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Abstract

Canonical Correlation Analysis is a technique in multivariate data analysis for

finding linear projections that maximize the correlation between two groups

of variables. The correlations are typically defined without accounting for the

serial correlations between observations, a typical setting for time series data.

To understand the coupling dynamics and temporal variations between the two

time-varying sources, we introduce the time-dependent canonical correlation

analysis (TDCCA), a method for inferring time-dependent canonical vectors

from multilevel time series data. A convex formulation of the problem is pro-

posed, which leverages the singular value decomposition (SVD) characterization

of all solutions of the CCA problem. We use simulated datasets to validate the

proposed algorithm. Moreover, we propose a novel measure, canonical correla-

tion variation as another way to assess the dynamic pattern of brain connections

and we apply it to a real resting state fMRI dataset to study the aging effects

on brain connectivity. Additionally, we explore our proposed method in a task-

related fMRI to detect the temporal dynamics due to different motor tasks. We

show that, compared to extant methods, the TDCCA-based approach not only

detect temporal changes but also improves feature extraction. Together, this pa-
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per contributes broadly to new computational methodologies in understanding

multilevel time series.

Keywords: Canonical correlation analysis, time series, temporal dynamics,

fMRI
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1. Introduction

Canonical Correlation Analysis (CCA) [1] is a powerful tool to analyze the

relationship between two sets of variables. CCA can be regarded as an extension

of ordinary correlation analysis, the difference being that CCA deals with mul-

tidimensional variables. It finds two linear transformations, one for each set of

variables, that are optimal based on their correlations. It is an especially useful

technique in data analysis as a dimensional reduction strategy that reduces the

complexity of model space by calculating the combinations of variables that are

maximally correlated. In an attempt to increase the flexibility for large dimen-

sional date, several extensions of CCA have been proposed, including kernel

Canonical Correlation Analysis (KCCA) [2, 3], Sparse Canonical Correlation

Analysis (SCCA) [4, 5, 6, 7, 8]. Together, CCA-type methods have various

applications including analysis of neuroimage, genomic data and information

retrieval [9, 6, 10].

For multilevel data, CCA has been studied extensively by multi-view CCA

[11] and tensor CCA [12]. However, canonical correlation analysis of multivari-

ate longitudinal data with multiple observations has received considerably less

attention, despite its importance for practical data analysis. This setting arises

from a wide range of applications, for instance, functional magnetic resonance

imaging (fMRI) and the financial market contain multivariate time-varying ob-

servations. To understand the coupling dynamics of two sets of variables with

time-stamped observations or to incorporate temporal structures, a few meth-

ods have been proposed. For instance, [13], maximized the auto-correlation of

fMRI time series, and [14] proposed to use KCCA to maximize the correla-
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tion between the two data sources over a certain time window. Although these

approaches do incorporate the temporal dependencies to some extent, the tem-

poral dynamics of consecutive linear transformations (vectors) have not been

considered explicitly. Furthermore, these studies focus on performing canonical

correlation analysis on two sets of variables with time lags.

A simple method to obtain the dynamic coupling between two sets of vari-

ables with time-stamped observation is to apply sparse CCA (for high dimen-

sional data) or KCCA for each timestamp and then compare the vectors. How-

ever, in this way, we will lose temporal information and possibly reach the wrong

conclusion about temporal dynamics. One such example will be discussed in de-

tail later in this paper. Although one can adopt fused lasso penalty [15] directly,

more challenges will be raised in this case. First, CCA for high dimensional data

with multiple time-varying observations will become computational expensive

(with hundreds of non-convex constraints and many possible local optimums).

Temporal incoherence [14] is another severe problem. For example, if we have w1

and w2 as our two canonical vectors, according to the definition of CCA prob-

lem, the correlation is also maximized by another two vectors −w1 and −w2.

There is no guarantee that we get the same absolute sign for canonical vectors of

two adjacent timestamps even if the data from these two timestamps are same,

especially when optimizing non-convex and non-smooth objective functions for

these problems.

In order to solve the aforementioned problems, we propose a novel method for

inferring the dynamic dependence between two sets of variables. This method

integrates the SVD characterized formulation of all solutions of CCA [8] and

the fused lasso regularization [15] in a unified optimization framework. We

introduce a convex optimization problem which can be solved efficiently. There

still exists time incoherence problem in this formulation which we will discuss

how to solve later in this paper. We note that since the focus of the paper is

on introducing temporal structure in the CCA framework, we will only consider

experiments of the first pair of canonical vectors. TDCCA and our algorithm

can also be applied in the situations of multiple pairs of canonical vectors.
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We summarize our contributions as follows:

• We incorporate temporal dependencies with (sparse) canonical correlation

analysis using a convex formulation.

• We propose a fast parallelizable algorithm (Alternating Direction Method

of Multipliers) and derive a closed-form ADMM updates to solve the non-

smooth objective function.

• Our proposal provides a heuristic method to solve the time incoherence

problem that exists in canonical vectors of adjacent timestamps.

• Experimental results on both two different simulated datasets show the

effectiveness and accuracy of our method compared with static CCA. The

experiments on the real dataset illustrate potential applications of our

method for analyzing longitudinal data [16].

2. Canonical Correlation Analysis

We first review the standard canonical correlation analysis problem as

minimize ‖XWx − YWy‖F
subject to WT

x X
TXWx = I

WT
y Y

TYWy = I

(1)

where X ∈ Rn×d1 , Y ∈ Rn×d2 , Wx ∈ Rd1×l and Wy ∈ Rd2×l. Let r = rank(X),

s = rank(Y ) and t = min(r, s). l is the number of pairs of canonical vectors we

attempt to compute. d1 and d2 are the dimension of features for X and Y . n

is the number of observations. We assume both X and Y are column centered.

Under our temporal setting, X and Y are the observations at the same time

point, see more details later.

Theorem 1 characterizes the solution of (1) by a SVD approach. Let us

consider the SVD of X and Y,

X = Q1[Σ1, 0][U1, U2]T = Q1Σ1U
T
1
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Y = Q2[Σ2, 0][V1, V2]T = Q2Σ2V
T
1

where U1 ∈ Rd1×r, U2 ∈ Rd1×(d1−r), Σ1 ∈ Rr×r, Q1 ∈ Rn×r, V1 ∈ Rd2×s,

V2 ∈ Rd2×(d2−s), Σ2 ∈ Rs×s and Q2 ∈ Rn×s. Furthermore, we consider the

SVD of QT1 Q2 as QT1 Q2 = P1ΣPT2 where P1 ∈ Rr×r, P2 ∈ Rs×s and Σ ∈ Rr×s.

Denote the distinct eigenvalues of QT1 Q2 as σ1 > σ2 > ... > σq > 0 with

multiplicity for these q eigenvalues being m1, ..., mq. αk =
∑k
i=1mi.

The following theorem from [8] shows the conditions for (Wx,Wy) which will

be used later.

Theorem 1. [8] If l =
∑k
i=1mi for some 1 ≤ k ≤ q, then (Wx,Wy) is a

solution of optimization problem (1) if and only if

Wx = U1Σ−1
1 P1(:, 1 : l)W + U2F1

Wy = V1Σ−1
2 P2(:, 1 : l)W + V2F2

(2)

whereW ∈ Rl×l is orthogonal, F1 ∈ R(d1−r)×l and F2 ∈ R(d2−s)×l are arbitrary.

3. Methodology

Before we introduce our proposed method TDCCA, we provide some mo-

tivation for our framework, which is related to sparse CCA. If l =
∑k
i=1mi

for some 1 ≤ k ≤ q, the sparse canonical correlation analysis can be stated as

solving the following problem,

minimize ‖Wx‖l1 + ‖Wy‖l1
subject to Wx = U1Σ−1

1 P1(:, 1 : l)W + U2F1

Wy = V1Σ−1
2 P2(:, 1 : l)W + V2F2

(3)

where ‖ ∗ ‖l1 is defined with element-wise l1 penalty. This formulation is non-

convex. An alternative formulation of the above is

minimize ‖Wx‖l1 + ‖Wy‖l1
subject to UT1 Wx = Σ−1

1 P1(:, 1 : l)

V T1 Wy = Σ−1
2 P2(:, 1 : l)

(4)
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We will further provide a justification for the simplified formulation of sparse

CCA problem (4). Denote the optimal value (feasible region) of problem (3)

and (4) as Ms(Ωs) and M(Ω) respectively.

Theorem 2. If l =
∑k
i=1mi for some 1 ≤ k ≤ q, let C = 1√

l
, then CM ≤

Ms ≤M

Proof. First it is easy to see

Wx = U1Σ−1
1 P1(:, 1 : l)W + U2F1

Wy = V1Σ−1
2 P2(:, 1 : l)W + V2F2

is equivalent to

UT1 Wx = Σ−1
1 P1(:, 1 : l)W

V T1 Wy = Σ−1
2 P2(:, 1 : l)W

By taking W = I, we get Ms ≤M .

On the other hand, for Wf and W f
x which satisfy (5),

UT1 W
f
x = Σ−1

1 P1(:, 1 : l)Wf

V T1 W
f
y = Σ−1

2 P2(:, 1 : l)Wf

(5)

we get

UT1 W
f
xW

−1
f = Σ−1

1 P1(:, 1 : l)

V T1 W
f
yW

−1
f = Σ−1

2 P2(:, 1 : l)

because Wf is orthogonal. This implies (W f
xW

−1
f ,W f

yW
−1
f ) ∈ Ω. Furthermore,

for all Wx,Wy ∈ Ω and W orthogonal,

UT1 Wx = Σ−1
1 P1(:, 1 : l)

V T1 Wy = Σ−1
2 P2(:, 1 : l)

=⇒

UT1 WxW = Σ−1
1 P1(:, 1 : l)W

V T1 WyW = Σ−1
2 P2(:, 1 : l)W
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This means (WxW,WyW,W ) ∈ Ωs. Specifically, we can take Wx = W f
xW

−1
f ,

Wy = W f
yW

−1
f and W = Wf for all (W f

x ,W
f
y ,Wf ) ∈ Ωs. This implies

{(WxW,WyW,W )|(Wx,Wy) ∈ Ω ,W is orthogonal} = Ωs and thus problem (3)

is equivalent to (6)

minimize ‖WxW‖l1 + ‖WyW‖l1
subject to UT1 Wx = Σ−1

1 P1(:, 1 : l)

V T1 Wy = Σ−1
2 P2(:, 1 : l)

W ∈ Rl×l orthogonal

(6)

Based on the equivalences of norm of finite dimensional spaces and the orthog-

onality of W , we have

1√
l
‖Wx‖l1 =

1√
l

∑
i

‖Wx(i, :)‖l1 ≤
∑
i

‖Wx(i, :)‖l2 =
∑
i

‖Wx(i, :)W‖l2

≤
∑
i

‖Wx(i, :)W‖l1 = ‖WxW‖l1

(7)

We can get similar result for Wy. Inequality (7) implies CM ≤ Ms and we

already know Ms ≤M , thus CM ≤Ms ≤M where C = 1√
l

3.1. Problem Formulation

Let’s now consider time-dependent views of column centered data Xt ∈

Rnt×d1 and Yt ∈ Rnt×d2 for t ∈ [1, 2, ..., T ]. We attempt to analyze dynamic

coupling canonical vectors Wxt ∈ Rd1×l and Wyt ∈ Rd2×l in a CCA framework

which incorporate temporal information of these time-stamped observations. It

is worth mentioning that our data Xt or Yt does not have to be the observations

from the same time point. They can be selected using a sliding window ap-

proach. In particular, a temporal window with length W, is chosen, and within

the temporal interval that it spans (from time t=1 to time t=W), the first set

of data are selected as X1 and Y1. Then, the window is shifted by a step T, and

the same data extraction procedure is repeated over the time interval [1 + T ,

W +T ]. This process is iterated until the window spans the end part of the time
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series. Motivated by Theorem 1 and Theorem 2, we can formulate the problem

as

minimize
∑
t(‖Wxt‖l1 + ‖Wyt‖l1) + λ·∑
t(‖Wxt −Wx,t−1‖l1 + ‖Wyt −Wy,t−1‖l1)

subject to UT1tWxt = Σ−1
1t P1t(:, 1 : l)

V T1tWyt = Σ−1
2t P2t(:, 1 : l)

(8)

where

Xt = Q1t[Σ1t, 0][U1t, U2t]
T = Q1tΣ1tU

T
1t

Yt = Q2t[Σ2t, 0][V1t, V2t]
T = Q2tΣ2tV

T
1t

QT1tQ2t = P1tΣtP
T
2t

are SVDs for each t.

By allowing the relaxation of the constraints, we propose the TDCCA by

optimizing the following objective function

1

2

∑
t

(‖UTt Wxt−Σ−1
1t P1t(:, 1 : l)‖2F +λ

∑
t

‖Wxt‖l1 +µ
∑
t

‖Wxt−Wx,t−1‖l1+

1

2

∑
t

(‖V Tt Wyt − Σ−1
2t P2t(:, 1 : l)‖2F + λ

∑
t

‖Wyt‖l1 + µ
∑
t

‖Wyt −Wy,t−1‖l1

(9)

It is clear that the problem we formulate is a convex problem, which avoids the

constraints WT
xtX

T
t XtWxt = I and WT

ytY
T
t YtWyt = I in CCA framework.

3.2. Optimization

We present an algorithm to optimize the objective function of TDCCA in

(9). The estimation of Wx and Wy can be separated which makes it possible for

parallel computing. In addition, the estimation of different pairs of canonical

vectors can also be computed in parallel. For the ease of notation, we will ignore

the dimension number inside of P1 which actually represents P1(:, ll) if we try

to estimate ll-th pair of canonical vectors. Without loss of generality, we will

only discuss the algorithm for Wx ∈ Rd1×T , the first pair of canonical vectors.
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By separating (9), we get

lx =
1

2

∑
t

(‖UTt Wx(:, t) − Σ−1
1t P1t‖2F + λ‖Wx‖l1 + µ‖WxD‖l1 (10)

D is the time differencing operator, i.e.

D =


1 0 0 . . . 0

−1 1 0 . . . 0
...

...
...

. . . 1

0 0 0 . . . −1

 ∈ R
T×(T−1)

Replacing Wx with Ŵx and W̃x, (10) is equivalent to (11)

lx =
1

2

∑
t

(‖UTt Wx(:, t) − Σ−1
1t P1t‖2F + λ‖W̃x‖l1 + µ‖ŴxD‖l1 (11)

subject to Wxt = Ŵxt and Wxt = W̃xt.

Now we can adopt ADMM [17] to optimize (11). We first write down the

augmented Lagrangian for (11),

lx =
1

2
(
∑
t

‖UT1tWx(:, t)−Σ−1
1t P1t‖2F+λ‖W̃x‖l1+µ‖ŴxD‖l1+tr(ΘT (Wx−W̃x))

+ tr(ΦT (Wx − Ŵx)) +
ν

2
(‖Wx − W̃x‖2F + ‖Wx − Ŵx‖2F ) (12)

It can be solved by alternatively updating the five variables Wx, W̃x, Ŵx, Θ

and Φ.

1. Fix W̃x, Ŵx, Θ and Φ, we get

minimize ( 1
2

∑
t(‖UT1tWx(:, t)− Σ−1

1t P1t‖2F + +ν
2 (‖Wx − Ŵx‖2F

+‖Wx − W̃x‖2F ) + tr(ΦT (Wx − Ŵx)) + tr(ΘT (Wx − W̃x))

Simply by setting the derivative with respect to Wx to zero, we have

Wx(:, t) = (U1tU
T
1t + 2νI)−1(−Φ(:, t)−Θ(:, t) + U1tΣ

−1
1t P1t+

ν(Ŵi

k
(:, t) + W̃i

k
(:, t))) (13)
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2. Fix Wx, Ŵx, Θ and Φ, the problem is transformed to

minimize λ‖W̃x‖l1 + tr(ΘT (Wx − W̃x)) + ν
2‖W̃x −Wx‖2F

we thus get

W̃x = sign(Wx +
Θ

ν
)max(|Wx +

Θ

ν
| − λ

ν
, 0) (14)

3. Fix Wx, Ŵx, Θ and Φ, (12) becomes

minimize µ‖ŴxD‖l1 + tr(Φ(Wx − Ŵx)) + ν
2‖Wx − Ŵx‖2F )

which is equivalent to

minimize µ‖ŴxD‖l1 + ν
2 (‖Ŵx −Wx − Φ

ν ‖
2
F

(15)

It is a combination of 1-d fused lasso problems which can be solved exactly

using dynamic programming method [18] or a taut string principle [19]

(both linear time algorithm) in parallel.

The similar process can be applied to Θ and Φ.

4.

Θ = Θ + ν(Wx − W̃x) (16)

5.

Φ = Φ + ν(Wx − Ŵx) (17)

We summarize our algorithm in Algorithm 1 (TDCCA-1). It is worth noting

that in our proposed algorithm, step 2 and 3 can run in parallel due to that fact

that the computation of Ŵx and W̃x only depends on Wx.

3.3. Time Incoherence

In (8), there exists a problem called time incoherence. The reason for this

problem is that the original constraint in Theorem 1 is UT1 Wx = Σ−1
1 P1(:, 1 :

l)W where W is orthogonal. For l = 1, W ∈ R1×1 can be either 1 or -1, which

causes the sign ambiguity. In previous section, we ignored the constraint on W ,
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Algorithm 1 Algorithm of TDCCA method (TDCCA-1)

Input: Xt, U1t, P1t, Σ1t, λ, µ, ν

Initialize Wx, W̃x, Ŵx, Θ and Φ

repeat

Update Wx with (13)

Update Ŵx with (14)

Update W̃x with (15)

Update Θ with (16)

Update Φ with (17)

until convergence

Return Wx, W̃x, Ŵx

i.e the sign for the case l = 1. The problem could be tackled by adding integer

variable bt ∈ {−1, 1} and we get a new optimization problem,

1

2

∑
t

(‖UTt Wxt−Σ−1
1t P1t(:, 1 : l)bt‖2F+λ

∑
t

‖Wxt‖l1+µ
∑
t

‖Wxt−Wx,t−1‖l1+

1

2

∑
t

(‖V Tt Wyt−Σ−1
2t P2t(:, 1 : l)bt‖2F +λ

∑
t

‖Wyt‖l1 +µ
∑
t

‖Wyt−Wy,t−1‖l1

(18)

One naive way to solve (18) is to compute the optimal value for every choice

of sequence [b1, ..., bT ]. The computational burden will increase exponentially.

Problem (18) is a non-convex mixed integer problem which is generally hard to

solve.

Instead of diving into the non-convex problem, we propose a three-step ap-

proach. First, we will use Algorithm 1 with a very small (1e-10 chosen in our

experiments) µ and thus the temporal difference is not penalized. This step

allows us to obtain an initial estimation of Wx. Then we will change the sign of

P1 and P2 according to whether the condition (19) is satisfied. Finally, we run

Algorithm 1 again with µ chosen by grid search and obtain the final estimations.

This method allows us to detect those SVD results with the incoherent sign and

thus the temporal consistency is achieved. The intuition behind this approach
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is that the optimal value of (9) continuously depends on µ. The final algorithm

is summarized in Algorithm 2.

‖Wx(:, t− 1)−Wx(:, t)‖l1 + ‖Wy(:, t− 1)−Wy(:, t)‖l1

> ‖Wx(:, t− 1) +Wx(:, t)‖l1 + ‖Wy(:, t− 1) +Wy(:, t)‖l1 (19)

Algorithm 2 Algorithm of TDCCA method

Input: Xt, Yt, U1t, V1t, P1t, Σ1t, P2t, Σ2t, λ, µ, ν

First step: Ŵx, Ŵy = TDCCA-1(Input(with µ = e−10))

Second step: Revise the sign of P1 and P2

for t ∈ [2, ..., T ] do

if (19) is True then

P1t = −P1t and P2t = −P2t

end if

end for

Third step: Wx, Wy = TDCCA-1(Input)

As the Algorithm 1 is computationally efficient, Algorithm 2 is still efficient,

considering we will fix µ in the first step. Deflation method [6, 20, 7] can also

be easily combined with our algorithm after calculating each pair of canonical

vectors to acquire multiple pairs of canonical vectors.

3.4. Tuning Parameter Selection

In our method, TDCCA contains two tuning parameters λ and µ which

determine the sparsity and continuity (along temporal dimension) of canonical

vectors. We propose a cross-validation approach as follows: we partition our

data as training and validation data, and then we select the tuning parameters

that maximize the canonical correlation on the validation data, plugging the

canonical vectors solved from the training data. We also apply the grid search

to determine the optimal values of λ and µ.
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3.5. Algorithm Analysis

The convergence of ADMM under certain conditions has been analyzed and

proven in previous papers [21, 22, 23]. Our optimization problem satisfies the

conditions and thus our algorithm is guaranteed to converge to a non-empty

solution set if it exists. In each iteration, the major computation burden is in

step 1. One iteration of step 2, 3, 4, 5 is O(dT ) where d is dimension of feature

space. For the first step, the inverse of (U1tU
T
1t + 2νI) can be precomputed

before the iterations. For each iteration, time complexity of step 1 (matrix

multiplication) is O(d2T ). Another feature of our algorithm is both step 1 and

3 can run in parallel along the temporal dimension.

4. Experiments

In this section, we evaluate the performance of the proposed method on

two simulated datasets and real functional magnetic resonance imaging (fMRI)

data. We compare our method with static sparse CCA [6]. For the static sparse

CCA, we treat each t as an independent problem. We use the R package called

PMA for SCCA, which is publicly available at https://cran.r-project.org/

web/packages/PMA/index.html. The package for our method is available at

https://github.com/xuefeicao/tdcca.

4.1. Simulations

Table 1: Simulation 1 results from 50 independent trials

n d T Method CDR F1 TDR Cosine of Angle

100 40 100
TDCCA 0.0021 1.0000 97.7767 0.9800

SCCA 0.0025 0.9488 5.5884 0.9693

100 100 100
TDCCA 0.0008 1.0000 89.8201 0.9730

SCCA 0.0021 0.8192 2.1969 0.8439

100 400 100
TDCCA 0.0002 0.9977 67.5984 0.9460

SCCA 0.0025 0.5771 1.6001 0.6164
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Table 2: Simulation 2 results from 50 independent trials

n d T Method CDR F1 TDR Cosine of Angle

100 40 100
TDCCA 0.0599 0.9896 74.8900 0.9297

SCCA 0.0398 0.8177 2.2071 0.9039

100 100 100
TDCCA 0.0339 0.9647 53.1478 0.9642

SCCA 0.0412 0.7317 1.3389 0.7692

We introduce four metrics to measure the accuracy of our estimates in sim-

ulations.

• Correlation Deviation Ratio (CDR): This evaluates the capability of

our method to recover the true correlation between two sets of variables.

It is defined as the ratio of l1 distance between estimated correlation and

true correlation to the true correlation.

• F1 score: This measures the ability of our method to capture the true

pattern of related variables.

• Cosine of Angle between estimated and real canonical vectors:

This measures the similarity of our estimation and real canonical vectors.

It is defined as the absolute value of cosine angle between two vectors.

• Temporal Deviation Ratio (TDR): The temporal deviation defined

as ‖Wx(:, t)−Wx(:, t− 1)‖l1 + ‖Wy(:, t)−Wy(:, t− 1)‖l1 , illustrates how

much the estimation changes at each time step. This value is the ratio of

temporal deviation at change point (in our simulation, for simplicity, only

one change point is included) to the average temporal deviation value of

all time points. This metric serves the purpose of testing the ability of our

method to detect temporal dynamics. We notice that SCCA method does

not distinguish the absolute sign of the canonical vectors (−W or W can

both be solutions). To achieve a fair comparison, we alter the canonical

vector Wt to −Wt obtained in SCCA method at time t if (19) is satisfied.
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All the results reported in this section are the averages along temporal dimen-

sion. We denote Wxt = Wx(:, t) and Wyt = Wy(:, t). Xt ∈ Rd1 and Yt ∈ Rd2 .

We fix T = 100 and d1 = d2 for simplicity. Let d = d1 + d2

4.1.1. Simulation 1

In this simulation, we generate our data according to the following model.

Xt = (Wxt + ε1t)ut + η1t

Yt = (Wyt + ε2t)ut + η2t

(20)

where ut ∼ N(0, 1), εit ∼ N(0, 0.12) and ηit ∼ N(0, 0.12) for i = 1, 2. For

t ≤ 100

W1t = (1, ..., 1︸ ︷︷ ︸
d1/4

,−1, ...,−1︸ ︷︷ ︸
d1/4

, 0, ..., 0)

W2t = (0, ..., 0, 1, ..., 1︸ ︷︷ ︸
d2/4

,−1, ...,−1︸ ︷︷ ︸
d2/4

)

For t > 100,

W1t = (0, ..., 0︸ ︷︷ ︸
d1/4

,−1, ...,−1︸ ︷︷ ︸
d1/4

, 1, ..., 1︸ ︷︷ ︸
d1/4

, 0, ..., 0)

W2t = (1, ..., 1︸ ︷︷ ︸
d2/4

, 0, ..., 0,−1, ...,−1︸ ︷︷ ︸
d2/4

)

From the model, we can see that for t ≤ 50, the first half variables of Xt

and second half variables of Yt are correlated, while for t > 50, variables of Xt

located in [ 1
4d1,

3
4d1] are correlated with variables of Yt located in [1, 1

4d2] and

[ 3
4d2, d2]. To test our algorithm, we conducted the estimation with different

settings:

• n = 100, d = 40

• n = 100, d = 100

• n = 100, d = 400

where n is the number of samples. We summarize our results of 50 independent

trials in Table 1.
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4.1.2. Simulation 2

In this section, we employ data generated from a more complicated model

called single canonical pair model [24]. The model is described in (21). We used

the same Wxt and Wyt as in the first simulation.

Xt

Yt

 ∼ N
0

0

,
 Σ1 λΣ1WxtW

T
ytΣ2

λΣ2WytW
T
xtΣ1 Σ2

 (21)

where 0 < λ ≤ 1, WT
xtΣ1Wxt = 1 and WT

xtΣ2Wxt = 1. Let λ = 0.9. We define

Σ1 = Σ2 = (σij)ij where σij = c× 0.3|i−j| which indicates covariance has a cer-

tain rate of decay. The scaling factor c is obtained by normalization. In addition,

we add independent noise (ε ∼ N(0, c
100 )) to the generated data. It is easily to

verify that for model (21), Wxt and Wyt are first pair of canonical vectors, which

maximizes the correlation between XT
t Wxt and Y Tt Wyt. Furthermore, the cor-

responding correlation is λ. We note that our method TDCCA does not depend

heavily on the Gaussian covariance assumption. However, in [24], their Sparse

CCA method utilizes the model structure (21) (Σ12 = Σ1WxW
T
y Σ2) explicitly

and then get an estimation of Wx and Wy directly where Σ12 is cross-covariance

between X and Y . We used the following settings in this simulation,

• n = 100, d = 40

• n = 100, d = 100

where n is the number of samples. Table 2 showed the averaged results of 50

independent trials.

4.1.3. Simulation Results

We show results for both models in Table 1 and Table 2. In terms of F1

score, Temporal Deviation Ratio and Cosine of Angle between estimated and

real canonical vectors, our TDCCA approach significantly outperforms SCCA

method (i.e the CCA method without considering time series structure). The F1

score of TDCCA stays above 0.9 in different settings of two simulations while the
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F1 score of SCCA can be less than 0.6 when the ratio log(d)
n increases. The cosine

of Angle of our approach is close to 1 which indicates the high similarity between

estimated and real canonical vectors. In addition, the temporal deviation ratio

of TDCCA is up to 40 times higher than the SCCA method, which shows a big

advantage of TDCCA in detecting change points. Furthermore, our estimated

value of correlation is closer to the true correlation of simulated data than the

SCCA method.

4.2. Canonical Correlation Variation for resting state fMRI

In this section, we apply our method on the resting state fMRI data and

we propose that the canonical correlation variation (CCV), a new metric ob-

tained from our method can provide clues for the connectivity patterns that

transfer and present aging features. Canonical correlation variability (CCV) is

defined as the standard deviation of time-dependent canonical correlation from

our method.

Recent work has shown that functional connectivity is temporally dynamic

and functional connectivity fluctuates across shorter time-windows for resting

state fMRI [25, 26]. Unlike conventional FC analysis, which assumes static

connectivity over several minutes, the dynamic functional connectivity variation

(FCV) is calculated as the standard variation of the dynamic FC series. In

this approach, the stability of the FC fluctuation over time is quantitatively

measured and compared between brain region pairs. The basic sliding window

framework has been used widely and is repeatedly applied by researchers to

investigate how functional brain dynamics relates to our cognitive abilities [27].

Age-related dynamic pattern of functional connectivity has been also explored

in [28, 22, 29].

Canonical correlation is another way to characterize the strength of the

functional connectivity for each region pair which has been used to construct

a region-level functional connectivity network for predicting major depressive

disorder [30]. In our experiment, two groups of individuals (N = 156, ages

22–25 for the first group; N = 226, ages 31–35 for the second group) were

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/650101doi: bioRxiv preprint 

https://doi.org/10.1101/650101
http://creativecommons.org/licenses/by-nc-nd/4.0/


recruited from the public data of the Human Connectome Project (http://

www.humanconnectomeproject.org/). In particular, we are interested in the

connectivity patterns inside of default mode network (DMN) which contains

Precuneus (pC), Posterior cingulate (PCC), Ventral anterior cingulate (vACC),

and Medial prefrontal cortex (mPFC). For each subject, we used a fixed-length

rectangle window (width = 60 TRs) and the window was shifted by 2 TRs.

These parameters are chosen based on the rule of choosing parameters for dy-

namic functional connectivity [27]. Thus we can obtain the time-dependent

canonical correlation estimated for each pair of ROIs from our method for every

subject from two groups.

Additionally, we use two popular measurements of connectivity pattern:

static functional connectivity (FC), functional connectivity variation (FCV). As

a baseline method, we compute the sparse canonical correlation for each rectan-

gle window and calculate its standard deviation which we will call it CCVB in

the remaining paper. The canonical correlation coefficient (CCC) for the entire

time series is also included for each subject. These features are summarized in

table 3.

Table 3: Features of connectivity pattern used in our experiment

Method Description

CCV Canonical Correlation Variation calculated from TD-

CCA

FC Static Functional Connectivity (Fisher-transformed

correlations) of entire time series

FCV Functional Connectivity Variation using sliding win-

dow approach

CCVB Canonical Correlation Variation calculated from

SCCA for each sliding window

CCC Canonical Correlation Coefficient (Fisher-transformed

correlations) of entire time series
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Table 4: Adjusted p–value for each pair of ROIs chosen from default mode network. Values

in bold represent significant p–value with threshold 0.05.

ROI 1 ROI 2 CCV FC FCV CCVB CCC

vACC pC 0.5197 0.8092 0.9452 0.9498 0.7419

vACC PCC 0.0138 0.9725 0.9452 0.4273 0.7419

PCC pC 0.5197 0.8092 0.9452 0.2464 0.7419

mPFC vACC 0.4224 0.9725 0.9452 0.4273 0.7419

mPFC pC 0.1593 0.8092 0.9452 0.2464 0.7419

mPFC PCC 0.5197 0.9725 0.9452 0.2464 0.7419

CCV FC FCV CCVB CCC
Method

va
lu

e

ROIs = vACC_PCC

age
22-25
31-35

Figure 1:

Table 4 shows the p–value of two sample t-test of different features for each

pair of ROIs compared between two different groups. Multiple testing correction

is performed using the FDR method [31]. From table 4, we can see the only one

significant difference for metrics calculated based on two different groups are

from our proposed canonical correlation variation measurement. It is between

vACC and PCC. Figure 1 illustrates the group differences of different features

for the ROI pair with a significant p–value. The values are scaled for better

visualization. It shows CCV (between vACC and PCC) in the age group 31–

35 is higher than the age group 22–25. This example shows promising results

by applying CCV as a novel way to measure dynamic functional connectivity
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pattern using resting state fMRI.

4.3. Task-based fMRI: motor task detection and feature extraction

In this section, we apply the TDCCA method to analyze task-related fMRI

motor data obtained from the Human Connectome Project [32]. This example

will show how our method can spot change points due to different tasks.

This motor task fMRI is composed of five most basic motor tasks including

tapping left/right fingers, squeezing left/right toes and moving tongue. Partici-

pants were presented with visual cues which asked them to either tap their left

or right fingers, or squeeze their left or right toes, or move their tongue to map

motor areas. Each block of a movement type lasted 12 seconds (5 movements),

and was preceded by a 3-second cue.

Based on the prior scientific findings on the motor task experiment [33],

we select six brain regions corresponding to these different tasks according to

MNI coordinates: left/right hand coordinates (±41, 20, 62), left/right foot

coordinates(±6, 26, 76), tongue coordinates (±55, 4, 26), thalamus (MNI: -

12, -13, 7). We extracted voxels around these coordinates, depending on the

availability of voxels centered around these coordinates. Thus we combine data

from these six regions as our one set of data. We set the length of the sliding

window as 20 TRs according to the length of each task and the window was

shifted by 1 TR (0.72 s). Our TDCCA method is applied to a pair of subjects.

We should mention that brain electrical activity is not directly measured,

instead, the human hemodynamic responses to the short period of neural ac-

tivity are delayed in time. Thus fMRI measures the subsequent demand for

oxygenated blood that follows about several seconds after the neuronal activa-

tions [34].
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0 20 40 60 80 100 120
Frames(1 frame = 0.72s)

our method
SCCA
BOLD

cue
left foot
left hand

right foot
right hand

tongue
resting

Figure 2: Plot of the temporal deviation of TDCCA, SCCA and original BOLD signal, in

which TDCCA detect six significant shift of tasks. The straight line above the plot uses

different colors to indicate the different tasks during the experiment.

We estimate the leading canonical vectors and elaborate on how the Wx

varies with time periods of the different task activation. We also compared the

SCCA (sparse CCA method) with TDCCA. Figure 2 shows the scaled tempo-

ral deviation ‖W (:, t) −W (: t − 1)‖l1 estimated from two methods. Figure 2

elaborates the ability of our approach in detecting temporal dynamics. From

the results of SCCA and original BOLD signal, one can barely see the dynamic

change point for different motor tasks. However, our method detects six signif-
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icant shift of tasks and a clear time delay from task commands to the peak of

temporal deviation.

5. Conclusions and future work

In this paper, a convex framework for combining temporal structure with

canonical correlation analysis is proposed. The proposed framework incorpo-

rates temporal information explicitly. Furthermore, our algorithm is computa-

tionally efficient with guaranteed convergence and has the advantage of parallel

computing. Finally, we introduce a heuristic method to solve the time incoher-

ence problem without using a mixed integer optimization algorithm. The pro-

posed method outperforms the (static) sparse CCA algorithm both in accuracy

and ability to recover temporal variations. Our proposed canonical correlation

variation (CCV) can also provide clues for brain connectivity patterns. Our

method introduces an additional tool to determine change points and extract

critical features in multivariate analysis. In future work, we will explore the the-

oretical property of our proposed algorithm. It would be also promising to apply

our method to analyze multivariate longitudinal data from medical images.
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