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ABSTRACT 

Deep learning has huge potential to transform healthcare. However, significant expertise is 

required to train such models and this is a significant blocker for their translation into clinical 

practice. In this study, we therefore sought to evaluate the use of automated deep learning 

software to develop medical image diagnostic classifiers by healthcare professionals with 

limited coding - and no deep learning - expertise. 

We used five publicly available open-source datasets: (i) retinal fundus images 

(MESSIDOR); (ii) optical coherence tomography (OCT) images (Guangzhou Medical 

University/Shiley Eye Institute, Version 3); (iii) images of skin lesions (Human against 

Machine (HAM)10000) and (iv) both paediatric and adult chest X-ray (CXR) images 

(Guangzhou Medical University/Shiley Eye Institute, Version 3 and the National Institute of 

Health (NIH)14 dataset respectively) to separately feed into a neural architecture search 

framework that automatically developed a deep learning architecture to classify common 

diseases. Sensitivity (recall), specificity and positive predictive value (precision) were used to 

evaluate the diagnostic properties of the models. The discriminative performance was 

assessed using the area under the precision recall curve (AUPRC). In the case of the deep 

learning model developed on a subset of the HAM10000 dataset, we performed external 

validation using the Edinburgh Dermofit Library dataset. 

Diagnostic properties and discriminative performance from internal validations were 

high in the binary classification tasks (range: sensitivity of 73.3-97.0%, specificity of 67-

100% and AUPRC of 0.87-1). In the multiple classification tasks, the diagnostic properties 

ranged from 38-100% for sensitivity and 67-100% for specificity. The discriminative 

performance in terms of AUPRC ranged from 0.57 to 1 in the five automated deep learning 

models. In an external validation using the Edinburgh Dermofit Library dataset, the 

automated deep learning model showed an AUPRC of 0.47, with a sensitivity of 49% and a 

positive predictive value of 52%. The quality of the open-access datasets used in this study 
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(including the lack of information about patient flow and demographics) and the absence of 

measurement for precision, such as confidence intervals, constituted the major limitation of 

this study.  

All models, except for the automated deep learning model trained on the multi-label 

classification task of the NIH CXR14 dataset, showed comparable discriminative 

performance and diagnostic properties to state-of-the-art performing deep learning algorithms. 

The performance in the external validation study was low. The availability of automated deep 

learning may become a cornerstone for the democratization of sophisticated algorithmic 

modelling in healthcare as it allows the derivation of classification models without requiring a 

deep understanding of the mathematical, statistical and programming principles. Future 

studies should compare several application programming interfaces on thoroughly curated 

datasets. 
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INTRODUCTION 

Diagnosis depends on data: its collection, integration and interpretation enables accurate 

classification of clinical presentations into an accepted diagnostic category. Human 

diagnosticians achieve acceptable accuracy in such classification tasks through the learning of 

diagnostic rules (patterns recorded by other human diagnosticians) followed by training on 

real cases for which the diagnostic labels are provided (supervised clinical experience). Due 

to the limited capacity of human neural networks (brain), the amount of data utilized to create 

these diagnostic rules, and then to reach a diagnosis on an individual patient is highly 

selective and biased, with the vast majority of available data being ignored. In artificial 

intelligence (AI), the technique of deep learning uses artificial neural networks – so-called 

because of their superficial resemblance to biological neural networks – as a computational 

model to discover intricate structure and patterns in large, high dimensional datasets such as 

medical images.[1] A key feature of these networks is their ability to fine-tune based on 

experience, allowing them to adapt to their inputs, thus becoming capable of learning. It is 

this characteristic which makes them powerful tools for pattern recognition, classification, 

and prediction. In addition, the features discovered are not predetermined by human 

engineers, but rather by the patterns they have learned from input data.[2] Although first 

espoused in the 1980s, deep learning has come to prominence in recent years, driven in large 

part by the power of graphics processing units originally developed for video gaming, and the 

increasing availability of large datasets.[3] Since 2012, deep learning has brought seismic 

changes to the technology industry, with major breakthroughs in areas as diverse as computer 

vision, image caption, speech recognition, natural language translation, robotics, and even 

self-driving cars.[4-9] In 2015, Scientific American listed deep learning as one of their “world 

changing” ideas for the year.[10] 

Until now, the development and implementation of deep learning methodology into 

healthcare has faced three main blockers: Firstly, access to large, well-curated, and well-
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labeled datasets is a requirement that represents a major challenge to the use of deep learning. 

Although numerous institutions around the world have access to large clinical datasets, far 

fewer have them in a computationally tractable form and with robust clinical labels for 

learning tasks. Secondly, highly specialized computing resources are needed, since the 

performance of deep learning models is highly dependent on recent advances in massively 

parallel computing architectures, termed graphic processing units. The architecture of silicon 

customized to these tasks is rapidly evolving with software companies increasingly designing 

their own hardware chips such as tensor processing units, and field-programmable gate 

arrays.[11, 12]. Thus, it is already clear that it will be difficult for small research groups, 

working alone in hospital and university settings, to accommodate these huge financial costs 

and the rapidly evolving landscape. Thirdly, highly specialized technical expertise and 

significant mathematical knowledge is required to develop deep learning models. Currently, it 

is estimated that fewer than 10,000 people worldwide have the skills necessary to tackle 

serious AI research with the majority of these employed outside academic institutions.[13] 

According to the 2017 Computer Research Association Taulbee survey, nearly 60% of new 

AI PhD graduates are recruited by industry.[14] 

One approach to combat these obstacles is the increasingly popular technique, transfer 

learning, where a model developed for a specific task is repurposed and leveraged as a 

starting point for training on a novel task. While transfer learning mitigates some of the 

significant computing resources required in designing a bespoke model from inception, it 

nevertheless requires specialized deep learning expertise to deliver effective results. With this 

in mind, several companies released application programming interfaces (API) in 2018, 

claiming to have automated deep learning to such a degree that any individual with basic 

computer competence could train a high-quality model.[15, 16] 

As programming is not a common skill among healthcare professionals, automated 

deep learning is a potentially promising platform to support the dissemination of deep 
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learning application development in healthcare and medical sciences. In the case of 

classification tasks, these API products match generic neural-network architectures to a given 

imaging dataset, fine-tune the network aiming at optimizing discriminative performance, and 

create a prediction algorithm as output. In other words, the input is a (labeled) image dataset, 

and the output is a custom classifying algorithm. Yet, the extent to which non-experts can 

replicate trained deep learning engineers’ performance with the help of automated deep 

learning remains unclear.  

In this study, healthcare professionals without any deep learning expertise explored 

the feasibility of automated deep learning model development and investigated the 

performance of these models in diagnosing a diverse range of disease from medical imaging. 

More precisely, we (i) identified medical benchmark imaging datasets for diagnostic image 

classification tasks and their corresponding publications on deep learning models; (ii) used 

these datasets as input; (iii) replaced the classic deep learning models with automated deep 

learning models; (iv), and compared the discriminative performance of the classic and the 

automated deep learning models. Moreover, we sought to evaluate the interface that was used 

for automated deep learning model development (Google Cloud AutoML© Vision API, Beta 

release) for its utilization in prediction model research. [17-19] 
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RESULTS 

Challenge 1: Performance of automated deep learning in archetypal binary 

classification tasks 

Diagnostic properties and discriminative performance were comparable in the case of the 

investigated binary classification tasks. 

Task 1: Classification of diabetic retinopathy vs normal retina on fundus images 

The Retinal Fundus Image dataset involved 1187 images in total, with 533 normal fundus 

images (“R0 cases”), and 153 images showing mild (“R1 cases”), 247 moderate (“R2 cases”) 

and 254 severe diabetic retinopathy (“R3 cases”). Thirteen duplicate images were 

automatically excluded by the API. The automated deep learning model trained to distinguish 

healthy fundus images from fundus images showing diabetic retinopathy (R0 from R1, R2 

and R3 cases) reached an AUPRC of 0.87, and best accuracy at a cut-off value of 0.5 with a 

sensitivity of 73.3% and a specificity of 67%.    

 
Task 2: Classification of pneumonia vs normal on paediatric CXR 

The Paediatric CXR set provided by Guangzhou Medical University/Shiley Eye Institute 

involved 5827 of 5232 patients CXR images (1582 showing normal pediatric chest x-rays, 

and 4245 showing pneumonia). The API detected and excluded 8 duplicate images. The 

AUPRC of this automated deep learning model was 1, best accuracy was reached at a cut-off 

value of 0.5 with a sensitivity of 97% and a specificity of 100%. 

 
Challenge 2: Performance of automated deep learning in multiple classification tasks 

The two models trained to distinguish multiple classification tasks showed high diagnostic 

properties and discriminative performance.  

Task 1: Classification of three common macular diseases and normal retinal OCT images 

The Retinal OCT set provided by Guangzhou Medical University/Shiley Eye Institute 

involved 101418 images of 5761 patients. 31882 images depicted OCT changes related to 
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neovascular age-related macular degeneration (791 patients), 11165 to diabetic macular 

edema (709), 8061 depicted drusen (713 patients), and 50310 were normal (3548 patients). 

One hundred seventy fives images were identified as duplicates and excluded by the API. The 

AUPRC of the automated deep learning model trained to distinguish these four categories was 

0.99, while best accuracy was reached at a cut-off value of 0.5, with a sensitivity of 97.3%, a 

specificity of 100% and a positive predictive value (PPV) of 97.7%.   

 
Task 2: Classification of seven distinct categories of skin lesions using dermatoscopic images 

The Dermatology Image set involved 10013 images of skin lesions of 10013 patients (327 

images depicted actinic keratosis, 514 basal cell carcinoma, 6703 nevus, 1113 melanoma, 115 

dermatofibroma, 142 vascular lesion, and 1099 benign keratosis consisting of seborrheic 

keratosis, solar lentigo and lichen-planus like keratoses). There were no duplicate images 

detected. The AUPRC of the automated deep learning model trained to distinguish these 

seven categories was 0.93, while best accuracy was reached at a cut-off value of 0.5, with a 

sensitivity of 91% and a positive predictive value of 91%.  

 
Challenge 3: Performance of automated deep learning in a multi-label classification 

tasks 

The automated deep learning model trained to perform a multi-label classification task on the 

Adult CXR dataset showed poor diagnostic properties and a discriminative performance near 

chance (AUPRC: 0.57, best accuracy at a cut-off value of 0.5, with a sensitivity of 38% and a 

positive predictive value of 71%). The NIH CXR14 comprised 11542 cases of atelectasis, 

2399 of cardiomegaly, 3323 of consolidation, 1862 of edema, 8036 of effusion, 1734 of 

emphysema, 1215 of fibrosis, 156 of hernia, 11785 of infiltration, 2923 of mass, 3009 of 

nodule, 1216 of pleural thickening, 325 of pneumonia, 2199 of pneumothorax and 60304 with 

no findings of 112120 patients. Twelve duplicates were detected and excluded by the API. 
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Table 1. Summary of the diagnostic properties and the discriminative performance of all 

five automated deep learning models. 

MESSIDOR: Fundus images 

Classification task Prev TP FP TN FN AUPRC PPV Sens Spec 

Presence vs Absence of DR 55% 48 18 36 18 0.87 73% 73% 67% 

Guangzhou Medical University/Shiley Eye Institute: Retinal OCT images 

Classifications Prev TP FP TN FN AUPRC PPV Sens Spec 

Overall 100% n.r. n.r. n.r. n.r. 0.99 98% 97% 100% 

CNV vs. Others 25% 246 2 973 1 n.r. 99% 100% 100% 

Drusen vs. Others 24% 208 0 975 23 n.r. 100% 90% 100% 

DMO vs. Others 25% 247 1 974 0 n.r. 100% 100% 100% 

Normal vs. Others 26% 250 0 975 0 n.r. 100% 100% 100% 

Guangzhou Medical University/Shiley Eye Institute: Paediatric CXR images 

Classifications Prev TP FP TN FN AUPRC PPV Sens Spec 

Pneumonia vs. Normal 74% 412 6 153 10 1 97% 97% 100% 

NIH CXR14: Adult CXR images 

Classifications Prev TP FP TN FN AUPRC PPV Sens Spec 

Overall n.r. n.r. n.r. n.r. n.r. 0.57 71% 38% n.r. 

HAM 10000: Dermatology Image set 

Classifications Prev TP FP TN FN AUPRC PPV Sens Spec 

Overall 100% n.r. n.r. n.r. n.r. 0.93 91% 91% n.r. 

Actinic keratosis 3.3% 25 9 961 8 n.r. 74% 76% 99% 

Basal cell carcinoma 5.2% 46 8 943 6 n.r. 85% 88% 99% 

Nevus 67% 656 13 319 15 n.r. 98% 98% 96% 

Melanoma 11% 75 12 879 37 n.r. 86% 67% 99% 

Dermatofibroma 1.2% 7 3 988 5 n.r. 70% 58% 100% 

Vascular lesion 1.4% 13 0 989 1 n.r. 100% 93% 100% 

Benign keratosis 1.1% 91 10 883 19 n.r. 90% 83% 99% 

n.r. = not reported 
Prev = prevalence: number of given cases as percentage of test dataset 
TP = true positives, FP = false positives, TN = true negatives, FN = false negatives 
AUPRC = area under the precision-recall curve 
PPV = positive predictive value, Sens=sensitivity, Spec = Specificity 
DR = Diabetic Retinopathy 
CNV = Choroidal neovascularization 
DMO = Diabetic macular oedema  
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Comparison with existing state-of-the-art  

Subsequently, we compared the diagnostic properties and the diagnostic performance of 

algorithms trained using automated deep learning on the Retinal Fundus Image, Retinal OCT, 

Paediatric CXR, Adult CXR, and Dermatology Image datasets compared to best performing 

deep learning algorithms found in the literature (see Table 2). Interestingly, all best 

performing algorithms used transfer learning. Some automated deep learning models showed 

comparable diagnostic properties at a threshold of 0.5 to state-of-the-art deep learning 

algorithms in published literature. For instance, (i) using the OCT dataset, automated deep 

learning achieved a sensitivity of 97% and a specificity of 100% (versus a sensitivity of 98% 

and a specificity of 97% published by Kermany and colleagues); (ii) using the Paediatric CXR 

dataset, automated deep learning reached a sensitivity of 97% and a specificity of 100% 

(versus a sensitivity of 93% and a specificity of 90% published by Kermany and 

colleagues).  Other models however, showed lower diagnostic properties, i.e. (i) using the 

multi-label classification task of the NIH CXR14 dataset in which automated deep learning 

reached sensitivity of 38%, a positive predictive value of 71% and a AUPRC of 0.57  (versus 

a AUC of 0.87 published by Guan and colleagues). ; or (ii) using the Retinal Fundus Image 

dataset, in which automated deep learning reached a sensitivity of 73% and a specificity of 

67% (versus a sensitivity of 86% and a specificity of 97% published by Li and colleagues).  

The thresholds were reported in two cases.[28, 29] 
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Table 2. Image classification performance of algorithms trained using automated deep 

learning compared to best performing algorithms found in the literature.  

  

MESSIDOR: Fundus images 

 Model architecture Threshold Sensitivity Specificity  

Faes & Wagner et al. Automated deep learning 0.5 73% 67%  

Li et al. VGG-s / Conv1-Fc8 0.5 86% 97%  

Guangzhou Medical University/Shiley Eye Institute: Retinal OCT images 

 Model architecture Threshold Sensitivity Specificity  

Faes & Wagner et al. Automated deep learning 0.5 97% 100%  

Kermany et al. Inception V3 n.r. 98% 97%  

Guangzhou Medical University/Shiley Eye Institute: Paediatric CXR images 

 Model architecture Threshold Sensitivity Specificity  

Faes & Wagner et al. Automated deep learning 0.5 97% 100%  

Kermany et al. Inception V3 n.r. 93% 90%  

NIH CXR14: Adult CXR images 

 Model architecture Threshold Sensitivity Specificity  

Faes & Wagner et al. Automated deep learning 0.5/0.7 38%/23% n.r.  

Guan et al. ResNet-50 / DenseNet-121 0.7 n.r. n.r.  

 n.r. = not reported 
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Further evaluation of automated model performance 

The AutoML©®™ Cloud Vision API provides confusion matrices in the case of single-label 

classification tasks, in order to uncover label categories in which the model performs 

insufficiently. The model trained to distinguish the four ophthalmic diagnoses from OCT 

images (Guangzhou Medical University/Shiley Eye Institute), classified drusen as choroidal 

neovascularization (CNV) in 10% of cases- implicating a more urgent referral than needed. 

The model trained on the Dermatology Image set on the other hand, misclassified 28.6% of 

melanomas as nevus, which in a real-world setting would result in less urgent referral for 

further work-up and delayed, or worse, missed diagnosis. Moreover, this model also had a 

high misclassification rate (41.7%) for images showing dermatofibromas. Tables 3 and 4 

show the corresponding confusion matrices for the OCT and Dermatology Image set and Fig 

1 shows cases from each model where the incorrect label was predicted.  
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Table 3. The confusion matrix for the model developed on the OCT image dataset 

provided by Guangzhou Medical University/Shiley Eye Institute. 

 

  
  

Predicted 
label     

            

    Drusen CNV DMO Normal 

            

 
Drusen 0.9 0.1 - - 

 
CNV - 0.996 0.004 - 

True label DMO - - 1 - 

 
Normal - - - 1 

            

CNV = Choroidal neovascularization 
DMO = Diabetic macular oedema 
 
Table 4. The confusion matrix for the model developed on the Dermatology Image set. 
 

  

  

      
Predicted 
label       

  

  

Melanoma 
 

Naevus 
 

Benign 
keratosis 

Actinic 
keratosis 

BCC 
 

Dermato- 
fibroma 

Vascular skin 
lesion 

                  

 
                

  Melanoma 0.67 0.286 0.027 - 0.018 - - 

  Naevus 1 0.978 0.003 0.001 0.004 0.003 - 

  Benign keratosis 0.027 0.091 0.827 0.045 - 0.009 - 

True 
label Actinic keratosis - 0.061 0.121 0.758 0.061 - - 

  BCC 0.019 0.019 0.038 0.038 0.885 - - 

  Dermatofibroma 0.167 0.167 - 0.083 - 0.583 - 

  
Vascular skin 
lesion - - - - 0.071 - 0.929 
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Fig 1. Cases from each model where the incorrect label was predicted.  

(A) Case of drusen, which was predicted as neovascular age-related macular degeneration. 

(B) Presence of diabetic retinopathy predicted as normal. (C) A melanoma predicted as a 

nevus. (D) Pneumonia predicted as normal. (E) A pleural effusion predicted as normal. Case 

B does not have detectable features of its label while E is equivocal. 
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External Validation 

In the case of the deep learning model developed on a subset of the Dermatology Image set, 

we additionally performed an external validation using the Dermatology Validation set. As 

the latter set did not include benign keratosis as a label, these images were removed from the 

Dermatology Image set used for training.  

The automated deep learning model showed poor diagnostic properties and a 

discriminative performance near chance (AUPRC: 0.47, best accuracy at a cut-off value of 

0.5, with a sensitivity of 49% and a positive predictive value of 52%). Of note, the sensitivity 

for melanoma classification is 11% with a misclassification rate of 63.7%. 

Interestingly, nevus was the most likely classification in all cases, followed by the 

ground truth. The only exception was the case of actinic keratosis, where its ground truth 

diagnosis was the third most probably diagnosis to be predicted (10.6% likelihood). The 

prevalence of images showing nevus was 76% in the developmental dataset, compared to 

36% in the dataset used for external validation. To investigate the impact of class imbalance 

between the Dermatology Image set and Dermatology Validation Set, we undersampled the 

nevus class by 3000 images and assessed the resulting change in accuracy. Only minimal 

improvements were noted in its discriminative performance and diagnostic properties (data 

available upon request).  

Tables 5a and 5b show the external validation of the model trained on a subset of the 

Dermatology Image set; (a) discriminative performance and diagnostic properties; (b) 

confusion matrix. 
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Table 5a. The diagnostic properties and discriminative performance of the external 

validation of the algorithms trained using automated deep learning on the Dermatology 

Image set.  

Edinburgh Dermofit Library - Dermatology Validation Set 

Classifications Prev TP FP TN FN AUC PPV Sens Spec 

Overall 100% n.r. n.r. n.r. n.r. 0.47 52% 49% n.r. 

Actinic keratosis 13% 13 30 772 110 n.r. 30% 11% 96% 

Basal cell carcinoma 26% 67 39 647 172 n.r. 63% 28% 94% 

Nevus 36% 322 360 234 9 n.r. 47% 97% 39% 

Melanoma 8.2% 8 8 846 68 n.r. 50% 11% 99% 

Dermatofibroma 7% 21 5 855 44 n.r. 81% 32% 99% 

Vascular lesion 9.8% 33 46 788 58 n.r. 42% 36% 0.94% 

n.r. = not reported 
Prev = prevalence: number of given cases as percentage of test dataset 
TP = true positives, FP = false positives, TN = true negatives, FN = false negatives 
AUC = area under the precision-recall curve  
PPV = positive predictive value, Sens=sensitivity, Spec = specificity 
 
Table 5b. The confusion matrix of the external validation of HAM10000-trained 

algorithm on the Edinburgh Dermofit Library dataset. 

  

  
            

          
Predicted 
label     

    
BCC 
 

Naevus 
 

Actinic 
keratosis 

Melanoma 
 

Vascular 
skin lesion 

Dermatofibroma 
 

                

        
  BCC 0.28 0.552 0.113 0.008 0.042 0.004 

 
Naevus 0.003 0.973 0.003 - 0.009 0.012 

 
Actinic keratosis 0.203 0.683 0.106 0.008 - - 

True label Melanoma 0.039 0.789 0.013 0.118 0.039 - 

 
Vascular skin lesion 0.033 0.582 - 0.022 0.363 - 

 
Dermatofibroma 0.108 0.477 0.015 0.031 0.046 0.323 

                

BCC=Basal cell carcinoma  
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DISCUSSION 

Main findings 

This manuscript reports a first of its kind implementation of automated deep learning, in 

which we demonstrate that medical professionals with limited programming experience can 

utilize automated deep learning to develop algorithms that can perform clinical classification 

tasks to a level comparable with traditional deep learning models that have been applied in 

existing literature. Most of the automatically developed deep learning models, except for that 

trained on the multi-label classification task of the Adult CXR set, showed comparable 

discriminative performance and diagnostic properties to state-of-the-art performing deep 

learning algorithms.  

From a methodological viewpoint, our results - as with those reported in the state-of-

the-art deep learning studies - might be overly optimistic, since we were not able to test all the 

models “out-of-sample” as recommended by current guidelines. Moreover, for external 

validation, the present version of the API only allows single image upload for prediction, 

limiting large scale external validation. This reduces its usability for systematic evaluation in 

prediction model research considerably, given the high numbers of images that these datasets 

comprise. To circumvent this issue, we created a proxy to an external validation and found a 

substantial reduction in the diagnostic and discriminative performance of the deep learning 

model. The limited performance of automated deep learning models (also in the multi-label 

classification task) are likely related to inadequacy of the datasets used to train the models. To 

obviate concerns over class imbalance in our external validation, we under-sampled 

accordingly, however, this did not significantly alter the model’s discriminative performance.  

 

Strengths  

To our knowledge, this is the first assessment of the feasibility and usefulness of automated 

deep learning technology in medical imaging classification tasks performed by healthcare 
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professionals. In this study, we showed best effort to comply with the reporting guidelines for 

prediction model research, and for developing and reporting machine learning predictive 

models. [24, 30] One major strength of our study is that we tested one exemplary model for 

robustness in an out-of-sample cross validation, since internal validation and random split 

sample-validation has been claimed to overestimate test performance. A further strength is 

that our results can easily be explored and replicated by others, given the use of public 

datasets and the free trial use of the the AutoML©®™ Cloud Vision API. 

 

Limitations and future directions 

The convenience sampling used in the out-of-sample cross validation has been claimed to 

introduce bias and exaggerate estimates of diagnostic performance. [31] Furthermore, the API 

was not able to depict saliency maps and consequently we were not able to interrogate the 

model for the image areas which it considered most important for its prediction.[32] This 

“black-box” classification does not provide any biological information useful for clinical 

purposes.[33] Moreover, the specifics of the models used by the API are not transparent, 

which constitutes a barrier to their evaluation and the reproducibility of this study.[34] We 

were not able to extract or calculate all metrics and measures of uncertainty conventionally 

used in prediction model research in all cases (i.e. specificity or confidence intervals), which 

impedes comparison to the current best technology other than deep learning. We noted that 

best accuracy was consistently achieved at a threshold of 0.5 by the API. This is likely the 

default threshold to which the API is optimized: a setting which is inaccessible to the user 

during model development. In clinical practice, thresholds should be set according to the role 

of the diagnostic test and the consequences of a misdiagnosis. Therefore, the ability to adjust 

the preferred threshold is an important function for creating a fit-for-purpose API. 

Besides Google’s AutoML©®™ Cloud Vision API, a number of vendors recently 

have released similar automated deep learning platforms including both established 
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technology corporations (e.g. Amazon SageMaker, Baidu EZDL, IBM Watson Studio) and 

start-ups (Oneclick.ai, Platform.ai). Our study pertained to only one API, Google’s 

AutoML©®™, as this was among the first open neural architecture search-based engines 

released and was freely available on a trial basis. While this report is a proof-of-concept 

evaluation of healthcare professional-led deep learning, it is unclear whether other APIs may 

provide greater discriminative performance. Assessment of other platforms is an objective of 

our future research.  

Currently, studies on AutoML including ours, have to rely on publicly available 

datasets. While using them allows comparison of performance between different algorithms, 

these are not without concern. For many classification tasks, and particularly for validation 

purposes, the existing datasets tend to be too small and not representative of the general 

population. Moreover, data quality in general could be improved.  A full evaluation of dataset 

limitations is beyond the scope of this manuscript, however inconsistent labeling and 

duplicate images bore direct pertinence to our study. Issue such as equivocal labels (figure), 

image confounders (presence of chest drain in images of pneumothorax), and label semantics 

(nodule vs mass, consolidation vs pneumonia) have been noted previously in datasets used for 

deep learning.[35] Apart from the Dermatology Image set, all datasets contained duplicate 

images. Conveniently, Google’s AutoML©®™ Cloud Vision API will automatically detect, 

indicate and exclude the relevant images, however clinicians need to be cognizant to this 

possibility as other APIs may lack this feature and generate spurious evaluation metrics. Since 

the quality of the results obtained using deep learning models substantially depends on the 

quality of the dataset employed in the model development, it would therefore be imperative 

that patient demographics and information about the way the data was collected (i.e. patient 

flow) would be presented as the validity and generalization of the models cannot otherwise be 

assessed. In our study, we were only able to provide limited information about the 

descriptives of these datasets, using what has been published by their creators. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/650366doi: bioRxiv preprint 

https://doi.org/10.1101/650366
http://creativecommons.org/licenses/by/4.0/


	 20	

With the availability of new and carefully administered datasets, many validity 

problems could be resolved. Great hopes lay in data sharing initiatives as promoted from 

many peer-reviewed journals or those from the Dataverse Network Project and the UK Data 

Archive. [36, 37] On the other hand, these initiatives struggle with issues of confidentiality 

and anonymity when publishing or sharing data relating to individuals. Moreover, regulatory 

restrictions still remain. Fortunately, recent developments both in the United Kingdom with 

the NHS Digital Guidance and the call for Health Insurance Portability and Accountability 

Act compliance in the United States have clarified the framework for many public Cloud 

systems.[38, 39] The European Union General Data Protection Regulation is another possible 

barrier towards an efficient use of published data. However, since many studies will be 

dealing with ephemeral processing of de-identified data we do not believe that the General 

Data Protection Regulation is likely to pose a substantial hindrance.  

We confirmed feasibility but encountered various methodological problems that are 

well-known in research projects performing classification tasks and predictions. We believe 

that concerted efforts in terms of data quality and accessibility are needed to make automated 

deep learning modelling successful. Moreover, as the technology evolves, transparency in the 

reporting of the models and a careful reporting of their performance in methodologically 

sound validation studies will be pivotal for a successful implementation into practice. Finally, 

the extent to which automated deep learning algorithms must adhere to regulatory 

requirements for medical devices is unclear. [34] 

Although the development of deep learning prediction models was feasible for 

healthcare professionals without any deep learning expertise, we would recommend the 

following developments for automated deep learning: (i) transparency of the model 

architectures and technical specifications in use; (ii) reporting of established performance 

parameters in prediction model research, such as sensitivity, specificity (iii) reporting of the 

label distribution in automatically conducted random-split sample validations (in cases, in 
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which the subsets have not been stipulated by the user explicitly); (iv) depiction of all 

incorrectly and correctly classified images (true positive, false negative, false positive, true 

negative cases); and (v) a robust solution to allow systematic external validation. 

 

Conclusion 

The availability of automated deep learning may be a cornerstone for the democratization of 

sophisticated algorithmic modelling in healthcare as it allows the derivation of classification 

models without requiring a deep understanding of the mathematical, statistical and 

programming principles. However, the translation of this technological success to meaningful 

clinical impact constitutes requires concerted efforts and a careful stepwise work-up. The 

sharp contrast of the model’s discriminative performance in internal versus external validation 

may foretell the ultimate use case for automated deep learning software once the technology 

matures. As researchers and clinicians have excellent access to images and patient data within 

their own institutions, they may be able to design auto ML models for internal research, 

triage, and customized care delivery. This may avert the need for costly external prospective 

validation across imaging devices, patient populations and clinician practice patterns. In 

contrast, large scale standardized deep learning algorithms will necessitate worldwide, multi-

variable validations of expertly tuned models. Thus, there is considerable value to these 

“small data” approaches customized to a specific geographical patient population that a given 

clinic may encounter. This may be where automated deep learning finds its niche in the 

medical field. Importantly, this could make models susceptible to selection bias, over-fitting, 

and a number of other issues from imprecise model training or patient selection. Therefore, 

regulatory guidelines are needed for both medical deep learning and clinical implementation 

of these models before they may be used in clinical practice. In summary, while our approach 

seems rational in this early evaluation, the results of this study cannot yet be extrapolated into 

clinical practice.  
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METHODS 

Study design and data source 

We used five distinct open-source datasets comprising medical imaging material to 

automatically develop five corresponding deep learning models for the diagnosis of common 

diseases or disease features. Namely, we trained deep learning models on; (1) retinal fundus 

images (the MESSIDOR dataset, hereafter referred to as Retinal Fundus Image set); (2) 

retinal optical coherence tomography (OCT) images (Guangzhou Medical University/Shiley 

Eye Institute Version 3, hereafter referred to as Retinal OCT set); (3) pediatric chest X-ray 

(CXR)  images (Guangzhou Medical University/Shiley Eye Institute, hereafter referred to as 

Paediatric CXR set); (4) adult CXR images (the National Institute of Health (NIH) CXR14 

dataset, hereafter referred to as Adult CXR set), and; (5) dermatology images (the Human 

against Machine (HAM) 10000 dataset, hereafter referred to as Dermatology Image set).[20-

23] Moreover, in a proof-of-principle evaluation, we aimed at testing one of the models “out-

of-sample” as recommended by current guidelines.[24] The current version of the API only 

allows single image upload for model prediction limiting the feasibility of large scale external 

validation. However, we created a proxy to an external validation in one exemplary use-case, 

where we used the Dermatology Image set for algorithm development and tested its 

performance using the Edinburgh Dermofit Library dataset (hereafter referred to as 

Dermatology Validation set).[25] 

 
Training of healthcare professionals using the API 

Two clinicians (LF and SKW) with no prior coding or machine learning experience 

performed the analysis after a period of self-study based on the online documentation. In total, 

both researchers invested approximately ten hours of preparation. Due to the release cycle 

evolution of the AutoML©®™ Cloud Vision API during the study (alpha release May 2018, 
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beta release July 2018), they adopted an iterative approach when executing the analyses. All 

analytic steps and interpretations of results were performed jointly.  

 
Patient recruitment and enrolment 

We accessed five de-identified open-source imaging datasets that were collected from 

retrospective, non-consecutive cohorts, showing diseases or disease features of common 

medical diagnoses. Eligibility criteria, patients’ demographics and patient workflow for each 

of these datasets are published elsewhere.[20-23] 

 
Index Test: AutoML©®™ Cloud Vision API  

The term “automated machine learning” commonly refers to “automated methods for model 

selection and/or hyperparameter optimization”. This is the concept which led to the idea of 

allowing a neural network to design another neural network, through the application of a 

neural architecture search.[17-19] In deep learning, designing and choosing the most suitable 

model architecture requires a significant amount of time and experimentation even for those 

with significant deep learning expertise. This is because the search space of all possible model 

architectures can be exponentially large (e.g. a typical 10-layer network could have ~1010 

candidate networks). To make this model design process easier and more accessible, an 

approach known as neural architecture search has recently been described. [26] Neural 

architecture search is typically achieved using one of two methods: 1) reinforcement learning 

algorithms, and 2) evolutionary algorithms. The former forms the basis of this commercially 

available API that was evaluated in this study.[27]  

 
Data handling and analytic approach 

We uploaded images of five open-source datasets to a Google Cloud bucket in conjunction 

with a comma-separated value file indicating the image label, file-path and dataset 

distribution (i.e. training-, validation- or test dataset). Images were allocated to the training, 
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validation and test datasets (80%, 10% and 10% respectively) using a random number 

function. In the case of the Retinal OCT images where a specific test set had been stipulated 

in a previous report, we compared our performance to that published by using the same test 

set.[21] Duplicate images were automatically detected and excluded by the API. We did not 

relabel any of the used datasets. All models were trained for a maximum of 24 compute hours. 

Except for the Retinal OCT set, the discriminative performance of each deep learning model 

was evaluated using the randomly specified test dataset, and in the case of the deep learning 

model developed on a subset of the Dermatology Image set, additionally in an external 

validation using an independent open-source dermatology dataset (Edinburgh Dermofit 

Library).  

 
Comparison with Benchmark Classic Deep Learning Models 

In order to provide a direct comparator to the performance of classic deep learning models 

developed using traditional non-autoML techniques (deep learning models with bespoke 

architectures for a data and problem set developed by human experts), we conducted a 

systematic search of the literature to identify classical deep learning models, composed by 

deep learning experts, which have been trained and/or validated on the five open-source 

datasets. The performance of these existing models served as a direct comparator with the 

API. We searched (Pre-)Medline, Embase, Science Citation Index, Conference Proceedings 

Citation Index, Google Scholar and arXiv document server from 01 January 2012 until 05 

October 2018. Studies were included if they developed a deep learning algorithm on the 

datasets used in this study. No language restrictions were applied. The search strategy is 

available as a supplementary attachment (see Supplementary File 1). We pre-specified the 

cut-off of 2012 on the basis of a step-change in deep learning performance; a deep learning 

model called AlexNet, won a visual recognition challenge, the ImageNet Large-Scale Visual 

Recognition Challenge, for the first time.[4] If a study provided contingency tables for the 
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same or for separate algorithms tested in a specific classification task, we assumed these to be 

independent from each other. We accepted this, as we were particularly interested in 

providing an overview of the results of various studies rather than providing accurate 

precisions of point estimates.  

 
Statistical Analysis 

The AutoML©®™ Cloud Vision API provides metrics that are commonly used by the AI-

community. These are recall (sensitivity) or precision (positive predictive value) for given 

thresholds and the area under the precision recall curve (AUPRC). Additionally, confusion 

matrices are depicted for each model, cross-tabulating ground truth labels versus the labels 

predicted by the deep learning model. Where possible, we extracted binary diagnostic 

accuracy data and constructed contingency tables and calculated specificity at the threshold of 

0.5. Contingency tables consisted of true-positive (TP), false-positive (FP), true-negative 

(TN) and false-negative (FN) results. For consistency, we adhered to the typical test accuracy 

terminology: sensitivity (recall), specificity and positive predictive value (precision). The 

classification tasks were chosen according to their popularity in the current AI literature for 

the purpose of comparability to state-of-the-art deep learning models. Where possible, we 

plotted contingency tables against the ones reported by other studies using the same 

benchmark datasets to develop deep learning models.  

We a priori attempted to compare the classification performance between state-of-the-

art deep learning studies and our results. However, while the published reports provided areas 

under the receiver operating characteristic curve (AUC ROC), the AutoML API reports the 

AUPRC. Although the points of the two types of curves can be mapped one-to-one and hence 

curves can be translated from the ROC space to the prediction space (if the confusion 

matrices are identical) differences in the confusion matrices and the level of reporting 

impeded us from performing a comparison on the level of AUC. Instead, we compared the 
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performance on the level of sensitivity and specificity at the same threshold as had been used 

in the previous reports.   
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