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ABSTRACT 
 
Global outbreaks and epidemics caused by emerging or re-emerging mosquito-borne 
viruses are becoming more common. These viruses belong to multiple genera including 
Flavivirus and Alphavirus and often cause non-specific or asymptomatic infection, which 
can confound viral prevalence studies. In addition, many acute phase diagnostic tests 
rely on the detection of viral components such as RNA or antigen. Standard serological 
tests are often not reliable for diagnosis after the acute phase due to cross-reactivity 
among viruses (e.g. flaviviruses). In order to contribute to development efforts for 
mosquito-borne serodiagnostics, we incubated 137 human sera on individual custom 
peptide arrays that consisted of over 866 unique peptides in quadruplicate. Our 
bioinformatics workflow to analyze these data incorporated machine learning, statistics, 
and B-cell epitope prediction. The unprocessed array data can be useful in separate 
meta-analyses that can be applicable to diverse efforts including the development of 
new pan-flavivirus antibodies, more accurate epitope mapping, and vaccine 
development against these viral pathogens. 
 
Keywords: peptide arrays; mosquito-borne viruses; Zika virus; serodiagnostic; 
bioinformatics; B-cell epitopes. 
 
INTRODUCTION 
 

Zika virus (ZIKV) is an arbovirus that belongs to the Flavivirus genus within the 
Flaviviridae family. In addition to ZIKV, many other mosquito-borne viruses exist that 
negatively affect public health, including dengue (DENV) and chikungunya (CHIKV) 
viruses, among others. ZIKV is primarily transmitted by the bite of infected Aedes spp. 
mosquitoes, with limited instances of sexual transmission also being reported [1-4]. The 
recent worldwide epidemic has demonstrated that ZIKV is a neuropathic virus that is 
associated with fetal microcephaly and other congenital defects in infected pregnant 
women, and Guillain-Barré Syndrome in adults [5]. Due to the number of ZIKV 
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infections in recent years and the continued threat of ZIKV re-emerging around the 
world, there is still an urgent need for rapid and accurate surveillance assays in order to 
rapidly identify new outbreaks. Distinguishing between infection with multiple co-
circulating arboviruses that have similar clinical signs and symptoms makes accurate 
prevalence calculations and diagnosis extremely difficult—especially after 
convalescence [6-10]. 

 
The sequence similarity among many of these flaviviruses at the protein level 

contributes to the observed cross-reactivity in serological assays, which is especially 
high in the E protein and also present in the NS1 protein [11]. Although reports showing 
antibodies against other viral proteins are detectable [12], the E and NS1 proteins are 
the primary targets of the humoral anti-flavivirus immune response in humans [13-15]. 

 
Recent efforts to generate whole-genome sequences for these pathogens enable 

the application of bioinformatics tools to mine the data for trends and patterns that can 
be clinically applicable [16-20]. The meta-CATS (metadata-driven Comparative Analysis 
Tool for Sequences) algorithm is a statistical workflow that rapidly identifies sequence 
variations that significantly correlate with the associated metadata for two or more 
groups of sequences [21]. This algorithm has been used previously to identify residues 
within 15-mer linear peptide regions that have high predicted specificity and sensitivity 
values and that could therefore be useful for detecting antibodies against a variety of 
mosquito-borne Flavivirus species [22]. Quantifying the reactivity of this set of peptides 
using high-throughput custom peptide arrays enabled the efficient and simultaneous 
testing of all peptides against each serum sample with higher efficiency than what is 
possible with manual ELISA-based technology [23]. 

 
The data presented here are the product of combining upstream computational 

methods to predict peptides capable of distinguishing each virus with downstream high-
throughput screening of relevant sera using peptide arrays. We have recently 
completed an analysis of 137 serum samples using peptide arrays (each containing 866 
experimental viral peptides) to identify 15-mer linear peptides that could be useful as 
serodiagnostic reagents to detect prior infection with mosquito-borne viruses. 
Specifically, we tested peptides representing different co-circulating mosquito-borne 
viruses including: Zika, dengue 1-3, West Nile and chikungunya viruses. Applying 
machine learning, a weighting scheme, and B-cell epitope prediction algorithms to these 
data enabled us to identify pools of 8-10 peptides that are predicted to be 
immunodominant across human sera from individuals infected in Central and South 
America. In addition, we have separately evaluated these peptides using a set of well-
characterized sera. These data could be used by the scientific community to develop 
improved serological diagnostic methods for detecting past infection with one or more of 
these viral pathogens. 
 
METHODS 
 
Peptide preparation and microarray printing  
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A subset of the previously-predicted diagnostic peptides [21], representing 
multiple mosquito-borne virus species and subtypes, were synthesized at the Center for 
Protein and Nucleic Acid Research at The Scripps Research Institute (TSRI) [23, 24]. 
This selected collection of peptides consisted of 15-mers with sequences that 
represented the consensus amino acid sequence among strains belonging to each of 
our six target taxa including: CHIKV, DENV1, DENV2, DENV3, WNV, and ZIKV. 
Peptides on the array that represented mosquito-borne virus taxa for which there were 
no serum samples were ignored in downstream quantification and computation. As 
such, a total of 25, 51, 28, 34, or 70 peptides in the E protein as well as 15, 19, 15, 23, 
or 70 peptides in the NS1 protein (all derived from DENV1, DENV2, DENV3, WNV, or 
ZIKV sequences, respectively) were evaluated in these experiments. A set of 25 
peptides spanning portions of the CHIKV E2 protein that had previously been reported 
as relevant for detecting anti-CHIKV antibodies were also included [25]. Synthesized 
peptides were suspended in 12.5 μL DMSO and 12.5 μL of ultra-pure water. 
Immediately prior to printing, suspended peptides were diluted 1:4 in a custom protein 
printing buffer [Saline Sodium Citrate (SSC) 300 mM sodium citrate, pH 8.0, containing 
1 M sodium chloride and supplemented with 0.1% Polyvinyl Alcohol (PVA) and 0.05% 
Tween 20], in a 384-well non-binding polystyrene assay plate. Two positive control 
peptides, hemagglutinin A (HA) (YPYDVPDYA) and FLAG tag (DYKDDDDK), together 
with a dye that permanently fluoresces at 488 nm (Alexa Fluor 488) were included in the 
print to guide proper grid placement and peptide alignment, as well as to serve as 
printing controls as well as controls to quantify the maximum fluorescence for the 
assays. 
 

Quadruplicate sets of all peptides were printed onto N-hydroxysuccinimide ester 
(NHS-ester) coated NEXTERION Slide H (Applied Microarrays) slides at an 
approximate density of 1 ng/spot, using a Microgrid II (DigilabGlobal) microarray printing 
robot equipped with solid steel (SMP4, TeleChem) microarray pins. Humidity was 
maintained at 50% during the printing process. Immediately prior to interrogating the 
arrays, slides were blocked for 1 h with ethanolamine buffer to quench any unreacted 
NHS-ester on the slide. All slides were used within 2 months of printing and were stored 
at -20°C [23]. 
 
Serum sources 

Spent diagnostic serum samples were provided by collaborators working under 
three separate studies in Honduras, the United States, and Nicaragua. These sera were 
collected from a total of 137 consented human patients under IRB supervision and were 
characterized as positive for antibodies against at least one of: ZIKV, DENV1, DENV2, 
DENV3, WNV, and/or CHIKV. 
 

Thirty-two deidentified plasma samples from patients suspected of Zika, 
chikungunya or dengue in Honduras were obtained at the discretion of health care 
providers at the Hospital Escuela Universitario from patients (ages 6-73 years old). 
These samples were sent to the Centro de Investigaciones Geneticas at the 
Universidad Nacional Autonoma de Honduras in Tegucigalpa, Honduras for ZIKV, 
CHIKV and/or DENV molecular testing. Twenty-three of these patients had infection 
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with DENV and nine had infection with ZIKV confirmed by RT-qPCR during the acute 
phase. Convalescent samples were collected from these patients 10-30 days post-onset 
of symptoms between June 1 to November 30, 2016 and were tested on the custom 
arrays. 
 

Seventy-three de-identified human serum samples were obtained from the 
Vanderbilt Vaccine Center Biorepository. Sera from individuals with previous history of 
natural infection with DENV, WNV, CHIKV, or ZIKV (confirmed by serology or RT-
qPCR) while traveling in the Caribbean, Central or South America, or West Africa were 
included on arrays. For WNV, sera were from individuals with confirmed previous 
history of natural infection contracted during an outbreak in 2012 in Dallas, TX. The 
samples were collected in the convalescent phase, months to years after post-onset of 
symptoms. 
 

Thirty-two de-identified human sera were collected from the Pediatric Dengue 
Cohort Study in Managua, Nicaragua [26, 27]. Early convalescent-phase samples were 
collected 15-17 days post-onset of symptoms from 9 Zika cases that were confirmed as 
positive for ZIKV infection by real-time RT-qPCR between January and July, 2016. Late 
convalescent samples were obtained from 21 DENV-positive cohort participants after 
RT-qPCR confirmed DENV1 (n=7), DENV2 (n=8), or DENV3 (n=6) infection and 2 
DENV-negative subjects, all in 2004-2011, prior to the introduction of ZIKV to 
Nicaragua. Samples were analyzed by Inhibition ELISA [28, 29] and neutralization 
assay [30, 31]. The PDCS was approved by the IRBs of the University of California, 
Berkeley, and Nicaraguan Ministry of Health. Parents or legal guardians of all subjects 
provided written informed consent; subjects 6 years old and older provided assent. 
 
High-throughput screening and quantification of characterized patient sera 

The 137 characterized sera were separately subjected to high-throughput 
screening using the synthesized peptide arrays. Sera were tested for IgG reactivity 
using the custom peptide array at TSRI. For immunolabeling, the incubation area 
around the printed grids was circumscribed using a Peroxidase Anti-Peroxidase (PAP) 
hydrophobic marker pen (Research Products International Corp) and the subsequent 
steps were performed in a humidified chamber at room temperature on a rotator. 
Control anti-HA and anti-FLAG monoclonal antibodies were assayed at a concentration 
of 10 μg/ml while 10 microliters of human sera were diluted 1:200 in PBS buffer 
containing Tween (PBS-T) and incubated for 1 h followed by three washes in PBS 
buffer. The arrays were then incubated for 1 h with goat anti-human IgG tagged with 
Alexa Fluor® 488 (Invitrogen) as secondary antibody. Arrays were washed three times 
in PBS-T, two times in PBS, and another two times in deionized water and centrifuged 
to dry at 200 × g for 5 mins.  
 

The fluorescence of the processed slides was quantified using a ProScanArray 
HT (Perkin Elmer) microarray scanner at 488nm and 600 nm, and images were saved 
as high-resolution TIF files. The Imagene® 6.1 microarray analysis software 
(BioDiscovery) calculated the fluorescence intensity of the area within the printed 
diameter of each peptide as well as the fluorescence of the same diameter directly 
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outside of the area occupied by each peptide. The mean and median fluorescence 
signal and background pixel intensities as well as other data for each antigen spot were 
calculated, digitized, and exported as individual rows in a comma-delimited file for 
subsequent analysis.  
 
Data processing to identify immunodominant epitopes 

A custom script was written to implement a previously-described array 
processing workflow [32] with a minor change to use the median foreground and 
background values instead of mean values to minimize outlier effects. Negative 
background values were interpreted as zeroes. Briefly, background correction was 
calculated by subtracting the median background from the median foreground 
measurements for each spot on each array. Normalization was performed by dividing 
the background-corrected values for each spot on each slide by the non-control spot 
having the largest fluorescence value on each slide. All spots for each peptide on each 
array were then summarized into a single value by calculating the median value of the 
quadruplicate spots for each peptide to further reduce the effects of any outliers. The 
normalized relative fluorescence intensity values for all peptides and all samples were 
output as a separate file and how well each peptide was recognized by each of the 
polyclonal serum samples was quantified.  
 

A separate script was used to transform all relative fluorescence intensity values 
for each peptide into Z-scores, and separate tables were constructed to contain the 
summarized Z-score values for all peptides (as columns) representing each of the viral 
taxa and all samples (as rows) that were tested with the peptide array. A random forest 
algorithm (randomForest package in R) was applied to each of these tables in order to 
identify the peptides that were best able to differentiate between each of the viral taxa. 
In this case, the number of trees generated in the random forest for each species was 
100,000, and the number of variables randomly sampled as candidates at each split 
was equal to the square root of the number of columns present in each table.  

The values representing the mean decrease in Gini index were calculated 
separately for samples obtained from each of the three collections as well as all 
possible combinations of two or more collections. These data were then used to identify 
the top 30 peptides according to their usefulness in identifying the correct virus taxon. 
The BepiPred algorithm was then used to predict the number of residues that are 
frequently present in B-cell epitopes, and would therefore contribute to increased affinity 
and binding by antibodies in downstream assays [33]. The peptides were then assigned 
a cumulative rank based on the epitope prediction and Gini values, and the 10 highest-
ranking peptides across the E and NS1 proteins for each viral taxon, as well as 8 
peptides in the E2 region for CHIKV, were categorized as the most likely to have high 
immunodominance and therefore be recognized by antibodies in sera collected from 
patients around the world. Statistical comparisons of quantitative differences between 
the Gini and normalized fluorescence values for sets of peptides were performed using 
a Student’s t-test. 

Human Subject Approval 
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All samples evaluated on the peptide arrays were acquired from patients under 
informed consent and approved by the Ethical or Institutional Review Board at each 
participating institution. 

RESULTS 
 
Data records 
Overall, we screened 137 unique serum samples for their reactivity against a panel of 
viral peptides (Figure 1, Supplementary Table 1). These samples, together with the 
clinical diagnosis, were collected from patients with known past exposure to at least one 
of the viruses targeted by our peptides (Table 1). Text-based data files containing 
quantified values derived from the raw image data during the peptide array experiments 
are publicly available in the figshare data repository 
(https://figshare.com/s/4635efbf387414ce40f7). 
 

The data from each array is contained in a single tab-delimited text file and 
contains the quantitative data captured from a single serum sample on a single peptide 
array. A subset of the fields in each file include: location of each peptide spot on the 
array, peptide identifier, raw mean and median foreground fluorescence at 488 nm, raw 
mean and median background fluorescence at 488 nm, and other data collected from 
the raw image. 
 
Technical Validation 

Given the serological cross-reactivity that has been reported among many of our 
targeted mosquito-borne viruses [34], we recognized the need to validate the results of 
our high-throughput screen. To do so, we not only ensured that those generating the 
peptide array data were “blinded” to the phenotype of each sample, but we also 
computationally evaluated two distinct but complementary quantitative metrics.  
 

First, we compared two serum samples from pediatric patients that had not been 
infected with DENV prior to sample collection. The data from the DENV-specific 
peptides in these samples were then compared to those from a representative DENV-
positive sample to verify the differences in signal between known positive and known 
negative samples. This comparison would also provide a better understanding of the 
contribution of cross-reactivity, which has been reported previously [34], on our platform 
(Table 2). This comparison showed that the DENV-negative samples had less than four 
percent of the normalized fluorescence values, well below the 10 percent that was 
observed in the DENV-positive sample. Transforming these raw data into Z-scores 
further increases the observed differences in fluorescence values and, provides 
additional support to the unbiased nature of the data produced in these experiments. 
 

We next wanted to assess the technical rigor of our approach by performing a 
statistical analysis of the observed experimental variation (Table 3). In this case, data 
was available for six of our target viruses for which sera was evaluated on the arrays. 
We specifically wanted to quantify the reactivity of the best-performing peptides for each 
sample against the target virus. These results show that incorporating Gini scores into 
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our computational pipeline contributed to our ability to identify sets of peptides that were 
capable of distinguishing between past infection with the majority of our target viruses. 
 

It is also important to recognize that each peptide was printed at non-adjacent 
sites on each array in quadruplicate to minimize experimental bias due to the location of 
any given spot on the array. Incorporating technical replicates was an important 
component of the experimental design. Such an approach enables improved replication 
of the results and also increases the scientific rigor of the resulting dataset upstream of 
any data processing workflows. 
 

To computationally validate a subset of our high-scoring peptides, we subjected 
them to a B-cell epitope prediction workflow that incorporates machine learning [35]. 
Specifically, we selected the best-scoring peptides for each selected taxa and 
calculated the mean maximum score to be 0.58 (range 0.55 – 0.63). These scores are 
associated with a specificity greater than 81% (Table 4). 
 
DISCUSSION 
 

The array data reported in this manuscript were used to identify high-scoring 
peptides that could be used as serodiagnostic reagents to distinguish between prior 
infection and seroconversion to a panel of mosquito-borne viruses. Our workflow 
incorporated both computational and laboratory components to improve identification 
of regions that were uniquely recognized by virus-specific antibodies to each virus 
and could therefore be useful as serodiagnostic peptides (Fig. 1). Sabalza et al. 
described a protocol to identify ZIKV specific diagnostic epitopes through peptide 
microarrays, however, they only used one human serum sample, did not use any 
bioinformatics analysis, and the identified peptides sequences were not provided [36]. 

 
The integration of Gini values calculated by the random forest machine learning 

algorithm with the BepiPred B-cell epitope prediction algorithm, enabled us to identify 
the best peptides for each taxon. This approach improved our selected peptides to 
those that had increased affinity and binding to antibodies [33]. We purposely chose 
peptides in both the E and NS1 proteins (E2 protein of CHIKV) to improve our ability to 
detect epitopes within viral antigens that are known to circulate in the bloodstream [11].  

 
We observed that a few of our selected peptides displayed high reactivity and 

Gini values while other selected peptides had lower measured values. We attribute a 
subset of these unexpected differences to the imposed requirement of being located 
within a predicted B-cell epitope. Reactivity is an essential measurement for individual 
samples, while Gini values are useful to rank peptides based on their ability to identify 
peptides that differentiate one taxon from the others. As such, Gini values are better 
able to identify linear epitopes that differentiate taxa and that are sufficiently 
immunodominant across patient populations. We therefore are quite confident in the 
results from taxa where the Gini values were significantly different between selected 
peptides when compared to the remaining peptides.  
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There were also cases where the comparisons of our selected peptides yielded 
non-significant p-values when compared to other peptides for the same virus taxon. It is 
possible that the peptides for these taxa are similarly capable of detecting previous 
infections, and therefore prevented a significant result. Linear peptides may be unable 
to adequately differentiate between taxa with non-significant results. A possible 
alternative is that the peptides are similarly able to differentiate between prior infections, 
but that the patient sera we tested did not have comprehensive serology for the tested 
viral pathogens. Given the specificity and sensitivity values that were reported 
previously for our peptides, we expect this scenario to be more likely. Additional 
laboratory experiments are being performed to calculate the specificity and sensitivity 
for our sets of peptides in a larger number of human serum samples. 
 

With these data, it could also be possible to perform the opposite analysis in a 
way that would search for regions that were recognized with reduced specificity and 
could therefore be useful to identify peptides that could indicate past infection by at 
least one of these viruses. Similarly, these data could be mined to identify linear 
peptides that could be used as antigens to generate an antibody response to such 
epitopes towards the development of additional “universal” monoclonal antibodies. 

 
These data help to quantify the human humoral response to multiple mosquito-

borne viruses and could be useful to identify, map, and/or design native or synthetic 
antigens that provide increased protection against natural infection by these viruses. 

 
These data could also be relevant to the design of a mosquito-borne virus 

vaccine. However, care must be taken in designing such experiments to ensure that 
antibody-dependent enhancement does not increase the risk of adverse events 
following administering the vaccine. 
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Figure 1: Bioinformatics and Laboratory Workflow Diagram. A graphical depiction of the 
processes for predicting, screening, processing, and validating peptide array experiments. 

 
Table 1: Number of Serum Samples Screened with Peptide Arrays. 

Virus 
Number of 
Samples 

CHIKV 5 
CHIKV, 
DENV 32 

DENV 10 

DENV1 7 

DENV2 25 

DENV3 12 

WNV 12 

ZIKV 21 

ZIKV, DENV 9 
DENV-
Negative  2 

Unknown 2 

Total 137 
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Table 2: Comparison of normalized reactivity percentages among representative well-
characterized serum samples as an indicator of peptide specificity. 

 

DENV-Negative* DENV-Negative** DENV1-Positive*** 
DENV Non-DENV DENV Non-DENV DENV Non-DENV 

Min 0.055% 0.000% 0.196% 0.392% 0.000% 0.000% 
Max 1.496% 7.181% 3.509% 10.201% 10.671% 32.004% 
Median 0.383% 0.550% 1.032% 1.854% 1.455% 1.576% 
Mean 0.505% 1.005% 1.242% 2.186% 1.837% 3.576% 

* Sample H22. 
** Sample H23. 
*** Sample H1. 
 
 
Table 3: P-values of comparisons to quantify the difference(s) between the top-performing 
peptides versus the remaining peptides for each virus taxon to assess experimental variation. 

 Mean Z-score Comparison  
Virus Top 

peptides 
exposed to 
positive 
sera vs. top 
10 peptides 
exposed to 
negative 
sera 

Top 
peptides 
exposed to 
positive 
sera vs. 
remaining 
peptides 
exposed to 
positive 
sera 

Top 
peptides 
exposed to 
positive 
sera vs. 
remaining 
peptides 
exposed to 
negative 
sera 

Remaining 
peptides 
exposed to 
positive 
sera vs. 
remaining 
peptides 
exposed to 
negative 
sera 

Gini Scores 
of top 
peptides vs. 
remaining 
peptides 

DENV1 N.S. N.S. N.S. N.S. <0.05 
DENV2 N.S. N.S. N.S. N.S. N.S. 
DENV3 <0.05 N.S. <0.01 <0.01 N.S. 
CHIKV <0.01 <0.05 <0.001 <0.001 <0.001 
WNV N.S. N.S. N.S. <0.05 <0.05 
ZIKV <0.05 <0.05 <0.05 <0.05 <0.01 
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Table 4: Predicted immunodominant diagnostic epitopes identified from peptide array 
data reported in this study. 
 
 

ZIKV CHIKV WNV DENV1 DENV2 DENV3 
EEWCCRECTMPPLSF SRKISHSCTHPFHHD ESCGHRGPATRTTTE IESEKNETWKLARAS NIWLKLREKQDVFCD DLPLPWTSGATTETP 

NSFVVDGDTLKECPL EKFHSRPQHGGKELP TRMFLKVRESNTTEC IMWKQISNELNHILL KEIKVTPQSSITEAE QKNGSWKLEKASLIE 

VREDYSLECDPAVIG SNAATAEEIEVHMPP ATVSDLSTKAACPTM YWIESEKNETWKLAR KQDVFCDSKLMSAAI IIGVLEQGKRTLTPQ 

AQMAVDMQTLTPVGR NVYKATRPYLAHCPD LVHREWFMDLNLPWS IPFSTQDEKGVTQNG REKQDVFCDSKLMSA DGQGKAHNGRLITAN 

FVVDGDTLKECPLKH TDSRKISHSCTHPFH FVHGPTTVESHGNYS KCVTKLEGKIVQYEN TPHSGEEHAVGNDTG PLPWTSGATTETPTW 

GEAYLDKQSDTQYVC NCKVDQCHAAVTNHK EWFMDLNLPWSSAGS FSTQDEKGVTQNGRL DTGKHGKEIKVTPQS FSTEDGQGKAHNGRL 

GPSLRSTTASGRVIE IGREKFHSRPQHGGK DLNLPWSSAGSTVWR KQISNELNHILLEND HSGEEHAVGNDTGKH IGIGDNALKINWYKK 

MEIRPRKEPESNLVR SMGEEPNYQEEWVTH KAACPTMGEAHNDKR CKIPFSTQDEKGVTQ GIMQAGKRSLRPQPT PWTSGATTETPTWNR 

TRGPSLRSTTASGRV  EDFGFGLTSTRMFLK TDAPCKIPFSTQDEK HGKEIKVTPQSSITE CKIPFSTEDGQGKAH 

KNDTWRLKRAHLIEM  HGPTTVESHGNYSTQ DEKGVTQNGRLITAN GNDTGKHGKEIKVTP TSGATTETPTWNRKE 
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