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Abstract

Many studies on human and animals have provided evidence for the con-
tribution of goal-directed and habitual valuation systems in learning and
decision-making. These two systems can be modeled using model-based (MB)
and model-free (MF) algorithms in Reinforcement Learning (RL) framework.
Here, we study the link between the contribution of these two learning sys-
tems to behavior and meta-cognitive capabilities. Using computational mod-
eling we showed that in a highly variable environment, where both learning
strategies have chance level performances, model-free learning predicts higher
confidence in decisions compared to model-based strategy. Our experimental
results showed that the subjects’ meta-cognitive ability is negatively correlated
with the contribution of model-free system to their behavior while having no
correlation with the contribution of model-based system. Over-confidence of
the model-free system justifies this counter-intuitive result. This is a new
explanation for individual difference in learning style.

Introduction

Learning is a crucial part of animals’ repertoire for survival. To address the wide
range of problems that one encounters in the complex natural world, many animals,
including humans, have developed multiple systems of learning and decision-making
Daw et al. (2005); Dolan and Dayan (2013); Kahneman and Egan (2011). Different
accounts of learning posit that there are at least two major systems that are con-
tributing to the process of learning and decision-making. One system is habitual
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and reflexive, and the other is goal-directed and reflective Dolan and Dayan (2013).
The reflexive system is computationally congenial, but it uses the experiences in-
efficiently, from a statistical standpoint. On the other hand, the reflective system
uses experiences efficiently but requires substantially more computational resources
Dolan and Dayan (2013). While this diversity in function enables animals to better
handle the challenges which they face, it gives rise to the problem of arbitration
between them. Different studies have shown that there is a considerable difference
among people regarding their usage of these systems or as we call it, learning style.
It seems that there is a connection between learning style and some cognitive capa-
bilities.

One of the prominent ways to model this spectrum of learning style is Reinforce-
ment learning theory Daw et al. (2011); Lee et al. (2014); Sutton et al. (2000). This
theory states that the reflexive and reflective modes of behavior arise from two par-
allel value learning systems that are dissociable at the behavioral and neural levels.
This RL model posits that the behavior is a combination of these two value systems.
The crucial difference between these systems is whether or not they rely on an in-
ternal model of the environment. The reflective system, which is called model-based
in RL framework, incorporates this model for evaluation of possible actions. On the
other hand, the reflexive system, which is called model-free in RL framework, draws
solely on the history of outcomes and seeks to repeat the rewarded actions.

Model-based and model-free methods, and their linear combinations, converge
to the same policy after sufficient experiences in relatively stationary environments.
Model-based method results in higher sample efficiency and faster learning in such
environments, however, the advantages of the model-based method is not necessarily
retained in non-stationary environments. Nevertheless, we witness variability in
learning style in such environments where model-based and model-free methods have
similar performances Kool et al. (2016); Akam et al. (2015). Here, the question is if
any other property, except performance and learning speed, is potentially involved
in the variability of the learning style. We were interested to see if these two learning
methods differ in the second order decisions; i.e. confidence in decisions. If one of
the methods results in a higher difference among decision values, it would induce
higher confidence in decisionsAitchison et al. (2015); Folke et al. (2017).

Confidence is one of the commonly used paradigms to evaluate meta-cognitive
ability Brainard and Vision (1997); Cheesman and Merikle (1986). Meta-cognitive
ability is the ability to evaluate decisions Fleming and Daw (2017). This ability
predicts higher (lower) levels of confidence in correct (wrong) decisions Maniscalco
and Lau (2012). Therefore, we hypothesize that people with a higher level of meta-
cognitive ability rely less on the learning mode that induces exaggerated confidence
in decisions.

To examine this hypothesis, we use the two-step decision-making task developed
by Daw et al.Daw et al. (2011), where both learning modes are the same in terms
of performance due to non-stationary nature of the reward Daw et al. (2011); Akam
et al. (2015). We also measure subjects’ meta-cognitive ability using retrospective
confidence judgments in a word recognition memory test Sadeghi et al. (2017); Baird
et al. (2013). We show that model-free strategy induces over-confidence in decisions,
relative to model-based strategy, and meta-cognitive subjects rely less on the over-
confident strategy.
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Results

Two tasks were used in this study. One was a word recognition memory task which
was used to measure the meta-cognitive ability of subjects Baird et al. (2013);
Sadeghi et al. (2017). The other was a sequential two-step decision-making task. It
was designed so that the contribution of model-based and model-free components
to the decision can be measured Daw et al. (2011). Forty-seven subjects completed
the tasks. We paid subjects a fixed amount of money plus an extra reward propor-
tional to their performances in both tasks. We investigated the relationship between
behavioral characteristics in two tasks using statistical analysis and computational
modeling.

Two-step decision-making task

We adopted the two-step decision-making task from Daw et al. (2011)Daw et al.
(2011) (Figure 1). The task was tailored around a treasure hunt story. In the
story, the subjects had a choice between two alternative airplanes that would take
them to either of two jungles where they could hunt for gold. Subjects completed
200 trials of this task. At each trial, they selected between two options that led
probabilistically to either of the two second-step states. Each option of the first step
was linked to one of the second-step states and led there 70% of the times. After
that, the subjects chose between two alternatives in the second-step state, followed
by a probabilistic binary reward. To ensure continuous learning through the task,
the reward probabilities were non-stationary; changed steadily and independently
from each other during the task.

We studied the effect of reward (model-free component), also the interaction of
reward and transition (model-based component) in the subjects behavior in the two-
step task. To indicate the model-based and model-free components, we studied the
effects of two main factors, outcome (rewarded or unrewarded) and transition type
(common or rare) of each trial, on repeating the first-step choice in the next trial
(we call probability of this event P-stay). As it was depicted in Figure 1, the reward
is the only predictor of P-stay of a pure model-free agent while for a pure model-
based agent it is only the interaction of reward and transition that contributes in
the prediction of P-stay. Applying the repeated-measures ANOVA indicated that
a combination of the two strategies, model-based and model-free, was involved in
guiding the behavior (main effect of reward: F (1, 36) = 23.5 , p = 2 × 10−5 ,
interaction between reward and transition: F (1, 36) = 13.11 , p = 0.0008). As
in Daw et al. (2011)Daw et al. (2011), we concluded that both reward and task
structure are employed by the subjects.

Memory task

The memory task was a Persian word recognition memory test based on Baird et
al. (2013)Baird et al. (2013) and adapted from Sadeghi et al. (2017)Sadeghi et al.
(2017). The task had two phases: encoding and recall. During the encoding phase,
140 words out of a set containing 280 words, were presented on the screen, separately
and sequentially. In the recall phase, immediately after the first phase, all 280 words
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Figure 1: Two-step decision-making task. A) Each first-step action was commonly
associated with the transition to one of the second-step states. Although, it also could
lead to the other second-step state, but rarely. B) The timing of a single trial: a choice
in the first step followed by a choice in the second step. The second choice was reinforced
by the reward. C) Left, model-free RL predicts a high probability of repeating (stay
probability) the first-step choice of the previous trial if it is rewarded. Type of transition,
common or rare, is not effective on the stay probability in this case. Right, model-based RL
predicts that the type of transition is effective on the stay probability. Thus model-based
learning is influenced by the interaction of reward and transition.

were displayed sequentially. subjects decided if each word had been seen in the en-
coding phase or not. After that, they reported their confidence about the correctness
of their response on a scale of 1 (low confidence) to 6 (high confidence)(Figure 2).
Individuals did not receive any feedback about the correctness of their response.

In the memory task, average memory performance of our subjects was 70% (SD
0.07, range 0.57- 0.86), comparable to the results reported in Baird et al. (2013)
Baird et al. (2013), 71% (SD 0.09, range 0.57- 0.91). Reported results about meta-
cognitive accuracy were measured by M.Ratio method with unequal-variance as-
sumption Maniscalco and Lau (2012). However, we had the same results by both
M.Ratio and HMeta-d methodsFleming (2017) which both have an equal-variance
assumption.
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Figure 2: Memory task. This task had two phases: 1) In the encoding phase, we asked
the subjects to memorize half of the words which were chosen randomly from a word set.
2) In the recall phase, after the presentation of each word from the word set, the subjects
reported whether the word was seen in the encoding phase or not. After the response,
they scaled their confidence about the previous response.

The impact of meta-cognitive ability on learning style

To study whether the meta-cognitive accuracy predicts learning style, we measured
these two characteristics in the memory and the two-step decision-making tasks
accordingly.

We investigated the relationship between model-based/model-free components
and meta-cognitive accuracy using two methods of analysis. Mathematical details
of these methods are described in the methods section. The results from these two
methods are described below.

P-stay analysis

We measured model-based and model-free components of behavior through measur-
ing the probability of first-step decisions in two consecutive trials. There are four
possible conditions in every trial; a multiplication of 2×2 conditions: common/rare
transition and reward/no-reward conditions. The four conditions are named re-
warded common (RC), rewarded rare (RR), unrewarded common (UC), and unre-
warded rare (UR). The P-stay plot for pure model-based and model-free agents are
shown in Figure 1. Model-based and model-free indices were calculated by Eq1 and
Eq2 Miller et al. (2016); Eppinger et al. (2013):

MFindex = P (stay|RC) + P (stay|RR)− P (stay|UC)− P (stay|UR) (1)

MBindex = P (stay|RC)− P (stay|RR)− P (stay|UC) + P (stay|UR) (2)

The model-free index is the difference of stay probabilities between rewarded and
unrewarded conditions and indicates the effect of reward (model-free component) on
the behavior. The model-based index is the difference of stay probabilities between
two conditions; the first condition consists of RC and UR, and the second condition
consists of RR and UC.
In pure model-free learning, task structure is not employed, and the reward is
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Figure 3: (A) The histogram displays meta-cognitive accuracy in Memory task's data.
Samples are divided by a median split into two groups. (B) Scatter plot shows meta-
cognitive accuracy (x-axis) versus MFindex in P-stay analysis (y-axis). The slope of the
fitted line shows the correlation of model-free behavior and meta-cognitive ability. (C)(D)
The P-stay for Low meta-cognitive and high meta-cognitive groups, as you can see, there
is a clear difference between the two. We affirmed the significance of this difference by
statistical measures on MFindex and MBindex.

the predictor of P-stay. Therefore, the difference of P-stay in rewarded and un-
rewarded conditions is the MFindex. In contrast, in pure model-based learning,
both reward and task structure are used, so reward×transition is the predictor of
P-stay. Hence the difference of P-stay in two conditions, related to two quantities
of reward×transition is the MBindex. Two-sided arrows in Figure1 (C and D)
visualize how MFindex and MBindex, is calculated respectively.

MFindex, MBindex, age and memory performance were used as the regressors
to predict meta-cognitive accuracy. We obtained significant negative coefficient for
MFindex (−0.635, p = 0.003) while the role of MBindex was not siginificant (0.068,
p = 0.661). Age did not have any significant role in prediction of meta-cognitive ac-
curacy (−0.003, p = 0.762) and the memory performance had a significant negative
coefficient (−1.608, p = 0.004). We did not interpret negative coefficient of perfor-
mance as a regressor, because this result did not remain with different measures of
meta-cognitive accuracy.
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Modeling

For a more in-depth analysis of behavior, we employed computational modeling.
While P-stay analysis has the advantage of being relatively model agnostic Daw et al.
(2011), behavior in each trial is analyzed only by looking at its previous trial, so it is
beneficial to have a more encompassing analysis that incorporates more of the history
in analyzing behavior. For this, we used reinforcement learning modeling similar to
previous studies Daw et al. (2005, 2011); Kool et al. (2016). In this model, the
model-free and model-based components update the value of each action in parallel,
and the estimated values then will be linearly combined (Eq5). The combined values
then go through a softwax function that calculates the probability of choosing each
action. For estimating the value of each action, the model-free system relies only on
previous rewards while the model-based system uses both the rewards and transition
probabilities for value estimation. Free parameters of the model are: learning rate
α, softmax temperature β, perseverance p, eligibility trace λ, direction bias s, and
the proportion of model-based to model-free control, ω. We used correlation test
between meta-cognitive accuracy and ω (Pearson correlation = 0.474, p = 0.002,
95%CI = [0.178, 0.692]). It means that meta-cognitive ability predicts the relative
proportion of model-based and model-free components in decision-making.

However, it was unknown whether the meta-cognitive ability is correlated with
either model-based or model-free strategies, or to both. We cannot answer this
question by the models presented in previous studies Daw et al. (2011); Akam et al.
(2015); Kool et al. (2016) because in these models, a weighted sum of model-based
and model-free components was used for decision-making. Therefore, we removed
the restricting weighted sum condition and applied two independent weights (ωmb

and ωmb) for the linear combination of model-based and model-free values; see Eq7
in the methods section. Also, this model was inspired by neural evidence from Lee
et al. (2014)Lee et al. (2014), so we hypothesized that it will better capture the
subject’s behaviors. ωmb, ωmf , the age of the subjects and their performance in
the memory task were used as regressors to predict meta-cognitive accuracy. We
obtained significant negative coefficient for ωmf (−0.530, p = 0.001) while the role
of ωmb was not significant (0.013 ,p = 0.909) (Figure 4, B and C). Age did not
have any significant role in prediction of meta-cognitive accuracy (−0.003, p =
0.746) and memory performance had a significant negative coefficient (−1.678, p =
0.003). Similar to the P-stay analysis, we did not interpret the negative coefficient
of performance as a regressor, because this result did not remain with different
measures of meta-cognitive accuracy like HMeta-d. Moreover, as we hypothesize,
this model fitted to the subject’ s behavior better than the original model from Daw
et al. (2011)Daw et al. (2011). The average BIC was 4.6 units lower for our model.

We were interested to know what is the difference between model-based and
model-free strategies that can be a candidate explanation for why the high meta-
cognitive subjects rely less on model-free strategy. Thus we computationally studied
these two strategies in the two-step decision-making task.

Learning style and performance analysis

Similar to the previous studiesAkam et al. (2015); Kool et al. (2016), our subjects’
performance in the two-step task was not significantly better than the chance level
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Figure 4: A) The meta-cognitive accuracy is predicted with model-based and model-
free components in two analyses. Two regression analyses were used, in each of them
regressors were from one of the two analyses; P-stay analysis (blue) and reinforcement
modeling (green). B) Scatter plot shows meta-cognitive accuracy (x-axis) versus model-
based component in the modeling analysis (y-axis). The slope of the fitted line shows
the correlation of the model-based behavior and the meta-cognitive ability. C) Scatter
plot shows meta-cognitive accuracy (x-axis) versus the model-free component in modeling
analysis (y-axis). The slope of the fitted line shows the correlation of model-free behavior
and the meta-cognitive ability.
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( Mean = 0.473, t(36) = -4.106, p = 0.999, 95%CI = [0.473, 0.500] ). According
to Akam et al. (2015) Akam et al. (2015), neither model-based nor model-free
agents cannot act better than a random agent in this task setting. Moreover,
both model-based and model-free indices were not significantly correlated with
the performance in the two-step task (Pearson correlation = 0.259, p = 0.1202,
95%CI = [−0.069, 0.538] and (Pearson correlation = 0.135, p = 0.423, 95%CI =
[−0.196, 0.440] respectively. As a result, something beyond performance should be
involved in the learning style. Here, we investigate possible role of second order
decision.

Confidence correlate of model-based and model-free strate-
gies

According to Folke et al. (2016)Folke et al. (2017), confidence can be strongly pre-
dicted by the difference of action values; the same is reported in perceptual decision-
making where the difference in evidence is correlated with confidence Aitchison et al.
(2015). We exploited the same concept and checked if model-based and model-free
methods differ in estimating the difference of Q-values for first-step choices. To see
the overall trend, we used reinforcement learning model fitting to estimate the Q-
values of first-step actions for each subject Daw et al. (2011); Kool et al. (2016) .
To compare confidence correlate of model-based and model-free strategies, we mea-
sured the absolute difference of first-step Q-values for each strategy in every trial.
For hypothetically pure model-based and model-free subjects we have:

Confidencemb(t) ∼ |Qmb,t(sA, a1)−Qmb,t(sA, a2)| (3)

Confidencemf (t) ∼ |Qmf,t(sA, a1)−Qmf,t(sA, a2)| (4)

Qmb,t(sA, a1) is Q-value of model-based strategy in trial t for one of the options in
the first-step and Qmb,t(sA, a2) is for the other one. The same is for corresponding
Q-values for model-free strategy.

Confidence for the model-free strategy (Mean = 0.2528) was significantly higher
relative to model-based strategy (Mean = 0.1214 , t(45.956) = -6.2952, p < 1.048e−
07). Considering the fact that neither model-based nor model-free methods act
better than a random agent, relying more on the model-free strategy results in
lower meta-cognition due to the exaggerated confidence it induces. It is noticeable
that variances in the Q-values of each first-step decisions were not significantly
different for model-based and model-free strategies (F (36) = 1.314, p = 0.415,
95%CI = [0.677, 2.553] and F (36) = 1.450, p = 0.269, 95%CI = [0.746, 2.816]
respectively). Thus, the negative correlation of meta-cognition and model-free index
cannot be explained by the variance of Q-values.

We also showed with mathematical calculations that the difference in Q-values
is bigger for the model-free relative to the model-based method in every trial on the
base of our fitted parameters; see supplementary materials.
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Figure 5: A) The estimated Q-values of two options in the first-step over trials for model-
based and model-free strategies. The difference of Q-values are higher in the model-free
strategy. B) Corresponding confidence of the model-based and the model-free modules
measured by absolute difference between the Q-values of two options. Confidence correlate
was significantly higher in the model-free strategy.
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Figure 6: A) Performance of the subjects in the two-step decision-making task was
not significantly correlated with their model-free index; i.e. neither the high model-free
subjects nor the low model-free ones had significant different performance. B) The mean
confidence correlate of subjects during trials if they behaved according to the model-free
strategy was significantly higher relative to their mean confidence if they fully relied on
the model-based strategy.
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Discussion

In the two-step decision-making task setting which we used in this paper, model-
based and model-free learning strategies as well as a random decision maker had
the same performance and learning speed. However, we observed the individual
difference in the subjects learning style; the subjects were different in their model-
free and model-based indices. Our question was if any other property, far from
performance and learning speed, is associated with this individual difference. We
were interested to see if these two learning strategies are different in the second order
decisions, i.e. confidence in decisions. According to Folke et al. (2016) Folke et al.
(2017), the difference in action values is a confidence correlate. We showed that the
model-free system had exaggerated confidence correlate in decisions while having
no difference in performance with the model-based method; i.e. higher reliance on
model-free learning results in lower meta-cognition. In line with this analysis, we
observed that there is a strong negative correlation between model-free behavior
of our subjects and their meta-cognition level in a word recognition memory task
while having no correlation with model-based behavior. Lee et al. Lee et al. (2014)
showed that the degree of model-based control on decision-making could negatively
modulate the connectivity between the arbitrator and model-free valuation regions
of the brain. We suggest that there are some similarities between this finding and
the negative correlation we observed in our results. The subjects with high meta-
cognitive ability may have relied on the more meta-cognitive system, the model-
based one, by attenuating the contribution of the less meta-cognitive system; i.e.
the model-free system.

The commonly used RL modelDaw et al. (2011) does not explain our behavioral
data, because the model assumes sum-to-one weights for model-based and model-
free Q-values in a linear combination. According to that model, the strong negative
correlation between meta-cognition and model-free index should accompany a pos-
itive correlation of meta-cognition and model-based index; which was in contrary
with our behavioral data. Therefore, we assumed independent weights for model-
based and model-free modules. The model-fitting result was in-line with our data
and the BIC was lower even in the face of having more parameters in comparison
with the original model. We also had biological inspiration for this model. Lee
et al. (2014) Lee et al. (2014) reported a significant negative correlation between
the activity of arbitration region and the strength of the connection between puta-
men and vmPFC. The putamen is a candidate region for model-free behavior and
vmPFC is a candidate region for combining Q-values of the two learning systems.
In contrast, they did not report any significant correlation between the activities of
the arbitrator regions and the strength of the connection between candidate regions
for model-based behavior and vmPFC. This result suggests that there is a difference
between the relation of arbitration regions activity and connectivity of model-based
and model-free regions with the Q-value integration brain part. Combining our
modeling results and the neural evidence from Lee et al. (2014) Lee et al. (2014),
we assert that our model with independent weights can better depict the human
learning behavior and hence can supersede the previous model in the future works.

Otto et al. (2014) showed that cognitive control is correlated with model-based
behavior and not with model-free one. This result may seem contradictory to our
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result, but we argue that they can co-exist. As Shea et al. (2014) Shea et al. (2014)
discussed, one could have high cognitive control but low meta-cognitive ability, and
meta-cognitive ability is not essential for every type of cognitive control, especially
cognitive control which requires attention to cues and quick responses. The cognitive
control measured in Otto et al. (2014)Otto et al. (2014) was of this kind; this type
of cognitive control does not involve the kind of decision evaluation that is required
for assessing decisions in our memory task. Hence, the apparent difference between
our results and those of Otto et al. (2014)Otto et al. (2014) may be rooted in pos-
sible differences of meta-cognitive accuracy and cognitive control Shea et al. (2014).
Nevertheless, further studies are needed to clarify the details of meta-cognition and
cognitive control relation with learning style.

It is important to emphasize that the correlation we found, does not imply any
direction of causality. In addition, we cannot reject the possibility of a third cognitive
ability that influences both meta-cognitive ability and learning style. Further studies
are needed to establish a causal relationship. If meta-cognition is the higher node
in the hierarchy of control in the decision-making process, it might be the case
that neuromodulation manipulation of meta-cognition Hauser et al. (2017) affects
the learning style. It has been also shown that learning style can be influenced by
neuromodulator administration Wunderlich et al. (2012). Measuring the change of
meta-cognition in learning style manipulation experiments will help to get a clearer
picture.

The low meta-cognitive ability has been reported in some psychiatric disorders,
while the memory performance of subjects was intact Rouault et al. (2018). Consid-
ering our finding about the relation of meta-cognitive ability and model-free behav-
ior, it is possible to investigate whether people with the mentioned disorders would
exhibit a bigger reliance on model-free behavior than normal. The same can be stud-
ied about psychological disorders that are correlated with an excess of model-free
influence on decision-making process Dolan and Dayan (2013); Gillan et al. (2011);
Maia et al. (2008). It can be studied whether people with these disorders show
any sign of impairment in their meta-cognitive ability. If future studies confirm
the existence of mentioned relationships, they could play a role in developing new
treatments for these disorders.

Methods

Subjects. 47 subjects (23 females, aged 19-32, mean age = 23.91) completed the
tasks. According to previous studies Decker et al. (2016); Eppinger et al. (2013)
that found a large effect (η2 = 0.2) of individual differences in learning style, it was
expected that the sample size of 36 would be enough to achieve 90% power to detect
a true effect of a comparable size, if we assume α of .05. The subjects gave their
informed consent, and the study procedures were approved by the ethical committee
of the University of Tehran. We paid subjects a fixed amount of money plus an extra
reward proportional to their performances in both tasks.
Excluded subjects. Nine subjects excluded because their behavior was in conflict
with an intention to acquire reward Decker et al. (2016); Otto et al. (2013). We
had two criteria to check for this intention; the first criterion was if subjects showed
a low tendency (less than 55% of the times) to choose the rewarded option from
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the previous trial in the case that they reached the same second step. The second
criterion was if their behavior was best described by a random agent (an agent that
make a decision with an equal probability between the available choices, regardless
of anything) rather than a reinforcement learning agent. One subject only chose a
single rate for her confidence more than 95% of trials in the memory task, so she
was excluded Folke et al. (2017). Thus thirty-seven subjects remained for analy-
sis. Tasks and procedures. Both tasks were computerized and programmed in
MATLAB (Mathworks). For the memory task, COGENT 2000 toolbox was used
(http : //www.vislab.ucl.ac.uk/cogent.php). The two-step decision-making task was
implemented with Psychophysics toolbox extensions Kleiner et al. (2007); Brainard
and Vision (1997); Pelli and Vision (1997). Memory task. The task consisted of
two encoding and recall phases. subjects saw 140 words one by one. Words were
randomly selected for each subject from the word set. Each word was presented in
the middle of the screen for 1000 ms, with 500 hundred inter-stimuli interval (ISI).
During the ISI, a fixation point was shown in the middle of the screen. After the
encoding phase, 280 words presented in the recall phase which half of them were
the words in the encoding phase. subjects were instructed to report whether each
word was in the encoding phase or not (old or new) and pressed key numbers 1 or
2 on the top left side of the keyboard accordingly. The subjects’confidence about
the correctness of their decision were reported through numbers 1 (low confidence)
to 6 (high confidence) on the keyboard (Figure 1). The experiment did not include
any feedback to subjects about their responses. There was no time limit to answer
either the recall questions or the confidence rating. Two-step decision-making
task. The task was originally based on the task applied in Daw et al. (2011)Daw
et al. (2011) (Figure 2). All subjects read a detailed description of the task. The
task was about finding treasures by traveling to different places. The subjects chose
in every trial between two airplanes that took them to a couple of different jungles
where they could find treasures. The story was briefed for them by a Powerpoint
presentation containing an animation version of the task. Subjects also answered a
number of questions to make sure they could recognize and discriminate the pictures
in the task from relatively similar pictures. They also completed 40 training trials
before the start of the main task. The task consisted of 201 trials. At each trial,
there were two left-right randomized options that led with different probabilities to
one of the two second-step states. Each option of the first step was associated with
one of the second-step states 70 % of the times. In second step of each trial, the sub-
jects chose between two other options which led to a probabilistic binary reward. To
keep continuous learning about the best option, reward probabilities were changed
in each trial independent from each other. Four different Gaussian random walks
were applied to change the reward probabilities of options. Response time in each
step was limited to 2secs. Inter-stimuli intervals were 1 to 2secs, and between two
trials there was 1sec meanwhile. Feedback was presented for 500 msecs.

Data Analyses

Meta-cognitive accuracy

Meta-cognitive accuracy was measured for each subject through meta-cognitive ra-
tio (M.Ratio) with unequal-variance assumption Maniscalco and Lau (2012). This
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method was implemented in MATLAB using the toolbox provided by Maniscalco
et al. (2012) Maniscalco and Lau (2012). M.Ratio is based on a Signal Detection
Theory model Baird et al. (2013); Macmillan and Creelman (2004). The main im-
portant point in the measurement is that choices and confidence reports are inputs
for two different SDT models, type 1 and type 2 respectively. Thus two different
parameters d′ and metad′ are used to measure sensitivity in choices and confidence
rating respectively. d′ measures the accuracy of choice and metad′ is a quantitative
representation for the accuracy of the choices'evaluation. Meta-cognitive accuracy
is the ratio of metad′ to d′, measuring the amount of information used at the meta-
level relative to the object level. In the memory task, the two kinds of stimuli (old
and new, described in the Method section), are not necessarily modeled by equal
variance SDT, so we reported our result with unequal variance SDT model of metad′
Maniscalco and Lau (2012). We also checked our results with M.Ratio which has an
equal-variance assumption. Furthermore, we repeated the analyses through hierar-
chical Bayesian estimation of meta-cognitive efficiency, known as HMeta-d method
Fleming (2017). The Fleming's method provides opportunities to enhance statisti-
cal power Fleming (2017). This method is based on M.Ratio with equal-variance
assumption.

Contribution of model-based and model-free components to decision-
making

To replicate previous studies, we looked at whether there is evidence for the contri-
bution of both systems to decision-making or not. For this purpose, the probability
of repeating the first-step choice of the previous trial (P-stay), conditional on the
transition type (common or rare) and feedback of the previous trial (reward or no
reward), were entered in a two-way repeated-measures ANOVA Wunderlich et al.
(2012). We studied the effect of reward (model-free component), also the interaction
of reward and transition (model-based component) in the behavior. The analysis
was performed in R programming language.

Computational modeling based on reinforcement learning

To measure the contribution of model-based and model-free learning in the behavior,
as in previous studiesDaw et al. (2011); Kool et al. (2016); Wunderlich et al. (2012),
we used a hybrid parametrized model. In this model, model-based and model-free
systems update their estimation of each action values on a trial-by-trial basis Daw
et al. (2011); Kool et al. (2016). Then a weighted sum of these two values (Eq5)
goes through a softmax function to form decisions (Eq6). The weight (ω) represents
model-based component's contribution to value-based decision-making. This weight
is the proportion of model-based component to model-free component in the final
value for choosing the first-step actions.

Qnet(s, a) = ωQMB(s, a) + (1−ω)QMF (s, a) (5)

To connect Q-values to the probability of choosing one first-step action, softmax
rule is used:

P (a|s) =
exp(βQnet(s, a) + p.rep(a) + s.resp(a))∑
a′ exp(βQnet(s, a′) + p.rep(a′) + s.resp(a′))

(6)
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β is the inverse temperature, representing randomness in decision-making. Lower
β leads to more uniform probabilities for different actions. p represents the degree
to which subjects show perseveration (p > 0) or switching (p < 0) at the first step.
The variable rep(a) is 1 if a is a first-step action and is the same as the action on
the previous trial, and is 0 otherwise. The variable resp(a) is 1 if a is a first-step
action which is selected by a response key the same as the key that was pressed
on the previous trial and is 0 otherwise. s represents the degree to which subjects
repeat (s > 0) or change (s < 0) the key presses at the first step of each trial.

This model has 6 free parameters (β, α, λ, p, s, ω), in which λ is an eligibility
trace Sutton et al. (2000). Eligibility trace is employed to use the reward in the
second step to update the values of actions in the first step.

Beside the mentioned model (Eq5), we developed a new model (Eq7) which
draws on available neural evidence by Lee et alLee et al. (2014). They showed
that the arbitration system incorporates the action values of the model-based and
the model-free systems differently. Inspired by this result we hypothesize that the
weights are determined independently from each other. Hence, we decided to relax
the weighted average condition of the previous model and have independent weights
for each system. We hypothesize that this model will fit the behaviors of our subjects
better and also enable us to dissociate between the roles of model-based and model-
free systems.

Qnet(s, a) = ωmbQMB(s, a) + ωmfQMF (s, a) (7)

Relationship between meta-cognitive accuracy and model-based/model-
free components

To study the possible relationship between the meta-cognition and learning style,
the Pearson correlation was performed between w and meta-cognitive accuracy. We
also applied regression analysis to study whether model-based or model-free compo-
nents predicts meta-cognitive ability. The regressors were ωmf , ωmb, the age of the
subjects, and their performance in the memory task. The aforementioned analysis
was repeated with MBindex and MFindex as regressors instead of ωmf , ωmb.
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Supplementary

Experience effect on model-based and model-free learning

We investigate the effect of a single trial experience on the difference of first-step

action values. Assume that at trial t the agent has chosen at,1 in the first-step (s1),

reached sx,t (either s2 or s3), then chooses at,2 and receives reward rt. Here, we cal-

culate the difference in value update (∆Q) of the first-step actions after this trial.

The diagram of this task is shown in Figure S1.

After each trial the model-free updates its first-step action value according the for-

mula below:

QMF (s1, at,1) = QMF (s1, at,1)+α(QMF (sx,t, at,2)−QMF (s1, at,1))+λα(rt−QMF (sx,t, at,2))

Where α is the learning rate, λ is the eligibility trace and Q(s,a) is the current value

of action a in state s. Also, it is important to emphasis that only the executed

first-step action value is updated after each trial. For the model-based agent we

have:

QMB(s1, at,1) = P (S2|S1, at,1) max
a∈a3,a4

QMF (s2, a) + P (S3|S1, at,1) max
a∈a5,a6

QMF (s3, a)

Considering these formulas, we can now compute the difference of first-step action

values caused by each trial. For the model-free agent we have:

∆Q = α(1− α)Q(sx,t, at,2) + α2r − αQ(s1, at,1) + αλ(r −Q(sx,t, at,2))

∆Q ≈ α(α + λ)(r −Q(sx,t, at,2))

For the model-based agent in our task we have:

∆Q = P (sx|s1, at,1)α(r −Q(sx,t, at,2))− (1− P (sx|s1, at,1))α(r −Q(sx,t, at,2))

∆Q = (2P (sx|s1, at,1)− 1)α(r −Q(sx,t, at,2))

Where P (sx|s1, at,1) is 0.7 for the common transition which makes the (2P (sx|s1, at,1)−

1) equal to 0.4. For our task where the discount factor is one, the reward for
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transition from the first-step to the second step is zero and the difference in esti-

mated action values is very small, Q(sx,t, at,2)−Q(s1, at,1) is negligible in compari-

son to rt − Q(sx,t, at,2) where rt is either zero or one and E[Q(sx,t, at,2)] = 0.5 and

Q(sx,t, at,2) > 0. So, if the (α+ λ) is bigger than 0.4, which was the case for almost

all of our subjects, the effect each individual trial has on |∆Q| is bigger for the

model-free agent. We computed the same |∆Q| for other model-based and model-

free formulations as well and this result held for a wide range of parameter values.

In the next segment, we back up this result with simulation.

a1 a2

s1

s3s2

{At trial t the agent choose at,1 (between a1 and a2) 

and reach sx (between s2 and s3)

{Then the agent choose at,2 (between a3 and a4 or a5 and a6) 

and will get rt

a3 a5

Goal

a4 a6

Figure S1: Diagram of two-step decision-making task

Model-free strategy differentiate two first-step actions more extremely
than model-based strategy

Model-based and model-free strategies have different methods to learn the values

of first-step actions. To see how these two strategies differentiate between the two

first-step actions, we simulated a pure model-based and a pure model-free agent,

100 times. We subtract the value of one action from the other to investigate the

changes of this difference. The difference in action values is a confidence correlate.

We did this analysis for different variabilities of the reward probabilities random
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walks. Confidence correlate for model-free strategy was significantly higher relative

to model-based strategy for different variations of the reward generator (Figure S2).

We checked this analysis for different values of β and α and the result was similar.

Also, we checked this with other models for model-based and model-free learning

and similar results were observed.
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Figure S2: Confidence correlate of model-based and model-free strategies. A) confi-
dence correlate for model-based (red) and model-free (green) strategies during trials. B)
Mean confidence correlate of each agent during trials for different variabilities of reward
generator.
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