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s 1 Abstract

o 1. Species distribution modelling, which allows users to predict the spatial distribution of species with the
10 use of environmental covariates, has become increasingly popular, with many software platforms providing
u  tools to fit species distribution models. However, the species observations used in species distribution
12 models can have varying levels of quality and can have incomplete information, such as uncertain species
13 identity.

1w 2. In this paper, we develop two algorithms to reclassify observations with unknown species identities
15 which simultaneously predict different species distributions using spatial point processes. We compare the
1 performance of the different algorithms using different initializations and parameters with models fitted
17 using only the observations with known species identity through simulations.

18 3. We show that performance varies with differences in correlation among species distributions, species
10 abundance, and the proportion of observations with unknown species identities. Additionally, some of the
2 methods developed here outperformed the models that didn’t use the misspecified data.

a 4. These models represent an helpful and promising tool for opportunistic surveys where misidentification
2  happens or for the distribution of species newly separated in their taxonomy.

2

u  Keywords: Presence-only data - FEcological statistics - Misidentification - Classification - Mizture

s modelling - EM algorithm - Machine learning

» 2 Introduction and background

27 Species distribution modelling has been a popular topic in ecological statistics over the past decade.

;s Many tools and methods have been developed to provide a means to explore the distributions of species
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s Inoue et al., 2017; Schank et al., 2017). Although there are a large number of algorithms and software

a  platforms that can fit species distribution models (SDMs), generalization of these methods and specific

2 applications to real data sets can be tricky (Burnham & Anderson, 2002; Aarts et al., 2012; Guillera-Arroita

s et al., 2015).

3 The most common sources of species information used in SDMs are presence-only (PO) and presence-
5 absence (PA) data. PO data only contains information about species presence, in contrast to PA data
s which records both where species have been found present and where they have not been found (Warton
s & Shepherd, 2010; Renner et al., 2015). Although PA data is generally of higher quality, it is also less
;s common than PO data because it requires more rigorous planning to visit a set of pre-determined sites.
s On the other hand, PO data sets are very common, arising from surveys or opportunistic sightings, but
w0 they usually have lower quality (van Strien et al., 2013; Ruete & Leynaud, 2015). Point process models
a  (PPMs) are a common tool for fitting SDMs to analyze PO data (Warton & Shepherd, 2010; Mi et al.,
2 2014; Renner et al., 2015) and have been used to fit models for real datasets and simulated data (Baddeley

s et al., 2006; Illian et al., 2012; Renner & Warton, 2013; Baddeley et al., 2015).

2 Unreliable or unknown species observation identification is also a main concern in ecology. For example,
s species records can become confounded when species taxonomy changes (Mahony et al., 2006). Conservation
s planning efforts depend on clear identification of species and understanding of their distributions and
« habitat requirements (Franklin, 2013; Guisan et al., 2013). Such concerns are very rarely considered while
s building SDMs, as people usually clean the data or make some assumptions to avoid such identification

2 problems.

50 Mixture modelling is a common tool used to represent complex distributions and aims to identify
si  different groups within a dataset while modelling heterogeneity (Martinez, 2015). In communities or
sz groups of individuals/species it is possible to classify or cluster them according to covariate information
53 by using finite mixture modelling (McLachlan & Peel, 2000; Frame & Jammalamadaka, 2007; Dunstan
sa et al., 2013; Ferndndez-Michelli et al., 2016). One particular application of this approach is to deal with
ss over-dispersed data and to model the different ecological processes at the same time for a single species or
ss  for different species in order to classify them (Matthews et al., 2001; Zhang et al., 2004; Tracey et al.,
st 2013).

58 Machine learning algorithms are also becoming more common in statistical ecology because they can
5o deal with unknown information and recognize some structure in the data (Hastie et al., 2001; Thessen, 2016;
o Browning et al., 2018). Some algorithms can group observations with similar characteristics (unsupervised
e learning) and some use separate labeled datasets (supervised learning) or partially labeled data within the

e studied dataset (semi-supervised learning) to classify the observations (Wendel et al., 2015; Fernédndez-
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o+ algorithms to fit PPMs in a Bayesian framework (Tran, 2017; Vo et al., 2018), but the literature on using
e machine learning algorithms to fit PPMs is not yet well-developed. Additionally, several R packages have
s been developed to deal with machine learning procedures (Benaglia et al., 2009; Tovleff, 2018), but none
e accommodate the intersection of point process modelling with mixture modelling or machine learning

6s algorithms.

69 In this paper we develop new tools for fitting models to multi-species PO data with partial species
7 identification by combining the PPM framework with mixture modelling and machine learning approaches
n  to accommodate incomplete labelling. These tools implement two algorithms to reclassify the unreliable
7 observations to belong to one of the existing species. The first tool fits mixtures of PPMs to all available
1 data with an Expectation-Maximization (EM) algorithm and uses them to classify the unreliable points.
7 This method will be called Mizture method. The second tool employs an iterative technique to fit
7 separate PPMs to points with known labels augmented by some points with unknown labels depending
s on classification probabilities at each iteration. This method will be hereafter known as the Loop method.
77 Using simulations, we compare the performance in classification and prediction for the proposed algorithms
s to the simple, standard approach of fitting individual PPMs to the points with known species labels only.
7 We found that performance varied based on the choice of initialization and algorithm parameters but

s some of the methods can outperform the fitting of individual PPMs.

» 3 New modelling methods

» 3.1 Notation

s The fitted point process models in our proposed methods make use of a total of M + N + () locations as

s follows:
s Let s1 = {S1,-.-,8m}, 52 = {Smyt1,--+)Smitmats +-+s SK = {SM—mp+1,---,SMm} be vectors that
s contain all of the observed locations with known species identities 1,2,..., K, respectively. These are

ez represented by the orange, purple, and turquoise dots in Figure 1 for a hypothetical dataset. Let
s |s1] = mu,|s2| = ma,...,|sk| = mxk be the number of observed locations with known species identity
s for each of the K species. We collect the M = my + mo + ... + mg total locations with known species
o identities of all K species in s = {sy,s2,...,8x}. Let u = {sp41,...,Sm+n} contain the N observed

o1 locations with uncertain species identities. These are represented by the black question marks in Figure 1.

2 Let = {Sp+nN+1,.-.,SM+N+Q} contain the locations of @ quadrature points placed along a regular
e €1 X co grid throughout the study region (Figure 1). Each quadrature point is placed at the center of one

o of () unique rectangular grid cells throughout the study region. Let ¢(s) be the grid cell in which location
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Figure 1: Three illustrative point patterns. The orange, purple, and turquoise colored dots represent
locations with known species identity, s1, ss, and s3. The gray dots represent quadrature points q, which
are spaced evenly along a regular grid such that one quadrature point is at the centre of each rectangular
grid cell. The black question marks (left) represent observed locations u with uncertain species identity.
The locations in a; € u, as € u, and ag € u which are reclassified as belonging to one of the species are
represented by coloured question marks (right).

3.2 Loop methods

The three loop algorithms proceed by iterating between steps that augment the vectors of locations with
known species identities s1,ss,...,Sx with locations a; C u,as C u,...,ax C u, update the quadrature

weights, and fit point process models as follows:

1. Fit K initial point process models using the vectors of observed locations with known species identity

S1,82,...,8K.
2. Compute the predicted intensities fi;(s) for all s € {sUu} fori e {1,...,K}.

3. Derive an (M + N) x K matrix of membership probabilities w, where

w1 (51)

w1 (52)

LUQ(Sl)

LUQ(SQ)

(wilsman) walsmn)

wr(s1)

wi (82)

wK(5M+N)

The membership probability of location s for species ¢ is defined as

wi(s) =

1(s €s;)

i (s)

> (s

:seEs

1S eu.

(1)

That is, the membership probabilities for the locations with known species identity are 1 for the

correct species and 0 otherwise, and for the locations with unknown species identity, they are
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107 4. Define an augmented vector for species i as y; = s; Ua; for all i € {1,..., K}. We define a; as
108 follows:
109 o For the Normal method, a; = u (left panel of Figure 2).
110 e For the Loop grW method, a; = uy,,(s)>5), Where 0 is a minimum membership proba-
111 bility threshold that takes the following values successively at each iteration {dmax,Omax —
112 Osteps - - - » Omin }- That is, the Loop grW method augments the locations with known species
13 identity ¢ with the locations with unknown species identity with membership probabilities for
114 species ¢ that are higher than the current threshold § (middel panel of Figure 2).
115 e For the Loop hgW method, a; = U, (8)>w;. (4N —asn)]? where w; ;) represents the 5t smallest
116 entry of vector w;, the i*" column of w, and a represents the number of locations to be augmented.
117 We set a to be the same integer for all K species for some a between 1 and \_%J then at each
118 iteration a is increased by one (right panel of Figure 2).
110 5. Update the quadrature weights for each species. First, assign each location in {yi,...,yx,q} to a
120 grid cell. Then, compute the vector of quadrature weights w; for all points ¢ € {y; U q} as follows:
c1 X cg X w;(t
wi(t) = 0 B

1+ Zse{yqu} ]].(C(S) = C(t))w’t(s) .

121 This way of computing quadrature weights is an extension of standard quadrature weight schemes
122 for point process models (Berman & Turner, 1992), in which the weight for location s is equal to the
123 area of the grid cell ¢(s) that contains s divided by the total number of quadrature and observed
124 locations in ¢(s). Here, we divide the area of the grid cell by the sum of the membership probabilities
125 of the observed locations in the grid cell (both with and without known species identities) plus 1
126 (for the one quadrature point in the grid cell).
127 6. Fit point process models using the augmented vector y;, quadrature points q and quadrature weights
128 w; for all species i € {1,...,K}.
129 7. Return to step 2 and stop when we either reach likelihood convergence or we reach a maximum
130 number of iterations that is different depending on the method chosen. Likelihood convergence is
131 determined by:
J
1 |6 (8) - 6.6)]
5 = 2= <e (3)
(5 40)
132 for some choice of €, where E(,B) 7 is the fitted log-likelihood for the j* b species at the ht" iteration.
133 The maximum number of iterations varies for the different methods, as follows:


https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
ranted.bioRxiv a license to ja%?a% tr(l)eng

%e“rtified by peer, re}fi(e)\lgv)tiﬁ éhf\]author/f ENAELNE A M d 1

orma

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

nder
me

B hasg

default number of iterations to be 50.

reprint,i
15 set

REPRR = ROl uner

e For the Loop grW method, the maximum number of iterations is determined by the choice of

6maxy 6step7 and 6min~

o For the Loop hgW method, the maximum number of iterations is | & | — a;, where |c| rounds

K

the number ¢ down to the nearest integer, and a; is the first value of a chosen by the user. In

the case of decimals numbers, only the floor is considered as the we can’t add more points than

available per species.
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Figure 2: (Left) Normal Loop function. We add all points with unknown species labels to each species,
using membership weights that are proportional to the fitted intensities. (Middle) Method Loop grW
function. We add all points with membership probabilities greater than a threshold d,,ax, then we decreases
from that value to a minimum of 0y, by increments of dgpep. (Right) Method Loop hgW function. We
add the a points with highest membership probabilities to each species, increasing the number a from 1

to [ &].

3.3 Mixture of PPMs method

The four mixture algorithms can be fitted by maximizing a log-likelihood function and reclassifying the

locations with uncertain identity using an EM algorithm framework. The algorithm proceeds as follows:

1. We initialize the membership probabilities w for each location s for each species i in one of the

following ways:

« For the knn method, we calculate the distance d;(s) of each location s to the k'" nearest
neighbor of species i, for all K species. We calculate the membership probability of location s

for species i using:
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ming <<k d;(s)

=T

(5)

151 e For the kmeans method, we define w;(s) as in (4) but define z;(s) as

ming <<k dj (s)

zi(s) = ; (6)
di’(s)
152 where d(s) is the distance to the i*® centroid of the i*! cluster.
153 o For the random method, we define w;(s) as in (4) and z;(s) is drawn randomly from a
154 uniform distribution:
zi(s) ~ U[0,1] (7)
155 e For the equal method, we assign equal membership probabilities for the locations with
156 uncertain identity:
I(s€s;) :s€s
wi(s) = (8)
% rseu.
157 Regardless of the initialization method, the sum of membership probabilities across the all species is
158 equal to 1 for all points.
159 2. Classify the locations in u to belong to one of the K species based on the membership probabilities
160 w.
161 3. Fit a point process model using a marked point pattern, where each observation s has a mark defined
162 by the known or classified identity among the K species.

163 4. Compute the predicted intensities i;(s) for all s € {sUu} for i € {1,..., K}.

164 5. E step: We first get the predicted values of each species at the locations s € {s Uu} and calculate

165 the predicted intensity of the mixture of K densities using:

K
f(s)= Zm x fi(s), 9)

166 where f;(s) is the density at location s for the i*® component and 7; is the mixing proportion or
167 weight of the i" species in the mixture.
168 6. We calculate new membership probabilities for each unknown point of u using:

Al s

Zle ﬂz(s)
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170 labels, the membership probabilities are set to 1 for the correct species label and 0 otherwise.

71 7. M step: Classify the locations in u to belong to one of the K species. The classification for each
172 point s corresponds to the highest membership probability w;(s) for ¢ € {1,..., K}. We compute
173 each species’ proportion of the whole by summing the membership probabilities for each species
174 across both s and u.

175 8. Compute a marked PPM based on the updated classifications and membership probabilities.

176 9. Calculate the model log likelihood using:

K
> fs,B) = log)y mx f(s,5) (11)

s€sUu sesUu i=1
177 10. Repeat steps 4-9 until we achieve likelihood convergence, defined as follows:

hi1(B) — ln(B)]
(1 + [lh1(B)I)

<€ (12)

178 where £;,() is the log-likelihood at the h'! iteration and € is a pre-specified tolerance level.

w 4 Simulation framework

w 4.1 Simulation data

11 To compare the performance of the different algorithms, we simulated patterns tq, to, and t3 of individuals
12 for three species based on “true” distributions defined by four different predictors. Because performance
13 could varied based on sample size, the correlations p; ; among the species distributions, and the proportion
184 of observations with unknown labels, we consider similar and different low abundances by randomly
15 simulating numbers of points between 20 and 50 for the species as well as the correlation between the true

186 species distributions:

187 o Case 1: at least two species i and j have distributions that are highly correlated (|p; ;| > 0.85 for

188 some 4,7 € {1,2,3})
189 o Case 2: no two species have highly correlated distributions (|p; ;| < 0.45 for all 4,5 € {1,2,3})

10 We chose these values for abundances as they would be small enough such that potential value of adding
11 points with unknown species identities could be investigated, and we chose these cutoffs for correlation to

12 create clearly distinguishable contexts.

13 We then created locations with unknown labels u by hiding uniformly at random a certain proportion of

e the total observations (20%, 50% and 80%). The locations in t;, to, and t3 that retained their true species
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s Simulations were conducted using the version 3.4.2 of R (R Core Team, 2017) and used high performance
17 computing to implement 1000 simulations each for different combinations of abundances, correlation
18 among species distributions, and proportions of observations with unknown labels. We also tested different
1o parameters for the knn initialization of the mixture algorithm (the value of k neighbors), the Loop gr'w
20 function (the maximum threshold dyax, minimum threshold 0, and the step size dgiep) and the Loop

20 hgW function (initial number of points added to the point pattern a).

2w 4.2 Suite of Evaluation tools

203 We consider various measures of performance for comparing the distributions. For classification methods,
24 misclassification/accuracy analysis is a common measure of performance (Wendel et al., 2015).We choose
205 the highest mixing weight for each observation to determine the labeling when computing accuracy. We
26 also compared the final membership probabilities of the correct labels of each point to 1 (the true weight)

a7 with a residual sum of squares (RSS).

K
RSS = Z Z(%(S) —1)% (13)

1=1 s€t;

28 where w;(s) is the final membership probability for location s for the correct species i computed using
20 the methods outlined in sections 3.2 and 3.3. Considering residual sum of squares (RSS) alone does not
a0 provide a reliable comparison because the number of unknown observations can vary, so we consider

21 meanRSS instead to standardize the measure for all fitted models:

RSS
meanRSS = N (14)

a2 where N is the number of observations with uncertain species identities.

a3 We also considered measures that compare the true distribution from which we generate the points to
a1 the predicted distributions of the model. We use a sum of correlations between the true and predicted
a5 distributions across all species (hereafter referred to as ‘sumcor’) to assess how well the predicted
216 distributions align with the true distributions. We can use various correlation measures such as Pearson’s

a7 correlation coefficient, Kendall’s 7 or Spearman’s p when computing sumcor.

28 Another global measure of predictive performance of the intensity estimates is the Integrated Mean Square

20 Error (IMSE) (Swanepoel, 1988; Es, 1997). The function is defined as:

s = ([ (fute) - )7 ). (15)

— 00
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21 intensities to be able to compare each methods even if different number of points are considered and

2 compute the IMSE using the values of the true and predicted intensities at the quadrature points q, and

»3  sum across the 3 species.

» 5 Results

25 Here we present the results of the simulations, with more detailed results appearing in the Appendix.
26 In this section, we only present the results from the knn, Lopp grW, Loop hgW and individual PPM
27 methods that displayed the best performances. First, we present the model performances from varying
28 data parameters (abundance, correlation and percentage of hidden labeled data). The individual PPM
»o  results will be used as a point of comparison with the other methods as the individual method does
20 not include any of the points with unknown labels. We, then, focus on varying model parameters in
= the different methods (the value of k for knn, the values of dmax, Omin and dgiep for Loop grW and the
z2  value of a for Loop hgW). For these results, we set k = 1, dmax = 0.5, dmin = 0.1, dgtep = 0.1 and a =5
233 according to the algorithm parameters tests presented in section 5.2. For the performance results, the

2 sumcor methods displayed the result using the Pearson correlation coefficient.

»s 5.1 Varying species distributions
2 H.1.1 Different abundances and correlated distributions

2 In Figure 3, we consider different low abundances (m; = 32, my = 42 and ms = 23) and where two
28 distributions are highly correlated. With regard to classification performance, the different modelling
29 methods have similar levels of accuracy, although when comparing meanRSS, the individual and Loop
20  grW methods seem to outperform the other methods, especially as we increase the proportion of hidden
2 observations. With regard to predictive performance, the Loop grW method appears to have the greatest
az  performance when measured by IMSE and sumcor, particularly for 50% and 80% of hidden observations.
23 The Loop hgW method performs comparably to the individual PPM method, although its preformance
s gets relatively better as we increase the proportion of hidden observations. The knn method has the
s highest IMSE for 50% and 80% of hidden observations, but it is competitive with the individual PPM
a6 and loop hgW method when comparing sumcor. See Tables 1 and 2 in the Appendix for a comparison of

2«7 means and medians across all of these measures.

#s  When examining the predicted intensities with 80% of the observations with hidden species identities, the
20 true pattern appears best captured by the Loop grW method (Figure 4), consistent with sumcor. The

0 Loop hgW method tends to overpredict the intensities.

10
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Figure 3: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color boxplot represents a different percentage of hidden observation: in yellow are the performances with
20% of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m; = 32, mo = 42, mg = 23; p1,2 = 0.85, p1,3 = —0.09, p2 3 = 0.20.

80% of hidden observation

0.035

0.030

Speciesi

0.025

0.020

Species2

0.015

0.010

0.005

Species3

knn Indiv Lgr Lhg initial proces

Figure 4: Predicted intensities obtained for the knn, individual, Loop grW and Loop grW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 32, mg = 42, mg = 23; p12 = 0.85, p1 .3 = —0.09, p2 3 = 0.20.
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»2  In Figure 5, we consider similar abundances (my = 33, ms = 34 and m3 = 35) and where two distributions
»3  are highly correlated. With regard to classification performance, the different modelling methods have
x4 similar levels of accuracy, except the knn method does relatively poorly with 80% of the observations
»s  hidden. The knn method also suffers worse performance as measured by meanRSS at 50% and 80% of
»6 hidden observations. Measures of predictive performance are similar to the case with different abundances
»7  and correlated distributions. The Loop grW method appears to outperform the others as the proportion
s of hidden observations increases, with the Loop hgW method competitive with the individual PPM
0 method. The knn method appears to do worse with 80% hidden observations when measured by IMSE.

%0 See Tables 77 and 77 in the Appendix for comparisons of means and medians across all of these measures.

21 With 80% hidden observations, the Loop Loop grW method appears to be best aligned with the true

% intensities, as shown in Figure 6.
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Figure 5: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 33, mg = 34, mz = 35; p12 = 0.85, p1,3 = —0.09, pa 3 = 0.20.
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Figure 6: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 33, mo = 34, ms = 35; p1,2 = 0.85, p1,3 = —0.09, p2 3 = 0.20.

w3 5.1.3 Different abundances and non correlated distributions

% In Figure 7, we consider different abundances (m; = 42, ms = 31 and m3 = 25) and where none of
x5 the distributions have high correlations. The classification performance and predictive performance
266 comparisons look similar to the case of similar abundances and correlated distributions as shown in
27 Figure 5, with the knn method having the worst classification performance described here at 50% and 80%
s of hidden observations and the Loop grW method outperforming the others in predictive performance,
20 while the Loop hgW method is competitive with the individual PPM method and the knn method lags
20 behind with IMSE at 80% of hidden observations. Tables 5 and 6 in the Appendix contains the means

on and medians across all performance measures for this context.

a2 With 80% of hidden observation as shown in Figure 8, the Loop hgW method for species 1 and 3 and the

2z Loop grW method for species 2 and 3 are the closest to the initial process.
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Figure 7: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 42, mg = 31, mz = 25; p12 = 0.09, p13 = —0.42, pa 3 = 0.20.
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Figure 8: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 42, my = 31, mg = 25; p12 = 0.09, p1 3 = —0.42, pp 3 = 0.20.
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a5 For similar abundances (my = 39, mg = 37, mg = 38) and non correlated distributions, we again observe
a6 the same trends, as shown in Figure 9: the knn method is the worst method for relabeling performances
a7 and the only one not doing as well as the individual method for 50% and 80% of hidden observations.
as As in previous contexts, the Loop grW method shows the best predictive performance, with the Loop
a9 hgW method being competitive with the individual PPM method, and the knn method having higher
20 IMSE than the other methods when 80% of the observations are hidden. Tables 7 and 8 in the Appendix

261 contain the mean and median value for all performance measures.

22 The predicted intensities show the methods LgrW and knn being the closest to the initial process, as

23 shown in Figure 10.
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Figure 9: Measures of performance for the knn, individual, Loop grW and Loop grW methods. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m; = 39, mo = 37, msg = 38; p1,2 = 0.09, p13 = —0.42, p2 5 = 0.20.
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Figure 10: Predicted intensities obtained for the knn, individual, Loopg rW and Loop grW initialization

methods and the initial intensities from the process at 80% of hidden observations. The parameters of
abundances and correlation are:m1=39, m2=37, m3=38; p1_2=0.09, p1_3=-0.42, p5_3=0.20

= 9.2 Testing algorithm parameters
s 5.2.1 knn method

26 We note that when the k nearest neighbor value increases (from 1 up to 20), the model performances
27 decrease; Figure 11. It is particularly notable for the performances in prediction where sumcor performances
2 decrease and IMSE performances increase. Also, there is an expected drop in performances as we increase

250 the proportion of observations with unknown species labels.
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Figure 11: Model performances for the knn method. Each color represents a different percentage of hidden
observations: in yellow are the performances with 20% of hidden observations, in green with 50% and
in blue with 80%. The parameters of abundances and correlation are: m; = 32, ms = 42, mg = 23;
P12 = 085, P1,3 = —0.09, P2,3 = 0.20

5.2.2 Loop grW method

For the Loop grW method we tested different parameters:

1. The initial membership probability threshold ,.x: while this parameter varies from 0.8 to 0.5 in

increments of 0.1, the other Loop grW parameters are as follows: dpyin = 0.1 and dstep = 0.1.

2. The final membership probability threshold d,,;,: while this parameter varies from 0.1 to 0.7 in

increments of 0.2, the other Loop grW parameters are as follows: max = 0.8 and dgpep = 0.1.

3. The step size dgep: While this parameter varies from a minimum of 0.01 to a maximum of 0.2, the

other Loop grW parameters are as follows: dp.x = 0.8 and i, = 0.1.

When we change the value of dy,ax, there is very little difference in performance within each proportion of

observations with hidden labels, although d,,x = 0.5 appears to be slightly superior to the other choices

for high percentage of hidden observation (Figure 12).
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Figure 12: Model performances for the Loop grW method and for different values of d,a2x. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
my = 32, mo = 42, ms = 23; P12 = 085, P1,3 = —0.09, pP2,3 = 0.20

When changing d.,in, the classification accuracy is relatively the same (Figure 13). For MeanRSS, IMSE
and sumcor, we can observe a curved pattern of performances, where the performances decrease (MeanRSS
increases, IMSE increases and sumcor decreases) from dyi, from 0.1 to 0.5 and then the performances get
slightly better (MeanRSS decreases, IMSE decreases and sumcor increases) for dp,i, = 0.7 (Figure 13).

Omin=0.1 displays the better performances.
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Figure 13: Model performances for the Loop grW method and for different values of é,,;,. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
my = 32, mo = 42, ms = 23; P12 = 085, P1,3 = —0.09, pP2,3 = 0.20

w06 Figure 14 shows different performance measures as we vary dgstep- There do not appear to be major
sor  differences in classification performance, although 0.1 appear slightly better for meanRSS. With 50% and
8 80% of hidden observations, predictive performance display a curve performances where performances get

300 better (IMSE decreases and sumcor increase) from 0.01 till 0.1 and then get worse (IMSE increases and

=1

s sumcor descreases) from 0.1 to 0.2. dgep=0.1 displays the best performances accross all measures.

19


https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who ha g s y ygplay the preprint in perpetuity. It is made available under
eI AT

aC Icense.

8 350000 °% o
» %8 @T é 300000 - o
D o5 8o o !B 11250000 ~ g8 8
m . B ™ : ||
c 88 8 : g . 0200000 — Vo !
S 0.4 - 9 Ei@ .l =150000 3 l.
£ SRR == g M 100000 j o 6 . '
03] BEEE B==8 T, ii n
R R 50000 Se= | M
R S 0 gg%% %TG-L e
T T 1 T T 1 T T 1 T 17T T 17 T 11
— 0O~ O — 0~ O — O~ O — 0 ~—O — 0 —O — 0 -0
2SN 9958 9ogdy 2S5 9ogd 9ogd
o o o o o o o o o o o o o o o o o o
' TTTT o 2819 o'g' === T g
i geeg ,_2.6—8-5 ' : .
o Tl sy i 999 8 o4 l:
1 1 - @, |I|
% 0.4 — EEQB EEEE -——- g 2.2 R :
T T T ':" .. ! m20_ :||
Pl 86 8 2 g S
02 L L L. 8¢ gsg 1.8 7 905
Oo0 o 1.6 g o
T T 1 T T 1 T T 1 T T 1 T T 1 T T 1
- 0 — O - 0 — O - 0 — O — 0~ O - 0 — O — 0~ O
2SN 9958 9ogdy 2SN 9958 9ogdy
o o o o o o o O o o o o o o o o o o
Delta_step Delta_step

Figure 14: Model performances for the Loop grW method and for different values of weight step. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 32, mg = 42, mz = 23; p1,2 = 0.85, p1 3 = —0.09, pa 3 = 0.20

s 5.2.3 Loop hgW method

sz In the Loop hgW method, we vary the number of points a added at each iteration. In Figure 15, we can

a3 see that there is no variation in performances when the number of added points a increases.
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Figure 15: Model performances for the Loop grW method. Each color boxplot represents a different
percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in
green for 50% and in blue for 80%. The parameters of abundances and correlation are: my = 32, mgy = 42,
ms = 23; P12 = 085, P1,3 = —0.09, P2,3 = 0.20

siu The results for the other combination of abundances and correlation are showed in the Appendix.

+ 6 Discussion

ais  In this article, we present a new modelling tool in R that aims to incorporate the observed locations
a7 with unknown species identities to improve species distributions. These tools accommodate two ways of
s1s  reclassifying information using mixture modelling and the machine learning framework with 7 different
a0 initialization methods. We tested our algorithms in different contexts where we vary the abundances of
20 our species (similar or different), the correlation between them (two distribution are correlated or none are
a1 correlated) and the proportion of unknown species identities (20%, 50% and 80%). The different methods
3 were compared to the individual method which ignores locations with unknown species identities to see

13 whether the proposed algorithms allow us to fit distributions that are closer to the initial processes.

324 In the results we presented the three best methods. They showed varying performance depending on
s the aspects of the model and the performance measure considered. The novelty of these tools, makes it
26 difficult to compare to other existing tools that either do not consider point pattern process (Frame &
7 Jammalamadaka, 2007; Frithwirth-Schnatter, 2006; Hui, 2016; Martinez, 2015; Melnykov & Maitra, 2010;

2 Quost & Denceux, 2016), Poisson distributions (Figueirido & Jain, 2002; Hui et al., 2015; Scrucca et al.,
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s0  of mixture (Witten, 2011; Wendel et al., 2015) or semi-supervised learning frameworks (Di Zio et al., 2007;
s Fraley & Raftery, 1998; Jeffries & Pfeiffer, 2001; Taddy & Kottas, 2012).

s The other methods (kmeans, random, equal and normal) not presented previously in the results are
33 presented in the Appendix. They show relatively worse performance across all measures, although at
s times, the normal loop method is competitive with the individual PPM and the Loop hgW methods. We

35 note that this method performs slightly better when the distributions are correlated.

s We have noticed differences in performance, that are more significant when we increase the proportion
s of observations with hidden labels. While at 20% of hidden observations, all methods performed fairly
18 similarly, at 50% and 80% of hidden observations, the loop grW method in particular showed the best
30 predictive performances regardless of differences in abundance and correlation among species distributions.
uo  For this method, only the points with the highest membership probabilities are added. We set the
s maximum and minimum thresholds at dmax = 0.5 and dmin = 0.1 and a step size of dgep = 0.1, but we
w2 could expect that performances may be better or worse with different choices of these parameters as
us  shown in the results. These choices appeared to produce superior performances for most measures than
ss  other values of these parameters considered. Higher values of d,i, led to worse performances. This result
us can be seen as counterintuitive as we can expect that having a smaller interval of weight for example could
us improve this particular performances. It will in other words reduce the interval of weights and better
a7 discriminate the points of uncertain identity. As for dgcp, choosing a value that is too small may lead to
g  iterations where no points are added, while choosing a value that is too large may be too discriminating

uo and does not allow to reclassify the points.

0 The Loop hgW method did not perform as good as the Loop grW method even if it has been shown to be
31 as good as the individual method in some contexts. For this method, we add initially a certain number of
2 points a that is increased at each iteration. While the a points with highest membership probabilities are
33 added, these membership probabilities may be small for large values of a, and this could explain that this

s method is not always doing as good as the best method.

s Interestingly, the knn method was the best of the four mixture methods tested, outperforming the kmeans,
s random and equal initialization options. Previous studies using the EM algorithm for classification and
37 clustering data show that such algorithms are highly dependent on the initialization method (Figueirido
s & Jain, 2002; Melnykov & Maitra, 2010; O’Hagan et al., 2012). Additionally, even very popular methods
39 like kmeans have some drawbacks. Its performance is dependent on overlapping densities and whether the
w0 distributions are roughly circular or not. The choice of the centroid is also not consistent and chosen at
s random for the first calculation (Yoo et al., 2012, 2007; Wu et al., 2008). In our simulations, kmeans,

2 random and equal methods showed very different results and always performed worse than the other
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3¢ intensities compared to the true process.

s Despite outperforming the other mixture modelling methods, the knn method was still not competitive
s with the machine learning methods or the individual PPM method when the proportion of hidden
7 observations are 50% or 80%. However, the knn method was quite consistent in the predicted intensities
s and showed similar results to the individual method for the sumcor measure at 50% or 80% of hidden
0 observations. Other studies have found that the performance of the knn method is linked to the metric
s chosen to calculate the nearest neighbor distances and the value of the number & of nearest neighbors

sn (Weinberger & Saul, 2009; Guo et al., 2003; Wu et al., 2008).

sz We tested how the number of neighbors k can influence the model and found that for any combination of
sz abundance and correlation, all the measures of performances decrease when the values of k increase. It is
s expected as the neighboring points are further away from one another and could conflate species habitat
s preferences with differing species abundances, but requiring more neighbor points can also stabilize the
s distances. The way of choosing the value of k by utilizing different distance metrics could also impact the

sn - performances as previously noted, but we shall leave this aspect of the analysis for future consideration.

s In our simulations, we have considered a relatively general case of point patterns and we only varied
39 species abundance and correlation among distributions in addition to the proportion of observations with
s  hidden information. For real ecological data sets, there are more factors to consider that can influence
s how a model will perform. First, the abundances tested in the simulation are quite low (20-40 points) and
;2 some methods can show convergence issues in this context. While we use the spatstat package (Baddeley
3 el al., 2015) to fit PPMs, we could make use of similar functions in the ppmlasso package (Renner &
s« Warton, 2013) which integrate regularization methods like the lasso penalty that can boost performances
s with low sample sizes. A related point is that we included all covariates that were used to generate
s the true point patterns in our models. In real situations, however, we may not have access to the best
7 covariates or know which ones truly determine the species distributions. Applying a lasso penalty to help
s in variable selection may therefore be provide a natural way forward in this context. Finally, a key reality
s when dealing with presence-only data is the presence of observer bias, in which sampling effort varies
s throughout the study region. Some models apply a correction for observer bias in the prediction (Hefley
s et al., 2013; Lahoz-Monfort et al., 2014; Warton et al., 2013) and our tools would be able to accommodate

s such improvements.

« 7 Conclusion

s The new algorithms presented in this article aim to reclassify observations that have uncertain or unknown

35 labels in order to better predict point pattern distributions. We showed that machine learning based
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s7  method and also better than the individual PPM method that does not include the points with unknown
s.s  labels. Our simulations showed encouraging results in this context with good performances in some cases,
0 although there are some improvements to implement in order to make the tools more appropriate for real

w0 life data.
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###########################################################################################

#

#                 Functions to use in the testsims function

#

###########################################################################################



# call the different function for the simulations





### Function ppmMixEngine

#---------------------------------------------------------------------



makeMask = function(Qppp)

{

  

  q_df = data.frame(x = Qppp$x, y = Qppp$y)

  ux = sort(unique(q_df$x))

  uy = sort(unique(q_df$y))

  nx = length(ux)

  ny = length(uy)

  

  col.ref = match(q_df$x, ux)

  row.ref = match(q_df$y, uy)

  

  all.vec          = rep(0, max(row.ref)*max(col.ref))

  vec.ref          = (col.ref - 1)*max(row.ref) + row.ref

  all.vec[vec.ref] = 1

  mask.out         = matrix(all.vec, max(row.ref), max(col.ref), dimnames = list(uy, ux))

  mask.out

}



#------------------------------------------------------------------------------------

#  								function ppmMixEngine

#------------------------------------------------------------------------------------



ppmMixEngine = function(datappp, quads, ppmform, all_true, all_test,

                        initweights = c("knn","kmeans", "random", "equal"),

                        k=1, cov.list, cov.bias=NULL, kVal = NULL, kAreaInt=NULL,

                        verbose = TRUE, tol = 0.001, maxit = 50, plots = FALSE)

{

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  nclust  = length(unique(datamarks)) - 1

  

  

  splitppps = split(datappp, as.factor(marks(datappp)))

  for (i in 1:(nclust + 1))

  {

    assign(paste("ppp_", names(splitppps)[i], sep = ""),

           splitppps[[i]])

  }

  

  #1# Initialization of membership probabilities

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  # Set up otpion for initial weights  

  initweights <- match.arg(initweights)

  

  # for knn method

  if (initweights == "knn"){

    

    nndists  = nndist(datappp, k=k, by = as.factor(marks(datappp)))

    nndists  = nndists[,-which(colnames(nndists) == "Unknown")]

    weight_num = apply(nndists, 1, min)/nndists

    init.weight = weight_num/apply(weight_num, 1, sum)

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colnames(nndists)[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(nndists)[apply(init.weight, 1, which.max)]

  }

  

  #for kmeans method

  if (initweights == "kmeans"){

    xy = coords(datappp)

    ncenter = nclust

    comp_mean = kmeans(xy, ncenter)

    

    Ccenter = comp_mean$centers 

    

    All_dist_center = matrix(data=NA, nrow=nrow(xy), ncol=nclust)

    

    for (i in 1:(nclust))

    {

      Di= sqrt((xy$x-Ccenter[[i]])^2 + (xy$y-Ccenter[[i+nclust]])^2) 

      All_dist_center[,i] = Di

    }

    

    colnames(All_dist_center) <- paste("D", 1:nclust, sep = "")

    

    marksknown = uniquemarks[-which(uniquemarks == "Unknown")]

    colnames(All_dist_center) = marksknown

    

    weight_num = apply(All_dist_center, 1, min)/All_dist_center

    init.weight = weight_num/apply(weight_num, 1, sum)

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colnames(All_dist_center)[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(All_dist_center)[apply(init.weight, 1, which.max)]

    

  }

  

  # for random method

  if (initweights == "random"){

    random.val = runif(nclust*datappp$n, min=0, max=1)

    weight_num = matrix(random.val, datappp$n, nclust)

    init.weight = weight_num/apply(weight_num, 1, sum)  # make weights add up to 1

    

    colmarks = uniquemarks

    colmarks  = colmarks[-which(colmarks == "Unknown")]

    colnames(init.weight) = colmarks

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colmarks[i])

      init.weight[rowfill, i] = 1

    }

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

    

  }

  

  # for equal weights method

  if (initweights == "equal"){

    init.weight = matrix(1/nclust, datappp$n, nclust)

    colmarks = uniquemarks

    colmarks  = colmarks[-which(colmarks == "Unknown")]

    colnames(init.weight) = colmarks

    

    init.weight[datamarks != "Unknown"] = rep(0, nclust)

    for (i in 1:nclust)

    {

      rowfill = which(datamarks == colmarks[i])

      init.weight[rowfill, i] = 1

    }

    

    init.weight[is.nan(init.weight)] <- 1

    

    iterweights = init.weight

    itermarks = datamarks

    itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

    

  }

  

  #2# Fit point process models

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  # continue general script for all the methods

  p = table(itermarks)/sum(table(itermarks))

  

  iterppp = datappp

  marks(iterppp) = as.factor(itermarks)

  Qmask = makeMask(quads)

  

  Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

                 ntile = c(dim(Qmask)[2], dim(Qmask)[1]), 

                 npix = c(dim(Qmask)[2], dim(Qmask)[1]))

  

  if(is.null(cov.bias)){

    cov.list = cov.list

  }else{

    pred.list = cov.list

    set.Val = cov.bias #Variables to set to a certain value

    for (v in set.Val){

      pred.list[[v]]$v = kVal*pred.list[[v]]$v

    }

  }

  

  #continue script with bias

  formchr = as.character(ppmform)[2]

  formsplit = strsplit(formchr, "\\+")

  markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

  

  if(is.null(kAreaInt)){

    fit1 = ppm(Q, trend = markform, covariates = cov.list, 

               gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

  }else{

    fit1 = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

               gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    

  }

  

  #3# Compute predicted intensities

  #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  

  

  if(is.null(cov.bias)){

    fitbef.pred  = predict(fit1, covariates = cov.list)

  }else{

    fitbef.pred  = predict(fit1, covariates = pred.list)

  }

  

  if (plots == TRUE)

  {

    plot(fitbef.pred, main="predict - log(fitbef.pred)")

  }

  

  pfit.b = fitted(fit1)

  

  loglik.old <- 0.

  loglik.new <- 1.

  

  #

  # Iterator starts here, 

  #

  

  is_known = which(datamarks != "Unknown")

  niter <- 0

  while(abs(loglik.new - loglik.old)/(1 + abs(loglik.new)) > tol) {

    if(niter >= maxit) {

      warning(paste("E-M algorithm failed to converge in",

                    maxit, ngettext(maxit, "iteration", "iterations")),

              call.=FALSE)

      break

    }

    

    

    niter <- niter + 1

    

    

    #4# Get the predicted intensities at the location S

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # E - step

    predint = matrix(NA, sum(unknown), nclust)

    for (i in 1:nclust)

    {

      ppp_i = ppp_Unknown

      marks(ppp_i) = as.factor(colnames(iterweights)[i])

      if(is.null(cov.bias)){

        predint[,i] = predict(fit1, locations = ppp_i)

      }else{

        predint[,i] = predict(fit1, covariates = pred.list, locations = ppp_i)

      }

    }

    

    p_mat = t(matrix(p, ncol(predint), nrow(predint)))

    predint_p = predint*p_mat

    

    

    #5# Caluclate New weights

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    iterweights[unknown,] = predint_p/apply(predint_p, 1, sum)

    

    # end E-step

    

    

    #6# We compute species proportions

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # M - step

    p = apply(iterweights, 2, sum)/sum(apply(iterweights, 2, sum))

    

    itermarks = datamarks

    itermarks = colnames(iterweights)[apply(iterweights, 1, which.max)] # assign marks based on new weights

    

    iterppp = datappp

    marks(iterppp) = as.factor(itermarks)

    

    

    #7# Update quadrature weights

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

                   ntile = c(dim(Qmask)[2], dim(Qmask)[1]),

                   npix = c(dim(Qmask)[2], dim(Qmask)[1]))

    

    formchr = as.character(ppmform)[2]

    formsplit = strsplit(formchr, "\\+")

    markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

    

    #Q$w = sp_wts

    

    #8# Fit new point process models

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    if(is.null(kAreaInt)){

      fit1.after = ppm(Q, trend = markform, covariates = cov.list, 

                       gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    }else{

      fit1.after = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

                       gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

    }

    

    fit1 = fit1.after

    

    if(is.null(cov.bias)){

      fitaft.pred  = predict(fit1.after, covariates = cov.list)

    }else{

      fitaft.pred  = predict(fit1.after, covariates = pred.list)

    }

    

    

    if (plots == TRUE)

    {

      plot(envelope(iterppp))

      plot(fitaft.pred, main="predict - log(fitaft.pred)")

    }

    

    pfit.af = fitted(fit1.after)

    

    fitted.mix = fit1.after$internal$glmfit$fitted.values

    

    m.cor <- markcorr(iterppp)

    

    if (plots == TRUE)

    {

      plot(m.cor)

    }

    

    # end M-step

    

    #9# Stopping criterion

    #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    

    # evaluate marginal loglikelihood

    

    loglik.old = loglik.new

    

    allp_mat = t(matrix(p, ncol(predint), nrow(iterweights)))

    loglik.new <- sum(log(apply(allp_mat * iterweights, 1, sum))) 

    

    loglik.new

    #loglik for mixture model : iterwights regroups weights for known and unknown observation

    

    # Prepare weights for the plots

    Weight.df = as.data.frame(iterweights[unknown,])

    

    if(verbose) 

      cat(paste("Iteration", niter, "\tlogLik =", loglik.new,

                "\tp =", signif(p,4), "\n"))

  }

  

  if(verbose) {

    cat("\nEstimated parameters:\n")

    cat(paste("p [cluster] =", signif(p, 5), "\n"))

    cat(paste("\nloglik.new:\n", signif(loglik.new), "\n"))

    

    if (plots == TRUE)

    {

      par(xpd=NA)

      known.marks = unique(iterppp$marks)

      plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

           xlab="observations", ylab="weight")

      for (i in 2:nclust) {

        colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

        points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

        i =i + 1

        legend(110,1, c(known.marks), col = c("orange", colvect),

               pch = 16, xjust = 1, yjust = 0, merge = FALSE)

        

      }

      

    }

  }

  

  return(list(z = round(p, digits = 4),

              probs = p,

              niter = niter, maxit = maxit,

              converged = (niter >= maxit),

              New_weights = round(iterweights, digits = 4),

              pfit.b = pfit.b,

              pfit.af = pfit.af,

              fitted.mix = fitted.mix,

              fit.final = fit1.after,

              fitaft.pred = fitaft.pred

              #hist=if(plothist) H else NULL

              # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

              #      xlab="observations", ylab="weight"),

              # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

              # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

              # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

              #        pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

  ))

}









### Function ppmLoopEngine

#---------------------------------------------------------------------



scoreweights = function(sp.xy, quad.xy, coord = c("X", "Y"), scores = NULL)

{

  if (is.null(scores)){

    score.all = rep(1, (dim(sp.xy)[1]) + dim(quad.xy)[1])

  }else{

    score.all = c(scores, rep(1, dim(quad.xy)[1]))

  }

  

  sp.col   = c(which(names(sp.xy) == coord[1]), which(names(sp.xy) == coord[2]))

  quad.col = c(which(names(quad.xy) == coord[1]), which(names(quad.xy) == coord[2]))

  

  X.inc   = sort(unique(quad.xy[,quad.col[1]]))[2] - sort(unique(quad.xy[,quad.col[1]]))[1]

  Y.inc   = sort(unique(quad.xy[,quad.col[2]]))[2] - sort(unique(quad.xy[,quad.col[2]]))[1]

  quad.0X = min(quad.xy[,quad.col[1]]) - floor(min(quad.xy[,quad.col[1]])/X.inc)*X.inc

  quad.0Y = min(quad.xy[,quad.col[2]]) - floor(min(quad.xy[,quad.col[2]])/Y.inc)*Y.inc

  

  X = c(sp.xy[,quad.col[1]], quad.xy[,quad.col[1]])

  Y = c(sp.xy[,quad.col[2]], quad.xy[,quad.col[2]])

  

  round.X     = round((X - quad.0X)/X.inc)*X.inc

  round.Y     = round((Y - quad.0Y)/Y.inc)*Y.inc

  round.id    = paste(round.X, round.Y)

  round.tab   = aggregate(data.frame(score.all), list(ID = round.id), sum)

  scorewt     = X.inc*Y.inc*score.all/round.tab$score.all[match(round.id, round.tab$ID)]

  scorewt

}



#------------------------------------------------------------------------------------

#  								function ppmAddEngine

#------------------------------------------------------------------------------------



ppmLoopEngine = function(datappp, all_test, n.sp, addpt = c("normal","Loop_grW", "Loop_hgW"), quads,

                         ppmform, delta_max=NULL, delta_min=NULL, delta_step =NULL, num.add = NULL,

                         cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

                         tol=0.000001, verbose = TRUE, plots = FALSE){

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  nclust  = length(unique(datamarks)) - 1

  

  

  splitppps = split(datappp, as.factor(marks(datappp)))

  for (i in 1:(nclust + 1))

  {

    assign(paste("sp_sub", names(splitppps)[i], sep = ""),

           splitppps[[i]])

  }

  

  #1# Fit initial point processes

  #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  #specie separetely

  

  ppp_list = list()

  Q = list()

  

  for (i in 1:nclust) {

    ppp_list[[i]] = unmark(splitppps[[i]])

    Q[[i]]   = quadscheme(data = ppp_list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

    i=i+1

  }

  

  # Fit Poisson PPMs

  ppm_list = list()

    

  for (i in 1:nclust) {

    ppm_list[[i]] = ppm(Q[[i]], trend = ppmform, covariates = cov.list, 

                        gcontrol = list(epsilon = 1e-6, maxit = 100))

    i=i+1

  }

  

  quad.xy = data.frame(X, Y)

  

  if(is.null(cov.bias)){

    cov.list = cov.list

  }else{#--- Set observer bias variables to kVal 

    pred.list = cov.list

    set.Val = cov.bias #Variables to set to a certain value

    for (v in set.Val){

      pred.list[[v]]$v = kVal*pred.list[[v]]$v

    }

  }

  

  datamarks = marks(datappp)

  uniquemarks = unique(datamarks)

  unknown = datamarks == "Unknown"

  names.mark = uniquemarks[uniquemarks != "Unknown"]

  

  niter <- 0

  

  loglik.old.sp = rep(NA, nclust)

  loglik.new.sp = rep(NA, nclust)

  

  for (i in 1:nclust) {

    loglik.old.sp[i] <- 1.

    loglik.new.sp[i] = ppm_list[[i]]$maxlogpl

  }

  

  Lcrit = 1.

  Lcrit.vec = rep(NA, maxit)

  breakloop = 0

  

  is_known = which(datamarks != "Unknown")

  

  all_wts = array(data = NA, dim = c((maxit + 1), all_test$n, n.sp))

  

  while(breakloop == 0)

  {

    niter = niter + 1

    #2 Compute predicted intensities

    

    pr_ppm_list = list()

    for (i in 1:nclust) {

      if(is.null(cov.bias))

      {

        pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = all_test)

      }

      else

      {

        pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = all_test)

      }

    }

    

    

    #3 Compute membership probabilities

    

    all_preds = data.frame(matrix(unlist(pr_ppm_list),

                                  nrow=length(pr_ppm_list[[1]]), byrow=F))

    

    test_wts  = all_preds/apply(all_preds, 1, sum)

    all_wts[niter,,] = as.matrix(test_wts)

    

    max_pred = apply(all_preds, 1, which.max)

    

    max_pred.vec = rep(NA, nclust)

    for (i in 1:nclust) {

      max_pred.vec[i] = sum(max_pred == i)

      i=i+1

    }



    pred.check = as.vector(max_pred.vec)

    # Set up otpion for initial weights  

    addpt <- match.arg(addpt)

    

    #4 Augment points

    if (addpt == "normal")

    {

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = (1:all_test$n)

        i=i+1

      }



    }

    if (addpt == "Loop_grW")

    {

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = which(test_wts[,i] > delta_max)

        i=i+1

      }

      

    }

    if (addpt == "Loop_hgW")

    {

      if(num.add > all_test$n/n.sp)

      {

        print("Impossible to add so many points, the highest possible number will be used instead")

        num.add = floor(all_test$n/n.sp)

      }

      else

      {

        num.add = num.add

      }

      

      add_max = apply(test_wts, 2, sort, decreasing = TRUE)[num.add,]

      addtosp.list =list()

      for (i in 1:nclust) {

        addtosp.list[[i]] = if(anyNA(all_test$x[test_wts[,i] >= add_max[i]]) == TRUE) integer() else which(test_wts[,i] >= add_max[i])

        i=i+1

      }

      

    }

    

    # lists and vectors needed in the next steps

    sp_aug.list = sp_wts.list = sp_aug_ppp.list = Q_aug.list = ppm.L.list = list()

    ppm.L.pred = ppm.pred.list = list()

    Dloglik = counts.sp = rep(NA, nclust)

    

    for (i in 1:nclust) {

      sp_aug.list[[i]] = data.frame(X = c(ppp_list[[i]]$x, all_test$x[addtosp.list[[i]]]), Y = c(ppp_list[[i]]$y, all_test$y[addtosp.list[[i]]])) # add unknown points to known points of species 1

      quad.xy = data.frame(X, Y)

      

      #5 update quadrature weights

      

      #scores for species with known label (weight =1) and for the new obs (test_wts)

      sp_wts.list[[i]] = scoreweights(sp_aug.list[[i]], quad.xy, scores = c(rep(1, ppp_list[[i]]$n), test_wts[addtosp.list[[i]], i])) # generate quad weights for augmented species 1

      

      # Augmented point patterns

      win   = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5)) # added because HPC wouldn't work

      

      sp_aug_ppp.list[[i]] = ppp(x =sp_aug.list[[i]]$X, y = sp_aug.list[[i]]$Y, window = win)

      

      # Augmented quadrature scheme

      Q_aug.list[[i]] = quadscheme(data = sp_aug_ppp.list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

      

      # Replace quadrature weights with those calculated with the scoreweights function

      # This is necessary because spatstat's quadscheme function treats all points the same.

      # We want to treat the points with unknown labels as "fractional" points with weights coming from the single-species PPMs

      

      Q_aug.list[[i]]$w = sp_wts.list[[i]]

      

      #6# Fit new point processes using the augmented points patterns and the quadrature weights

      #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

      

      # Augmented PPMs

      

      if(is.null(kAreaInt))

      {

        ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list, 

                              gcontrol = list(epsilon = 1e-6, maxit = 100))

      }

      else

      {

        ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list,

                              AreaInter(kAreaInt),

                              gcontrol = list(epsilon = 1e-6, maxit = 100))

      }

      

      if (plots == TRUE)

      {

        if(is.null(cov.bias))

        {

          ppm.L.pred[[i]]  = predict(ppm.L.list[[i]])

        }

        else

        {

          ppm.L.pred[[i]]  = predict(ppm.L.list[[i]], covariates = pred.list)



        }

        

        plot(ppm.L.pred[[i]], main="predict - ppm.pred") 

      }

      

      # to get the weights

      if(is.null(cov.bias))

      {

        ppm.pred.list[[i]]  = predict(ppm.L.list[[i]], location=datappp)

      }

      else

      {

        ppm.pred.list[[i]]  = predict(ppm.L.list[[i]], covariates = pred.list, location=datappp)

      }

      

      # counts per species

      counts.sp[i] = ppp_list[[i]]$n + sum(test_wts[,i])

      

      #7 Stopping criterion

      

      loglik.old.sp[i] = loglik.new.sp[i]

      loglik.new.sp[i] = ppm.L.list[[i]]$maxlogpl



      Dloglik[i] = abs(loglik.new.sp[i] - loglik.old.sp[i])

      i=i+1

    }

    

    DiffL = sum(Dloglik)

    sumL.new = abs(sum(loglik.new.sp))

    

    Lcrit = DiffL/sumL.new 

    Lcrit.vec[niter] = Lcrit



    itercounts = counts.sp

    p = itercounts/sum(itercounts)

    

    if(verbose)

    {

      cat(paste("Iteration", niter, "\tLcrit =", Lcrit,

                "\tp =", signif(p,4), "\n"))

    }

    

    # redefine ppms for next iteration

    for (i in 1:nclust) {

      ppm_list[[i]] = ppm.L.list[[i]]

    }

    

    # break loop

    

    if (Lcrit < tol)

    {

      breakloop = 1

    }

    

    if (niter == maxit)

    {

      breakloop = 1

    }

    

    if (addpt == "Loop_grW")

    {

      delta_max = delta_max - delta_step

      if (delta_max < delta_min)

      {

        breakloop = 1

      }

    }

    if (addpt == "Loop_hgW")

    {

      num.add = num.add + 1

      if (num.add > all_test$n/n.sp)

      {

        breakloop = 1

      }

    }

  }

  

  # Compute final predicted intensities

  pr_ppm_list.unk = list()

  for (i in 1:nclust) {

    if(is.null(cov.bias))

    {

      pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = datappp)

    }

    else

    {

      pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = datappp)

    }

    

    pr_ppm_list.unk[[i]] = pr_ppm_list[[i]][-is_known]

  }

  

  #3 Compute final membership probabilities

  

  all_preds = data.frame(matrix(unlist(pr_ppm_list.unk),

                                nrow=length(pr_ppm_list.unk[[1]]), byrow=F))

  

  test_wts  = all_preds/apply(all_preds, 1, sum)

  all_wts[niter + 1,,] = as.matrix(test_wts)

  

  if (plots == TRUE)

  {

    par(xpd=NA)

    known.marks = unique(iterppp$marks)

    plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

         xlab="observations", ylab="weight")

    for (i in 2:nclust) {

      colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

      points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

      i =i + 1

      legend(110,1, c(known.marks), col = c("orange", colvect),

             pch = 16, xjust = 1, yjust = 0, merge = FALSE)

      

    }

    

  }

  

  return(list(z = round(p, digits = 4),

              New_weights = test_wts,

              all_wts = all_wts,

              ppm_list = ppm_list,

              niter = niter, 

              ppm.pred.list = pr_ppm_list,

              ppm.pred.list.unk = pr_ppm_list.unk,

              sp_aug.list = sp_aug.list,

              sp_aug_ppp.list = sp_aug_ppp.list

              #hist=if(plothist) H else NULL

              # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

              #      xlab="observations", ylab="weight"),

              # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

              # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

              # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

              #        pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

  ))

}







##------------------------------------------------------------------------------

#              functions and measures of performance

#------------------------------------------------------------------------------



###----------------- IMSE



IMSE = function(mu1, mu2, fun = "log", mu.min = 1.e-5)

{

  mu1.use = mu1

  mu1.use[mu1.use < mu.min] = mu.min

  mu2.use = mu2

  mu2.use[mu2.use < mu.min] = mu.min

  if (fun == "log")

  {

    mu1.use = log(mu1.use)

    mu2.use = log(mu2.use)

  }

  if (fun == "sqrt")

  {

    mu1.use = sqrt(mu1.use)

    mu2.use = sqrt(mu2.use)

  }

  imse = sum((mu1.use - mu2.use)^2)

  imse

}



###----------------- corint for sumcor calculation



corint = function(mu1, mu2, fun = "log", method=c("pearson", "kendall", "spearman"), mu.min = 1.e-5)

{

  mu1.use = mu1

  mu1.use[mu1.use < mu.min] = mu.min

  mu2.use = mu2

  mu2.use[mu2.use < mu.min] = mu.min

  if (fun == "log")

  {

    mu1.use = log(mu1.use)

    mu2.use = log(mu2.use)

  }

  

  # Set up otpion for initial weights  

  addpt <- match.arg(method)

  if (method == "pearson"){

    corint.pea = cor(mu1.use, mu2.use, method = "pearson")

    return(corint.pea)

  }

  

  if(method == "kendall"){

    corint.kend = cor(mu1.use, mu2.use, method = "kendall")

    return(corint.kend)

  }

  

  if(method == "spearman"){

    corint.spea = cor(mu1.use, mu2.use, method = "spearman")

    return(corint.spea)

  }

  

}



###----------------- RSS



RSS = function(weightmatrix, truemarks)

{

  mark.cols = match(truemarks, colnames(weightmatrix))

  correctweights = weightmatrix[cbind(seq_along(mark.cols), mark.cols)]

  RSS = sum((correctweights - 1)^2)

  RSS

}



###----------------- Accuracy



Accuracy = function(all_true, New_weights, test_labels, n.sp){

  W.max = apply(New_weights[(1:nrow(New_weights)),], 1, max)

  C.id = apply(New_weights[(1:nrow(New_weights)),],

               1,function(x) which(x==max(x)))

  

  indiv_testlab = as.data.frame(cbind(test_labels, C.id, W.max))

  

  levels(indiv_testlab$test_labels) <- c(unique(test_labels))

  

  # New method for accuracy

  levels(indiv_testlab$test_labels)

  levels(indiv_testlab$C.id)

  allvec = as.vector(seq(from=1, to=n.sp, by=1))

  

  CM.acc = confusionMatrix(factor(indiv_testlab$test_labels, levels=allvec),

                           factor(indiv_testlab$C.id, levels=allvec))

  m.acc= CM.acc$table

  

  # some usuful calc

  n = sum(m.acc) # number of instances

  nc = nrow(m.acc) # number of classes

  diag = diag(m.acc) # number of correctly classified instances per class 

  rowsums = apply(m.acc, 1, sum) # number of instances per class

  colsums = apply(m.acc, 2, sum) # number of predictions per class

  p = rowsums / n # distribution of instances over the actual classes

  q = colsums / n # distribution of instances over the predicted classes

  

  # accuracy measure

  accuracy = sum(diag) / n 

  accuracy 

  

}






library(spatstat)

library(lattice)

library(sp)

library(maptools)

library(raster)

library(geostatsp)

library(rgdal)

library(lattice)

library(caret)

library(rgeos)

library(scales)





#------------------------------------------------------------------------------

# 								Simulation data

#------------------------------------------------------------------------------



# Set up some data

# 1 #  Set up data.ppp, cov.list, ppmform and quads

# Generate XY grid

set.seed(10013)

XY = expand.grid(seq(0, 100, 1), seq(0, 100, 1))

X = XY[,1]

Y = XY[,2]



# Generate 2 covariates for PPM



v1 = (X - 30)^2 + (Y - 70)^2 - 0.5*X*Y



v2 = (X - 70)^2 + (Y - 60)^2 + 0.9*X*Y 





#levelplot(v1 ~ X + Y)

#levelplot(v2 ~ X + Y)





v1 = -1*scale(v1)

v2 = -1*scale(v2)



# Matrix of covariates

vmat = as.matrix(data.frame(1, v1, v1^2, v2, v2^2))



# Generate true PPM coefficients based on linear and quadratic terms for 2 covariates and including bias

sp1_coef = c(-6.5, 4, -1, 2, -0.6)

sp1_int = exp(vmat %*% sp1_coef)



sp2_coef = c(-4.4, 1.8, -1, 1.5, -0.9)

sp2_int = exp(vmat %*% sp2_coef)



sp3_coef = c(-3.5, -0.5, -0.8, 1, -0.8)

sp3_int = exp(vmat %*% sp3_coef)





sp_int.list = list(sp1_int, sp2_int, sp3_int)

  

# Plot the intensities created



levelplot(sp1_int ~ X + Y)

levelplot(sp2_int ~ X + Y)

levelplot(sp3_int ~ X + Y)



# Create pixel images of intensity surfaces for spatstat



sp1_int_im = as.im(data.frame(x = X, y = Y, z = sp1_int))

sp2_int_im = as.im(data.frame(x = X, y = Y, z = sp2_int))

sp3_int_im = as.im(data.frame(x = X, y = Y, z = sp3_int))





# Simulate species patterns



sp1_sim = rpoispp(sp1_int_im)

sp2_sim = rpoispp(sp2_int_im)

sp3_sim = rpoispp(sp3_int_im)



sp1_sim

sp2_sim

sp3_sim



plot(sp1_sim, cex = 0.6)

plot(sp2_sim, add = TRUE, col = "red", cex = 0.6)

plot(sp3_sim, add = TRUE, col = "blue", cex = 0.6)



sp_sim.list = list(sp1_sim, sp2_sim, sp3_sim)



# Look at the correlation between intensity surfaces

#all

cor1_2 = cor(as.vector(sp1_int), as.vector(sp2_int), use = "complete.obs")

cor1_3 = cor(as.vector(sp1_int), as.vector(sp3_int), use = "complete.obs")

cor2_3 = cor(as.vector(sp2_int), as.vector(sp3_int), use = "complete.obs")





## Create list of coavriates



cov.list = list()

for (v in 1:4)

{

v.v = as.im(data.frame(x = X, y = Y, z = vmat[,(v + 1)]))

cov.list[[v]] = v.v

}

names(cov.list) = c("v1", "v1.2", "v2", "v2.2")



# set up model formula

cov.mat = vmat[,2:5]

ppmform = as.formula(paste("~", paste(colnames(cov.mat), collapse = "+")))





##################################################

# 				Test new simulation 

#-------------------------------------------------



# Call the different functions needed for the test

source("functionTestsim.R")



#_____________________________________________________________________________



# Create a confusion matrix from the given outcomes, whose rows correspond

# to the actual and the columns to the predicated classes.

createConfusionMatrix <- function(act, pred) {

pred <- pred[order(act)]

act  <- act[order(act)]

sapply(split(pred, act), tabulate, nbins=3)

}





# Function to combine the different methods to compare



Testsims = function(hidepct, n.sims, sp_sim.list, n.sp=n.sp, k = k, cov.list, cov.bias=NULL, kVal=NULL, kAreaInt=NULL, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add)

{

  win   = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5))

  quads = ppp(X, Y, window = win)

  

  RSSknn = meanRSSknn = IMSEknn = RSSkmeans = meanRSSkmeans = IMSEkmeans = 

    RSSrand = meanRSSrand = IMSErand = RSSequal = meanRSSequal = IMSEequal = 

    RSSindiv = meanRSSindiv = IMSEindiv = RSSLoopgr = meanRSSLoopgr = IMSELoopgr =

    RSSLoophg = meanRSSLoophg = IMSELoophg = RSSnorm = meanRSSnorm = IMSEnorm=

    sumcorknn1 = sumcorkmeans1 = sumcorrand1 = sumcorequal1 = sumcorindiv1 = sumcorLoophg1 =

    sumcornorm1 = sumcorLoopgr1 = sumcorknn2 = sumcorkmeans2 = sumcorrand2 = sumcorequal2 = sumcorindiv2 = sumcorLoophg2 =

    sumcornorm2 = sumcorLoopgr2 = sumcorknn3 = sumcorkmeans3 = sumcorrand3 = sumcorequal3 = sumcorindiv3 = sumcorLoophg3 =

    sumcornorm3 = sumcorLoopgr3 = matrix(NA, n.sims, length(hidepct))

  accmatknn = accmatkmeans = accmatrand = accmatequal = accmatindiv = accmatLoop = 

    accmatnorm = accmatLoopgr = accmatLoophg = matrix(NA, n.sims, length(hidepct))

 

  

  knnpred = kmeanspred = randpred = equalpred = normpred = Lgrpred = Lhgpred =

    indivpred = array(NA, c(quads$n, 3, n.sims, length(hidepct)))

  

  coef.knn.mat = coef.kmeans.mat = coef.rand.mat = coef.eq.mat = 

    array(NA, c(15, 1, n.sims, length(hidepct)))

  

  coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat =  coef.ind.mat = 

    array(NA, c(15, 1, n.sims, length(hidepct)))

  

  

  

  for (i in 1:length(hidepct))

  {

    pct_hidden = hidepct[i]

    

    for (j in 1:n.sims)

    {

      # hide some observations

      sp_hide.list = sp_sub.list = train.list = sp_test.list = list()

      coordtestx.list = coordtesty.list = markshide.list = markstest.list = list()

      coordsubx.list = coordsuby.list = marksub.list = list()

      

      for (l in 1:n.sp) {

        sp_hide.list[[l]] = sample(1:sp_sim.list[[l]]$n, floor(pct_hidden*sp_sim.list[[l]]$n))

        sp_sub.list[[l]]  = sp_sim.list[[l]][-sp_hide.list[[l]]]

        train.list[[l]]   = ppp(x = sp_sub.list[[l]]$x, y = sp_sub.list[[l]]$y, window = win)

        sp_test.list[[l]] = sp_sim.list[[l]][sp_hide.list[[l]]]

        

        coordtestx.list[[l]] = sp_test.list[[l]]$x

        coordtesty.list[[l]] = sp_test.list[[l]]$y

        markshide.list[[l]] = rep(paste("Hidden", l, sep = ""), sp_test.list[[l]]$n)

        markstest.list[[l]] = rep(paste("Sp", l, sep = ""), sp_test.list[[l]]$n)

        

        coordsubx.list[[l]] = sp_sub.list[[l]]$x

        coordsuby.list[[l]] = sp_sub.list[[l]]$y

        marksub.list[[l]] = rep(paste("Sp", l, sep = ""), sp_sub.list[[l]]$n)

          

        l=l+1

      }

      

      

      all_test = ppp(x = c(unlist(coordtestx.list)), 

                     y = c(unlist(coordtesty.list)), window = win,

                     marks = c(unlist(markshide.list)))

      

      all_test2 = ppp(x = c(unlist(coordtestx.list)), 

                     y = c(unlist(coordtesty.list)), window = win,

                     marks = c(rep("Unknown", all_test$n)))

      

      test_labels = as.vector(unlist(markstest.list))

      

      all_true = ppp(x = c(unlist(coordsubx.list)), 

                     y = c(unlist(coordsuby.list)), window = win,

                     marks = c(unlist(marksub.list)))

      

      

      datappp = superimpose.ppp(all_true, all_test2)

      

      if(is.null(cov.bias)){

        cov.list = cov.list

      }else{#--- Set observer bias variables to kVal 

        pred.list = cov.list

        set.Val = cov.bias #Variables to set to a certain value

        for (v in set.Val){

          pred.list[[v]]$v = kVal*pred.list[[v]]$v

        }

      }

      

      ###

      #  Mixture model

      ###---

      simknn = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                            initweights = "knn", 

                            k=k, ppmform = ppmform, cov.list = cov.list,

                            cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                            verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simkmeans = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                               initweights = "kmeans",

                               k=k, ppmform = ppmform, cov.list = cov.list,

                               cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                               verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simrandom = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                               initweights = "random",

                               k=k, ppmform = ppmform, cov.list = cov.list,

                               cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                               verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      simequal = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

                              initweights = "equal",

                              k=k, ppmform = ppmform, cov.list = cov.list,

                              cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

                              verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

      

      # for performance measures

      knn_weights = simknn$New_weights[((all_true$n)+1):nrow(simknn$New_weights),]

      pred.knn    = knn_weights

      

      kmeans_weights = simkmeans$New_weights[((all_true$n)+1):nrow(simkmeans$New_weights),]

      pred.kmeans    = kmeans_weights

      

      random_weights = simrandom$New_weights[((all_true$n)+1):nrow(simrandom$New_weights),]

      pred.random    = random_weights

      

      equal_weights = simequal$New_weights[((all_true$n)+1):nrow(simequal$New_weights),]

      pred.equal    = equal_weights

      

      accmatknn[j, i] = Accuracy(all_true, knn_weights, test_labels, n.sp)

      RSSknn[j, i] = RSS(pred.knn, test_labels)

      meanRSSknn[j, i] = RSS(pred.knn, test_labels)/length(test_labels)

      

      accmatkmeans[j, i] = Accuracy(all_true, kmeans_weights, test_labels, n.sp)

      RSSkmeans[j, i] = RSS(pred.kmeans, test_labels)

      meanRSSkmeans[j, i] = RSS(pred.kmeans, test_labels)/length(test_labels)

      

      accmatrand[j, i] = Accuracy(all_true, random_weights, test_labels, n.sp)

      RSSrand[j, i] = RSS(pred.random, test_labels)

      meanRSSrand[j, i] = RSS(pred.random, test_labels)/length(test_labels)

      

      accmatequal[j, i] = Accuracy(all_true, equal_weights, test_labels, n.sp)

      RSSequal[j, i] = RSS(pred.equal, test_labels)

      meanRSSequal[j, i] = RSS(pred.equal, test_labels)/length(test_labels)

      

      #--

      if(is.null(cov.bias)){

        pred.knn = predict(simknn$fit.final, locations = sp1_int_im)

      }else{

        pred.knn = predict(simknn$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.knn = list()

      for (l in 1:n.sp) {

        sp.predlist.knn[[l]] = as.vector(t(pred.knn[[l]]$v))

        

        IMSEknn[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.knn[[l]]))

        sumcorknn1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="pearson"))

        sumcorknn2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.kmeans = predict(simkmeans$fit.final, locations = sp1_int_im)

      }else{

        pred.kmeans = predict(simkmeans$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.kmeans = list()

      for (l in 1:n.sp) {

        sp.predlist.kmeans[[l]] = as.vector(t(pred.kmeans[[l]]$v))

        

        IMSEkmeans[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.kmeans[[l]]))

        sumcorkmeans1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="pearson"))

        sumcorkmeans2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.random  = predict(simrandom$fit.final, locations = sp1_int_im)

      }else{

        pred.random = predict(simrandom$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.rand = list()

      for (l in 1:n.sp) {

        sp.predlist.rand[[l]] = as.vector(t(pred.random[[l]]$v))

        

        IMSErand[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.rand[[l]]))

        sumcorrand1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="pearson"))

        sumcorrand2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="kendall"))

        

      }

      

      #--

      if(is.null(cov.bias)){

        pred.equal = predict(simequal$fit.final, locations = sp1_int_im)

      }else{

        pred.equal = predict(simequal$fit.final, covariates = pred.list, locations = sp1_int_im)

      }

      

      sp.predlist.equal = list()

      for (l in 1:n.sp) {

        sp.predlist.equal[[l]] = as.vector(t(pred.equal[[l]]$v))

        

        IMSEequal[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.equal[[l]]))

        sumcorequal1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="pearson"))

        sumcorequal2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="kendall"))

        

      }

      

      # for intensity plots

      knnpred[,,j,i] = as.matrix(unlist(sp.predlist.knn))

      

      kmeanspred[,,j,i] =as.matrix(unlist(sp.predlist.kmeans))

      

      randpred[,,j,i] = as.matrix(unlist(sp.predlist.rand))

      

      equalpred[,,j,i] = as.matrix(unlist(sp.predlist.equal))

      

      # for coefficients

      coef.knn.mat[,,j,i] = as.matrix(simknn$fit.final$coef)

      coef.kmeans.mat[,,j,i] = as.matrix(simkmeans$fit.final$coef)

      coef.rand.mat[,,j,i] = as.matrix(simrandom$fit.final$coef)

      coef.eq.mat[,,j,i] = as.matrix(simequal$fit.final$coef)

      

      

      #---

      # ppmLoopEngine

      ###---

      

      simnorm = ppmLoopEngine(datappp, all_test, n.sp, addpt = "normal", quads,

							  ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

							  cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

							  tol=0.000001, verbose = TRUE, plots = FALSE)

      

      simLoopgr = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_grW", quads,

								  ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								  cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								  tol=0.000001, verbose = TRUE, plots = FALSE)

      

      simLoophg = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_hgW", quads,

								ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								tol=0.000001, verbose = TRUE, plots = FALSE)

      

      

      # for performance measures

      

      norm_weights = simnorm$New_weights

      pred.norm    = norm_weights

      colnames(pred.norm)= c(unique(test_labels))

	  

      Loopgr_weights = simLoopgr$New_weights

      pred.Loopgr    = Loopgr_weights

      colnames(pred.Loopgr)= c(unique(test_labels))

	  

      Loophg_weights = simLoophg$New_weights

      pred.Loophg    = Loophg_weights

      colnames(pred.Loophg)= c(unique(test_labels))

      #

      accmatnorm[j, i] = Accuracy(all_true, norm_weights, test_labels, n.sp)

      RSSnorm[j, i] = RSS(pred.norm, test_labels)

      meanRSSnorm[j, i] = RSS(pred.norm, test_labels)/length(test_labels)

      

      accmatLoopgr[j, i] = Accuracy(all_true, Loopgr_weights, test_labels, n.sp)

      RSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)

      meanRSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)/length(test_labels)

      

      accmatLoophg[j, i] = Accuracy(all_true, Loophg_weights, test_labels, n.sp)

      RSSLoophg[j, i] = RSS(pred.Loophg, test_labels)

      meanRSSLoophg[j, i] = RSS(pred.Loophg, test_labels)/length(test_labels)

      

      #--

      pr_quad_ppmlist.N = pr_quad_ppmlist.Lgr = pr_quad_ppmlist.Lhg = list()

      for (l in 1:n.sp) {

        if(is.null(cov.bias)){

          pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

        

        if(is.null(cov.bias)){

          pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

        

        if(is.null(cov.bias)){

          pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], locations = quads)

        }else{

          pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], covariates = pred.list, locations = quads)

        }

      }

      

      # for intensity plots

      normpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.N),

                               nrow=length(pr_quad_ppmlist.N[[1]]), byrow=F)

      

      Lgrpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lgr),

                              nrow=length(pr_quad_ppmlist.Lgr[[1]]), byrow=F)

      

      Lhgpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lhg),

                              nrow=length(pr_quad_ppmlist.Lhg[[1]]), byrow=F)

      

      coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat =  coef.ind.mat = 

        array(NA, c(15, 1, n.sims, length(hidepct)))

      

      coef.normalvec = coef.Lgrvec = coef.Lhgvec = list()

      for (l in 1:n.sp) {

        # for coefficients

        coef.normalvec[[l]] = as.vector(unlist(simnorm$ppm_list[[l]]$coef))

        coef.Lgrvec[[l]] = as.vector(unlist(simLoopgr$ppm_list[[l]]$coef))

        coef.Lhgvec[[l]] = as.vector(unlist(simLoophg$ppm_list[[l]]$coef))

        

        l=l+1

      }

      

      coef.normal.mat[,,j,i] = as.vector(unlist(t(coef.normalvec)))

      coef.Lgr.mat[,,j,i] = as.vector(unlist(t(coef.Lgrvec)))

      coef.Lhg.mat[,,j,i] = as.vector(unlist(t(coef.Lhgvec)))

      

      sp.predlist.N = sp.predlist.Lgr = sp.predlist.Lhg = list()

      for (l in 1:n.sp) {

        sp.predlist.N[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

        IMSEnorm[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.N[[l]]/(length(simnorm$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcornorm1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="pearson"))

        sumcornorm2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="kendall"))

        

        sp.predlist.Lgr[[l]] = as.vector(t(pr_quad_ppmlist.Lgr[[l]]))

        IMSELoopgr[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lgr[[l]]/(length(simLoopgr$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcorLoopgr1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="pearson"))

        sumcorLoopgr2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="kendall"))

        

        sp.predlist.Lhg[[l]] = as.vector(t(pr_quad_ppmlist.Lhg[[l]]))

        IMSELoophg[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lhg[[l]]/(length(simLoophg$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

        sumcorLoophg1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="pearson"))

        sumcorLoophg2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="kendall"))

  

      }

      

      

      ####

      # Individual PPMs

      ###---

      

      datamarks = marks(datappp)

      uniquemarks = unique(datamarks)

      colmarks = uniquemarks

      unknown = datamarks == "Unknown"

      names.mark  = colmarks[-which(colmarks == "Unknown")]

      

      Qind = ppm_spind = pr_sp_ppmind = list()

      for (l in 1:n.sp) {

        #specie separetely

        Qind[[l]] = quadscheme(data = sp_sub.list[[l]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

        

        # Fit Poisson PPMs

        if(is.null(kAreaInt)){

          ppm_spind[[l]]  = ppm(Qind[[l]], trend = ppmform, covariates = cov.list)

          

        }else{

          ppm_spind[[l]]  = ppm(Qind[[l]], trend = ppmform, covariates = cov.list, AreaInter(kAreaInt))

        }

        

        # Predict intensity at locations where labels are hidden

        ## former label from sp1 tested for the 3PPMs

        if(is.null(cov.bias)){

          pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], locations = all_test)

        }else{

          pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = all_test)

        }

      }

      

      

      sp_predsind = data.frame(matrix(unlist(pr_sp_ppmind),

                                      nrow=length(pr_sp_ppmind[[1]]), byrow=F))

      ind_wts  = sp_predsind/apply(sp_predsind, 1, sum)

      max_predind = apply(sp_predsind, 1, which.max)

      max_predind.vec = as.vector(table(max_predind))

      

      # calculate accuracy in the same way that we did for the mixture models

      check.id = as.vector(max_predind)

      check.data = as.data.frame(cbind(test_labels, check.id))

      

      # to deal with some labels not be present in some iterations

      for (l in 1:n.sp) {

        if (anyNA(sum(check.data$test_labels == paste("Sp", l, sep="")))){

          allvec = as.vector(seq(from=1, to=n.sp, by=1))

          levels(check.data$test_labels) = allvec[which(allvec!=l)]

        }else{

          allvec = as.vector(seq(from=1, to=n.sp, by=1))

          levels(check.data$test_labels) = allvec

        }

      }

      

      testlab = as.data.frame(check.data$test_labels)

      checklab = as.data.frame(check.data$check.id)

      

      checkD = as.data.frame(check.data)

      

      m.acc.indiv = createConfusionMatrix(checkD$test_labels, checkD$check.id)

      

      n.check = sum(m.acc.indiv) # number of instances

      diag.check = diag(m.acc.indiv) # number of correctly classified instances per class

      

      # accuracy measure

      accmatindiv[j, i] = sum(diag.check) / n.check

      

      

      # RSS measure

      # Assign weights

      all_predsind = sp_predsind

      testind_wts  = all_predsind/apply(all_predsind, 1, sum)

      colnames(testind_wts) = names.mark

      

      RSSindiv[j, i] = RSS(testind_wts, test_labels)

      meanRSSindiv[j, i] = RSS(testind_wts, test_labels)/length(test_labels)

      

      pr_quad_ppmindlist = list()

      for (l in 1:n.sp) {

        if(is.null(cov.bias)){

          pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], locations = quads)

        }else{

          pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = quads)

        }

        

      }

      

      # for intensity plots

      indivpred[,,j,i] = matrix(unlist(pr_quad_ppmindlist),

                               nrow=length(pr_quad_ppmindlist[[1]]), byrow=F)

      

      coef.ind.mat = array(NA, c(15, 1, n.sims, length(hidepct)))

      

      coef.indvec = list()

      for (l in 1:n.sp) {

        # for coefficients

        coef.indvec[[l]] = as.vector(unlist(ppm_spind[[l]]$coef))

        

        l=l+1

      }

      

      coef.ind.mat[,,j,i] = as.vector(unlist(t(coef.indvec)))

      

      sp.predindlist = list()

      for (l in 1:n.sp) {

        sp.predindlist[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

        IMSEindiv[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predindlist[[l]]/(length(sp_sub.list[[l]]$X)))*datappp$n/n.sp))

        sumcorindiv1[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="pearson"))

        sumcorindiv2[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="kendall"))

        

      }

      

      

      cat(paste(i, j, "\n"))

      flush.console()

    }

  }

  return(list(RSSknn = RSSknn, meanRSSknn = meanRSSknn, IMSEknn = IMSEknn, sumcorknn1 = sumcorknn1, sumcorknn2 = sumcorknn2,

              RSSkmeans = RSSkmeans, meanRSSkmeans = meanRSSkmeans, IMSEkmeans = IMSEkmeans, sumcorkmeans1 = sumcorkmeans1, sumcorkmeans2 = sumcorkmeans2, 

              RSSrand = RSSrand, meanRSSrand = meanRSSrand, IMSErand = IMSErand, sumcorrand1 = sumcorrand1, sumcorrand2 = sumcorrand2,

              RSSequal = RSSequal, meanRSSequal = meanRSSequal, IMSEequal = IMSEequal, sumcorequal1 = sumcorequal1, sumcorequal2 = sumcorequal2, 

              RSSindiv = RSSindiv, meanRSSindiv = meanRSSindiv, IMSEindiv = IMSEindiv, sumcorindiv1 = sumcorindiv1, sumcorindiv2 = sumcorindiv2, 

              RSSnorm = RSSnorm, meanRSSnorm = meanRSSnorm, IMSEnorm = IMSEnorm, sumcornorm1 = sumcornorm1, sumcornorm2 = sumcornorm2,

              RSSLoopgr = RSSLoopgr, meanRSSLoopgr = meanRSSLoopgr, IMSELoopgr = IMSELoopgr, sumcorLoopgr1 = sumcorLoopgr1, sumcorLoopgr2 = sumcorLoopgr2, 

              RSSLoophg = RSSLoophg, meanRSSLoophg = meanRSSLoophg, IMSELoophg = IMSELoophg, sumcorLoophg1 = sumcorLoophg1, sumcorLoophg2 = sumcorLoophg2, 

              accmatknn = accmatknn, accmatkmeans = accmatkmeans, accmatrand = accmatrand, accmatequal = accmatequal, accmatindiv = accmatindiv,

              accmatnorm = accmatnorm, accmatLoopgr = accmatLoopgr,accmatLoophg = accmatLoophg,

              knnpred = knnpred, kmeanspred = kmeanspred, randpred = randpred, equalpred = equalpred, normpred = normpred,

              Lgrpred = Lgrpred, Lhgpred = Lhgpred, indivpred = indivpred, coef.knn.mat = coef.knn.mat, coef.kmeans.mat = coef.kmeans.mat, 

              coef.rand.mat = coef.rand.mat, coef.eq.mat = coef.eq.mat, coef.normal.mat = coef.normal.mat,  

              coef.Lhg.mat = coef.Lhg.mat,  coef.ind.mat = coef.ind.mat

              

              

  ))

}





QuickTest = Testsims(hidepct=c(0.2, 0.5, 0.8), n.sims=5, sp_sim.list, n.sp=3,

                     k = 1, cov.list=cov.list, cov.bias=NULL, kVal=NULL, kAreaInt=NULL,

					           delta_max=0.5, delta_min=0.1, delta_step =0.1, num.add = 5)
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