce of LocaNMF models. The search is initialized with
k(0) = 1Jkmin and after each fit Ŷ(iterK) = Â(iterK)Ĉ(n) is obtained, set

k
(iterK+1)
j =

{
k

(iterK)
j + 1 if R2(iterK)(j) < R2

thr

k
(iterK)
j otherwise

until R2(iterK)(j) ≥ R2
thr ∀j = 1, · · · , J .
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Adaptive λ. For brain regions that have low levels of activity relative to their
neighbors, or have a smaller field of view, it is possible that the activity of
a large amplitude neighboring region is represented instead of the original
region’s activity. However, we do not want to cut off the spread of a com-
ponent in an artificial manner at the region boundary. Thus, we impose the
smallest regularization possible while still ensuring that each component is
sufficiently localized. To do so, we will gradually move from the least con-
strained (small λ) to most constrained (large λ) model, terminating as soon
as the minimum localization threshold is reached. The search is initialized
with Λ(0) = 1Kλmin and after each fit Ŷ(iterλ) = Â(iterλ)Ĉ(iterλ) is obtained,
set

λ
(iterλ+1)
k =

{
τλ

(iterλ)
k if L(iterλ)(k) < Lthr

λ
(iterλ)
k otherwise

until L(iterλ)(k) ≥ Lthr ∀k = 1, · · · , K. This requires a user-defined λ-step,
τ = 1 + ε, where ε is generally a small positive number.

Initialization. Finally, for a fixed set of hyperparameters Λ,k the model fit
is still sensitive to initialization (since the problem is non-convex). Hence,
in order to obtain reasonable results we must provide a data driven way to
initialize all K =

∑J
j=1 kj components.

To initialize each iteration of the local-rank line search, the components
for each region are set using the results of sNMF fits to their respective
regions. To facilitate this process, a rank kmax SVD is precomputed within
each individual region and reused during each initialization phase. For a
given initialization, denote the number of components in region j as kj. The
initialization is the result of a rank kj sNMF fit to the rank kmax SVD of each
region. The components of these initializations are themselves initialized
using the top kj temporal components of each within-region SVD. This is
summarized in Algorithm 2.

Computation on a GPU. Most of the steps of LocaNMF involve large ma-
trix operations which are well suited to parallelization using GPUs. While
the original data may be very large, U and L are relatively much smaller,
and often fit comfortably within GPU memory in cases where Y does not.
Consequently, implementations which take low rank structure into account
may take full advantage of GPU-acceleration while avoiding repeated mem-
ory transfer bottlenecks. Specifically, after the LQ decomposition of V , we
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load U and L into GPU memory once and keep them there until the Algo-
rithm 1 has terminated. This yields a solution Â, B̂ which can transferred
back to CPU in order to reconstruct Ĉ = B̂Q. We provide both CPU and
GPU implementations of the algorithm in the code here.

Decimation. As in (43) and (20), we can decimate the data spatially and
temporally in order to run the hyperparameter search, and then run Algo-
rithm 1 once in order to obtain the LocaNMF decomposition (A, C) on
the full dataset. In this paper, we have not used this functionality due to
speedups from using a GPU, but we can envision that it might be necessary
for bigger datasets and / or limitations in computational resources.

Computational Cost. The computational cost of LocaNMF is O(NKdK) (as-
suming N ≥ Kd ≥ K), with the most time consuming steps being the spatial
and temporal HALS updates. maxiterλ and maxiterK both provide a scaling
factor to the above cost. Note that the computational scaling is also linear
in T , but this just enters the cost twice, once during the LQ decomposition
of V , and once more when reconstructing C after the iterations; in practice,
this constitutes a small fraction of the computational cost of LocaNMF. For
runtime of LocaNMF on datasets of several sizes, see the Results section.

Vanilla semi non-negative matrix factorization (vanilla NMF)

We use vanilla NMF with random initialization as a comparison to Lo-
caNMF. When performing a comparison, we use the same number of com-
ponents K as found by LocaNMF. The algorithm is detailed in Algorithm 5.

Allen Common Coordinate Framework

The anatomical template of Allen CCF v3 as used in this paper is a shape
average of 1675 mouse specimens from the Allen Mouse Brain Connectivity
Atlas (44). These were imaged using a customized serial two-photon tomog-
raphy system. The maps were then verified using gene expression and his-
tological reference data. For a detailed description, see the Technical White
Paper here. The acronyms for the relevant components used in this study
are provided in Table 2.
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Algorithm 1: Localized semi Nonnegative Matrix Factorization
(LocaNMF)

Data: U , V , Π, D, R2
thr, Lthr, kmin, λmin, τ , maxitersK , maxitersλ,

maxitersHALS
Result: A, C
[L,Q] = LQ(V ) # LQ decomposition of V
kj ← kmin ∀j ∈ [1, J ]
for iterK ← 1 to maxitersK do

[A,B]← Init-sNMF(U, L, Π, k,maxitersHALS)
λk ← λmin ∀k ∈ [1, K]
for iterλ ← 1 to maxitersλ do

for iterHALS ← 1 to maxitersHALS do
A← HALSspatial(U , L, A, B, Λ, D)
Normalize A
B ← HALStemporal(U , L, A, B)

end
λk:Lk<Lthr ← τλk:Lk<Lthr

end
kj:R2

j<R
2
thr
← kj:R2

j<R
2
thr

+ 1

end
C = BQ

Algorithm 2: Initialization using semi Nonnegative Matrix Factor-
ization (Init-sNMF)

Data: U , L, Π, k,maxitersHALS
Result: A, B
for j ← 1 to J do

Uj = U [πj]
Bj =SVD(UjL, kj); Aj = 1[N×kj ]
for iterHALS ← 1 to maxitersHALS do

Aj ← HALSspatial(Uj, L, Aj, Bj)
Normalize Aj
Cj ← HALStemporal(Uj, L, Aj, Bj)

end

end
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Algorithm 3: Localized spatial update of hierarchical alternating
least squares (HALSspatial)

Data: U , L, A, B, D (defaults to 0[N×K]), Λ (defaults to 0[K])
Result: A
for k ← 1 to K do

ak ← ak +
[

1
lTk lk

(
U(LBT )k − A(BBT )k − λkdk

)]
+

end

Algorithm 4: Temporal update of hierarchical alternating least
squares (HALStemporal)

Data: U , L, A, B
Result: B
for k ← 1 to K do

bk ← bk + 1
aTk ak

(
(ATU)kL− (ATA)kB

)
end

Algorithm 5: vanilla semi-Nonnegative Matrix Factorization
(vanilla NMF)

Data: U , V , K,maxitersHALS
Result: A, C
Ak ∼ B(N, 0.1) ∀k ∈ [1, K] # Bernoulli draws over pixels
Ck = E[(Ak ◦ U)V ] ∀k ∈ [1, K]
for iterHALS ← 1 to maxitersHALS do

Normalize C
A← HALSspatial(U , V , A, C)
C ← HALStemporal(U , V , A, C)

end

Tracking parts in behavioral video

For the analysis involving the decoding of movement variables in the
Results, we used DeepLabCut (DLC) (26) to obtain estimates of the position
of the paws. We hand-labeled 144 frames as identified by K-means, with the
locations of the right and left paws. We used standard package settings for
obtaining the evaluations on all frames of one session.

32

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/650093doi: bioRxiv preprint 

https://doi.org/10.1101/650093


Acronym Name
MOp primary motor cortex
MOs secondary motor cortex
SSp primary somatosensory cortex
SSs1 supplemental somatosensory cortex
AUD auditory cortex
VIS visual cortex
ACAd1 anterior cingulate cortex (dorsal part)
PL1 prelimbic cortex
RSP retrosplenial cortex

Table 2: Acronyms of the regions in the Allen atlas

For decoding the X and Y coordinate of each DLC tracked variable using
inputs as the LocaNMF temporal components, we used an MSE loss function
to train a one layer dense feedforward artificial neural network (64 nodes each,
ReLu activations), with the last layer having as target output the relevant X
or Y coordinate. We used 75% of the trials as training data (which is itself
split into training and validation in order to implement early stopping), and
we report the R2 on the held out 25% of the trials.
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Figure SI 1: Results of applying vanilla NMF to simulation data. Legend and conclusions
similar to Figure 2.
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Figure SI 2: Results of applying vanilla NMF to uncover long-range correlations. Legend
and conclusions similar to Figure 5.
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Figure SI 3: Results of applying vanilla NMF to dataset 1. Legend and conclusions similar
to Figure 6.
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