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1 Abstract8

1. Species distribution modelling, which allows users to predict the spatial distribution of species with the9

use of environmental covariates, has become increasingly popular, with many software platforms providing10

tools to fit species distribution models. However, the species observations used in species distribution11

models can have varying levels of quality and can have incomplete information, such as uncertain species12

identity.13

2. In this paper, we develop two algorithms to reclassify observations with unknown species identities14

which simultaneously predict different species distributions using spatial point processes. We compare the15

performance of the different algorithms using different initializations and parameters with models fitted16

using only the observations with known species identity through simulations.17

3. We show that performance varies with differences in correlation among species distributions, species18

abundance, and the proportion of observations with unknown species identities. Additionally, some of the19

methods developed here outperformed the models that didn’t use the misspecified data.20

4. These models represent an helpful and promising tool for opportunistic surveys where misidentification21

happens or for the distribution of species newly separated in their taxonomy.22

23

Keywords: Presence-only data - Ecological statistics - Misidentification - Classification - Mixture24

modelling - EM algorithm - Machine learning25

2 Introduction and background26

Species distribution modelling has been a popular topic in ecological statistics over the past decade.27

Many tools and methods have been developed to provide a means to explore the distributions of species28
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through mapping of suitable environments (Jewell et al., 2007; Peterman et al., 2013; Nezer et al., 2016;29

Inoue et al., 2017; Schank et al., 2017). Although there are a large number of algorithms and software30

platforms that can fit species distribution models (SDMs), generalization of these methods and specific31

applications to real data sets can be tricky (Burnham & Anderson, 2002; Aarts et al., 2012; Guillera-Arroita32

et al., 2015).33

The most common sources of species information used in SDMs are presence-only (PO) and presence-34

absence (PA) data. PO data only contains information about species presence, in contrast to PA data35

which records both where species have been found present and where they have not been found (Warton36

& Shepherd, 2010; Renner et al., 2015). Although PA data is generally of higher quality, it is also less37

common than PO data because it requires more rigorous planning to visit a set of pre-determined sites.38

On the other hand, PO data sets are very common, arising from surveys or opportunistic sightings, but39

they usually have lower quality (van Strien et al., 2013; Ruete & Leynaud, 2015). Point process models40

(PPMs) are a common tool for fitting SDMs to analyze PO data (Warton & Shepherd, 2010; Mi et al.,41

2014; Renner et al., 2015) and have been used to fit models for real datasets and simulated data (Baddeley42

et al., 2006; Illian et al., 2012; Renner & Warton, 2013; Baddeley et al., 2015).43

Unreliable or unknown species observation identification is also a main concern in ecology. For example,44

species records can become confounded when species taxonomy changes (Mahony et al., 2006). Conservation45

planning efforts depend on clear identification of species and understanding of their distributions and46

habitat requirements (Franklin, 2013; Guisan et al., 2013). Such concerns are very rarely considered while47

building SDMs, as people usually clean the data or make some assumptions to avoid such identification48

problems.49

Mixture modelling is a common tool used to represent complex distributions and aims to identify50

different groups within a dataset while modelling heterogeneity (Martinez, 2015). In communities or51

groups of individuals/species it is possible to classify or cluster them according to covariate information52

by using finite mixture modelling (McLachlan & Peel, 2000; Frame & Jammalamadaka, 2007; Dunstan53

et al., 2013; Fernández-Michelli et al., 2016). One particular application of this approach is to deal with54

over-dispersed data and to model the different ecological processes at the same time for a single species or55

for different species in order to classify them (Matthews et al., 2001; Zhang et al., 2004; Tracey et al.,56

2013).57

Machine learning algorithms are also becoming more common in statistical ecology because they can58

deal with unknown information and recognize some structure in the data (Hastie et al., 2001; Thessen, 2016;59

Browning et al., 2018). Some algorithms can group observations with similar characteristics (unsupervised60

learning) and some use separate labeled datasets (supervised learning) or partially labeled data within the61

studied dataset (semi-supervised learning) to classify the observations (Wendel et al., 2015; Fernández-62
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Michelli et al., 2016; Vo et al., 2018; Zhou, 2018). Some recent publications have applied machine learning63

algorithms to fit PPMs in a Bayesian framework (Tran, 2017; Vo et al., 2018), but the literature on using64

machine learning algorithms to fit PPMs is not yet well-developed. Additionally, several R packages have65

been developed to deal with machine learning procedures (Benaglia et al., 2009; Iovleff, 2018), but none66

accommodate the intersection of point process modelling with mixture modelling or machine learning67

algorithms.68

In this paper we develop new tools for fitting models to multi-species PO data with partial species69

identification by combining the PPM framework with mixture modelling and machine learning approaches70

to accommodate incomplete labelling. These tools implement two algorithms to reclassify the unreliable71

observations to belong to one of the existing species. The first tool fits mixtures of PPMs to all available72

data with an Expectation-Maximization (EM) algorithm and uses them to classify the unreliable points.73

This method will be called Mixture method. The second tool employs an iterative technique to fit74

separate PPMs to points with known labels augmented by some points with unknown labels depending75

on classification probabilities at each iteration. This method will be hereafter known as the Loop method.76

Using simulations, we compare the performance in classification and prediction for the proposed algorithms77

to the simple, standard approach of fitting individual PPMs to the points with known species labels only.78

We found that performance varied based on the choice of initialization and algorithm parameters but79

some of the methods can outperform the fitting of individual PPMs.80

3 New modelling methods81

3.1 Notation82

The fitted point process models in our proposed methods make use of a total of M +N +Q locations as83

follows:84

Let s1 = {s1, . . . , sm1}, s2 = {sm1+1, . . . , sm1+m2}, . . . , sK = {sM−mK +1, . . . , sM} be vectors that85

contain all of the observed locations with known species identities 1, 2, . . . ,K, respectively. These are86

represented by the orange, purple, and turquoise dots in Figure 1 for a hypothetical dataset. Let87

|s1| = m1, |s2| = m2, . . . , |sK | = mK be the number of observed locations with known species identity88

for each of the K species. We collect the M = m1 +m2 + . . .+mK total locations with known species89

identities of all K species in s = {s1, s2, . . . , sK}. Let u = {sM+1, . . . , sM+N} contain the N observed90

locations with uncertain species identities. These are represented by the black question marks in Figure 1.91

Let q = {sM+N+1, . . . , sM+N+Q} contain the locations of Q quadrature points placed along a regular92

c1 × c2 grid throughout the study region (Figure 1). Each quadrature point is placed at the center of one93

of Q unique rectangular grid cells throughout the study region. Let c(s) be the grid cell in which location94
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Figure 1: Three illustrative point patterns. The orange, purple, and turquoise colored dots represent
locations with known species identity, s1, s2, and s3. The gray dots represent quadrature points q, which
are spaced evenly along a regular grid such that one quadrature point is at the centre of each rectangular
grid cell. The black question marks (left) represent observed locations u with uncertain species identity.
The locations in a1 ∈ u, a2 ∈ u, and a3 ∈ u which are reclassified as belonging to one of the species are
represented by coloured question marks (right).

3.2 Loop methods96

The three loop algorithms proceed by iterating between steps that augment the vectors of locations with97

known species identities s1, s2, . . . , sK with locations a1 ⊂ u,a2 ⊂ u, . . . ,aK ⊂ u, update the quadrature98

weights, and fit point process models as follows:99

1. Fit K initial point process models using the vectors of observed locations with known species identity100

s1, s2, . . . , sK .101

2. Compute the predicted intensities µ̂i(s) for all s ∈ {s ∪ u} for i ∈ {1, . . . ,K}.102

3. Derive an (M +N)×K matrix of membership probabilities ω, where

ω =



ω1(s1) ω2(s1) . . . ωK(s1)

ω1(s2) ω2(s2) . . . ωK(s2)
...

... . . .
...

ω1(sM+N ) ω2(sM+N ) . . . ωK(sM+N )


The membership probability of location s for species i is defined as103

ωi(s) =


1(s ∈ si) : s ∈ s

µ̂i(s)∑K

j=1
µ̂j(s)

: s ∈ u.
(1)

That is, the membership probabilities for the locations with known species identity are 1 for the104

correct species and 0 otherwise, and for the locations with unknown species identity, they are105
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proportional to the fitted intensities.106

4. Define an augmented vector for species i as yi = si ∪ ai for all i ∈ {1, . . . ,K}. We define ai as107

follows:108

• For the Normal method, ai = u (left panel of Figure 2).109

• For the Loop grW method, ai = u[ωi(s)≥δ], where δ is a minimum membership proba-110

bility threshold that takes the following values successively at each iteration {δmax, δmax −111

δstep, . . . , δmin}. That is, the Loop grW method augments the locations with known species112

identity i with the locations with unknown species identity with membership probabilities for113

species i that are higher than the current threshold δ (middel panel of Figure 2).114

• For the Loop hgW method, ai = u[ωi(s)≥ωi,(M+N−a+1)], where ωi,(j) represents the jth smallest115

entry of vector ωi, the ith column of ω, and a represents the number of locations to be augmented.116

We set a to be the same integer for all K species for some a between 1 and bNK c then at each117

iteration a is increased by one (right panel of Figure 2).118

5. Update the quadrature weights for each species. First, assign each location in {y1, . . . ,yK ,q} to a119

grid cell. Then, compute the vector of quadrature weights wi for all points t ∈ {yi ∪ q} as follows:120

wi(t) = c1 × c2 × ωi(t)
1 +

∑
s∈{yi∪q} 1(c(s) = c(t))ωi(s)

. (2)

This way of computing quadrature weights is an extension of standard quadrature weight schemes121

for point process models (Berman & Turner, 1992), in which the weight for location s is equal to the122

area of the grid cell c(s) that contains s divided by the total number of quadrature and observed123

locations in c(s). Here, we divide the area of the grid cell by the sum of the membership probabilities124

of the observed locations in the grid cell (both with and without known species identities) plus 1125

(for the one quadrature point in the grid cell).126

6. Fit point process models using the augmented vector yi, quadrature points q and quadrature weights127

wi for all species i ∈ {1, . . . ,K}.128

7. Return to step 2 and stop when we either reach likelihood convergence or we reach a maximum129

number of iterations that is different depending on the method chosen. Likelihood convergence is130

determined by:131

δl =

∑K
j=1

∣∣∣`jh+1(β)− `jh(β)
∣∣∣(∑K

j=1 `
j
h(β)

) < ε (3)

for some choice of ε, where `(β)jh is the fitted log-likelihood for the jth species at the hth iteration.132

The maximum number of iterations varies for the different methods, as follows:133
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• For the Normal method, the maximum number of iterations is set by the user. We set the134

default number of iterations to be 50.135

• For the Loop grW method, the maximum number of iterations is determined by the choice of136

δmax, δstep, and δmin.137

• For the Loop hgW method, the maximum number of iterations is bNK c− a1, where bcc rounds138

the number c down to the nearest integer, and a1 is the first value of a chosen by the user. In139

the case of decimals numbers, only the floor is considered as the we can’t add more points than140

available per species.141
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Figure 2: (Left) Normal Loop function. We add all points with unknown species labels to each species,
using membership weights that are proportional to the fitted intensities. (Middle) Method Loop grW
function. We add all points with membership probabilities greater than a threshold δmax, then we decreases
from that value to a minimum of δmin by increments of δstep. (Right) Method Loop hgW function. We
add the a points with highest membership probabilities to each species, increasing the number a from 1
to bNK c.

3.3 Mixture of PPMs method142

The four mixture algorithms can be fitted by maximizing a log-likelihood function and reclassifying the143

locations with uncertain identity using an EM algorithm framework. The algorithm proceeds as follows:144

1. We initialize the membership probabilities ω for each location s for each species i in one of the145

following ways:146

• For the knn method, we calculate the distance di(s) of each location s to the kth nearest147

neighbor of species i, for all K species. We calculate the membership probability of location s148

for species i using:149

ωi(s) =


1(s ∈ si) : s ∈ s

zi(s)∑K

j=1
zj(s)

: s ∈ u.
(4)
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where150

zi(s) = min1≤j≤K dj(s)
di(s)

(5)

• For the kmeans method, we define ωi(s) as in (4) but define zi(s) as151

zi(s) =
min1≤j≤K d

C
j (s)

dC
i (s)

, (6)

where dC
i (s) is the distance to the ith centroid of the ith cluster.152

• For the random method, we define ωi(s) as in (4) and zi(s) is drawn randomly from a153

uniform distribution:154

zi(s) ∼ U [0, 1] (7)

• For the equal method, we assign equal membership probabilities for the locations with155

uncertain identity:156

ωi(s) =

 1(s ∈ si) : s ∈ s
1
K : s ∈ u.

(8)

Regardless of the initialization method, the sum of membership probabilities across the all species is157

equal to 1 for all points.158

2. Classify the locations in u to belong to one of the K species based on the membership probabilities159

ω.160

3. Fit a point process model using a marked point pattern, where each observation s has a mark defined161

by the known or classified identity among the K species.162

4. Compute the predicted intensities µ̂i(s) for all s ∈ {s ∪ u} for i ∈ {1, . . . ,K}.163

5. E step: We first get the predicted values of each species at the locations s ∈ {s ∪ u} and calculate164

the predicted intensity of the mixture of K densities using:165

f(s) =
K∑
i=1

πi × fi(s), (9)

where fi(s) is the density at location s for the ith component and πi is the mixing proportion or166

weight of the ith species in the mixture.167

6. We calculate new membership probabilities for each unknown point of u using:168

ωi(s) = µ̂i(s)∑k
i=1 µ̂i(s)

, (10)
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where µi(s) is the intensity of the ith species at location s ∈ s . For the observations s with known169

labels, the membership probabilities are set to 1 for the correct species label and 0 otherwise.170

7. M step: Classify the locations in u to belong to one of the K species. The classification for each171

point s corresponds to the highest membership probability ωi(s) for i ∈ {1, . . . ,K}. We compute172

each species’ proportion of the whole by summing the membership probabilities for each species173

across both s and u.174

8. Compute a marked PPM based on the updated classifications and membership probabilities.175

9. Calculate the model log likelihood using:176

`(β) =
∑
s∈s∪u

f(s,β) =
∑
s∈s∪u

log
K∑
i=1

πi × f(s, βi) (11)

10. Repeat steps 4-9 until we achieve likelihood convergence, defined as follows:177

|`h+1(β)− `h(β)|
(1 + |`h+1(β)|) < ε (12)

where `h(β) is the log-likelihood at the hth iteration and ε is a pre-specified tolerance level.178

4 Simulation framework179

4.1 Simulation data180

To compare the performance of the different algorithms, we simulated patterns t1, t2, and t3 of individuals181

for three species based on “true” distributions defined by four different predictors. Because performance182

could varied based on sample size, the correlations ρi,j among the species distributions, and the proportion183

of observations with unknown labels, we consider similar and different low abundances by randomly184

simulating numbers of points between 20 and 50 for the species as well as the correlation between the true185

species distributions:186

• Case 1: at least two species i and j have distributions that are highly correlated (|ρi,j | ≥ 0.85 for187

some i, j ∈ {1, 2, 3})188

• Case 2: no two species have highly correlated distributions (|ρi,j | < 0.45 for all i, j ∈ {1, 2, 3})189

We chose these values for abundances as they would be small enough such that potential value of adding190

points with unknown species identities could be investigated, and we chose these cutoffs for correlation to191

create clearly distinguishable contexts.192

We then created locations with unknown labels u by hiding uniformly at random a certain proportion of193

the total observations (20%, 50% and 80%). The locations in t1, t2, and t3 that retained their true species194
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identities therefore became the simulated point patterns s1, s2, and s3 with known species identities.195

Simulations were conducted using the version 3.4.2 of R (R Core Team, 2017) and used high performance196

computing to implement 1000 simulations each for different combinations of abundances, correlation197

among species distributions, and proportions of observations with unknown labels. We also tested different198

parameters for the knn initialization of the mixture algorithm (the value of k neighbors), the Loop grW199

function (the maximum threshold δmax, minimum threshold δmin and the step size δstep) and the Loop200

hgW function (initial number of points added to the point pattern a).201

4.2 Suite of Evaluation tools202

We consider various measures of performance for comparing the distributions. For classification methods,203

misclassification/accuracy analysis is a common measure of performance (Wendel et al., 2015).We choose204

the highest mixing weight for each observation to determine the labeling when computing accuracy. We205

also compared the final membership probabilities of the correct labels of each point to 1 (the true weight)206

with a residual sum of squares (RSS).207

RSS =
K∑
i=1

∑
s∈ti

(ωi(s)− 1)2, (13)

where ωi(s) is the final membership probability for location s for the correct species i computed using208

the methods outlined in sections 3.2 and 3.3. Considering residual sum of squares (RSS) alone does not209

provide a reliable comparison because the number of unknown observations can vary, so we consider210

meanRSS instead to standardize the measure for all fitted models:211

meanRSS = RSS
N

, (14)

where N is the number of observations with uncertain species identities.212

We also considered measures that compare the true distribution from which we generate the points to213

the predicted distributions of the model. We use a sum of correlations between the true and predicted214

distributions across all species (hereafter referred to as ‘sumcor’) to assess how well the predicted215

distributions align with the true distributions. We can use various correlation measures such as Pearson’s216

correlation coefficient, Kendall’s τ or Spearman’s ρ when computing sumcor.217

Another global measure of predictive performance of the intensity estimates is the Integrated Mean Square218

Error (IMSE) (Swanepoel, 1988; Es, 1997). The function is defined as:219

IMSE = E

(∫ +∞

−∞
((f̂n(x)− f(x))2)dx

)
, (15)
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where f̂n(x) is an estimator of the density function f(x). We standardized this value by rescaling the220

intensities to be able to compare each methods even if different number of points are considered and221

compute the IMSE using the values of the true and predicted intensities at the quadrature points q, and222

sum across the 3 species.223

5 Results224

Here we present the results of the simulations, with more detailed results appearing in the Appendix.225

In this section, we only present the results from the knn, Lopp grW, Loop hgW and individual PPM226

methods that displayed the best performances. First, we present the model performances from varying227

data parameters (abundance, correlation and percentage of hidden labeled data). The individual PPM228

results will be used as a point of comparison with the other methods as the individual method does229

not include any of the points with unknown labels. We, then, focus on varying model parameters in230

the different methods (the value of k for knn, the values of δmax, δmin and δstep for Loop grW and the231

value of a for Loop hgW). For these results, we set k = 1, δmax = 0.5, δmin = 0.1, δstep = 0.1 and a = 5232

according to the algorithm parameters tests presented in section 5.2. For the performance results, the233

sumcor methods displayed the result using the Pearson correlation coefficient.234

5.1 Varying species distributions235

5.1.1 Different abundances and correlated distributions236

In Figure 3, we consider different low abundances (m1 = 32, m2 = 42 and m3 = 23) and where two237

distributions are highly correlated. With regard to classification performance, the different modelling238

methods have similar levels of accuracy, although when comparing meanRSS, the individual and Loop239

grW methods seem to outperform the other methods, especially as we increase the proportion of hidden240

observations. With regard to predictive performance, the Loop grW method appears to have the greatest241

performance when measured by IMSE and sumcor, particularly for 50% and 80% of hidden observations.242

The Loop hgW method performs comparably to the individual PPM method, although its preformance243

gets relatively better as we increase the proportion of hidden observations. The knn method has the244

highest IMSE for 50% and 80% of hidden observations, but it is competitive with the individual PPM245

and loop hgW method when comparing sumcor. See Tables 1 and 2 in the Appendix for a comparison of246

means and medians across all of these measures.247

When examining the predicted intensities with 80% of the observations with hidden species identities, the248

true pattern appears best captured by the Loop grW method (Figure 4), consistent with sumcor. The249

Loop hgW method tends to overpredict the intensities.250
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Figure 3: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color boxplot represents a different percentage of hidden observation: in yellow are the performances with
20% of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.
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Figure 4: Predicted intensities obtained for the knn, individual, Loop grW and Loop grW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651125doi: bioRxiv preprint 

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.1.2 Similar abundances and correlated distributions251

In Figure 5, we consider similar abundances (m1 = 33, m2 = 34 and m3 = 35) and where two distributions252

are highly correlated. With regard to classification performance, the different modelling methods have253

similar levels of accuracy, except the knn method does relatively poorly with 80% of the observations254

hidden. The knn method also suffers worse performance as measured by meanRSS at 50% and 80% of255

hidden observations. Measures of predictive performance are similar to the case with different abundances256

and correlated distributions. The Loop grW method appears to outperform the others as the proportion257

of hidden observations increases, with the Loop hgW method competitive with the individual PPM258

method. The knn method appears to do worse with 80% hidden observations when measured by IMSE.259

See Tables ?? and ?? in the Appendix for comparisons of means and medians across all of these measures.260

With 80% hidden observations, the Loop Loop grW method appears to be best aligned with the true261

intensities, as shown in Figure 6.262
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Figure 5: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 33, m2 = 34, m3 = 35; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651125doi: bioRxiv preprint 

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/


80% of hidden observation

knn Indiv Lgr Lhg initial process

S
p
e
c
ie

s
3

S
p
e
c
ie

s
2

S
p
e
c
ie

s
1

0.005

0.010

0.015

0.020

0.025

Figure 6: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m1 = 33, m2 = 34, m3 = 35; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

5.1.3 Different abundances and non correlated distributions263

In Figure 7, we consider different abundances (m1 = 42, m2 = 31 and m3 = 25) and where none of264

the distributions have high correlations. The classification performance and predictive performance265

comparisons look similar to the case of similar abundances and correlated distributions as shown in266

Figure 5, with the knn method having the worst classification performance described here at 50% and 80%267

of hidden observations and the Loop grW method outperforming the others in predictive performance,268

while the Loop hgW method is competitive with the individual PPM method and the knn method lags269

behind with IMSE at 80% of hidden observations. Tables 5 and 6 in the Appendix contains the means270

and medians across all performance measures for this context.271

With 80% of hidden observation as shown in Figure 8, the Loop hgW method for species 1 and 3 and the272

Loop grW method for species 2 and 3 are the closest to the initial process.273
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Figure 7: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 42, m2 = 31, m3 = 25; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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Figure 8: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m1 = 42, m2 = 31, m3 = 25; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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5.1.4 Similar abundances and non correlated distribution274

For similar abundances (m1 = 39, m2 = 37, m3 = 38) and non correlated distributions, we again observe275

the same trends, as shown in Figure 9: the knn method is the worst method for relabeling performances276

and the only one not doing as well as the individual method for 50% and 80% of hidden observations.277

As in previous contexts, the Loop grW method shows the best predictive performance, with the Loop278

hgW method being competitive with the individual PPM method, and the knn method having higher279

IMSE than the other methods when 80% of the observations are hidden. Tables 7 and 8 in the Appendix280

contain the mean and median value for all performance measures.281

The predicted intensities show the methods LgrW and knn being the closest to the initial process, as282

shown in Figure 10.283
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Figure 9: Measures of performance for the knn, individual, Loop grW and Loop grW methods. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 39, m2 = 37, m3 = 38; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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Figure 10: Predicted intensities obtained for the knn, individual, Loopg rW and Loop grW initialization
methods and the initial intensities from the process at 80% of hidden observations. The parameters of
abundances and correlation are:m1=39, m2=37, m3=38; ρ1−2=0.09, ρ1−3=-0.42, ρ2−3=0.20

5.2 Testing algorithm parameters284

5.2.1 knn method285

We note that when the k nearest neighbor value increases (from 1 up to 20), the model performances286

decrease; Figure 11. It is particularly notable for the performances in prediction where sumcor performances287

decrease and IMSE performances increase. Also, there is an expected drop in performances as we increase288

the proportion of observations with unknown species labels.289
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Figure 11: Model performances for the knn method. Each color represents a different percentage of hidden
observations: in yellow are the performances with 20% of hidden observations, in green with 50% and
in blue with 80%. The parameters of abundances and correlation are: m1 = 32, m2 = 42, m3 = 23;
ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

5.2.2 Loop grW method290

For the Loop grW method we tested different parameters:291

1. The initial membership probability threshold δmax: while this parameter varies from 0.8 to 0.5 in292

increments of 0.1, the other Loop grW parameters are as follows: δmin = 0.1 and δstep = 0.1.293

2. The final membership probability threshold δmin: while this parameter varies from 0.1 to 0.7 in294

increments of 0.2, the other Loop grW parameters are as follows: δmax = 0.8 and δstep = 0.1.295

3. The step size δstep: while this parameter varies from a minimum of 0.01 to a maximum of 0.2, the296

other Loop grW parameters are as follows: δmax = 0.8 and δmin = 0.1.297

When we change the value of δmax, there is very little difference in performance within each proportion of298

observations with hidden labels, although δmax = 0.5 appears to be slightly superior to the other choices299

for high percentage of hidden observation (Figure 12).300
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Figure 12: Model performances for the Loop grW method and for different values of δmax. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

When changing δmin, the classification accuracy is relatively the same (Figure 13). For MeanRSS, IMSE301

and sumcor, we can observe a curved pattern of performances, where the performances decrease (MeanRSS302

increases, IMSE increases and sumcor decreases) from δmin from 0.1 to 0.5 and then the performances get303

slightly better (MeanRSS decreases, IMSE decreases and sumcor increases) for δmin = 0.7 (Figure 13).304

δmin=0.1 displays the better performances.305
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Figure 13: Model performances for the Loop grW method and for different values of δmin. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

.

Figure 14 shows different performance measures as we vary δstep. There do not appear to be major306

differences in classification performance, although 0.1 appear slightly better for meanRSS. With 50% and307

80% of hidden observations, predictive performance display a curve performances where performances get308

better (IMSE decreases and sumcor increase) from 0.01 till 0.1 and then get worse (IMSE increases and309

sumcor descreases) from 0.1 to 0.2. δstep=0.1 displays the best performances accross all measures.310
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Figure 14: Model performances for the Loop grW method and for different values of weight step. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

.

5.2.3 Loop hgW method311

In the Loop hgW method, we vary the number of points a added at each iteration. In Figure 15, we can312

see that there is no variation in performances when the number of added points a increases.313
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Figure 15: Model performances for the Loop grW method. Each color boxplot represents a different
percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in
green for 50% and in blue for 80%. The parameters of abundances and correlation are: m1 = 32, m2 = 42,
m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

The results for the other combination of abundances and correlation are showed in the Appendix.314

6 Discussion315

In this article, we present a new modelling tool in R that aims to incorporate the observed locations316

with unknown species identities to improve species distributions. These tools accommodate two ways of317

reclassifying information using mixture modelling and the machine learning framework with 7 different318

initialization methods. We tested our algorithms in different contexts where we vary the abundances of319

our species (similar or different), the correlation between them (two distribution are correlated or none are320

correlated) and the proportion of unknown species identities (20%, 50% and 80%). The different methods321

were compared to the individual method which ignores locations with unknown species identities to see322

whether the proposed algorithms allow us to fit distributions that are closer to the initial processes.323

In the results we presented the three best methods. They showed varying performance depending on324

the aspects of the model and the performance measure considered. The novelty of these tools, makes it325

difficult to compare to other existing tools that either do not consider point pattern process (Frame &326

Jammalamadaka, 2007; Frühwirth-Schnatter, 2006; Hui, 2016; Martinez, 2015; Melnykov & Maitra, 2010;327

Quost & Denœux, 2016), Poisson distributions (Figueirido & Jain, 2002; Hui et al., 2015; Scrucca et al.,328
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2016; Woillez et al., 2012), count data (Benaglia et al., 2009; Iovleff, 2018; Leisch, 2004) or implementation329

of mixture (Witten, 2011; Wendel et al., 2015) or semi-supervised learning frameworks (Di Zio et al., 2007;330

Fraley & Raftery, 1998; Jeffries & Pfeiffer, 2001; Taddy & Kottas, 2012).331

The other methods (kmeans, random, equal and normal) not presented previously in the results are332

presented in the Appendix. They show relatively worse performance across all measures, although at333

times, the normal loop method is competitive with the individual PPM and the Loop hgW methods. We334

note that this method performs slightly better when the distributions are correlated.335

We have noticed differences in performance, that are more significant when we increase the proportion336

of observations with hidden labels. While at 20% of hidden observations, all methods performed fairly337

similarly, at 50% and 80% of hidden observations, the loop grW method in particular showed the best338

predictive performances regardless of differences in abundance and correlation among species distributions.339

For this method, only the points with the highest membership probabilities are added. We set the340

maximum and minimum thresholds at δmax = 0.5 and δmin = 0.1 and a step size of δstep = 0.1, but we341

could expect that performances may be better or worse with different choices of these parameters as342

shown in the results. These choices appeared to produce superior performances for most measures than343

other values of these parameters considered. Higher values of δmin led to worse performances. This result344

can be seen as counterintuitive as we can expect that having a smaller interval of weight for example could345

improve this particular performances. It will in other words reduce the interval of weights and better346

discriminate the points of uncertain identity. As for δstep, choosing a value that is too small may lead to347

iterations where no points are added, while choosing a value that is too large may be too discriminating348

and does not allow to reclassify the points.349

The Loop hgW method did not perform as good as the Loop grW method even if it has been shown to be350

as good as the individual method in some contexts. For this method, we add initially a certain number of351

points a that is increased at each iteration. While the a points with highest membership probabilities are352

added, these membership probabilities may be small for large values of a, and this could explain that this353

method is not always doing as good as the best method.354

Interestingly, the knn method was the best of the four mixture methods tested, outperforming the kmeans,355

random and equal initialization options. Previous studies using the EM algorithm for classification and356

clustering data show that such algorithms are highly dependent on the initialization method (Figueirido357

& Jain, 2002; Melnykov & Maitra, 2010; O’Hagan et al., 2012). Additionally, even very popular methods358

like kmeans have some drawbacks. Its performance is dependent on overlapping densities and whether the359

distributions are roughly circular or not. The choice of the centroid is also not consistent and chosen at360

random for the first calculation (Yoo et al., 2012, 2007; Wu et al., 2008). In our simulations, kmeans,361

random and equal methods showed very different results and always performed worse than the other362
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methods as well as mainly overestimating (kmeans and random) and underestimating (equal) the predicted363

intensities compared to the true process.364

Despite outperforming the other mixture modelling methods, the knn method was still not competitive365

with the machine learning methods or the individual PPM method when the proportion of hidden366

observations are 50% or 80%. However, the knn method was quite consistent in the predicted intensities367

and showed similar results to the individual method for the sumcor measure at 50% or 80% of hidden368

observations. Other studies have found that the performance of the knn method is linked to the metric369

chosen to calculate the nearest neighbor distances and the value of the number k of nearest neighbors370

(Weinberger & Saul, 2009; Guo et al., 2003; Wu et al., 2008).371

We tested how the number of neighbors k can influence the model and found that for any combination of372

abundance and correlation, all the measures of performances decrease when the values of k increase. It is373

expected as the neighboring points are further away from one another and could conflate species habitat374

preferences with differing species abundances, but requiring more neighbor points can also stabilize the375

distances. The way of choosing the value of k by utilizing different distance metrics could also impact the376

performances as previously noted, but we shall leave this aspect of the analysis for future consideration.377

In our simulations, we have considered a relatively general case of point patterns and we only varied378

species abundance and correlation among distributions in addition to the proportion of observations with379

hidden information. For real ecological data sets, there are more factors to consider that can influence380

how a model will perform. First, the abundances tested in the simulation are quite low (20-40 points) and381

some methods can show convergence issues in this context. While we use the spatstat package (Baddeley382

et al., 2015) to fit PPMs, we could make use of similar functions in the ppmlasso package (Renner &383

Warton, 2013) which integrate regularization methods like the lasso penalty that can boost performances384

with low sample sizes. A related point is that we included all covariates that were used to generate385

the true point patterns in our models. In real situations, however, we may not have access to the best386

covariates or know which ones truly determine the species distributions. Applying a lasso penalty to help387

in variable selection may therefore be provide a natural way forward in this context. Finally, a key reality388

when dealing with presence-only data is the presence of observer bias, in which sampling effort varies389

throughout the study region. Some models apply a correction for observer bias in the prediction (Hefley390

et al., 2013; Lahoz-Monfort et al., 2014; Warton et al., 2013) and our tools would be able to accommodate391

such improvements.392

7 Conclusion393

The new algorithms presented in this article aim to reclassify observations that have uncertain or unknown394

labels in order to better predict point pattern distributions. We showed that machine learning based395
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models performed better in a general context than mixture based models no matter the initialization396

method and also better than the individual PPM method that does not include the points with unknown397

labels. Our simulations showed encouraging results in this context with good performances in some cases,398

although there are some improvements to implement in order to make the tools more appropriate for real399

life data.400
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###########################################################################################

#

#                 Functions to use in the testsims function

#

###########################################################################################



# call the different function for the simulations





### Function ppmMixEngine

#---------------------------------------------------------------------



makeMask = function(Qppp)

{

  

  q_df = data.frame(x = Qppp$x, y = Qppp$y)

  ux = sort(unique(q_df$x))

  uy = sort(unique(q_df$y))

  nx = length(ux)

  ny = length(uy)

  

  col.ref = match(q_df$x, ux)

  row.ref = match(q_df$y, uy)

  

  all.vec          = rep(0, max(row.ref)*max(col.ref))

  vec.ref          = (col.ref - 1)*max(row.ref) + row.ref

  all.vec[vec.ref] = 1

  mask.out         = matrix(all.vec, max(row.ref), max(col.ref), dimnames = list(uy, ux))

  mask.out

}



#------------------------------------------------------------------------------------

#  								function ppmMixEngine

#------------------------------------------------------------------------------------



ppmMixEngine = function(datappp, quads, ppmform, all_true, all_test,

                        initweights = c("knn","kmeans", "random", "equal"),

                        k=1, cov.list, cov.bias=NULL, kVal = NULL, kAreaInt=NULL,

                        verbose = TRUE, tol = 0.001, maxit = 50, plots = FALSE)

{

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  nclust  = length(unique(datamarks)) - 1

  

  

  splitppps = split(datappp, as.factor(marks(datappp)))

  for (i in 1:(nclust + 1))

  {

    assign(paste("ppp_", names(splitppps)[i], sep = ""),

           splitppps[[i]])

  }

  

  #1# Initialization of membership probabilities

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  # Set up otpion for initial weights  

  initweights <- match.arg(initweights)

  

  # for knn method

  if (initweights == "knn"){

    

    nndists  = nndist(datappp, k=k, by = as.factor(marks(datappp)))

    nndists  = nndists[,-which(colnames(nndists) == "Unknown")]

    weight_num = apply(nndists, 1, min)/nndists

    init.weight = weight_num/apply(weight_num, 1, sum)

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colnames(nndists)[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(nndists)[apply(init.weight, 1, which.max)]

  }

  

  #for kmeans method

  if (initweights == "kmeans"){

    xy = coords(datappp)

    ncenter = nclust

    comp_mean = kmeans(xy, ncenter)

    

    Ccenter = comp_mean$centers 

    

    All_dist_center = matrix(data=NA, nrow=nrow(xy), ncol=nclust)

    

    for (i in 1:(nclust))

    {

      Di= sqrt((xy$x-Ccenter[[i]])^2 + (xy$y-Ccenter[[i+nclust]])^2) 

      All_dist_center[,i] = Di

    }

    

    colnames(All_dist_center) <- paste("D", 1:nclust, sep = "")

    

    marksknown = uniquemarks[-which(uniquemarks == "Unknown")]

    colnames(All_dist_center) = marksknown

    

    weight_num = apply(All_dist_center, 1, min)/All_dist_center

    init.weight = weight_num/apply(weight_num, 1, sum)

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colnames(All_dist_center)[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(All_dist_center)[apply(init.weight, 1, which.max)]

    

  }

  

  # for random method

  if (initweights == "random"){

    random.val = runif(nclust*datappp$n, min=0, max=1)

    weight_num = matrix(random.val, datappp$n, nclust)

    init.weight = weight_num/apply(weight_num, 1, sum)  # make weights add up to 1

    

    colmarks = uniquemarks

    colmarks  = colmarks[-which(colmarks == "Unknown")]

    colnames(init.weight) = colmarks

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colmarks[i])

      init.weight[rowfill, i] = 1

    }

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

    

  }

  

  # for equal weights method

  if (initweights == "equal"){

    init.weight = matrix(1/nclust, datappp$n, nclust)

    colmarks = uniquemarks

    colmarks  = colmarks[-which(colmarks == "Unknown")]

    colnames(init.weight) = colmarks

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colmarks[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

    

  }

  

  #2# Fit point process models

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  # continue general script for all the methods

  p = table(itermarks)/sum(table(itermarks))

  

  iterppp = datappp

  marks(iterppp) = as.factor(itermarks)

  Qmask = makeMask(quads)

  

  Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

                 ntile = c(dim(Qmask)[2], dim(Qmask)[1]), 

                 npix = c(dim(Qmask)[2], dim(Qmask)[1]))

  

  if(is.null(cov.bias)){

    cov.list = cov.list

  }else{

    pred.list = cov.list

    set.Val = cov.bias #Variables to set to a certain value

    for (v in set.Val){

      pred.list[[v]]$v = kVal*pred.list[[v]]$v

    }

  }

  

  #continue script with bias

  formchr = as.character(ppmform)[2]

  formsplit = strsplit(formchr, "\\+")

  markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

  

  if(is.null(kAreaInt)){

    fit1 = ppm(Q, trend = markform, covariates = cov.list, 

               gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

  }else{

    fit1 = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

               gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    

  }

  

  #3# Compute predicted intensities

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  

  if(is.null(cov.bias)){

    fitbef.pred  = predict(fit1, covariates = cov.list)

  }else{

    fitbef.pred  = predict(fit1, covariates = pred.list)

  }

  

  if (plots == TRUE)

  {

    plot(fitbef.pred, main="predict - log(fitbef.pred)")

  }

  

  pfit.b = fitted(fit1)

  

  loglik.old <- 0.

  loglik.new <- 1.

  

  #

  # Iterator starts here, 

  #

  

  is_known = which(datamarks != "Unknown")

  niter <- 0

  while(abs(loglik.new - loglik.old)/(1 + abs(loglik.new)) > tol) {

    if(niter >= maxit) {

      warning(paste("E-M algorithm failed to converge in",

                    maxit, ngettext(maxit, "iteration", "iterations")),

              call.=FALSE)

      break

    }

    

    

    niter <- niter + 1

    

    

    #4# Get the predicted intensities at the location S

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # E - step

    predint = matrix(NA, sum(unknown), nclust)

    for (i in 1:nclust)

    {

      ppp_i = ppp_Unknown

      marks(ppp_i) = as.factor(colnames(iterweights)[i])

      if(is.null(cov.bias)){

        predint[,i] = predict(fit1, locations = ppp_i)

      }else{

        predint[,i] = predict(fit1, covariates = pred.list, locations = ppp_i)

      }

    }

    

    p_mat = t(matrix(p, ncol(predint), nrow(predint)))

    predint_p = predint*p_mat

    

    

    #5# Caluclate New weights

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    iterweights[unknown,] = predint_p/apply(predint_p, 1, sum)

    

    # end E-step

    

    

    #6# We compute species proportions

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # M - step

    p = apply(iterweights, 2, sum)/sum(apply(iterweights, 2, sum))

    

    itermarks = datamarks

    itermarks = colnames(iterweights)[apply(iterweights, 1, which.max)] # assign marks based on new weights

    

    iterppp = datappp

    marks(iterppp) = as.factor(itermarks)

    

    

    #7# Update quadrature weights

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

                   ntile = c(dim(Qmask)[2], dim(Qmask)[1]),

                   npix = c(dim(Qmask)[2], dim(Qmask)[1]))

    

    formchr = as.character(ppmform)[2]

    formsplit = strsplit(formchr, "\\+")

    markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

    

    #Q$w = sp_wts

    

    #8# Fit new point process models

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    if(is.null(kAreaInt)){

      fit1.after = ppm(Q, trend = markform, covariates = cov.list, 

                       gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    }else{

      fit1.after = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

                       gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    }

    

    fit1 = fit1.after

    

    if(is.null(cov.bias)){

      fitaft.pred  = predict(fit1.after, covariates = cov.list)

    }else{

      fitaft.pred  = predict(fit1.after, covariates = pred.list)

    }

    

    

    if (plots == TRUE)

    {

      plot(envelope(iterppp))

      plot(fitaft.pred, main="predict - log(fitaft.pred)")

    }

    

    pfit.af = fitted(fit1.after)

    

    fitted.mix = fit1.after$internal$glmfit$fitted.values

    

    m.cor <- markcorr(iterppp)

    

    if (plots == TRUE)

    {

      plot(m.cor)

    }

    

    # end M-step

    

    #9# Stopping criterion

    #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # evaluate marginal loglikelihood

    

    loglik.old = loglik.new

    

    allp_mat = t(matrix(p, ncol(predint), nrow(iterweights)))

    loglik.new <- sum(log(apply(allp_mat * iterweights, 1, sum))) 

    

    loglik.new

    #loglik for mixture model : iterwights regroups weights for known and unknown observation

    

    # Prepare weights for the plots

    Weight.df = as.data.frame(iterweights[unknown,])

    

    if(verbose) 

      cat(paste("Iteration", niter, "\tlogLik =", loglik.new,

                "\tp =", signif(p,4), "\n"))

  }

  

  if(verbose) {

    cat("\nEstimated parameters:\n")

    cat(paste("p [cluster] =", signif(p, 5), "\n"))

    cat(paste("\nloglik.new:\n", signif(loglik.new), "\n"))

    

    if (plots == TRUE)

    {

      par(xpd=NA)

      known.marks = unique(iterppp$marks)

      plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

           xlab="observations", ylab="weight")

      for (i in 2:nclust) {

        colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

        points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

        i =i + 1

        legend(110,1, c(known.marks), col = c("orange", colvect),

               pch = 16, xjust = 1, yjust = 0, merge = FALSE)

        

      }

      

    }

  }

  

  return(list(z = round(p, digits = 4),

              probs = p,

              niter = niter, maxit = maxit,

              converged = (niter >= maxit),

              New_weights = round(iterweights, digits = 4),

              pfit.b = pfit.b,

              pfit.af = pfit.af,

              fitted.mix = fitted.mix,

              fit.final = fit1.after,

              fitaft.pred = fitaft.pred

              #hist=if(plothist) H else NULL

              # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

              #      xlab="observations", ylab="weight"),

              # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

              # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

              # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

              #        pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

  ))

}









### Function ppmLoopEngine

#---------------------------------------------------------------------



scoreweights = function(sp.xy, quad.xy, coord = c("X", "Y"), scores = NULL)

{

  if (is.null(scores)){

    score.all = rep(1, (dim(sp.xy)[1]) + dim(quad.xy)[1])

  }else{

    score.all = c(scores, rep(1, dim(quad.xy)[1]))

  }

  

  sp.col   = c(which(names(sp.xy) == coord[1]), which(names(sp.xy) == coord[2]))

  quad.col = c(which(names(quad.xy) == coord[1]), which(names(quad.xy) == coord[2]))

  

  X.inc   = sort(unique(quad.xy[,quad.col[1]]))[2] - sort(unique(quad.xy[,quad.col[1]]))[1]

  Y.inc   = sort(unique(quad.xy[,quad.col[2]]))[2] - sort(unique(quad.xy[,quad.col[2]]))[1]

  quad.0X = min(quad.xy[,quad.col[1]]) - floor(min(quad.xy[,quad.col[1]])/X.inc)*X.inc

  quad.0Y = min(quad.xy[,quad.col[2]]) - floor(min(quad.xy[,quad.col[2]])/Y.inc)*Y.inc

  

  X = c(sp.xy[,quad.col[1]], quad.xy[,quad.col[1]])

  Y = c(sp.xy[,quad.col[2]], quad.xy[,quad.col[2]])

  

  round.X     = round((X - quad.0X)/X.inc)*X.inc

  round.Y     = round((Y - quad.0Y)/Y.inc)*Y.inc

  round.id    = paste(round.X, round.Y)

  round.tab   = aggregate(data.frame(score.all), list(ID = round.id), sum)

  scorewt     = X.inc*Y.inc*score.all/round.tab$score.all[match(round.id, round.tab$ID)]

  scorewt

}



#------------------------------------------------------------------------------------

#  								function ppmAddEngine

#------------------------------------------------------------------------------------



ppmLoopEngine = function(datappp, all_test, n.sp, addpt = c("normal","Loop_grW", "Loop_hgW"), quads,

                         ppmform, delta_max=NULL, delta_min=NULL, delta_step =NULL, num.add = NULL,

                         cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

                         tol=0.000001, verbose = TRUE, plots = FALSE){

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  nclust  = length(unique(datamarks)) - 1

  

  

  splitppps = split(datappp, as.factor(marks(datappp)))

  for (i in 1:(nclust + 1))

  {

    assign(paste("sp_sub", names(splitppps)[i], sep = ""),

           splitppps[[i]])

  }

  

  #1# Fit initial point processes

  #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  #specie separetely

  

  ppp_list = list()

  Q = list()

  

  for (i in 1:nclust) {

    ppp_list[[i]] = unmark(splitppps[[i]])

    Q[[i]]   = quadscheme(data = ppp_list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

    i=i+1

  }

  

  # Fit Poisson PPMs

  ppm_list = list()

    

  for (i in 1:nclust) {

    ppm_list[[i]] = ppm(Q[[i]], trend = ppmform, covariates = cov.list, 

                        gcontrol = list(epsilon = 1e-6, maxit = 100))

    i=i+1

  }

  

  quad.xy = data.frame(X, Y)

  

  if(is.null(cov.bias)){

    cov.list = cov.list

  }else{#--- Set observer bias variables to kVal 

    pred.list = cov.list

    set.Val = cov.bias #Variables to set to a certain value

    for (v in set.Val){

      pred.list[[v]]$v = kVal*pred.list[[v]]$v

    }

  }

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  names.mark = uniquemarks[uniquemarks != "Unknown"]

  

  niter <- 0

  

  loglik.old.sp = rep(NA, nclust)

  loglik.new.sp = rep(NA, nclust)

  

  for (i in 1:nclust) {

    loglik.old.sp[i] <- 1.

    loglik.new.sp[i] = ppm_list[[i]]$maxlogpl

  }

  

  Lcrit = 1.

  Lcrit.vec = rep(NA, maxit)

  breakloop = 0

  

  is_known = which(datamarks != "Unknown")

  

  all_wts = array(data = NA, dim = c((maxit + 1), all_test$n, n.sp))

  

  while(breakloop == 0)

  {

    niter = niter + 1

    #2 Compute predicted intensities

    

    pr_ppm_list = list()

    for (i in 1:nclust) {

      if(is.null(cov.bias))

      {

        pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = all_test)

      }

      else

      {

        pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = all_test)

      }

    }

    

    

    #3 Compute membership probabilities

    

    all_preds = data.frame(matrix(unlist(pr_ppm_list),

                                  nrow=length(pr_ppm_list[[1]]), byrow=F))

    

    test_wts  = all_preds/apply(all_preds, 1, sum)

    all_wts[niter,,] = as.matrix(test_wts)

    

    max_pred = apply(all_preds, 1, which.max)

    

    max_pred.vec = rep(NA, nclust)

    for (i in 1:nclust) {

      max_pred.vec[i] = sum(max_pred == i)

      i=i+1

    }



    pred.check = as.vector(max_pred.vec)

    # Set up otpion for initial weights  

    addpt <- match.arg(addpt)

    

    #4 Augment points

    if (addpt == "normal")

    {

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = (1:all_test$n)

        i=i+1

      }



    }

    if (addpt == "Loop_grW")

    {

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = which(test_wts[,i] > delta_max)

        i=i+1

      }

      

    }

    if (addpt == "Loop_hgW")

    {

      if(num.add > all_test$n/n.sp)

      {

        print("Impossible to add so many points, the highest possible number will be used instead")

        num.add = floor(all_test$n/n.sp)

      }

      else

      {

        num.add = num.add

      }

      

      add_max = apply(test_wts, 2, sort, decreasing = TRUE)[num.add,]

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = if(anyNA(all_test$x[test_wts[,i] >= add_max[i]]) == TRUE) integer() else which(test_wts[,i] >= add_max[i])

        i=i+1

      }

      

    }

    

    # lists and vectors needed in the next steps

    sp_aug.list = sp_wts.list = sp_aug_ppp.list = Q_aug.list = ppm.L.list = list()

    ppm.L.pred = ppm.pred.list = list()

    Dloglik = counts.sp = rep(NA, nclust)

    

    for (i in 1:nclust) {

      sp_aug.list[[i]] = data.frame(X = c(ppp_list[[i]]$x, all_test$x[addtosp.list[[i]]]), Y = c(ppp_list[[i]]$y, all_test$y[addtosp.list[[i]]])) # add unknown points to known points of species 1

      quad.xy = data.frame(X, Y)

      

      #5 update quadrature weights

      

      #scores for species with known label (weight =1) and for the new obs (test_wts)

      sp_wts.list[[i]] = scoreweights(sp_aug.list[[i]], quad.xy, scores = c(rep(1, ppp_list[[i]]$n), test_wts[addtosp.list[[i]], i])) # generate quad weights for augmented species 1

      

      # Augmented point patterns

      win   = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5)) # added because HPC wouldn't work

      

      sp_aug_ppp.list[[i]] = ppp(x =sp_aug.list[[i]]$X, y = sp_aug.list[[i]]$Y, window = win)

      

      # Augmented quadrature scheme

      Q_aug.list[[i]] = quadscheme(data = sp_aug_ppp.list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

      

      # Replace quadrature weights with those calculated with the scoreweights function

      # This is necessary because spatstat's quadscheme function treats all points the same.

      # We want to treat the points with unknown labels as "fractional" points with weights coming from the single-species PPMs

      

      Q_aug.list[[i]]$w = sp_wts.list[[i]]

      

      #6# Fit new point processes using the augmented points patterns and the quadrature weights

      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

      

      # Augmented PPMs

      

      if(is.null(kAreaInt))

      {

        ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list, 

                              gcontrol = list(epsilon = 1e-6, maxit = 100))

      }

      else

      {

        ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list,

                              AreaInter(kAreaInt),

                              gcontrol = list(epsilon = 1e-6, maxit = 100))

      }

      

      if (plots == TRUE)

      {

        if(is.null(cov.bias))

        {

          ppm.L.pred[[i]]  = predict(ppm.L.list[[i]])

        }

        else

        {

          ppm.L.pred[[i]]  = predict(ppm.L.list[[i]], covariates = pred.list)



        }

        

        plot(ppm.L.pred[[i]], main="predict - ppm.pred") 

      }

      

      # to get the weights

      if(is.null(cov.bias))

      {

        ppm.pred.list[[i]]  = predict(ppm.L.list[[i]], location=datappp)

      }

      else

      {

        ppm.pred.list[[i]]  = predict(ppm.L.list[[i]], covariates = pred.list, location=datappp)

      }

      

      # counts per species

      counts.sp[i] = ppp_list[[i]]$n + sum(test_wts[,i])

      

      #7 Stopping criterion

      

      loglik.old.sp[i] = loglik.new.sp[i]

      loglik.new.sp[i] = ppm.L.list[[i]]$maxlogpl



      Dloglik[i] = abs(loglik.new.sp[i] - loglik.old.sp[i])

      i=i+1

    }

    

    DiffL = sum(Dloglik)

    sumL.new = abs(sum(loglik.new.sp))

    

    Lcrit = DiffL/sumL.new 

    Lcrit.vec[niter] = Lcrit



    itercounts = counts.sp

    p = itercounts/sum(itercounts)

    

    if(verbose)

    {

      cat(paste("Iteration", niter, "\tLcrit =", Lcrit,

                "\tp =", signif(p,4), "\n"))

    }

    

    # redefine ppms for next iteration

    for (i in 1:nclust) {

      ppm_list[[i]] = ppm.L.list[[i]]

    }

    

    # break loop

    

    if (Lcrit < tol)

    {

      breakloop = 1

    }

    

    if (niter == maxit)

    {

      breakloop = 1

    }

    

    if (addpt == "Loop_grW")

    {

      delta_max = delta_max - delta_step

      if (delta_max < delta_min)

      {

        breakloop = 1

      }

    }

    if (addpt == "Loop_hgW")

    {

      num.add = num.add + 1

      if (num.add > all_test$n/n.sp)

      {

        breakloop = 1

      }

    }

  }

  

  # Compute final predicted intensities

  pr_ppm_list.unk = list()

  for (i in 1:nclust) {

    if(is.null(cov.bias))

    {

      pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = datappp)

    }

    else

    {

      pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = datappp)

    }

    

    pr_ppm_list.unk[[i]] = pr_ppm_list[[i]][-is_known]

  }

  

  #3 Compute final membership probabilities

  

  all_preds = data.frame(matrix(unlist(pr_ppm_list.unk),

                                nrow=length(pr_ppm_list.unk[[1]]), byrow=F))

  

  test_wts  = all_preds/apply(all_preds, 1, sum)

  all_wts[niter + 1,,] = as.matrix(test_wts)

  

  if (plots == TRUE)

  {

    par(xpd=NA)

    known.marks = unique(iterppp$marks)

    plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

         xlab="observations", ylab="weight")

    for (i in 2:nclust) {

      colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

      points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

      i =i + 1

      legend(110,1, c(known.marks), col = c("orange", colvect),

             pch = 16, xjust = 1, yjust = 0, merge = FALSE)

      

    }

    

  }

  

  return(list(z = round(p, digits = 4),

              New_weights = test_wts,

              all_wts = all_wts,

              ppm_list = ppm_list,

              niter = niter, 

              ppm.pred.list = pr_ppm_list,

              ppm.pred.list.unk = pr_ppm_list.unk,

              sp_aug.list = sp_aug.list,

              sp_aug_ppp.list = sp_aug_ppp.list

              #hist=if(plothist) H else NULL

              # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

              #      xlab="observations", ylab="weight"),

              # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

              # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

              # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

              #        pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

  ))

}







##------------------------------------------------------------------------------

#              functions and measures of performance

#------------------------------------------------------------------------------



###----------------- IMSE



IMSE = function(mu1, mu2, fun = "log", mu.min = 1.e-5)

{

  mu1.use = mu1

  mu1.use[mu1.use < mu.min] = mu.min

  mu2.use = mu2

  mu2.use[mu2.use < mu.min] = mu.min

  if (fun == "log")

  {

    mu1.use = log(mu1.use)

    mu2.use = log(mu2.use)

  }

  if (fun == "sqrt")

  {

    mu1.use = sqrt(mu1.use)

    mu2.use = sqrt(mu2.use)

  }

  imse = sum((mu1.use - mu2.use)^2)

  imse

}



###----------------- corint for sumcor calculation



corint = function(mu1, mu2, fun = "log", method=c("pearson", "kendall", "spearman"), mu.min = 1.e-5)

{

  mu1.use = mu1

  mu1.use[mu1.use < mu.min] = mu.min

  mu2.use = mu2

  mu2.use[mu2.use < mu.min] = mu.min

  if (fun == "log")

  {

    mu1.use = log(mu1.use)

    mu2.use = log(mu2.use)

  }

  

  # Set up otpion for initial weights  

  addpt <- match.arg(method)

  if (method == "pearson"){

    corint.pea = cor(mu1.use, mu2.use, method = "pearson")

    return(corint.pea)

  }

  

  if(method == "kendall"){

    corint.kend = cor(mu1.use, mu2.use, method = "kendall")

    return(corint.kend)

  }

  

  if(method == "spearman"){

    corint.spea = cor(mu1.use, mu2.use, method = "spearman")

    return(corint.spea)

  }

  

}



###----------------- RSS



RSS = function(weightmatrix, truemarks)

{

  mark.cols = match(truemarks, colnames(weightmatrix))

  correctweights = weightmatrix[cbind(seq_along(mark.cols), mark.cols)]

  RSS = sum((correctweights - 1)^2)

  RSS

}



###----------------- Accuracy



Accuracy = function(all_true, New_weights, test_labels, n.sp){

  W.max = apply(New_weights[(1:nrow(New_weights)),], 1, max)

  C.id = apply(New_weights[(1:nrow(New_weights)),],

               1,function(x) which(x==max(x)))

  

  indiv_testlab = as.data.frame(cbind(test_labels, C.id, W.max))

  

  levels(indiv_testlab$test_labels) <- c(unique(test_labels))

  

  # New method for accuracy

  levels(indiv_testlab$test_labels)

  levels(indiv_testlab$C.id)

  allvec = as.vector(seq(from=1, to=n.sp, by=1))

  

  CM.acc = confusionMatrix(factor(indiv_testlab$test_labels, levels=allvec),

                           factor(indiv_testlab$C.id, levels=allvec))

  m.acc= CM.acc$table

  

  # some usuful calc

  n = sum(m.acc) # number of instances

  nc = nrow(m.acc) # number of classes

  diag = diag(m.acc) # number of correctly classified instances per class 

  rowsums = apply(m.acc, 1, sum) # number of instances per class

  colsums = apply(m.acc, 2, sum) # number of predictions per class

  p = rowsums / n # distribution of instances over the actual classes

  q = colsums / n # distribution of instances over the predicted classes

  

  # accuracy measure

  accuracy = sum(diag) / n 

  accuracy 

  

}






library(spatstat)

library(lattice)

library(sp)

library(maptools)

library(raster)

library(geostatsp)

library(rgdal)

library(lattice)

library(caret)

library(rgeos)

library(scales)





#------------------------------------------------------------------------------

# 								Simulation data

#------------------------------------------------------------------------------



# Set up some data

# 1 #  Set up data.ppp, cov.list, ppmform and quads

# Generate XY grid

set.seed(10013)

XY = expand.grid(seq(0, 100, 1), seq(0, 100, 1))

X = XY[,1]

Y = XY[,2]



# Generate 2 covariates for PPM



v1 = (X - 30)^2 + (Y - 70)^2 - 0.5*X*Y



v2 = (X - 70)^2 + (Y - 60)^2 + 0.9*X*Y 





#levelplot(v1 ~ X + Y)

#levelplot(v2 ~ X + Y)





v1 = -1*scale(v1)

v2 = -1*scale(v2)



# Matrix of covariates

vmat = as.matrix(data.frame(1, v1, v1^2, v2, v2^2))



# Generate true PPM coefficients based on linear and quadratic terms for 2 covariates and including bias

sp1_coef = c(-6.5, 4, -1, 2, -0.6)

sp1_int = exp(vmat %*% sp1_coef)



sp2_coef = c(-4.4, 1.8, -1, 1.5, -0.9)

sp2_int = exp(vmat %*% sp2_coef)



sp3_coef = c(-3.5, -0.5, -0.8, 1, -0.8)

sp3_int = exp(vmat %*% sp3_coef)





sp_int.list = list(sp1_int, sp2_int, sp3_int)

  

# Plot the intensities created



levelplot(sp1_int ~ X + Y)

levelplot(sp2_int ~ X + Y)

levelplot(sp3_int ~ X + Y)



# Create pixel images of intensity surfaces for spatstat



sp1_int_im = as.im(data.frame(x = X, y = Y, z = sp1_int))

sp2_int_im = as.im(data.frame(x = X, y = Y, z = sp2_int))

sp3_int_im = as.im(data.frame(x = X, y = Y, z = sp3_int))





# Simulate species patterns



sp1_sim = rpoispp(sp1_int_im)

sp2_sim = rpoispp(sp2_int_im)

sp3_sim = rpoispp(sp3_int_im)



sp1_sim

sp2_sim

sp3_sim



plot(sp1_sim, cex = 0.6)

plot(sp2_sim, add = TRUE, col = "red", cex = 0.6)

plot(sp3_sim, add = TRUE, col = "blue", cex = 0.6)



sp_sim.list = list(sp1_sim, sp2_sim, sp3_sim)



# Look at the correlation between intensity surfaces

#all

cor1_2 = cor(as.vector(sp1_int), as.vector(sp2_int), use = "complete.obs")

cor1_3 = cor(as.vector(sp1_int), as.vector(sp3_int), use = "complete.obs")

cor2_3 = cor(as.vector(sp2_int), as.vector(sp3_int), use = "complete.obs")





## Create list of coavriates



cov.list = list()

for (v in 1:4)

{

v.v = as.im(data.frame(x = X, y = Y, z = vmat[,(v + 1)]))

cov.list[[v]] = v.v

}

names(cov.list) = c("v1", "v1.2", "v2", "v2.2")



# set up model formula

cov.mat = vmat[,2:5]

ppmform = as.formula(paste("~", paste(colnames(cov.mat), collapse = "+")))





##################################################

# 				Test new simulation 

#-------------------------------------------------



# Call the different functions needed for the test

source("functionTestsim.R")



#_____________________________________________________________________________



# Create a confusion matrix from the given outcomes, whose rows correspond

# to the actual and the columns to the predicated classes.

createConfusionMatrix <- function(act, pred) {

pred <- pred[order(act)]

act  <- act[order(act)]

sapply(split(pred, act), tabulate, nbins=3)

}





# Function to combine the different methods to compare



Testsims = function(hidepct, n.sims, sp_sim.list, n.sp=n.sp, k = k, cov.list, cov.bias=NULL, kVal=NULL, kAreaInt=NULL, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add)

{

  win   = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5))

  quads = ppp(X, Y, window = win)

  

  RSSknn = meanRSSknn = IMSEknn = RSSkmeans = meanRSSkmeans = IMSEkmeans = 

    RSSrand = meanRSSrand = IMSErand = RSSequal = meanRSSequal = IMSEequal = 

    RSSindiv = meanRSSindiv = IMSEindiv = RSSLoopgr = meanRSSLoopgr = IMSELoopgr =

    RSSLoophg = meanRSSLoophg = IMSELoophg = RSSnorm = meanRSSnorm = IMSEnorm=

    sumcorknn1 = sumcorkmeans1 = sumcorrand1 = sumcorequal1 = sumcorindiv1 = sumcorLoophg1 =

    sumcornorm1 = sumcorLoopgr1 = sumcorknn2 = sumcorkmeans2 = sumcorrand2 = sumcorequal2 = sumcorindiv2 = sumcorLoophg2 =

    sumcornorm2 = sumcorLoopgr2 = sumcorknn3 = sumcorkmeans3 = sumcorrand3 = sumcorequal3 = sumcorindiv3 = sumcorLoophg3 =

    sumcornorm3 = sumcorLoopgr3 = matrix(NA, n.sims, length(hidepct))

  accmatknn = accmatkmeans = accmatrand = accmatequal = accmatindiv = accmatLoop = 

    accmatnorm = accmatLoopgr = accmatLoophg = matrix(NA, n.sims, length(hidepct))

 

  

  knnpred = kmeanspred = randpred = equalpred = normpred = Lgrpred = Lhgpred =

    indivpred = array(NA, c(quads$n, 3, n.sims, length(hidepct)))

  

  coef.knn.mat = coef.kmeans.mat = coef.rand.mat = coef.eq.mat = 

    array(NA, c(15, 1, n.sims, length(hidepct)))

  

  coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat =  coef.ind.mat = 

    array(NA, c(15, 1, n.sims, length(hidepct)))

  

  

  

  for (i in 1:length(hidepct))

  {

    pct_hidden = hidepct[i]

    

    for (j in 1:n.sims)

    {

      # hide some observations

      sp_hide.list = sp_sub.list = train.list = sp_test.list = list()

      coordtestx.list = coordtesty.list = markshide.list = markstest.list = list()

      coordsubx.list = coordsuby.list = marksub.list = list()

      

      for (l in 1:n.sp) {

        sp_hide.list[[l]] = sample(1:sp_sim.list[[l]]$n, floor(pct_hidden*sp_sim.list[[l]]$n))

        sp_sub.list[[l]]  = sp_sim.list[[l]][-sp_hide.list[[l]]]

        train.list[[l]]   = ppp(x = sp_sub.list[[l]]$x, y = sp_sub.list[[l]]$y, window = win)

        sp_test.list[[l]] = sp_sim.list[[l]][sp_hide.list[[l]]]

        

        coordtestx.list[[l]] = sp_test.list[[l]]$x

        coordtesty.list[[l]] = sp_test.list[[l]]$y

        markshide.list[[l]] = rep(paste("Hidden", l, sep = ""), sp_test.list[[l]]$n)

        markstest.list[[l]] = rep(paste("Sp", l, sep = ""), sp_test.list[[l]]$n)

        

        coordsubx.list[[l]] = sp_sub.list[[l]]$x

        coordsuby.list[[l]] = sp_sub.list[[l]]$y

        marksub.list[[l]] = rep(paste("Sp", l, sep = ""), sp_sub.list[[l]]$n)

          

        l=l+1

      }

      

      

      all_test = ppp(x = c(unlist(coordtestx.list)), 

                     y = c(unlist(coordtesty.list)), window = win,

                     marks = c(unlist(markshide.list)))

      

      all_test2 = ppp(x = c(unlist(coordtestx.list)), 

                     y = c(unlist(coordtesty.list)), window = win,

                     marks = c(rep("Unknown", all_test$n)))

      

      test_labels = as.vector(unlist(markstest.list))

      

      all_true = ppp(x = c(unlist(coordsubx.list)), 

                     y = c(unlist(coordsuby.list)), window = win,

                     marks = c(unlist(marksub.list)))

      

      

      datappp = superimpose.ppp(all_true, all_test2)

      

      if(is.null(cov.bias)){

        cov.list = cov.list

      }else{#--- Set observer bias variables to kVal 

        pred.list = cov.list

        set.Val = cov.bias #Variables to set to a certain value

        for (v in set.Val){

          pred.list[[v]]$v = kVal*pred.list[[v]]$v

        }

      }

      

      ###

      #  Mixture model

      ###---

      simknn = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                            initweights = "knn", 

                            k=k, ppmform = ppmform, cov.list = cov.list,

                            cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                            verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simkmeans = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                               initweights = "kmeans",

                               k=k, ppmform = ppmform, cov.list = cov.list,

                               cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                               verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simrandom = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                               initweights = "random",

                               k=k, ppmform = ppmform, cov.list = cov.list,

                               cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                               verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simequal = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                              initweights = "equal",

                              k=k, ppmform = ppmform, cov.list = cov.list,

                              cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                              verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      # for performance measures

      knn_weights = simknn$New_weights[((all_true$n)+1):nrow(simknn$New_weights),]

      pred.knn    = knn_weights

      

      kmeans_weights = simkmeans$New_weights[((all_true$n)+1):nrow(simkmeans$New_weights),]

      pred.kmeans    = kmeans_weights

      

      random_weights = simrandom$New_weights[((all_true$n)+1):nrow(simrandom$New_weights),]

      pred.random    = random_weights

      

      equal_weights = simequal$New_weights[((all_true$n)+1):nrow(simequal$New_weights),]

      pred.equal    = equal_weights

      

      accmatknn[j, i] = Accuracy(all_true, knn_weights, test_labels, n.sp)

      RSSknn[j, i] = RSS(pred.knn, test_labels)

      meanRSSknn[j, i] = RSS(pred.knn, test_labels)/length(test_labels)

      

      accmatkmeans[j, i] = Accuracy(all_true, kmeans_weights, test_labels, n.sp)

      RSSkmeans[j, i] = RSS(pred.kmeans, test_labels)

      meanRSSkmeans[j, i] = RSS(pred.kmeans, test_labels)/length(test_labels)

      

      accmatrand[j, i] = Accuracy(all_true, random_weights, test_labels, n.sp)

      RSSrand[j, i] = RSS(pred.random, test_labels)

      meanRSSrand[j, i] = RSS(pred.random, test_labels)/length(test_labels)

      

      accmatequal[j, i] = Accuracy(all_true, equal_weights, test_labels, n.sp)

      RSSequal[j, i] = RSS(pred.equal, test_labels)

      meanRSSequal[j, i] = RSS(pred.equal, test_labels)/length(test_labels)

      

      #--

      if(is.null(cov.bias)){

        pred.knn = predict(simknn$fit.final, locations = sp1_int_im)

      }else{

        pred.knn = predict(simknn$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.knn = list()

      for (l in 1:n.sp) {

        sp.predlist.knn[[l]] = as.vector(t(pred.knn[[l]]$v))

        

        IMSEknn[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.knn[[l]]))

        sumcorknn1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="pearson"))

        sumcorknn2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.kmeans = predict(simkmeans$fit.final, locations = sp1_int_im)

      }else{

        pred.kmeans = predict(simkmeans$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.kmeans = list()

      for (l in 1:n.sp) {

        sp.predlist.kmeans[[l]] = as.vector(t(pred.kmeans[[l]]$v))

        

        IMSEkmeans[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.kmeans[[l]]))

        sumcorkmeans1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="pearson"))

        sumcorkmeans2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.random  = predict(simrandom$fit.final, locations = sp1_int_im)

      }else{

        pred.random = predict(simrandom$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.rand = list()

      for (l in 1:n.sp) {

        sp.predlist.rand[[l]] = as.vector(t(pred.random[[l]]$v))

        

        IMSErand[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.rand[[l]]))

        sumcorrand1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="pearson"))

        sumcorrand2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.equal = predict(simequal$fit.final, locations = sp1_int_im)

      }else{

        pred.equal = predict(simequal$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.equal = list()

      for (l in 1:n.sp) {

        sp.predlist.equal[[l]] = as.vector(t(pred.equal[[l]]$v))

        

        IMSEequal[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.equal[[l]]))

        sumcorequal1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="pearson"))

        sumcorequal2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="kendall"))

        

      }

      

      # for intensity plots

      knnpred[,,j,i] = as.matrix(unlist(sp.predlist.knn))

      

      kmeanspred[,,j,i] =as.matrix(unlist(sp.predlist.kmeans))

      

      randpred[,,j,i] = as.matrix(unlist(sp.predlist.rand))

      

      equalpred[,,j,i] = as.matrix(unlist(sp.predlist.equal))

      

      # for coefficients

      coef.knn.mat[,,j,i] = as.matrix(simknn$fit.final$coef)

      coef.kmeans.mat[,,j,i] = as.matrix(simkmeans$fit.final$coef)

      coef.rand.mat[,,j,i] = as.matrix(simrandom$fit.final$coef)

      coef.eq.mat[,,j,i] = as.matrix(simequal$fit.final$coef)

      

      

      #---

      # ppmLoopEngine

      ###---

      

      simnorm = ppmLoopEngine(datappp, all_test, n.sp, addpt = "normal", quads,

							  ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

							  cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

							  tol=0.000001, verbose = TRUE, plots = FALSE)

      

      simLoopgr = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_grW", quads,

								  ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								  cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								  tol=0.000001, verbose = TRUE, plots = FALSE)

      

      simLoophg = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_hgW", quads,

								ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								tol=0.000001, verbose = TRUE, plots = FALSE)

      

      

      # for performance measures

      

      norm_weights = simnorm$New_weights

      pred.norm    = norm_weights

      colnames(pred.norm)= c(unique(test_labels))

	  

      Loopgr_weights = simLoopgr$New_weights

      pred.Loopgr    = Loopgr_weights

      colnames(pred.Loopgr)= c(unique(test_labels))

	  

      Loophg_weights = simLoophg$New_weights

      pred.Loophg    = Loophg_weights

      colnames(pred.Loophg)= c(unique(test_labels))

      #

      accmatnorm[j, i] = Accuracy(all_true, norm_weights, test_labels, n.sp)

      RSSnorm[j, i] = RSS(pred.norm, test_labels)

      meanRSSnorm[j, i] = RSS(pred.norm, test_labels)/length(test_labels)

      

      accmatLoopgr[j, i] = Accuracy(all_true, Loopgr_weights, test_labels, n.sp)

      RSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)

      meanRSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)/length(test_labels)

      

      accmatLoophg[j, i] = Accuracy(all_true, Loophg_weights, test_labels, n.sp)

      RSSLoophg[j, i] = RSS(pred.Loophg, test_labels)

      meanRSSLoophg[j, i] = RSS(pred.Loophg, test_labels)/length(test_labels)

      

      #--

      pr_quad_ppmlist.N = pr_quad_ppmlist.Lgr = pr_quad_ppmlist.Lhg = list()

      for (l in 1:n.sp) {

        if(is.null(cov.bias)){

          pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

        

        if(is.null(cov.bias)){

          pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

        

        if(is.null(cov.bias)){

          pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

      }

      

      # for intensity plots

      normpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.N),

                               nrow=length(pr_quad_ppmlist.N[[1]]), byrow=F)

      

      Lgrpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lgr),

                              nrow=length(pr_quad_ppmlist.Lgr[[1]]), byrow=F)

      

      Lhgpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lhg),

                              nrow=length(pr_quad_ppmlist.Lhg[[1]]), byrow=F)

      

      coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat =  coef.ind.mat = 

        array(NA, c(15, 1, n.sims, length(hidepct)))

      

      coef.normalvec = coef.Lgrvec = coef.Lhgvec = list()

      for (l in 1:n.sp) {

        # for coefficients

        coef.normalvec[[l]] = as.vector(unlist(simnorm$ppm_list[[l]]$coef))

        coef.Lgrvec[[l]] = as.vector(unlist(simLoopgr$ppm_list[[l]]$coef))

        coef.Lhgvec[[l]] = as.vector(unlist(simLoophg$ppm_list[[l]]$coef))

        

        l=l+1

      }

      

      coef.normal.mat[,,j,i] = as.vector(unlist(t(coef.normalvec)))

      coef.Lgr.mat[,,j,i] = as.vector(unlist(t(coef.Lgrvec)))

      coef.Lhg.mat[,,j,i] = as.vector(unlist(t(coef.Lhgvec)))

      

      sp.predlist.N = sp.predlist.Lgr = sp.predlist.Lhg = list()

      for (l in 1:n.sp) {

        sp.predlist.N[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

        IMSEnorm[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.N[[l]]/(length(simnorm$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcornorm1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="pearson"))

        sumcornorm2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="kendall"))

        

        sp.predlist.Lgr[[l]] = as.vector(t(pr_quad_ppmlist.Lgr[[l]]))

        IMSELoopgr[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lgr[[l]]/(length(simLoopgr$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcorLoopgr1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="pearson"))

        sumcorLoopgr2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="kendall"))

        

        sp.predlist.Lhg[[l]] = as.vector(t(pr_quad_ppmlist.Lhg[[l]]))

        IMSELoophg[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lhg[[l]]/(length(simLoophg$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcorLoophg1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="pearson"))

        sumcorLoophg2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="kendall"))

  

      }

      

      

      ####

      # Individual PPMs

      ###---

      

      datamarks = marks(datappp)

      uniquemarks = unique(datamarks)

      colmarks = uniquemarks

      unknown = datamarks == "Unknown"

      names.mark  = colmarks[-which(colmarks == "Unknown")]

      

      Qind = ppm_spind = pr_sp_ppmind = list()

      for (l in 1:n.sp) {

        #specie separetely

        Qind[[l]] = quadscheme(data = sp_sub.list[[l]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

        

        # Fit Poisson PPMs

        if(is.null(kAreaInt)){

          ppm_spind[[l]]  = ppm(Qind[[l]], trend = ppmform, covariates = cov.list)

          

        }else{

          ppm_spind[[l]]  = ppm(Qind[[l]], trend = ppmform, covariates = cov.list, AreaInter(kAreaInt))

        }

        

        # Predict intensity at locations where labels are hidden

        ## former label from sp1 tested for the 3PPMs

        if(is.null(cov.bias)){

          pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], locations = all_test)

        }else{

          pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = all_test)

        }

      }

      

      

      sp_predsind = data.frame(matrix(unlist(pr_sp_ppmind),

                                      nrow=length(pr_sp_ppmind[[1]]), byrow=F))

      ind_wts  = sp_predsind/apply(sp_predsind, 1, sum)

      max_predind = apply(sp_predsind, 1, which.max)

      max_predind.vec = as.vector(table(max_predind))

      

      # calculate accuracy in the same way that we did for the mixture models

      check.id = as.vector(max_predind)

      check.data = as.data.frame(cbind(test_labels, check.id))

      

      # to deal with some labels not be present in some iterations

      for (l in 1:n.sp) {

        if (anyNA(sum(check.data$test_labels == paste("Sp", l, sep="")))){

          allvec = as.vector(seq(from=1, to=n.sp, by=1))

          levels(check.data$test_labels) = allvec[which(allvec!=l)]

        }else{

          allvec = as.vector(seq(from=1, to=n.sp, by=1))

          levels(check.data$test_labels) = allvec

        }

      }

      

      testlab = as.data.frame(check.data$test_labels)

      checklab = as.data.frame(check.data$check.id)

      

      checkD = as.data.frame(check.data)

      

      m.acc.indiv = createConfusionMatrix(checkD$test_labels, checkD$check.id)

      

      n.check = sum(m.acc.indiv) # number of instances

      diag.check = diag(m.acc.indiv) # number of correctly classified instances per class

      

      # accuracy measure

      accmatindiv[j, i] = sum(diag.check) / n.check

      

      

      # RSS measure

      # Assign weights

      all_predsind = sp_predsind

      testind_wts  = all_predsind/apply(all_predsind, 1, sum)

      colnames(testind_wts) = names.mark

      

      RSSindiv[j, i] = RSS(testind_wts, test_labels)

      meanRSSindiv[j, i] = RSS(testind_wts, test_labels)/length(test_labels)

      

      pr_quad_ppmindlist = list()

      for (l in 1:n.sp) {

        if(is.null(cov.bias)){

          pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], locations = quads)

        }else{

          pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = quads)

        }

        

      }

      

      # for intensity plots

      indivpred[,,j,i] = matrix(unlist(pr_quad_ppmindlist),

                               nrow=length(pr_quad_ppmindlist[[1]]), byrow=F)

      

      coef.ind.mat = array(NA, c(15, 1, n.sims, length(hidepct)))

      

      coef.indvec = list()

      for (l in 1:n.sp) {

        # for coefficients

        coef.indvec[[l]] = as.vector(unlist(ppm_spind[[l]]$coef))

        

        l=l+1

      }

      

      coef.ind.mat[,,j,i] = as.vector(unlist(t(coef.indvec)))

      

      sp.predindlist = list()

      for (l in 1:n.sp) {

        sp.predindlist[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

        IMSEindiv[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predindlist[[l]]/(length(sp_sub.list[[l]]$X)))*datappp$n/n.sp))

        sumcorindiv1[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="pearson"))

        sumcorindiv2[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="kendall"))

        

      }

      

      

      cat(paste(i, j, "\n"))

      flush.console()

    }

  }

  return(list(RSSknn = RSSknn, meanRSSknn = meanRSSknn, IMSEknn = IMSEknn, sumcorknn1 = sumcorknn1, sumcorknn2 = sumcorknn2,

              RSSkmeans = RSSkmeans, meanRSSkmeans = meanRSSkmeans, IMSEkmeans = IMSEkmeans, sumcorkmeans1 = sumcorkmeans1, sumcorkmeans2 = sumcorkmeans2, 

              RSSrand = RSSrand, meanRSSrand = meanRSSrand, IMSErand = IMSErand, sumcorrand1 = sumcorrand1, sumcorrand2 = sumcorrand2,
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