New Results
Improving Convolutional Network Interpretability with Exponential Activations
Peter K. Koo, Matt Ploenzke
doi: https://doi.org/10.1101/650804
Peter K. Koo
1Howard Hughes Medical Institute, Har- vard University, Cambridge, MA
Matt Ploenzke
2Department of Biostatistics, Harvard University, Boston, MA
3Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA

Article usage
Posted May 27, 2019.
Improving Convolutional Network Interpretability with Exponential Activations
Peter K. Koo, Matt Ploenzke
bioRxiv 650804; doi: https://doi.org/10.1101/650804
Subject Area
Subject Areas
- Biochemistry (9101)
- Bioengineering (6748)
- Bioinformatics (23929)
- Biophysics (12080)
- Cancer Biology (9488)
- Cell Biology (13725)
- Clinical Trials (138)
- Developmental Biology (7614)
- Ecology (11653)
- Epidemiology (2066)
- Evolutionary Biology (15471)
- Genetics (10613)
- Genomics (14289)
- Immunology (9454)
- Microbiology (22773)
- Molecular Biology (9065)
- Neuroscience (48824)
- Paleontology (354)
- Pathology (1479)
- Pharmacology and Toxicology (2560)
- Physiology (3820)
- Plant Biology (8307)
- Synthetic Biology (2287)
- Systems Biology (6168)
- Zoology (1297)