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Abstract:	Measurement	 of	 blood	 oxygen	 saturation	 (sO2)	 by	 optical	 imaging	 oximetry	 provides	 invaluable	
insight	into	local	tissue	functions	and	metabolism.	Despite	different	embodiments	and	modalities,	all	label-free	
optical	 imaging	 oximetry	 utilize	 the	 same	 principle	 of	 sO2-dependent	 spectral	 contrast	 from	 hemoglobin.		
Traditional	 approaches	 for	 quantifying	 sO2	 often	 rely	 on	 analytical	models	 that	 are	 fitted	 by	 the	 spectral	
measurements.	 	These	approaches	 in	practice	suffer	 from	uncertainties	due	 to	biological	variability,	 tissue	
geometry,	light	scattering,	systemic	spectral	bias,	and	variations	in	experimental	conditions.		Here,	we	propose	
a	 new	 data-driven	 approach,	 termed	 deep	 spectral	 learning	 (DSL)	 for	 oximetry	 to	 be	 highly	 robust	 to	
experimental	variations,	and	more	importantly	to	provide	uncertainty	quantification	for	each	sO2	prediction.	
To	 demonstrate	 the	 robustness	 and	 generalizability	 of	DSL,	we	analyze	 data	 from	 two	 visible	 light	 optical	
coherence	 tomography	 (vis-OCT)	 setups	 across	 two	 separate	 in	 vivo	 experiments	 in	 rat	 retina.	Predictions	
made	by	DSL	are	highly	adaptive	to	experimental	variabilities	as	well	as	the	depth-dependent	backscattering	
spectra.		Two	neural-network-based	models	are	tested	and	compared	with	the	traditional	least-squares	fitting	
(LSF)	method.	The	DSL-predicted	sO2	shows	significantly	lower	mean-square	errors	than	the	LSF.		For	the	first	
time,	we	have	demonstrated	en	face	maps	of	retinal	oximetry	along	with	pixel-wise	confidence	assessment.	Our	
DSL	 overcomes	 several	 limitations	 in	 the	 traditional	approaches	 and	provides	a	more	 flexible,	 robust,	 and	
reliable	deep	learning	approach	for	in	vivo	non-invasive	label-free	optical	oximetry.		

1.	Introduction.		

Microvascular	systems	deliver	oxygen	to	support	cellular	metabolism	and	maintain	biological	functions.	Within	the	local	
microenvironment	of	blood	vessels,	oxygen	unloads	from	hemoglobin	and	diffuses	freely	from	red	blood	cells	(RBC)	to	
tissues	 following	 the	 gradient	 of	 oxygen	 partial	 pressure	 (pO2),	 which	 determines	 the	 oxygen	 saturation	 (sO2)	 of	
hemoglobin.		The	measurement	of	microvascular	sO2	thus	can	provide	invaluable	insight	into	local	tissue	metabolism,	
inflammation,	 and	 oxygen-related	 pathologies	 (e.g.	 cancers,	 diabetic	 milieu	 and	 complications,	 and	 cardiovascular	
diseases)	[1–5].		

In	recent	years,	several	non-invasive	and	label-free	optical	imaging	oximetry	techniques	have	been	developed	to	measure	
microvascular	sO2.	Despite	their	differences,	the	fundamental	mechanism	is	the	same	that	is	based	on	the	sO2-dependent	
spectral	contrast	from	hemoglobin	[6].	The	spectral	measurement	is	then	related	to	sO2	through	a	complex	physical	model	
incorporating	tissue	geometry,	heterogeneous	tissue	scattering,	light	attenuation	and	propagation,	and	imaging	optical	
instruments.		This	model	is	often	simplified	and	analytically	formulated	under	different	approximations	and	assumptions.		
Examples	include	spatial	frequency	domain	imaging	[7,8]	in	the	diffusive	regime	under	the	P3	approximation,	multi-
wavelength	imaging	[9–12]and	visible	light	optical	coherence	tomography	(vis-OCT)	[13–26]	in	the	ballistic	regime	based	
on	 the	Beer’s	 law	 combined	with	 the	 first	 Born	 approximation,	 photoacoustic	microscopy/tomography	 assuming	 a	
uniform	laser	fluence	inside	the	tissue	[27,28],	and	photothermal	imaging	assuming	a	linear	relation	between	the	blood	
absorption	and	the	change	of	the	optical	signal	[29–32].		The	sO2	estimation	thus	requires	solving	an	ill-posed	inverse	
problem	that	is	inevitably	subject	to	model	inaccuracies,	noise,	systemic	spectral	bias,	and	experimental	conditions.		One	
widely	used	inversion	method	is	the	spectral	least-squares	fitting	(LSF)	that	estimates	the	sO2	by	matching	the	spectral	
data	with	the	analytical	model.		However,	in	practice	multiple	sources	of	spectral	errors	exist	that	are	impossible	to	be	fully	
parameterized	in	a	simple	analytical	form,	which	in	turn	compromises	the	sO2	estimation	accuracy,	repeatability,	and	
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cross-comparison	between	different	devices,	test	subjects,	and	time.		Therefore,	it	is	imperative	to	develop	a	more	robust	
model	to	enable	more	accurate	quantification	of	microvascular	sO2	for	label-free	optical	imaging	oximetry.	

In	this	work,	we	develop	a	new	data-driven	deep	spectral	learning	(DSL)	method	to	enable	highly	robust	and	reliable	sO2	
estimation.	By	training	a	neural	network	to	directly	relate	the	spectral	measurements	to	the	corresponding	independent	
sO2	labels,	DSL	bypasses	the	need	for	a	rigid	parametric	model,	similar	to	existing	deep	learning	methods	for	solving	optical	
inverse	problems[33–37].		We	show	that	DSL	can	be	trained	to	be	highly	robust	to	multiple	sources	of	variabilities	in	the	
experiments,	including	different	devices,	imaging	protocols,	speeds,	and	other	possible	longitudinal	variations.		

A	crucial	feature	of	our	DSL	method	is	uncertainty	quantification.	Due	to	biological	variations	and	tissue	heterogeneity,	an	
assessment	 of	 the	 reliability	 of	 each	 sO2	 measurement	 is	 crucial	 in	 clinical	 applications	 and	 for	 guarding	 against	
vulnerabilities	 in	making	overly	confident	predictions	when	 imaging	rare	cases[38].	 	Existing	model-based	methods	
generate	a	single	value	of	sO2	for	each	spectral	measurement,	i.e.	a	point	estimate.	The	accuracy	and	uncertainty	of	the	
point	estimate	can	only	be	assessed	by	 taking	repeated	measurements	against	the	ground-truth	in	a	well-controlled	
experiment.	This	uncertainty	estimation	presents	a	clear	limitation	for	many	biomedical	applications	in	which	the	ground-
truth	is	often	inaccessible	in	vivo,	and	the	statistical	analysis	can	only	be	performed	retrospectively	on	those	repeated	
measurements	[13,19,22,32,39].	Instead	of	assessing	the	variabilities	in	the	data	retrospectively,	we	develop	our	DSL	
model	based	on	an	uncertainty	learning	framework[37]	to	encapsulate	the	statistics	in	the	learned	model,	essentially	
shifting	the	burden	of	repeated	measurements	in	the	model-based	methods	to	the	training	phase	of	DSL.		After	the	training,	
the	DSL	model	predicts	both	sO2	and	its	tandem	standard	deviation,	assessing	the	uncertainty	for	each	sO2	prediction	(i.e.	
a	 statistical	 distribution	 describing	 all	 the	 possible	 sO2	 levels	 of	 each	 prediction	 given	 the	 measurements).	 Most	
importantly,	we	show	that	the	DSL	predicted	statistics	closely	match	those	obtained	from	ensemble	calculations.	This	
means	that	the	confidence	level	calculated	from	the	DSL	prediction	can	be	used	as	a	surrogate	estimate	to	the	true	accuracy	
of	the	estimate	–	making	DSL	highly	reliable.	

We	demonstrate	DSL	using	two	sets	of	vis-OCT	spectral	measurements	for	oximetry	on	rat	retina	from	[13,19].	Two	DSL	
models	are	investigated,	including	a	1D	fully	connected	neural	network	(FNN)	and	a	1D	convolutional	neural	network	
(CNN).		Our	results	show	that	both	DSL	models	are	significantly	outperforming	the	LSF,	both	in	terms	of	the	estimation	
accuracy	and	the	robustness	to	experimental	variations.	We	further	conduct	quantitative	statistical	analysis	based	on	the	
uncertainty	learning	to	establish	the	confidence	level	of	the	two	proposed	models,	and	further	justify	the	reliability	of	DSL.		
Next,	imaging	oximetry	is	demonstrated	on	en	face	sO2	maps	of	rat	retina	along	with	the	corresponding	uncertainty	maps,	
providing	a	visualization	of	the	DSL	predictions.	This	allows	us	to	assess	the	accuracy	of	the	prediction	based	on	the	
underlying	physiological	conditions.			
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Fig.	1.	Methods	for	calculating	retinal	blood	vessel	oxygen	saturation	(sO2)	by	(a)	the	traditional	LSF,	and	(b)	our	neural-
network-based	DSL	with	uncertainty	quantification.		

2.	Principle	of	Least	Square	Fitting		

Vis-OCT	uses	ballistic	photon	and	coherence	gating	to	localize	the	optical	signal	within	a	tissue	volume.		At	the	
bottom	of	the	vessel	wall,	light	double-passing	through	the	vessel	lumen	gives	rise	to	the	detectable	spectral	
contrast	that	can	be	analytically	formulated	based	on	the	Beer’s	law	[13],		

𝐼(𝑠𝑂%|𝜆, 𝑧) = 𝐼,(𝜆)-𝑅,𝑟(𝜆)𝑒12345×789:5
(;)<(=1345)×7>?(;)@A																																													(1)		

where	 I0(λ)	 is	 the	 light	 source’s	 spectrum;	R0	 is	 the	 reflectance	 of	 the	 reference	arm	and	 assumed	 to	be	a	
constant;	r(λ)	(dimensionless)	is	the	reflectance	at	the	vessel	wall,	whose	scattering	spectrum	can	be	modeled	
by	a	power	 law	under	 the	 first	Born	approximation	r(λ)=Aλ-α with	A	being	a	dimensionless	constant	and	α	
modeling	the	decaying	scattering	spectrum	from	the	vessel	wall;	The	optical	attenuation	coefficient	µ	(mm−1)	
combines	the	absorption	(µa)	and	scattering	coefficients	(µs)	of	the	whole	blood,	which	are	both	wavelength-	
and	sO2-dependent:	

𝜇 = 𝜇C +𝑊𝜇3																																																																																									(2)		

where	W	is	a	scaling	factor	for	the	scattering	coefficient	and	is	empirically	set	to	0.2	[6,21,40].		The	subscripts	
Hb	and	HbO2	denote	the	contribution	from	the	deoxygenated	and	oxygenated	blood,	respectively.	z	denotes	the	
light	penetrating	depth.		

To	estimate	sO2,	 the	 traditional	approach	applies	 the	 least-squares	procedure	 that	fits	 the	vis-OCT	spectral	
measurement	to	the	analytical	model	by	minimizing	the	total	squares	of	the	error,	as	illustrated	in	Fig.	1(a):		

min
IJ5,K,L

∑ ‖log	(𝐼S(𝜆)) − log	(𝐼(sO%, 𝐴, 𝛼|𝜆, 𝑧 = 𝐷))‖%; 																																																				(3)	

where	Im	is	typically	taken	as	the	vis-OCT	spectral	measurements	extracted	from	the	bottom	of	the	vessel	in	
order	to	maximize	the	spectroscopic	contrast.			

In	this	analytical	model,	two	free	parameters	(A,	α)	in	addition	to	the	unknown	sO2	level	are	introduced	in	order	
to	more	accurately	capture	realistic	biophysical	interactions.	However,	in	practice	these	two	parameters	cannot	
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fully	capture	all	the	experimental	variabilities.		While	other	models	may	reduce	the	free	parameters	to	avoid	
overfitting	[14,17,19,23–25],	this	approach	in	general	 is	nonetheless	rigid	and	over-simplified	to	the	actual	
experiments.			

3.	Principle	of	Deep	Spectral	Learning	

In	DSL,	instead	of	using	a	rigid	analytical	model,	we	train	a	neural	network	to	link	the	spectral	measurements	and	the	
independently	measured	sO2	labels,	as	illustrated	in	Fig.	1(b).		By	doing	so,	DSL	bypasses	the	need	for	parametric	tuning	
and	model	 simplification	and	approximation	needed	 in	 fitting	 the	analytical	models.	Furthermore,	by	 removing	 the	
restrictions	imposed	by	the	analytical	model,	DSL	allows	utilizing	multiple	sets	of	spectral	measurements	taken	at	different	
depths	and	enables	a	more	holistic	spectral-sO2	analysis.	Specifically,	we	demonstrate	high-quality	predictions	using	
concatenated	spectra	data	from	both	the	bottom	and	the	center	of	the	vessels	in	vis-OCT.		Because	the	pulse	oximeter	
measures	the	systemic	arterial	sO2,	the	same	as	the	retinal	arterioles,	we	use	the	retinal	arterial	spectra	as	the	training	
input	paired	with	the	independently	measured	pulse	oximeter	sO2	(spO2)	as	the	ground-truth	label.		After	training,	the	
network	makes	predictions	for	both	arterials	and	veins.			

In	 addition	 to	 sO2	 prediction,	a	major	 important	 feature	 of	 our	 data-driven	DSL	method	 is	 to	 quantify	 the	
uncertainty	for	each	prediction.		To	do	so,	we	specially	design	the	loss	function	for	training	the	neural	network	
to	properly	capture	the	underlying	statistics	of	the	data.	The	commonly	used	loss	function,	such	as	the	mean	
squared	error	 (MSE),	 assumes	a	 homogeneous	Gaussian	 distribution	 of	 the	 errors	 in	 the	 predictions.	 This	
severely	limits	its	ability	to	adapt	to	different	types	of	spectral	data	variations	(e.g.	spectral	signal	outliers,	non-
uniform	noise,	and	unevenly	sampled	data)	that	are	inevitably	inhomogeneous.	To	account	for	this,	we	design	
a	customized	loss	function	derived	from	a	heterogeneous	Gaussian	distribution	model.	Using	the	training	data	
set	(Ii,	[spO2]i),	i	=	1,2,…,	N,	where	Ii	and	[spO2]i	are	the	ith	vis-OCT	spectral	measurement	and	the	ground-truth	
pulse	oximeter	spO2,	respectively,	our	loss	function	LG(w)	is		

𝐿[(𝑤) = ∑ ([IJ5]_(`)1[IaJ5]_)5

b_
5(`)

c
de= + log	(𝜎d%(𝑤))																																																															(4)	

where	 [sO2]i	 and	σi	 denote	 respectively	 the	 neural	 network	predicted	mean	 and	 standard	deviation	 of	 the	
underlying	Gaussian	distribution	for	the	ith	training	data	pair;	w	is	the	learned	neural	network	weights.		The	
main	 idea	 of	 this	 loss	 function	assumes	 that	 the	 prediction	made	 on	 each	 data	 follows	 a	 distinct	Gaussian	
distribution,	 and	 the	 network	 is	 trained	 to	 predict	 the	 underlying	 mean	 and	 standard	 deviation	 [41].		
Accordingly,	the	standard	deviation	σ	quantifies	the	uncertainty	for	each	sO2	prediction.		

We	investigate	two	neural	network	models,	including	an	FNN,	and	a	CNN	model,	whose	network	architectures	are	shown	
in	Fig.	2(a)	and	2(b),	respectively.	 	The	detailed	descriptions	of	the	data	preprocessing	and	network	architecture	are	
included	in	the	method	section.			

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650259doi: bioRxiv preprint 

https://doi.org/10.1101/650259


	

Fig.	2.	Structures	of	the	FNN	model	(a)	and	the	CNN	model	(b)	for	sO2	prediction	with	uncertainty	quantified	by	the	
predicted	standard	deviation.			
	
4.	Results	and	Discussion		

A.	Data	source	

To	evaluate	the	effectiveness	of	the	DSL	approach,	we	compiled	two	datasets	from	the	previous	literatures	on	
vis-OCT	for	retinal	oximetry	[13,19].	Specifically,	the	data	in	Fig.	3(a)	are	from	Ref.	[13]and	Fig.	3(b)	from	Ref.	
[19].	Both	data	sets	used	similar	experimental	protocols	that	the	oxygen	content	in	the	ventilation	gas	were	
adjusted	to	induce	systemic	hypoxia	or	hyperoxia,	and	vis-OCT	measurements	were	taken	at	each	ventilation	
condition.		In	Ref.	[13],	a	step-wise	hypoxia	challenge	was	given	to	four	rats,	reducing	oxygen	content	gradually	
from	 21%	 to	 9%.	 	 In	 Ref.	 [19],	 eight	 rats	were	measured	 by	 five	 ventilation	 conditions,	 sequencing	 from	
normoxia,	hyperoxia	(100%	O2),	5%	carbon	dioxide	(21%	O2,	74%	N2,	and	5%	CO2),	hypoxia	(10%	O2,	90%	N2),	
and	finally	to	normoxia.	At	each	ventilation	condition,	the	systemic	arterial	spO2	reading	was	taken	by	a	pulse	
oximeter	attached	to	a	rear	leg	of	the	rats.	The	spO2	readings	are	used	as	the	ground-truth	label	for	the	major	
retinal	arterioles	for	neural	network	training.	Depth-dependent	backscattering	spectra	of	rat	retinal	arterioles	
in	vis-OCT	were	extracted	at	each	ventilation	conditions	as	spectral	input	to	the	neural	network.	The	extracted	
arteriole	spectra	with	the	spO2	labels	were	then	split	into	training	and	testing	sets.		In	Ref.	[13],	data	from	three	
of	the	four	rats	were	used	as	the	training	sets	with	the	remaining	one	as	the	testing	set.	In	Ref.	[19],	data	from	
seven	rats	were	used	as	the	training	sets	and	the	remaining	one	is	the	testing	set.	Fig.	3(a)	and	3(b)	summarize	
the	number	of	spectra	extracted	and	the	corresponding	spO2	labels	in	descending	order,	respectively.	Fig.	3(c)	
shows	the	histogram	of	all	the	training	and	testing	spectra	with	their	corresponding	spO2	labels.			
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Fig.	3.	Oximeter	spO2	readings	(ground-truth	labels)	for	training	and	testing.	(a)	The	readings	of	rat	retinal	
arterioles	from	normoxia	to	hypoxia	from	Ref.	[13].	(b)	The	readings	of	rat	retinal	arterioles	from	hyperoxia,	
5%	CO2,	normoxia	to	hypoxia	from	Ref.	[19].	(c)	The	histograms	of	all	the	readings.		

B.	Prediction	of	arterial	sO2	

Once	the	networks	are	trained,	the	sO2	prediction	from	the	testing	data	by	FNN	and	CNN	are	plotted	in	Fig.	4(a)	
and	 4(b),	 respectively,	 along	 with	 the	 ground-truth	 oximeter	 spO2	 readings	 and	 the	 LSF	 estimates	 for	
comparison.	The	first	248	predicted	sO2	values	are	the	testing	data	from	Ref.	[13]	and	the	rest	254	are	from	
Ref.	[19].		Using	the	data	from	Ref.	[13],	the	sO2	estimation	using	both	DSL	models	(FNN,	CNN)	and	the	LSF	
agree	well	with	the	change	in	the	spO2	readings.	Much	lower	variations	are	observed	in	the	DSL	predictions	
than	those	from	LSF,	owing	to	DSL’s	improved	robustness	to	noise	and	other	random	signal	fluctuations.		When	
the	same	LSF	parameters	and	inverse	calculation	procedure	for	the	data	from	Ref.	[13]	are	applied	to	the	data	
from	Ref.	[19],	large	deviations	from	the	oximeter	spO2	readings	are	observed	in	the	estimates.		In	comparison,	
the	 sO2	 predicted	by	 both	DSL	models	consistently	agree	with	 the	 spO2	readings,	 demonstrating	 the	DSL’s	
robustness	 to	 experimental	 variations	 present	 in	 these	 two	 data	 sets,	 such	 as	 difference	 in	 SNR,	 imaging	
protocol	 and	 speed.	 	 The	 absolute	 errors	 calculated	 from	 the	 sO2	 predictions	 and	 the	 corresponding	 spO2	
readings	from	the	FNN	and	CNN	are	plotted	in	Fig.	4(c)	and	4(d),	as	compared	to	those	from	the	LSF.		Errors	
from	both	DSL	models	are	significantly	lower	than	the	LSF	model,	especially	for	the	testing	data	from	Ref.	[19].		
To	quantitatively	compare	the	three	different	models,	we	calculate	the	mean	square	errors	(MSE)	of	the	FNN	
and	CNN	models	as	0.3149%	and	0.2665%,	respectively,	both	of	which	are	much	lower	than	3.870%	by	the	
LSF.	 	An	important	feature	of	our	DSL	models	 is	 its	ability	to	quantify	uncertainty	via	the	tandem	standard	
deviation	(σ)	for	each	sO2	prediction	(Fig.	4(e)	and	4(f)).		Overall,	both	FNN	and	CNN	predict	σ	around	5-7%,	
and	the	variation	of	σ	justifies	the	use	of	heterogeneous	Gaussian	distribution	model	in	our	customized	loss	
function.	 	We	 also	 see	 that	 the	 prediction	 for	Ref.	 [19]	has	 lower	 value	 and	 variation	 on	σ	 than	Ref.	 [13],	
presumably	due	to	more	animal	numbers	and	larger	training	dataset	(Fig.	3).		Out	of	2779	training	data,	1930	
of	them	are	from	Ref.	[19].		
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Fig.	4.	Rat	retinal	arterioles	sO2	of	the	testing	data	at	different	external	oxygenation	status	by	the	FNN	model,	
the	CNN	model,	and	the	LSF.	The	predicted	sO2	by	the	FNN	(a)	and	the	CNN	(b),	compared	with	the	oximeter	
spO2	readings	and	the	LSF	calculations.	The	predicted	uncertainties	of	sO2	by	the	FNN	(c)	and	the	CNN	model	
(d)	measured	by	the	standard	deviations	(σ).	The	errors	of	the	predicted	sO2	by	the	FNN	(e)	and	the	CNN	model	
(f)	as	compared	with	the	LSF	results.		

C.	Evaluation	of	the	quantified	uncertainty		

Our	uncertainty	quantification	assumes	that	the	predicted	sO2	follows	a	heterogeneous	Gaussian	distribution	
given	different	inputs.	To	validate	our	uncertainty	metrics,	we	retrospectively	calculated	the	actual	probability	
that	the	ground-truth	(spO2)	falls	within	a	certain	confidence	interval	of	the	predicted	sO2,	and	summarize	the	
results	 using	 the	 reliability	 diagram	 [34,37,42].	 To	 construct	 a	 reliability	 diagram,	 we	 gather	 a	 sub-set	 of	
predictions	with	a	specific	standard	deviation	σ0.		We	then	calculate	the	probability	from	this	sub-set	of	data	that	satisfy	
the	criterion	of	|sO% − spO%| < 𝜂𝜎,,	where	sO2	and	spO2	are	the	prediction	and	the	corresponding	ground-truth:			

𝑃(𝜎,, 𝜂) =
=

klmnk
∑ Ι{|IJ51IaJ5|qrbn}	d∈lmn

																																																															(5)	

where	η	is	a	variable	that	defines	the	confidence	interval,	and	S	denotes	the	sub-set	of	the	prediction	with	the	
specified	standard	deviation.	In	practice,	we	relax	σ0	to	σ0±1%	in	order	to	include	sufficient	data	for	ensuring	
reliable	statistical	calculations.		Intuitively,	the	probability	will	approach	1	when	η	increases,	i.e.	a	larger	error	
tolerance.		At	the	same	time,	η	also	corresponds	to	a	theoretical	confidence	by	the	Normal	distribution.		The	
reliability	 diagram	essentially	 plots	 the	 actual	 probability	 against	η,	 or	 theoretical	 confidence.	 	 Ideally,	 the	
actual	probability	will	equal	to	the	theoretical	confidence	--	falling	on	the	diagonal	line	in	the	graph.			

The	reliability	diagrams	for	both	models	are	shown	in	Fig.	5.		To	cover	over	90%	of	the	total	502	predictions	of	the	testing	
data	in	the	reliability	diagram,	we	set	σ0	=	5%	and	7%	for	FNN	model	and	σ0	=	5%,	7%	and	9%	for	the	CNN	model,	
respectively.		For	both	models,	the	sO2	predictions	with	uncertainty	falling	in	the	7%±1%	range	and	higher	are	slightly	
conservative,	with	𝑃(𝜎,,𝜂)	higher	than	the	predicted	confidence;	for	the	FNN	model,	the	sO2	predictions	with	uncertainty	
falling	in	5%±1%	are	slightly	overconfident,	with	𝑃(𝜎,,𝜂)	lower	than	the	confidence,	while	for	the	CNN	model,	results	
falling	in	5%±1%	are	quite	close	to	the	standard	line	where	slope	=	1.		Visualization	1(a)	–	1(f)	in	Supplementary	Material	
illustrate	the	sub-sets	of	data	when	σ0	=	5%,	7%	and	9%	for	both	models.		Statistical	results	with	linear	fits	are	also	shown	
in	Fig.	5(a)	and	5(b)	for	the	FNN	and	the	CNN	models,	respectively.		Table	1	provide	a	summary	of	the	fitting	parameters,	
slope	 and	 constant,	 and	how	many	 of	 the	 total	 502	 test	 data	were	 counted	 for	 the	 statistical	 analysis	within	 each	
uncertainty	range.			
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Fig.	5.	Statistical	analysis	of	the	sO2	predictions	with	the	quantified	uncertainty.	(a)	The	Linear	fit	of	the	empirical	
accuracy	to	the	confidence	for	the	FNN	model	when	the	uncertainty	measured	by	the	standard	deviation	(σ)	is	5%±	1%	
and	7%±	1%.	(b)	The	linear	fits	of	the	empirical	accuracy	to	the	confidence	for	the	CNN	model	when	the	standard	
deviation	is	5%±	1%,	7%±1%,	and	9%±1%.			
	

Table	1:	Parameters	of	linear	fit	of	𝑃(𝜎,,𝜂)	to	theoretical	confidence	for	sO2	predictions	with	different	uncertainties	(𝝈)	by	
the	FNN	and	the	CNN	models.	

Models	and	uncertainties	 Slope	 Constant		 Datasets	
The	FNN	model	(𝜎: 5%± 1%)	 0.9600	 -0.04886	 219	
The	FNN	model	(𝜎: 7%± 1%)	 1.057	 0.03658	 252	
The	CNN	model	(𝜎: 5%± 1%)	 0.9878	 0.01440	 219	
The	CNN	model	(𝜎: 7%± 1%)	 1.0233	 0.04901	 178	
The	CNN	model	(𝜎: 9%± 1%)	 1.0229	 0.1250	 97	

	

D.	En	face	sO2	maps	with	uncertainty	quantification	

After	model	test	and	uncertainty	analysis,	we	used	the	testing	data	from	Ref.	[12]	and	applied	the	FNN	and	CNN	
models	for	retinal	imaging	oximetry	in	comparison	to	LSF	(Fig.	6),	at	three	different	ventilation	conditions.		The	
oximetry	 by	 both	 FNN	 and	 CNN	 clearly	 reflect	 the	 sO2	 changes	 of	 all	 vessels	 from	 hypoxia,	 normoxia,	 to	
hyperoxia,	with	the	predicted	sO2	of	arterioles	matching	with	the	oximeter	spO2	readings	well.	The	sO2	contrast	
between	arterioles	and	venules	are	also	clearly	visualized	in	hypoxia	and	normoxia.		In	comparison,	although	
the	sO2	by	the	LSF	reflects	a	similar	sO2	change	form	hypoxia	to	hyperoxia	and	the	arteriovenous	contrast,	all	
estimated	arterioles	sO2	are	much	lower	than	the	spO2	readings	due	to	the	experimental	variations	present	in	
the	two	experiments.		There	are	higher	variances	in	the	sO2	results	within	each	individual	blood	vessel	by	LSF,	
particularly	in	Fig.	6(i).		These	results	clearly	indicate	the	superior	robustness	and	resilience	to	variations	in	
experimental	conditions	and	within	vessels	by	DSL.	Importantly,	our	DSL	models	enable	direct	visualization	of	
the	“en	face”	uncertainty	maps	of	the	sO2	predictions	in	Fig.	7.	On	average,	the	CNN	model	has	lower	uncertainty	
with	more	 confident	 sO2	 predictions	 than	 the	 FNN	model	 (Fig.	 7(a)-7(f)).	 	 At	 hypoxia,	 it	 appears	 the	 sO2	
estimation	is	problematic	at	the	periphery	on	the	right	side	due	to	lower	SNR,	where	sO2	is	inconsistent	within	
the	vessel,	 as	shown	in	Fig.	6(a),	6(d)	and	6(g).	 	At	 those	regions,	 the	CNN	model	gave	correct	uncertainty	
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estimation,	recapitulating	higher	values	of	σ	(Fig.	7(d)).		The	uncertainty	increases	in	hyperoxia,	presumably	
due	to	less	training	data	(Fig.	3c).		

	
	
Fig.	6.	The	en	face	sO2	maps	of	the	test	rat	retinal	arterioles	and	venules	at	hypoxia	in	(a),	(b),	and	(c),	normoxia	in	(d),	(e),	
and	(f),	and	hyperoxia	in	(g),	(h),	and	(i)	status.	The	predicted	sO2	by	the	FNN	model	are	in	(a),	(d),	and	(g),	and	by	the	
CNN	model	are	in	(b),	(e),	and	(h).	The	calculated	sO2	by	the	LSM	are	in	(c),	(f),	and	(i).	The	oximeter	spO2	readings	at	
hypoxia,	normoxia,	and	hyperoxia	status	are	70%,	80%,	and	98%,	respectively.	Scale	bar:	500	μm.		
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Fig.	7.	The	en	face	uncertainty	(σ)	maps	for	sO2	predictions	of	the	test	rat	retinal	arterioles	and	venules	by	the	FNN	model	
in	(a),	(b),	and	(c),	and	the	CNN	model	in	(d),	(e),	and	(f).	The	predicted	uncertainty	(σ)	at	hypoxia	status	are	in	(a)	and	(d),	
at	normoxia	status	are	in	(b)	and	(e),	and	at	hyperoxia	status	are	in	(c)	and	(f).	The	oximeter	spO2	readings	at	hypoxia,	
normoxia,	and	hyperoxia	status	are	70%,	80%,	and	98%,	respectively.	Scale	bar:	500	μm	

5.	Summary	
In	this	paper,	we	present	a	new	framework	for	optical	imaging	oximetry	based	on	deep	spectral	learning	(DSL).		The	DSL	
offers	several	unique	advantages	as	compared	to	existing	least-square-fitting	(LSF)	method.		First,	it	bypasses	the	need	
for	any	rigid	analytical	models	and	is	highly	flexible	and	resilient	to	experimental	variations.	We	tested	DSL	on	two	
datasets	from	two	separate	vis-OCT	experiments,	and	showed	that	DSL	maintained	consistent	agreements	with	the	
ground-truth	spO2	despite	many	differences	in	these	two	experiments.		In	contrast,	LSF	with	the	identical	parametric	
setting	generated	significant	biases	between	the	two	datasets.		Second,	without	the	restriction	of	any	rigid	models,	DSL	
allows	more	flexible	and	efficient	use	of	the	data.		Here,	we	demonstrate	the	effectiveness	of	using	the	spectra	from	both	
the	middle	and	bottom	of	the	vessels,	since	both	carry	sO2-dependent	spectral	contrast.		Most	importantly,	DSL	not	only	
provides	the	point	estimate	of	sO2	but	also	quantifies	the	tandem	uncertainty	of	the	prediction.		Quantifying	the	statistical	
uncertainty	for	each	measurement	is	not	possible	using	the	traditional	LSF	approach,	however	is	valuable	in	assessing	
the	fidelity	of	each	measurements,	in	particular	in	clinical	applications.		We	validate	the	uncertainty	quantification	by	
using	the	reliability	diagram,	and	for	the	first	time	to	our	knowledge,	have	constructed	uncertainty	map	of	in	vivo	imaging	
oximetry	showing	the	estimation	confidence	by	DSL.		More	generally,	our	DSL	framework	presents	an	attractive	data-
driven	approach	for	other	inverse	scattering	spectral	analysis	beyond	oximetry.			
	
6.	Methods	

A.	Vis	OCT	experiments		

The	vis-OCT	systems	in	Ref.	[13]	and	Ref.	[19]had	the	same	spectral	range	from	520	nm	to	630	nm,	with	the	
same	lateral	and	axial	resolutions	estimated	as	15	𝜇𝑚	and	1.7	𝜇𝑚,	respectively.		The	scanning	protocol	in	Ref.	
[13]	used	a	raster	scan	over	a	20°	square	retinal	area	covering	a	field	of	view	(FOV)	of	2.51mm×2.51mm,	with	
256×256	pixels	in	each	direction	at	a	25	kHz	A-line	rate.		The	exposure	time	for	the	spectrometer	camera	was	
37µs.		The	entire	vis-OCT	image	stack	took	3.3	seconds	to	acquire.	The	scanning	protocol	in	Ref.	[19]	was	for	
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optical	 coherence	 tomography	 angiography,	 scanning	 a	 40 ° 	square	 retinal	 area	 covering	 a	 FOV	 of	
4.37mm×4.37mm,	with	400	pixels	in	the	A-line	direction	and	512	pixels	in	the	B-scan	direction	at	a	50	kHz	A-
line	rate.		The	exposure	time	for	the	spectrometer	camera	was	17µs.		For	the	sake	of	vis-OCT	angiography,	there	
were	repetitive	(5×)	unidirectional	B-scans	of	the	same	cross	section,	giving	a	total	of	5×512	B-scans	for	each	
acquisition.	The	entire	vis-OCT	image	stack	took	25.6	seconds	to	acquire.		 

B.	Spectral	Extraction	and	Data	Preprocessing	

Wavelength-dependent	vis-OCT	images	were	first	generated	by	a	short-time	Fourier	transform	(STFT)	with	14	
equally	spaced	Gaussian	spectral	windows	in	the	k-space.	The	wavelength	spans	from	523.4	–	604.5	nm.	The	
size	(FWHM)	of	the	Gaussian	window	in	the	k-space	is	0.32	μm−1,	corresponding	to	a	bandwidth	of	~17	nm	at	
585	nm.		After	STFT,	a	spectrum	can	be	obtained	at	each	3D	vis-OCT	voxel.		Next,	we	performed	segmentation	
to	isolate	the	spectra	within	retinal	arterioles	[21,22].		Retinal	blood	vessels	are	first	segmented	from	the	en	
face	 projection	 of	 the	 3D	 vis-OCT	 image	 by	 a	 threshold-based	 algorithm	 [22];	 next	 all	 A-lines	 within	 the	
segmented	retinal	arterioles	are	shifted	in	the	axial	direction	in	reference	to	the	retinal	surface	and	randomly	
shuffled.	 A	 rolling	 averaging	 of	 100	 shuffled	 A-lines	 in	 Ref.	 [13]and	 250	 shuffled	 A-lines	 in	 Ref.	 [19]	was	
performed	with	50	and	125	rolling	step	size.	Because	the	major	vessels	are	located	on	top	of	the	retina,	signal	
within	the	vessels	can	be	averaged	in	reference	to	the	retinal	surface	to	generate	one	spectrum.	We	located	the	
bottom	vessel	wall[13,18],	and	averaged	signals	±16.63	µm	as	the	vessel	bottom	spectrum.		We	then	averaged	
the	signal	from	~25	µm	above	the	bottom	vessel	and	within	a	range	of	±8.31µm	as	the	spectrum	from	vessel	
center.	For	DSL,	these	two	spectra	were	concatenated	as	a	whole	spectral	input.	Finally,	each	individual	spectral	
input	was	normalized	by	its	mean	to	ensure	similar	scaling	of	all	datasets	before	neural	network	training.			

C.	Network	architectures	and	training	

The	first	FNN	model	as	illustrated	in	Fig.	2(a)	concatenates	two	spectra	from	both	the	bottom	and	center	of	the	
vessels	with	a	size	of	1×28	as	input.	The	output	predicts	both	the	mean	sO2	level	and	the	uncertainty	(measured	
by	 the	 standard	 deviation)	 in	 two	 output	 channels,	 both	 of	 which	 are	 single	 values	 in	 a	 unit	 of	 volume	
percentage	of	blood	being	oxygenated.	The	model	has	two	hidden	layers,	each	having	24	units.	We	use	the	Relu	
activation	function	in	the	two	inner	layers,	and	the	sigmoid	activation	function	in	the	final	layer	to	normalize	
the	predictions	between	0%	and	100%.		

The	second	CNN	model	as	illustrated	in	Fig.	2(b)	takes	the	same	input	as	the	FNN	model,	and	also	predicts	the	
sO2	with	uncertainty.	The	model	has	two	convolutional	layers,	with	each	of	them	having	a	filter	size	of	3	and	a	
filter	number	of	30,	and	one	flatten	layer.	We	use	the	Relu	activation	function	in	the	two	convolutional	layers,	
and	the	sigmoid	activation	function	in	the	final	layer.	

All	the	data	processing	and	network	training	are	implemented	in	Python	using	TensorFlow/Keras	library.		Both	
models	were	trained	with	an	initial	learning	rate	of	2.5×10-3	and	we	gradually	decreased	the	rate	by	1/(1 +
αN),	where	N	is	the	epoch	number,	and	α	is	a	decay	rate	set	to	be	0.01.	The	same	total	epoch	number	of	2000	
with	the	same	batch	size	of	50	ensured	that	the	learning	curve	could	reach	a	plateau.	We	set	the	validation	split	
ratio	as	0.2	and	selected	 the	model	with	 the	minimum	validation	 loss	as	 the	optimal	one	for	 following	sO2	
prediction.	

D.	Loss	function	for	uncertainty	quantification	

In	the	proposed	DSL	model	denoted	by	its	network	weights	𝑤,	the	network	makes	estimation	on	both	the	mean	
and	 the	 standard	 deviation	 of sO2	 given	 the	 input	 spectral	measurement.	 Assuming	 that	 sO2	 of	 all	 retinal	
arterioles	of	a	rat	at	each	particular	oxygenation	status	satisfy	different	Gaussian	probability	distributions,		

𝑝`(sO%|𝐼d) = 𝑁(sO%, 𝜎%)																																																																													(6)	
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where	the	mean	and	the	standard	deviation	of	the	Gaussian	distribution	is	denoted	as	sO%	and	σ, and N denotes 
the normal distribution.		The	neural	network	learns	a	highly-complex	nonlinear	function.	During	the	training,	the	
network	weights,	w,	are	estimated	by	maximizing	the	joint	likelihood	over	N	training	data	pairs:	

𝑤 = argmax
`∈�

likelihood(𝑤) = argmax
`∈�

∏ =

�%�b_
5(`)
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de= 																																		(7)	

Equivalently,	the	customized	Gaussian	loss	function	LG	(w)	is	minimized	when	training	the	DSL	models	in	Eq.	4.		

D.	Reconstruction	of	en	face	Maps	of	sO2	and	Uncertainty	(σ)		

To	 reconstruct	 a	 2D	 en	 face	 map	 for	 sO2	 or	 uncertainty	 (σ)	we	 applied	 the	 same	 spatial	 signal	 averaging	
procedure	as	described	in	section	7.	B.,	but	this	averaging	was	done	pixel-wisely	within	each	blood	vessel.	We	
first	segmented	the	vessel	area	manually.		For	each	pixel	from	the	2D	en	face	map	within	the	segmented	blood	
vessel,	an	arteriole	or	a	venule,	its	depth-dependent	spectra	were	generated	by	averaging	spectral	signals	from	
its	100	(in	the	first	literature)	or	250	(in	the	second	literature)	nearest	neighbors	based	on	Euclidian	distance.	
Then,	these	spectra	would	be	input	into	the	FNN	or	CNN	model	to	predict	a	sO2	with	uncertainty	for	this	pixel.	
Next,	the	above	two	steps	would	be	iterated	pixel-wisely	until	all	pixels	within	this	particular	blood	vessel	had	
predicted	sO2	and	uncertainty.	Finally,	the	above	three	steps	would	be	iterated	until	all	arterioles	and	venules	
of	the	rat	retina	had	predicted	sO2	and	uncertainty	for	displaying	their	2D	en	face	maps.	To	generate	Fig.	6	and	
Fig.	7,	we	applied	an	algorithm	based	on	the	HSV	(hue,	saturation,	value)	color	model,	where	the	predicted	sO2	
or	uncertainty	corresponds	to	image	hue,	and	the	angiography	signal	intensity	corresponds	to	image	value	and	
saturation.			
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