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Abstract

Deep convolutional networks trained on regula-
tory genomic sequences tend to learn distributed
representations of sequence motifs across many
first layer filters. This makes it challenging to
decipher which features are biologically meaning-
ful. Here we introduce the exponential activation
that — when applied to first layer filters — leads to
more interpretable representations of motifs, both
visually and quantitatively, compared to rectified
linear units. We demonstrate this on synthetic
DNA sequences which have ground truth with
various convolutional networks, and then show
that this phenomenon holds on in vivo DNA se-
quences.

1. Introduction

Convolutional neural networks (CNNs) applied to genomic
sequence data have become increasingly popular in recent
years (Alipanahi et al., 2015; Kelley et al., 2016; Zhou &
Troyanskaya, 2015), demonstrating state-of-the-art accuracy
on a wide variety of regulatory genomics prediction tasks,
including transcription factor binding and chromatin acces-
sibility. Their success has been attributed to the ability to
learn features directly from the training data in a distributed
manner (LeCun et al., 1998). These learned features are, in
some cases, suggested to correspond to biologically-relevant
sequence motifs, particularly in first convolutional layer fil-
ters (Alipanahi et al., 2015; Kelley et al., 2016).

An understanding of what a trained model has learned is then
possible through attribution scores, which can be attained
with perturbation methods (Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015) and saliency maps/gradient techniques
(Simonyan et al., 2013; Shrikumar et al., 2017; Koo et al.,
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2018). However, the resultant attribution maps tend to be
difficult to interpret, requiring downstream analysis to obtain
more interpretable features, such as sequence motifs, by
averaging clusters of attribution scores (Shrikumar et al.,
2018). The factors that influence the quality of attribution
scores — such as the CNN architecture, regularization, and
training procedure — are not well characterized. There is no
guarantee that attribution methods will reveal features that
are biologically interpretable for a given CNN, even if it is
capable of a high classification performance.

An alternative approach is to design CNNs such that their fil-
ters directly learn more interpretable features (Koo & Eddy,
2018; Ploenzke & Irizarry, 2018). In this manner, mini-
mal posthoc analysis is required to obtain representations
of “salient” features, such as sequence motifs. For instance,
pre-convolution weight transformations that model the first
layer filters as position weight matrices (PWMs) may be
used to learn sequence motifs through the weights (Ploen-
zke & Irizarry, 2018). Another CNN design choice employs
a large max-pool window size after the first layer, which
obfuscates the spatial ordering of partial features, prevent-
ing deeper layers from heirarchically assembling them into
whole feature representations (Koo & Eddy, 2018). Hence,
the CNN’s first layer filters must learn whole features, be-
cause it only has one opportunity to do so.

One drawback to current design principles of CNNs with
interpretable filters is that they tend to be limited to shal-
lower networks. Depth of a network significantly increases
its expressivity (Raghu et al., 2016), which enables it to
learn a wider repertoire of features. In regulatory genomics,
deeper networks have found greater success at classification
performance. In practice, deeper CNNs are generally harder
to train and are more susceptible to performance variations
with different hyperparameter settings.

One consideration for the interpretability of a CNN’s filters
that has not been thoroughly explored in genomics is the
activation function. Rectified linear units (ReLUs) are the
most commonly employed activations in genomics. In com-
puter vision, neurons activated with a rectified polynomial,
which has a close relationship to dense associative memories
(Krotov & Hopfield, 2016), were shown to learn representa-
tions of numbers when applied to the MNIST dataset. This


https://doi.org/10.1101/650804
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650804; this version posted May 27, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Improving Convolutional Network Interpretability with Exponential Activations

activation breaks common sense because it is unbounded
and hence can diverge relatively quickly.

A divergent activation is intriguing from a signal processing
perspective because it can force the network to regulate its
weights such that the activity of a neuron does not blow up.
For instance, if background signals are propagated through,
then the rest of the network has to suppress this amplified
noise in order to make accurate classification. We suspect
that the network would instead opt for a simpler strategy of
suppressing background signals prior to activation, thereby
only propagating discriminatory signals. One drawback of
the rectified polynomial, however, is that it is unclear how to
select the order of the polynomial thus introducing another
hyperparameter to tune.

Building upon these previous studies, we introduce a novel
application of an exponential activation function. We per-
form systematic experiments on synthetic data that reca-
pitulates a multi-class classification task to compare how
activations of first layer filters affect representation learning
of sequence motifs. We find that an exponential activation
applied only to the first layer filters consistently learn whole
motif representations, irrespective of the network’s depth
and design. On the other hand, motif representations for
CNNs that employ ReLLU activations in the first layer pre-
dictively depend on CNN design. We then show that these
results generalize to in vivo sequences.

2. Experimental overview

Data. We analyzed a dataset from (Koo & Eddy, 2018),
which consists of synthetic DNA embedded with known
transcription factor (TF) motifs to recapitulate a multi-class
classification task of identifying transcription factor bind-
ing motifs. Specifically, synthetic sequences, each 200 nu-
cleotides long and composed of random DNA, were im-
planted with 1 to 5 known TF motifs, randomly selected
with replacement from a pool of 12 motifs. This dataset
makes a simplifying assumption that the only important
pattern for a given binding event is the presence of a PWM-
like motif in a sequence. Since we have ground truth for
all of the relevant TF motifs, and also where they are em-
bedded in each sequence, we can test the efficacy of the
representations learned by a trained CNN.

Models. We used two CNNs, namely CNN-50 and
CNN-2 (Koo & Eddy, 2018), to learn “local” represen-
tations (whole motifs) and “distributed” representations
(partial motifs), respectively. Both networks take as input a
1-dimensional one-hot-encoded sequence with 4 channels,
one for each nt (A, C, G, T), and have a fully-connected
(dense) output layer with 12 neurons that use sigmoid
activations. The hidden layers for each model are:

1. CNN-2
1. convolution (30 filters, size 19, stride 1)
max-pooling (size 2, stride 2)
2. convolution (128 filters, size 5, stride 1, ReLLU)
max-pooling (size 50, stride 50)
3. fully-connected layer (512 units, ReLU)

2. CNN-50
1. convolution (30 filters, size 19, stride 1)
max-pooling (size 50, stride 50)
2. convolution (128 filters, size 5, stride 1, ReLU)
max-pooling (size 2, stride 2)
3. fully-connected layer (512 units, ReLU)

3. CNN-deep

1. convolution (30 filters, size 19, stride 1)

2. convolution (48 filters, size 9, stride 1, ReL.U)
max-pooling (size 3, stride 3)

3. convolution (96 filters, size 6, stride 1, ReLU)
max-pooling (size 4, stride 4)

4. convolution (128 filters, size 4, stride 1, ReLLU)
max-pooling (size 3, stride 3)

5. fully-connected layer (512 units, ReLU)

All models incorporate batch normalization (Ioffe &
Szegedy, 2015) in each hidden layer; dropout (Srivastava
et al., 2014) with probabilities corresponding to layerl 0.1,
layer2 0.1, layer3 0.5 for CNN-2 and CNN-50; and layerl
0.1, layer2 0.2, layer3 0.3, layer4 0.4, layer5 0.5 for DistNet;
and L2-regularization on all parameters in the network with
a strength equal to 1e-6.

Training. We uniformly trained each model by minimiz-
ing the binary cross-entropy loss function with mini-batch
stochastic gradient descent (100 sequences) for 100 epochs.
We updated the parameters with Adam using default settings
(Kingma & Ba, 2014). All reported performance metrics are
drawn from the test set using the model parameters which
yielded the lowest loss on the validation set. Each model
was trained 5 times with different random initializations
according to (He et al., 2015).

Visualization of convolutional filters. To visualize first
layer filters, we scanned each filter across every sequence in
the test set. Sequences whose maximum activation was less
than a cutoff of 50% of the maximum possible activation
achievable for that filter were removed. A subsequence
the size of the filter is taken about the max activation for
each remaining sequence and assembled into an alignment.
Subsequences that are shorter than the filter size due to their
max activation being too close to the ends of the sequence
were also discarded. A position frequency matrix was then
created from the alignment and converted to a sequence
logo.
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Figure 1. Representations learned from synthetic sequences. Sequence logos of the first convolutional layer filters are shown for (from left
to right): CNN-2 with ReLU activations, CNN-2 with exponential activations, CNN-deep with ReLU activations, and CNN-deep with
exponential activations. The sequence logo of the ground truth motifs and its reverse complement for each ground truth motif is shown at
the bottom. The y-axis label on select filters represent a statistically significant match to a ground truth motif.

Quantitative motif comparison. The interpretability of
each filter was assessed using the Tomtom motif comparison
search tool (Gupta et al., 2007) to determine statistically sig-
nificant matches to the 2016 JASPAR vertebrates database
(Mathelier et al., 2015). Since the ground truth motifs are
available for our synthetic dataset, we can test whether the
CNNs have captured relevant motifs.

3. Results

To test the extent that activation functions influence repre-
sentation learning by first layer filters, we trained various
CNNs, namely CNN-2, CNN-50, and CNN-deep, on the
synthetic dataset with 5 different initializations and used
the average area under the precision recall curve (auPR) to
compare performance and quantify the ability to learn se-
quence motifs using Tomtom (Gupta et al., 2007). For each
network, we compared ReLU and exponential activations
only on the first layer, while employing ReL U activations
for the other hidden layers.

Analyzing synthetic sequences CNNss trained on the syn-
thetic dataset show no significant differences in the auPR
on held-out test sequences across models and across activa-
tions (Table 1). A visual comparison of the representations
learned by first layer filters show that CNN-2 and CNN-deep
do not learn sequence motifs well when employing ReLLU
activations (Fig. 1). This is expected because deeper layers
are able to build hierarchical representations from partial
motif features for these networks. Indeed less than 1% of

the filters match ground truth motifs according to a Tomtom
motif comparison search across 5 independent trials for each
network. Nevertheless, about 60% of the filters of CNN-2
and CNN-deep have a statistically significant match to some
motif in the JASPAR database, even though most of these
matches are not relevant. As expected, larger max-pooling
is required to yield interpretable filters for CNNs with ReLU
activations (Koo & Eddy, 2018). Indeed 92% of CNN-50’s
filters match ground truth motifs.

Strikingly, the convolutional filters for CNN-2 and CNN-
deep, which were unable to learn motifs with ReL.U acti-
vations, visually seem to capture many ground truth mo-
tifs when switching to an exponential activation (Figure 1).
Quantification by Tomtom confirms that greater that 90%
of the filters match ground truth motifs. This demonstrates
that exponential activations provide interpretable filters for
CNN:gs, irrespective of max-pooling size.

Analyzing In vivo sequences To test whether the same
representation learning principles generalize to in vivo se-
quences, we modified the DeepSea dataset (Zhou & Troy-
anskaya, 2015) to include only in vivo sequences that have
a peak called for at least one of 12 ChIP-seq experiments,
each of which correspond to a TF in the synthetic dataset
(see Supplemental Table S1 in (Koo & Eddy, 2018)). The
truncated-DeepSea dataset is similar to the synthetic dataset,
except that the input sequences now have a size of 1,000 nt
in contrast to the 200 nt sequences in the synthetic dataset.

We trained each CNN on the in vivo dataset following the
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Table 1. Performance comparison. This table shows the average area under the precision-recall curve (auPR) across the 12 TF classes,
average percent match between the first layer filters and the entire JASPAR vertebrates database (JASPAR), and the average percent match
to any ground truth TF motif (Relevant) for different CNNs. The errors represent the standard deviation across 5 independent trials.

SYNTHETIC In vivo
MOTIF MATCH MOTIF MATCH MOTIF MATCH MOTIF MATCH
MODEL AUPR (JASPAR) (RELEVANT) AUPR (JASPAR) (RELEVANT)
o) CNN-2 0.87740.001 0.607+0.013  0.007+£0.013 | 0.608+0.010 0.656+0.042 0.056+0.042
ﬁ CNN-50 0.865+0.033 0.993+0.013  0.920+0.058 | 0.575+0.005 0.900+0.000 0.733+0.047
& CNN-DEEP 0.873+0.047 0.600+0.000 0.000+0.000 | 0.639+0.004 0.611£0.016 0.011+£0.016
o CNN-2 0.884+0.018 0.987+0.016  0.960+0.013 | 0.620+£0.001 0.922+0.016  0.778+0.016
é CNN-50 0.8854+0.005 1.000+£0.000 0.913+£0.034 | 0.597+0.012 0.933+£0.027 0.656+0.031
CNN-DEEP 0.835+0.044 0.9534+0.016  0.940+0.039 | 0.630+0.014 0.900+0.027 0.722+0.016
CNN-2 (ReLU) . CNN-2 (Exp) CNN-deep (ReLU) CNN-deep (Exp)
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Figure 2. Representations learning for in vivo sequences. Sequence logos for first convolutional layer filters are shown for (from left
to right): CNN-2 with ReLU activations, CNN-2 with exponential activations, CNN-deep with ReLU activations, and CNN-deep with
exponential activations. The sequence logo of the ground truth motifs and its reverse complement for each transcription factor is shown at
the bottom. The y-axis label on select filters represent a statistically significant match to a ground truth motif.

same protocol as the synthetic dataset. Similarily, a qual-
itative comparison of the first layer filters show that em-
ploying exponential activations consistently leads to more
interpretable filters that visually matches known motifs (Fig.
2). By employing the Tomtom motif comparison search tool,
we quantified the percentage of statistically significant hits
between the first layer filters against the JASPAR database
(see Table 1). Indeed, a higher fraction of the filters of
CNNs that employ exponential activations have a statisti-
cally significant match to known motifs. On the other hand,
CNNs that employ ReLLU activations are more sensitive to
their network design with CNN-50 being the only network
that learns motifs well, yielding a percent match of 90%.
We note that the performance drop for in vivo sequences is
expected as they are more complicated, i.e. many filters find
a GATA motif. We envision that adding more filters in the
first layer can help address some of this discrepancy.

4. Conclusion

A major goal is to interpret learned representations of CNN's
so that we can gain insights into the underlying biology.
Deep CNNs, however, tend to learn distributed represen-
tations of sequence motifs that are not necessarily human
interpretable. Although attribution methods can identify
features that lead to decision making, their scores tend to
be noisy and difficult to interpret. We show that an expo-
nential activation is a powerful approach to encourage first
layer filters to learn sequence motifs. We believe that if ap-
plied to deeper layers, it could also improve interpretability
in deeper layers to potentially capture motif-motif interac-
tions. Moving forward, one promising avenue is to combine
attribution methods with CNNs that employ exponential
activations so that noisy attribution scores can be aided with
the interpretable first layer filters.
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