bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

. Classification of unlabeled observations in Species

. Distribution Modelling using Point Process Models.

3 Emy Guilbault', Ian Renner', Michael Mahoniy?, Eric Beh!.
. Emy. Guilbault@Quon.edu.au
5 April 16, 2019

s ' School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia.

7 2 School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.

s 1 Abstract

o 1. Species distribution modelling, which allows users to predict the spatial distribution of species with the
10 use of environmental covariates, has become increasingly popular, with many software platforms providing
u tools to fit species distribution models. However, the species observations used in species distribution
12 models can have varying levels of quality and can have incomplete information, such as uncertain species
13 identity.

1w 2. In this paper, we develop two algorithms to reclassify observations with unknown species identities
15 which simultaneously predict different species distributions using spatial point processes. We compare the
1 performance of the different algorithms using different initializations and parameters with models fitted
17 using only the observations with known species identity through simulations.

18 3. We show that performance varies with differences in correlation among species distributions, species
10 abundance, and the proportion of observations with unknown species identities. Additionally, some of the
2 methods developed here outperformed the models that didn’t use the misspecified data.

a 4. These models represent an helpful and promising tool for opportunistic surveys where misidentification
2 happens or for the distribution of species newly separated in their taxonomy.

2

u Keywords: Presence-only data - FEcological statistics - Misidentification - Classification - Mizture

s modelling - EM algorithm - Machine learning

» 2 Introduction and background

27 Species distribution modelling has been a popular topic in ecological statistics over the past decade.

;s Many tools and methods have been developed to provide a means to explore the distributions of species

mailto:Emy.Guilbault@uon.edu.au
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bi(_)Rle preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
czegrtlflgﬂ 8’ng errli%lr%v ﬂ%tg t})corg n%%{v\{\%%has géﬂ{fﬁ% Ioﬁ:%?ﬂéﬁ%%%&% thegre%rm miﬁi%,etwézléllsengagf aﬁaliaénle under
s Inoue et al., 2017; Schank et al., 2017). Although there are a large number of algorithms and software

a platforms that can fit species distribution models (SDMs), generalization of these methods and specific

2 applications to real data sets can be tricky (Burnham & Anderson, 2002; Aarts et al., 2012; Guillera-Arroita

s et al., 2015).

3 The most common sources of species information used in SDMs are presence-only (PO) and presence-
5 absence (PA) data. PO data only contains information about species presence, in contrast to PA data
s which records both where species have been found present and where they have not been found (Warton
s & Shepherd, 2010; Renner et al., 2015). Although PA data is generally of higher quality, it is also less
;s common than PO data because it requires more rigorous planning to visit a set of pre-determined sites.
s On the other hand, PO data sets are very common, arising from surveys or opportunistic sightings, but
w0 they usually have lower quality (van Strien et al., 2013; Ruete & Leynaud, 2015). Point process models
a (PPMs) are a common tool for fitting SDMs to analyze PO data (Warton & Shepherd, 2010; Mi et al.,
2 2014; Renner et al., 2015) and have been used to fit models for real datasets and simulated data (Baddeley

s et al., 2006; Illian et al., 2012; Renner & Warton, 2013; Baddeley et al., 2015).

2 Unreliable or unknown species observation identification is also a main concern in ecology. For example,
s species records can become confounded when species taxonomy changes (Mahony et al., 2006). Conservation
s planning efforts depend on clear identification of species and understanding of their distributions and
« habitat requirements (Franklin, 2013; Guisan et al., 2013). Such concerns are very rarely considered while
s building SDMs, as people usually clean the data or make some assumptions to avoid such identification

2 problems.

50 Mixture modelling is a common tool used to represent complex distributions and aims to identify
si different groups within a dataset while modelling heterogeneity (Martinez, 2015). In communities or
sz groups of individuals/species it is possible to classify or cluster them according to covariate information
53 by using finite mixture modelling (McLachlan & Peel, 2000; Frame & Jammalamadaka, 2007; Dunstan
sa et al., 2013; Ferndndez-Michelli et al., 2016). One particular application of this approach is to deal with
ss over-dispersed data and to model the different ecological processes at the same time for a single species or
ss for different species in order to classify them (Matthews et al., 2001; Zhang et al., 2004; Tracey et al.,
st 2013).

58 Machine learning algorithms are also becoming more common in statistical ecology because they can
5o deal with unknown information and recognize some structure in the data (Hastie et al., 2001; Thessen, 2016;
o Browning et al., 2018). Some algorithms can group observations with similar characteristics (unsupervised
e learning) and some use separate labeled datasets (supervised learning) or partially labeled data within the

e studied dataset (semi-supervised learning) to classify the observations (Wendel et al., 2015; Fernédndez-

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

eSS, BAFTEPYT 5 182 ROF HPISTo B P AalEAnoRy lesnse o disnloy tng IeRIDLIR REIRRIY It rTede Atplp ' e
o+ algorithms to fit PPMs in a Bayesian framework (Tran, 2017; Vo et al., 2018), but the literature on using
e machine learning algorithms to fit PPMs is not yet well-developed. Additionally, several R packages have
s been developed to deal with machine learning procedures (Benaglia et al., 2009; Tovleff, 2018), but none
e accommodate the intersection of point process modelling with mixture modelling or machine learning

6s algorithms.

69 In this paper we develop new tools for fitting models to multi-species PO data with partial species
7 identification by combining the PPM framework with mixture modelling and machine learning approaches
n to accommodate incomplete labelling. These tools implement two algorithms to reclassify the unreliable
7 observations to belong to one of the existing species. The first tool fits mixtures of PPMs to all available
1 data with an Expectation-Maximization (EM) algorithm and uses them to classify the unreliable points.
7 This method will be called Mizture method. The second tool employs an iterative technique to fit
7 separate PPMs to points with known labels augmented by some points with unknown labels depending
s on classification probabilities at each iteration. This method will be hereafter known as the Loop method.
77 Using simulations, we compare the performance in classification and prediction for the proposed algorithms
s to the simple, standard approach of fitting individual PPMs to the points with known species labels only.
7 We found that performance varied based on the choice of initialization and algorithm parameters but

s some of the methods can outperform the fitting of individual PPMs.

» 3 New modelling methods

» 3.1 Notation

s The fitted point process models in our proposed methods make use of a total of M + N + () locations as

s follows:
s Let s1 = {S1,-.-,8m}, 52 = {Smyt1,--+)Smitmats +-+s SK = {SM—mp+1,---,SMm} be vectors that
s contain all of the observed locations with known species identities 1,2,..., K, respectively. These are

ez represented by the orange, purple, and turquoise dots in Figure 1 for a hypothetical dataset. Let
s |s1] = mu,|s2| = ma,...,|sk| = mxk be the number of observed locations with known species identity
s for each of the K species. We collect the M = my + mo + ... + mg total locations with known species
o identities of all K species in s = {sy,s2,...,8x}. Let u = {sp41,...,Sm+n} contain the N observed

o1 locations with uncertain species identities. These are represented by the black question marks in Figure 1.

2 Let = {Sp+nN+1,.-.,SM+N+Q} contain the locations of @ quadrature points placed along a regular
e €1 X co grid throughout the study region (Figure 1). Each quadrature point is placed at the center of one

o of () unique rectangular grid cells throughout the study region. Let ¢(s) be the grid cell in which location

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

cgeSrtlflgdigyC%%ecrarl%/é%/_/) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

96

97

98

99

100

101

102

103

104

105

aCC-BY-NC-ND 4.0 International license.

A ? A A A Sq
A S
=7 ,; C = ? ,',? L] 2
‘ 2 ? ‘ o
, ” % / ,) 2 ‘? ! m S3
? Fak) 7 Eak - , a
z ” 5% 2,90 o : ? WA 0 : 2 a
? %52 %A 2. 5?0 A ! 2
2 ?? 2 ’?
2, re ?) re ? 7?7 a
L] [L} []
? u L] -
2 o = . 9 o7 A ? u-{ay,ay,as}
? ? grid cells
2 ? 2 ? quadrature points
2 7

Figure 1: Three illustrative point patterns. The orange, purple, and turquoise colored dots represent
locations with known species identity, s1, ss, and s3. The gray dots represent quadrature points q, which
are spaced evenly along a regular grid such that one quadrature point is at the centre of each rectangular
grid cell. The black question marks (left) represent observed locations u with uncertain species identity.
The locations in a; € u, as € u, and ag € u which are reclassified as belonging to one of the species are
represented by coloured question marks (right).

3.2 Loop methods

The three loop algorithms proceed by iterating between steps that augment the vectors of locations with
known species identities s1,ss,...,Sx with locations a; C u,as C u,...,ax C u, update the quadrature

weights, and fit point process models as follows:

1. Fit K initial point process models using the vectors of observed locations with known species identity

S1,82,...,8K.
2. Compute the predicted intensities fi;(s) for all s € {sUu} fori e {1,...,K}.

3. Derive an (M + N) x K matrix of membership probabilities w, where

w1 (51)

w1 (52)

LUQ(Sl)

LUQ(SQ)

(wilsman) walsmn)

wr(s1)

wi (82)

wK(5M+N)

The membership probability of location s for species ¢ is defined as

wi(s) =

1(s €s;)

i (s)

> (s

:seEs

1S eu.

(1)

That is, the membership probabilities for the locations with known species identity are 1 for the

correct species and 0 otherwise, and for the locations with unknown species identity, they are

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https //doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certlfled by peer revu%vxg hgoa%ﬁorﬁ%ggar,m IC haﬁ granted bioRxiv a license to display the preprint in perpetuity. It is made available under

propor BY-NC-ND 4.0 International license.
107 4. Define an augmented vector for species i as y; = s; Ua; for all i € {1,..., K}. We define a; as
108 follows:
109 o For the Normal method, a; = u (left panel of Figure 2).
110 e For the Loop grW method, a; = uy,,(s)>5), Where 0 is a minimum membership proba-
111 bility threshold that takes the following values successively at each iteration {dmax,Omax —
112 Osteps - - - » Omin }- That is, the Loop grW method augments the locations with known species
13 identity ¢ with the locations with unknown species identity with membership probabilities for
114 species ¢ that are higher than the current threshold § (middel panel of Figure 2).
115 e For the Loop hgW method, a; = U, (8)>w;. (4N —asn)]? where w; ;) represents the 5t smallest
116 entry of vector w;, the i*" column of w, and a represents the number of locations to be augmented.
117 We set a to be the same integer for all K species for some a between 1 and _%J then at each
118 iteration a is increased by one (right panel of Figure 2).
110 5. Update the quadrature weights for each species. First, assign each location in {yi,...,yx,q} to a
120 grid cell. Then, compute the vector of quadrature weights w; for all points ¢ € {y; U q} as follows:
c1 X cg X w;(t
wi(t) = 0 B

1+ Zse{yqu}]].(C(S) = C(t))w’t(s) .

121 This way of computing quadrature weights is an extension of standard quadrature weight schemes
122 for point process models (Berman & Turner, 1992), in which the weight for location s is equal to the
123 area of the grid cell ¢(s) that contains s divided by the total number of quadrature and observed
124 locations in ¢(s). Here, we divide the area of the grid cell by the sum of the membership probabilities
125 of the observed locations in the grid cell (both with and without known species identities) plus 1
126 (for the one quadrature point in the grid cell).
127 6. Fit point process models using the augmented vector y;, quadrature points q and quadrature weights
128 w; for all species i € {1,...,K}.
129 7. Return to step 2 and stop when we either reach likelihood convergence or we reach a maximum
130 number of iterations that is different depending on the method chosen. Likelihood convergence is
131 determined by:
J
1 |6 (8) - 6.6)]
5 = 2= <e (3)
(5 40)
132 for some choice of €, where E(,B) 7 is the fitted log-likelihood for the j* b species at the ht" iteration.
133 The maximum number of iterations varies for the different methods, as follows:

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
ranted.bioRxiv a license to ja%?a% tr(l)eng

%e“rtified by peer, re}fi(e)\lgv)tiﬁ éhf\]author/f ENAELNE A M d 1

orma

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

nder
me

B hasg

default number of iterations to be 50.

reprint,i
15 set

REPRR = ROl uner

e For the Loop grW method, the maximum number of iterations is determined by the choice of

6maxy 6step7 and 6min~

o For the Loop hgW method, the maximum number of iterations is | & | — a;, where |c| rounds

K

the number ¢ down to the nearest integer, and a; is the first value of a chosen by the user. In

the case of decimals numbers, only the floor is considered as the we can’t add more points than

available per species.

Normal: add all points

1.0

1.0

LoopgrW: threshold probability 0.6

1.0

LoophgW: add 2 points to each species

N o Species 1 o Species 1 o Species 1
[7)) Species 2 7, Species 2 7} Species 2
o e Species 3 Q ® Species 3 Q ® Species 3
s o = o = o
= o] = o = oS
Q Q Q
3] © ©
-8 e . '8 © . ° '8 © ° °
= o 7 = o = o
o ° o o (o} °
Q. ° o o o o
g3t L, 531 ° 531 °
_ . —_ o — o
[0} . ° . [) ° 0] °
g o e ® o . 'g o~ o o 'g (\l_ o)
o ° o ° o °
E L] E (e} E o
o | . o o
= S S
T T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10
Observation Observation Observation

Figure 2: (Left) Normal Loop function. We add all points with unknown species labels to each species,
using membership weights that are proportional to the fitted intensities. (Middle) Method Loop grW
function. We add all points with membership probabilities greater than a threshold d,,ax, then we decreases
from that value to a minimum of 0y, by increments of dgpep. (Right) Method Loop hgW function. We
add the a points with highest membership probabilities to each species, increasing the number a from 1

to [&].

3.3 Mixture of PPMs method

The four mixture algorithms can be fitted by maximizing a log-likelihood function and reclassifying the

locations with uncertain identity using an EM algorithm framework. The algorithm proceeds as follows:

1. We initialize the membership probabilities w for each location s for each species i in one of the

following ways:

« For the knn method, we calculate the distance d;(s) of each location s to the k'" nearest
neighbor of species i, for all K species. We calculate the membership probability of location s

for species i using:

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer revi%w%is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
150 where aCC-BY-NC-ND 4.0 International license.

ming <<k d;(s)

=T

(5)

151 e For the kmeans method, we define w;(s) as in (4) but define z;(s) as

ming <<k dj (s)

zi(s) = ; (6)
di’(s)
152 where d(s) is the distance to the i*® centroid of the i*! cluster.
153 o For the random method, we define w;(s) as in (4) and z;(s) is drawn randomly from a
154 uniform distribution:
zi(s) ~ U[0,1] (7)
155 e For the equal method, we assign equal membership probabilities for the locations with
156 uncertain identity:
I(s€s;) :s€s
wi(s) = (8)
% rseu.
157 Regardless of the initialization method, the sum of membership probabilities across the all species is
158 equal to 1 for all points.
159 2. Classify the locations in u to belong to one of the K species based on the membership probabilities
160 w.
161 3. Fit a point process model using a marked point pattern, where each observation s has a mark defined
162 by the known or classified identity among the K species.

163 4. Compute the predicted intensities i;(s) for all s € {sUu} for i € {1,..., K}.

164 5. E step: We first get the predicted values of each species at the locations s € {s Uu} and calculate

165 the predicted intensity of the mixture of K densities using:

K
f(s)= Zm x fi(s), 9)

166 where f;(s) is the density at location s for the i*® component and 7; is the mixing proportion or
167 weight of the i" species in the mixture.
168 6. We calculate new membership probabilities for each unknown point of u using:

Al s

Zle ﬂz(s)

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125,; this version posted May 27, 2019. The copyright holder for this preprint (which was not
|
certlfled by pe%r reénﬁvlvz 3t{lse ﬁ'i'éh?ﬁ/{lé%%?{ngf) Q%scgé%\é% %iqbngw %cense to d%pe%g et@eolgrgﬁrmt n \pettun SItsls V‘r;r% ekavallab e under

170 labels, the membership probabilities are set to 1 for the correct species label and 0 otherwise.

71 7. M step: Classify the locations in u to belong to one of the K species. The classification for each
172 point s corresponds to the highest membership probability w;(s) for ¢ € {1,..., K}. We compute
173 each species’ proportion of the whole by summing the membership probabilities for each species
174 across both s and u.

175 8. Compute a marked PPM based on the updated classifications and membership probabilities.

176 9. Calculate the model log likelihood using:

K
> fs,B) = log)y mx f(s,5) (11)

s€sUu sesUu i=1
177 10. Repeat steps 4-9 until we achieve likelihood convergence, defined as follows:

hi1(B) — ln(B)]
(1 + [lh1(B)I)

<€ (12)

178 where £;,() is the log-likelihood at the h'! iteration and € is a pre-specified tolerance level.

w 4 Simulation framework

w 4.1 Simulation data

11 To compare the performance of the different algorithms, we simulated patterns tq, to, and t3 of individuals
12 for three species based on “true” distributions defined by four different predictors. Because performance
13 could varied based on sample size, the correlations p; ; among the species distributions, and the proportion
184 of observations with unknown labels, we consider similar and different low abundances by randomly
15 simulating numbers of points between 20 and 50 for the species as well as the correlation between the true

186 species distributions:

187 o Case 1: at least two species i and j have distributions that are highly correlated (|p; ;| > 0.85 for

188 some 4,7 € {1,2,3})
189 o Case 2: no two species have highly correlated distributions (|p; ;| < 0.45 for all 4,5 € {1,2,3})

10 We chose these values for abundances as they would be small enough such that potential value of adding
11 points with unknown species identities could be investigated, and we chose these cutoffs for correlation to

12 create clearly distinguishable contexts.

13 We then created locations with unknown labels u by hiding uniformly at random a certain proportion of

e the total observations (20%, 50% and 80%). The locations in t;, to, and t3 that retained their true species

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
O R B S e O L R D S0 o R A IR B A g yevle uner
s Simulations were conducted using the version 3.4.2 of R (R Core Team, 2017) and used high performance
17 computing to implement 1000 simulations each for different combinations of abundances, correlation
18 among species distributions, and proportions of observations with unknown labels. We also tested different
1o parameters for the knn initialization of the mixture algorithm (the value of k neighbors), the Loop gr'w
20 function (the maximum threshold dyax, minimum threshold 0, and the step size dgiep) and the Loop

20 hgW function (initial number of points added to the point pattern a).

2w 4.2 Suite of Evaluation tools

203 We consider various measures of performance for comparing the distributions. For classification methods,
24 misclassification/accuracy analysis is a common measure of performance (Wendel et al., 2015).We choose
205 the highest mixing weight for each observation to determine the labeling when computing accuracy. We
26 also compared the final membership probabilities of the correct labels of each point to 1 (the true weight)

a7 with a residual sum of squares (RSS).

K
RSS = Z Z(%(S) —1)% (13)

1=1 s€t;

28 where w;(s) is the final membership probability for location s for the correct species i computed using
20 the methods outlined in sections 3.2 and 3.3. Considering residual sum of squares (RSS) alone does not
a0 provide a reliable comparison because the number of unknown observations can vary, so we consider

21 meanRSS instead to standardize the measure for all fitted models:

RSS
meanRSS = N (14)

a2 where N is the number of observations with uncertain species identities.

a3 We also considered measures that compare the true distribution from which we generate the points to
a1 the predicted distributions of the model. We use a sum of correlations between the true and predicted
a5 distributions across all species (hereafter referred to as ‘sumcor’) to assess how well the predicted
216 distributions align with the true distributions. We can use various correlation measures such as Pearson’s

a7 correlation coefficient, Kendall’s 7 or Spearman’s p when computing sumcor.

28 Another global measure of predictive performance of the intensity estimates is the Integrated Mean Square

20 Error (IMSE) (Swanepoel, 1988; Es, 1997). The function is defined as:

s = ([(fute) -)7). (15)

— 00

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
e BP0 SRR e DS AT PR RS HHseoin Aoy e RIeRIRPRRIL Y e e ygble under
21 intensities to be able to compare each methods even if different number of points are considered and

2 compute the IMSE using the values of the true and predicted intensities at the quadrature points q, and

»3 sum across the 3 species.

» 5 Results

25 Here we present the results of the simulations, with more detailed results appearing in the Appendix.
26 In this section, we only present the results from the knn, Lopp grW, Loop hgW and individual PPM
27 methods that displayed the best performances. First, we present the model performances from varying
28 data parameters (abundance, correlation and percentage of hidden labeled data). The individual PPM
»o results will be used as a point of comparison with the other methods as the individual method does
20 not include any of the points with unknown labels. We, then, focus on varying model parameters in
= the different methods (the value of k for knn, the values of dmax, Omin and dgiep for Loop grW and the
z2 value of a for Loop hgW). For these results, we set k = 1, dmax = 0.5, dmin = 0.1, dgtep = 0.1 and a =5
233 according to the algorithm parameters tests presented in section 5.2. For the performance results, the

2 sumcor methods displayed the result using the Pearson correlation coefficient.

»s 5.1 Varying species distributions
2 H.1.1 Different abundances and correlated distributions

2 In Figure 3, we consider different low abundances (m; = 32, my = 42 and ms = 23) and where two
28 distributions are highly correlated. With regard to classification performance, the different modelling
29 methods have similar levels of accuracy, although when comparing meanRSS, the individual and Loop
20 grW methods seem to outperform the other methods, especially as we increase the proportion of hidden
2 observations. With regard to predictive performance, the Loop grW method appears to have the greatest
az performance when measured by IMSE and sumcor, particularly for 50% and 80% of hidden observations.
23 The Loop hgW method performs comparably to the individual PPM method, although its preformance
s gets relatively better as we increase the proportion of hidden observations. The knn method has the
s highest IMSE for 50% and 80% of hidden observations, but it is competitive with the individual PPM
a6 and loop hgW method when comparing sumcor. See Tables 1 and 2 in the Appendix for a comparison of

2«7 means and medians across all of these measures.

#s When examining the predicted intensities with 80% of the observations with hidden species identities, the
20 true pattern appears best captured by the Loop grW method (Figure 4), consistent with sumcor. The

0 Loop hgW method tends to overpredict the intensities.

10

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

[@) [@)
0.7 300000 85"
% 0.6 250000 - 'l
T 05 g . 8 W' 200000 - T B
LT Fa * Yo | = 150000 o &
o 0. EEE* 8- -. 100000 N ET :l.i
0.3 THE s b 50000_'9‘5-8-? === TS
1T T 1 1T 1T 1 1T 1T 1 T 17 [I?I L
cC>-0D C>=0 C>:=O C>-D C>=20D C>=O
£PgE £EP85 £ES% £955 £935 £285
33 33 33 as 33 3s
084 292- 2T -2 -
1.1 Bgo 281 TgoH =mg° T:.e
_ Vo [I-,-T e c - 2.6_ & _:_ 1 |
o 06 E: [T @ 8 24 g [.I]
| ' ! . 1 s :e
& 0.4 1 BQB -... EFF! € 22- Lo
i1t 8ieo J88°| ®20- . §
(@] . (6]
1T T 71 1T 1T 1 1T 1T 1 1T T 1 1T 1T 1 1T T 1
C>=D C>20D C>=O C>=D C>20D C>=0O
£PgE £ESE £ES% £PgE £ESE £ES%
33 33 33 33 33 33

Figure 3: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color boxplot represents a different percentage of hidden observation: in yellow are the performances with
20% of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m; = 32, mo = 42, mg = 23; p1,2 = 0.85, p1,3 = —0.09, p2 3 = 0.20.

80% of hidden observation

0.035

0.030

Speciesi

0.025

0.020

Species2

0.015

0.010

0.005

Species3

knn Indiv Lgr Lhg initial proces

Figure 4: Predicted intensities obtained for the knn, individual, Loop grW and Loop grW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 32, mg = 42, mg = 23; p12 = 0.85, p1 .3 = —0.09, p2 3 = 0.20.

11

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

gselrnﬁgc.if}@oeesrier\ﬁﬂvg s Etﬁg lfﬁt(iicgﬁ%rgseravr\{rclf) g%sé %agicé alogi%% Cﬂﬁ% t}f?g d;iscglﬁg et.he preprint in perpetuity. It is made available under

»2 In Figure 5, we consider similar abundances (my = 33, ms = 34 and m3 = 35) and where two distributions
»3 are highly correlated. With regard to classification performance, the different modelling methods have
x4 similar levels of accuracy, except the knn method does relatively poorly with 80% of the observations
»s hidden. The knn method also suffers worse performance as measured by meanRSS at 50% and 80% of
»6 hidden observations. Measures of predictive performance are similar to the case with different abundances
»7 and correlated distributions. The Loop grW method appears to outperform the others as the proportion
s of hidden observations increases, with the Loop hgW method competitive with the individual PPM
0 method. The knn method appears to do worse with 80% hidden observations when measured by IMSE.

%0 See Tables 77 and 77 in the Appendix for comparisons of means and medians across all of these measures.

21 With 80% hidden observations, the Loop Loop grW method appears to be best aligned with the true

% intensities, as shown in Figure 6.

300000

o
¢ 067 8 ' o 250000 B
2054%g. .. 80 | w 200000 ¥
S o4l 76 HOE !i-a 2 150000 I
o Aoes e= SHE 100000 { .. 80@g- ,.-g
° 50000 g!ﬁ EEmg .8
||(|)| T T T T 0__|_|'?| ITTI T T
CE>50 C>250 S>50 C>=0) C>50 S>:=0
£325 £S5 £T2§5 £o35 £oas goas
£0g FEog ~FLos £90 “£95 TE90
33 33 33 3% 38 3%
0.74 88 o 307

acc
o
(&)
|
[
[
[1]--100

I o~ -
1 T | T 1 - e
1 1 1 p— -
Vo 1 B 25 , oL
- HEEE W
044 7777 oo é 5 2.0 :

[T T = %) :
0.3 L. 8688 s
02000+ 1.5
’ (@)

T T T T T 11 1 T

cC>=0 C>=O e = o

coc co e = e

xe8g9 xXx=89 o ga

=90 "~ -=Qo0 o) o

0o e o o
-1 —13 - -1

Figure 5: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 33, mg = 34, mz = 35; p12 = 0.85, p1,3 = —0.09, pa 3 = 0.20.

12

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has ed; bioRxi i isplay the preprint in perpetuity. It is made available under
accwg\lé%é %&ﬁ%lﬁﬁlicense.

0.025

0.020

0.015

0.010

0.005

knn Indiv Lgr Lhg initial process

Figure 6: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 33, mo = 34, ms = 35; p1,2 = 0.85, p1,3 = —0.09, p2 3 = 0.20.

w3 5.1.3 Different abundances and non correlated distributions

% In Figure 7, we consider different abundances (m; = 42, ms = 31 and m3 = 25) and where none of
x5 the distributions have high correlations. The classification performance and predictive performance
266 comparisons look similar to the case of similar abundances and correlated distributions as shown in
27 Figure 5, with the knn method having the worst classification performance described here at 50% and 80%
s of hidden observations and the Loop grW method outperforming the others in predictive performance,
20 while the Loop hgW method is competitive with the individual PPM method and the knn method lags
20 behind with IMSE at 80% of hidden observations. Tables 5 and 6 in the Appendix contains the means

on and medians across all performance measures for this context.

a2 With 80% of hidden observation as shown in Figure 8, the Loop hgW method for species 1 and 3 and the

2z Loop grW method for species 2 and 3 are the closest to the initial process.

13

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

0.7

meanRSS
o
o

cCooQo
D WA o

acc
COO0O0000
WRUION©

aCC-BY-NC-ND 4.0 International license.

:
] o
0 3e+05 - '8 o
L aN - . =
1 A L "
88a ' 88Y | © 2e+05 - Iii
LLk ege iiii = i uY.
1] -_ I
EEEE |--- P 1e+05_ 8 g :I -
oiT ol i £9c8 =282 (TH
L 8 1] L = s
T T T T T T T T 1711 0e+00 17—
C>=D C>5D C>=0 C>=0 C>=0D C>:=0
coE coTIJE ST/ c—a% c—5% c—a%
xe89 =89 xXe£8a xcego =96 =9
._Oo ._oo ._OO ._OO ._oo ._oo
a9 49 49 a9 49 49
3 3 4 i i i
3.0
s . = - T -
oY T FEET om=s TTiT
. ,
s 9% cer| 525 gelf gl
]] = o ©
EQ =oE gagll| 2 g S5 HE T
o l' Pt . E oo
N @6' o S 20_ N -
o e | o CEEL
855" %E 15 88
S — >
-),
T T T T T T T T T1T7T11 T T 1T T T T 1T T 71711
C>=D C>=D C>:=O0 C>=D C>=0 C>=0
CTRE CTIE TR CTRE CTIE ST
xCOQ. xCOQ' xCOQ' XCOQ_ _\CCOQ_ xCOQ_
._Oo ._oo ._oo ._OO ._oo ._oo
a9 a9 a9 a9 a9 a9
4 3 4 4 4 3

Figure 7: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 42, mg = 31, mz = 25; p12 = 0.09, p13 = —0.42, pa 3 = 0.20.

80% of hidden observation

Species3

knn

Indiv

Lgr Lhg

initial process

0.020

0.015

0.010

0.005

Figure 8: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m; = 42, my = 31, mg = 25; p12 = 0.09, p1 3 = —0.42, pp 3 = 0.20.

14

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

g%rtlflgc.!fyfeesﬁer\ﬁ?m%sélﬁ&ﬁt{icgﬁ%rgseravr\i@ has _rB%%tl_%d ! 0R§ ?ﬁilg’gfésﬂe! to glﬁsﬁ%lﬁgéhe preprint in perpetuity. It is made available under

a5 For similar abundances (my = 39, mg = 37, mg = 38) and non correlated distributions, we again observe
a6 the same trends, as shown in Figure 9: the knn method is the worst method for relabeling performances
a7 and the only one not doing as well as the individual method for 50% and 80% of hidden observations.
as As in previous contexts, the Loop grW method shows the best predictive performance, with the Loop
a9 hgW method being competitive with the individual PPM method, and the knn method having higher
20 IMSE than the other methods when 80% of the observations are hidden. Tables 7 and 8 in the Appendix

261 contain the mean and median value for all performance measures.

22 The predicted intensities show the methods LgrW and knn being the closest to the initial process, as

23 shown in Figure 10.

350000 - :
o 0-6 300000 - e
D 05 - a " 250000 N-
& & | 9 200000 - -
g 047 : geeﬂ i = 150000 - By
03 HpgT Su= (== 100000 T
024 il 8% 50000 1 §882 =m0 W
T?I I T T T T 0 - T T T T T
C>50 C>50 C>50 C>50 C>50 C>50
£085 £925 £98% 985 £985 £985
LI L JEE R
09 {000 3.0 Tz== -

000 Jome g QT
0817777 go0g _ oo ves? =5%, B
6 079 dddty 119 roo| §2 ® gol= BE e
g oo | THEE efBn _gmm| £ 24 HE
Pl pos8 I § ? 50 s §
0.4 - 8go00 8 %% P @g
0.3 13 1.8 o
T T T T T T T 11 T 11 1T
B3%T EaET EeEE EeED maED e
£0op £0ogo £0¢o £0o¢o £0og =Noks}
s 88 48 s 88 38

Figure 9: Measures of performance for the knn, individual, Loop grW and Loop grW methods. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m; = 39, mo = 37, msg = 38; p1,2 = 0.09, p13 = —0.42, p2 5 = 0.20.

15

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has ggapted. bi i i isplay the preprint in perpetuity. It is made available under
acc@f‘nf%-lﬂ%%% ﬁ#é%@%‘&.{?license.

0.025

Species1

0.020

0.015

Species2

0.010

0.005

Species3

knn Indiv Lgr] Lhg initilrc;::ess
Figure 10: Predicted intensities obtained for the knn, individual, Loopg rW and Loop grW initialization

methods and the initial intensities from the process at 80% of hidden observations. The parameters of
abundances and correlation are:m1=39, m2=37, m3=38; p1_2=0.09, p1_3=-0.42, p5_3=0.20

= 9.2 Testing algorithm parameters
s 5.2.1 knn method

26 We note that when the k nearest neighbor value increases (from 1 up to 20), the model performances
27 decrease; Figure 11. It is particularly notable for the performances in prediction where sumcor performances
2 decrease and IMSE performances increase. Also, there is an expected drop in performances as we increase

250 the proportion of observations with unknown species labels.

16

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has gr

290

291

292

293

294

295

296

297

298

299

3

S

0

acc BV RERETIM

0.7 ©
0 ' 0ee
% 0.6 o
§ 0.5 8 : Eééigs
04 111t
S | EEEEES gee
Tl illlee
T T T T T T T T T T T T T T T 1T
—MOUOOUO +TMHUOWO Moo
——Q ——Q ——Q
074 .. 7.
06- i:1.00 8¢
g o2 B smcigo |
I
1 1 1 1 OO
03_ + 4+ 11200 égégo
02 4 000000 o
: 000000
0.1 = |?|||| TT T T T T T T T 1T
—MOHOWO —MOHOWO —MOOWO
— QA ——Q
k value

efnpelg display the preprint in perpetuity. Itis made available under
ernational license.

4e+05 — [oXeXe}
060
3e+05 — o
W’ il
Loe+05 i:illl
1e+05 - TTLLL ..:iii

222088 =ocsss Ll
T T T 171 T T TTT1 T T T 171
—NOUOONO +MHUOONO +MUOOoWno
—r—Q ——Q -
28 - §ETHYR ToEmm - --
_ 26 3!! !g!$$$ Lo
S 24 L lll“l
5 22 EEERE
2.0 - SUREE
18 888545
16 © 000
' T T T 1T T T T 1T T T T 1T
OO O —OOOoOWO —OOOWO
QA QA QA

k value

Figure 11: Model performances for the knn method. Each color represents a different percentage of hidden
observations: in yellow are the performances with 20% of hidden observations, in green with 50% and
in blue with 80%. The parameters of abundances and correlation are: m; = 32, ms = 42, mg = 23;
P12 = 085, P1,3 = —0.09, P2,3 = 0.20

5.2.2 Loop grW method

For the Loop grW method we tested different parameters:

1. The initial membership probability threshold ,.x: while this parameter varies from 0.8 to 0.5 in

increments of 0.1, the other Loop grW parameters are as follows: dpyin = 0.1 and dstep = 0.1.

2. The final membership probability threshold d,,;,: while this parameter varies from 0.1 to 0.7 in

increments of 0.2, the other Loop grW parameters are as follows: max = 0.8 and dgpep = 0.1.

3. The step size dgep: While this parameter varies from a minimum of 0.01 to a maximum of 0.2, the

other Loop grW parameters are as follows: dp.x = 0.8 and i, = 0.1.

When we change the value of dy,ax, there is very little difference in performance within each proportion of

observations with hidden labels, although d,,x = 0.5 appears to be slightly superior to the other choices

for high percentage of hidden observation (Figure 12).

17

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125,; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who ha m lay the preprint in perpetuity. It is made available under
%W?:FD% Ir#erna |onaﬁ%39nse.

301

302

303

304

305

300000 ©0000
0.6
% g 250000 - E R
0.5 l i‘ LLI200000
o o) !
c QQ —] :
PALTLETTE el -
£ 100000 ﬁ - l
03 EEEIEIEI T Ll 50000—5_ =!! ;
Tiis LR L
T T 171 T T 171 T T 171 T T T T T T
QRONOY RONOY QON QW QBNOY RBNQW RONQW
[eololoNoNe] [eoleoloNoNe] [eoloNoNoNe] OOOOO [eolololole) [eolololoNe)
084 2999° emSaR Co2o2 T TTTT
ClTTTTT o 28 260686 =To%
it eegos el B 1L II.I
0-6 ! ! ! ! ! 1 1 : 1 @@ @@ o =3 ; ® & 1 1
(&) ! ! (&) —] O o
8 oo | (HOHH 25588 aemem | € 2 : Sl
) [I v v) <7 : . : ,\ R
i ¢eBes ggggg 2.0 A -
029 115111 18 4 Ug-!
o o . (e eNeNeXNe)
T T 171 T T 171 T T 171 T T 171 T T 171 T T 171
RRNOY RONOY RN QW RENOY DONOY QRN QW
[oNoNoNoNe] [eoNoNoNoNe] [eoNoNoNoNe] [oNoNoNoNe] [oNoNoNoNo] [oNoNoNoNo]
Delta_max Delta_max

Figure 12: Model performances for the Loop grW method and for different values of d,a2x. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
my = 32, mo = 42, ms = 23; P12 = 085, P1,3 = —0.09, pP2,3 = 0.20

When changing d.,in, the classification accuracy is relatively the same (Figure 13). For MeanRSS, IMSE
and sumcor, we can observe a curved pattern of performances, where the performances decrease (MeanRSS
increases, IMSE increases and sumcor decreases) from dyi, from 0.1 to 0.5 and then the performances get
slightly better (MeanRSS decreases, IMSE decreases and sumcor increases) for dp,i, = 0.7 (Figure 13).

Omin=0.1 displays the better performances.

18

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who ha g s y ygplay the preprint in perpetuity. It is made available under
eI AT

aC Icense.
350000 00°©
_ e

o 08 . 8 300000 ©
D 05 - gé : L 1| 250000 688
T 888 T | 2200000 Do
(1} —e N ' ! '. E [

o 041 T EE' © o M =450000 A '
E s lHEEE =7 .52 "¢8 . 100000 - ii ...
034 BE5= 8. T 188 ==t B
LIl 000 g 888 ITT= Tooi0
L 1T T T 1T T T T 171 T 171 1T 11
—@muN T @ouN s onN —QuN —@ouN s QuN
o O o o o O o o o O o o O O oo O O oo O O oo
084 2292°¢ hse =T O - -
T eo_ g o L !ﬁE N
064 Lt it TTTY 0562 | 5 o, g ll.

O EI LI IIII O . S~ :
S 04 - O =se= Waml | £ 22 R A
1 sevos BB 7 201 Py
024 L L1 © éé@ 1.8 o%
000 1.6 86
L 1T T T 1T T T L L 1T T T
TN Colh oW TN Colh S oW
o O O o o O O o o O O o o O O o o O O o o O O o

Delta_min Delta_min

Figure 13: Model performances for the Loop grW method and for different values of é,,;,. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
my = 32, mo = 42, ms = 23; P12 = 085, P1,3 = —0.09, pP2,3 = 0.20

w06 Figure 14 shows different performance measures as we vary dgstep- There do not appear to be major
sor differences in classification performance, although 0.1 appear slightly better for meanRSS. With 50% and
8 80% of hidden observations, predictive performance display a curve performances where performances get

300 better (IMSE decreases and sumcor increase) from 0.01 till 0.1 and then get worse (IMSE increases and

=1

s sumcor descreases) from 0.1 to 0.2. dgep=0.1 displays the best performances accross all measures.

19

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who ha g s y ygplay the preprint in perpetuity. It is made available under
eI AT

aC Icense.

8 350000 °% o
» %8 @T é 300000 - o
D o5 8o o !B 11250000 ~ g8 8
m . B ™ : ||
c 88 8 : g . 0200000 — Vo !
S 0.4 - 9 Ei@ .l =150000 3 l.
£ SRR == g M 100000 j o 6 . '
03] BEEE B==8 T, ii n
R R 50000 Se= | M
R S 0 gg%% %TG-L e
T T 1 T T 1 T T 1 T 17T T 17 T 11
— 0O~ O — 0~ O — O~ O — 0 ~—O — 0 —O — 0 -0
2SN 9958 9ogdy 2S5 9ogd 9ogd
o o o o o o o o o o o o o o o o o o
' TTTT o 2819 o'g' === T g
i geeg ,_2.6—8-5 ' : .
o Tl sy i 999 8 o4 l:
1 1 - @, |I|
% 0.4 — EEQB EEEE -——- g 2.2 R :
T T T ':" .. ! m20_ :||
Pl 86 8 2 g S
02 L L L. 8¢ gsg 1.8 7 905
Oo0 o 1.6 g o
T T 1 T T 1 T T 1 T T 1 T T 1 T T 1
- 0 — O - 0 — O - 0 — O — 0~ O - 0 — O — 0~ O
2SN 9958 9ogdy 2SN 9958 9ogdy
o o o o o o o O o o o o o o o o o o
Delta_step Delta_step

Figure 14: Model performances for the Loop grW method and for different values of weight step. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: my = 32, mg = 42, mz = 23; p1,2 = 0.85, p1 3 = —0.09, pa 3 = 0.20

s 5.2.3 Loop hgW method

sz In the Loop hgW method, we vary the number of points a added at each iteration. In Figure 15, we can

a3 see that there is no variation in performances when the number of added points a increases.

20

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125,; this version posted May 27, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who h i W igplay the preprint in perpetuity. It is made available under
a&gwm%ﬁl ernational license.

| 350000 °
o ° 300000 an
9 0.5 250000 e ﬁ :
o w b
c 200000 L
0.4 1 =150000 l L
() aa
E 13- 100000 aaﬁ llllll
il 50000 -| RRYRIQY s=soTeS waitatl
FTTTTTT FTTTTTT FTTTTTT FTTTTTT FTTTTTT FTTTTTT
MO0 Moo ~—MOOLOOLD —MLOOOLOOLD Moo —MLIOOLOOLD
QAN QAN QAN QAN ~——QIN QAN
| 60000000 [=)
83 888 T @%@33% sgg;ggg TrTeTT
ST . 25 " I
o 067 1iiiiil 6600688 | B !!g II .“.
OOS_I'""'"""'I L b [I E :::::ll
® o4 OBy Seesess Eggemel | S oo Ll
03 Liliii. ggg@g@@ 88 g
024 000:::: 8)L 15 gg S
???I 17T FTTTTTT FTTTTTT ' FTTTTTT FTTTTTT (I)I I I?I I
MO0 Moo ~—MOOLOOLD Moo ~MOOOOLD +~MIOOWOOLN
QAN QAN QAN hanh an{9\V[aV] QAN QAN
points added a points added a

Figure 15: Model performances for the Loop grW method. Each color boxplot represents a different
percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in
green for 50% and in blue for 80%. The parameters of abundances and correlation are: my = 32, mgy = 42,
ms = 23; P12 = 085, P1,3 = —0.09, P2,3 = 0.20

siu The results for the other combination of abundances and correlation are showed in the Appendix.

+ 6 Discussion

ais In this article, we present a new modelling tool in R that aims to incorporate the observed locations
a7 with unknown species identities to improve species distributions. These tools accommodate two ways of
s1s reclassifying information using mixture modelling and the machine learning framework with 7 different
a0 initialization methods. We tested our algorithms in different contexts where we vary the abundances of
20 our species (similar or different), the correlation between them (two distribution are correlated or none are
a1 correlated) and the proportion of unknown species identities (20%, 50% and 80%). The different methods
3 were compared to the individual method which ignores locations with unknown species identities to see

13 whether the proposed algorithms allow us to fit distributions that are closer to the initial processes.

324 In the results we presented the three best methods. They showed varying performance depending on
s the aspects of the model and the performance measure considered. The novelty of these tools, makes it
26 difficult to compare to other existing tools that either do not consider point pattern process (Frame &
7 Jammalamadaka, 2007; Frithwirth-Schnatter, 2006; Hui, 2016; Martinez, 2015; Melnykov & Maitra, 2010;

2 Quost & Denceux, 2016), Poisson distributions (Figueirido & Jain, 2002; Hui et al., 2015; Scrucca et al.,

21

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

SEria By s S 51 AR S HAe Lo Riaaery a55nsn o cpley he YERTILMAIS U 1 SIS Aupltle under
s0 of mixture (Witten, 2011; Wendel et al., 2015) or semi-supervised learning frameworks (Di Zio et al., 2007;
s Fraley & Raftery, 1998; Jeffries & Pfeiffer, 2001; Taddy & Kottas, 2012).

s The other methods (kmeans, random, equal and normal) not presented previously in the results are
33 presented in the Appendix. They show relatively worse performance across all measures, although at
s times, the normal loop method is competitive with the individual PPM and the Loop hgW methods. We

35 note that this method performs slightly better when the distributions are correlated.

s We have noticed differences in performance, that are more significant when we increase the proportion
s of observations with hidden labels. While at 20% of hidden observations, all methods performed fairly
18 similarly, at 50% and 80% of hidden observations, the loop grW method in particular showed the best
30 predictive performances regardless of differences in abundance and correlation among species distributions.
uo For this method, only the points with the highest membership probabilities are added. We set the
s maximum and minimum thresholds at dmax = 0.5 and dmin = 0.1 and a step size of dgep = 0.1, but we
w2 could expect that performances may be better or worse with different choices of these parameters as
us shown in the results. These choices appeared to produce superior performances for most measures than
ss other values of these parameters considered. Higher values of d,i, led to worse performances. This result
us can be seen as counterintuitive as we can expect that having a smaller interval of weight for example could
us improve this particular performances. It will in other words reduce the interval of weights and better
a7 discriminate the points of uncertain identity. As for dgcp, choosing a value that is too small may lead to
g iterations where no points are added, while choosing a value that is too large may be too discriminating

uo and does not allow to reclassify the points.

0 The Loop hgW method did not perform as good as the Loop grW method even if it has been shown to be
31 as good as the individual method in some contexts. For this method, we add initially a certain number of
2 points a that is increased at each iteration. While the a points with highest membership probabilities are
33 added, these membership probabilities may be small for large values of a, and this could explain that this

s method is not always doing as good as the best method.

s Interestingly, the knn method was the best of the four mixture methods tested, outperforming the kmeans,
s random and equal initialization options. Previous studies using the EM algorithm for classification and
37 clustering data show that such algorithms are highly dependent on the initialization method (Figueirido
s & Jain, 2002; Melnykov & Maitra, 2010; O’Hagan et al., 2012). Additionally, even very popular methods
39 like kmeans have some drawbacks. Its performance is dependent on overlapping densities and whether the
w0 distributions are roughly circular or not. The choice of the centroid is also not consistent and chosen at
s random for the first calculation (Yoo et al., 2012, 2007; Wu et al., 2008). In our simulations, kmeans,

2 random and equal methods showed very different results and always performed worse than the other

22

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125,; this version posted May 27, 2019. The copyright holder for this preprint (which was not
e £ e A e L e SS9 e ISR R e (. e areflfle uncer

3¢ intensities compared to the true process.

s Despite outperforming the other mixture modelling methods, the knn method was still not competitive
s with the machine learning methods or the individual PPM method when the proportion of hidden
7 observations are 50% or 80%. However, the knn method was quite consistent in the predicted intensities
s and showed similar results to the individual method for the sumcor measure at 50% or 80% of hidden
0 observations. Other studies have found that the performance of the knn method is linked to the metric
s chosen to calculate the nearest neighbor distances and the value of the number & of nearest neighbors

sn (Weinberger & Saul, 2009; Guo et al., 2003; Wu et al., 2008).

sz We tested how the number of neighbors k can influence the model and found that for any combination of
sz abundance and correlation, all the measures of performances decrease when the values of k increase. It is
s expected as the neighboring points are further away from one another and could conflate species habitat
s preferences with differing species abundances, but requiring more neighbor points can also stabilize the
s distances. The way of choosing the value of k by utilizing different distance metrics could also impact the

sn - performances as previously noted, but we shall leave this aspect of the analysis for future consideration.

s In our simulations, we have considered a relatively general case of point patterns and we only varied
39 species abundance and correlation among distributions in addition to the proportion of observations with
s hidden information. For real ecological data sets, there are more factors to consider that can influence
s how a model will perform. First, the abundances tested in the simulation are quite low (20-40 points) and
;2 some methods can show convergence issues in this context. While we use the spatstat package (Baddeley
3 el al., 2015) to fit PPMs, we could make use of similar functions in the ppmlasso package (Renner &
s« Warton, 2013) which integrate regularization methods like the lasso penalty that can boost performances
s with low sample sizes. A related point is that we included all covariates that were used to generate
s the true point patterns in our models. In real situations, however, we may not have access to the best
7 covariates or know which ones truly determine the species distributions. Applying a lasso penalty to help
s in variable selection may therefore be provide a natural way forward in this context. Finally, a key reality
s when dealing with presence-only data is the presence of observer bias, in which sampling effort varies
s throughout the study region. Some models apply a correction for observer bias in the prediction (Hefley
s et al., 2013; Lahoz-Monfort et al., 2014; Warton et al., 2013) and our tools would be able to accommodate

s such improvements.

« 7 Conclusion

s The new algorithms presented in this article aim to reclassify observations that have uncertain or unknown

35 labels in order to better predict point pattern distributions. We showed that machine learning based

23

https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https //doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (WhICh was not
e S o D F R U ST SRS P TS T PSYPE Bl 5 U Avhle under

s7 method and also better than the individual PPM method that does not include the points with unknown
s.s labels. Our simulations showed encouraging results in this context with good performances in some cases,
0 although there are some improvements to implement in order to make the tools more appropriate for real

w0 life data.

« Acknowledgments

w2 Computational resources used in this work were provided by Intersect Australia Ltd.

« Authors’ contributions

s EG and IR conceived the ideas and designed methodology; EG and IR built the algorithms; EG analyzed
ws the data; EG and IR led the writing of the manuscript. MM had an overview on the project. MM and EB

ws reviewed the paper. All authors contributed critically to the drafts and gave final approval for publication.

« Data accessibility

ws Rscript: An example of the scripts used for this paper is available here: functions to use for the test

w0 simulation g and the script example g

w» References

a1 Aarts, G., Fieberg, J. & Matthiopoulos, J. (2012) Comparative interpretation of count, presence-absence
a2 and point methods for species distribution models. Methods in Ecology and Evolution, 3, 177-187.
a3 https://doi.org/10.1111/j.2041-210X.2011.00141.x.

ae Baddeley, A., Gregori, P., Mateu, J., Stoica, R. & Stoyan, D. (2006) Modelling Spatial Point Patterns
a5 in R. In: Baddeley A., Gregori P., Mateu J., Stoica R., Stoyan D. (eds) Case Studies in Spatial
216 Point Process Modeling., volume 185 of Lecture Notes in Statistics. Springer, New York, NY. https:
a7 //doi.org/10.1007/0-387-31144-0_ 2.

as Baddeley, A., Rubak, E. & Turner, R. (2015) Spatial Point Patterns: Methodology and Applications with
mo R. Chapman and Hall/CRC Press, London. https://doi.org/10.1201/519708.

0 Benaglia, T., Chauveau, D., Hunter, D.R. & Young, D. (2009) mixtools: An R package for analyzing
2 finite mixture models. Journal of Statistical Software, 32, 1-29. https://doi.org/10.18637 /jss.v032.106.

w2 Berman, M. & Turner, T.R. (1992) Approximating point process likelihoods with glim. Journal of the
a3 Royal Statistical Society: Series C' (Applied Statistics), 41, 31-38. https://doi.org/10.2307/2347614.

24

###

#

Functions to use in the testsims function

#

###

call the different function for the simulations

Function ppmMixEngine

#---

makeMask = function(Qppp)

{

 q_df = data.frame(x = Qppp$x, y = Qppp$y)

 ux = sort(unique(q_df$x))

 uy = sort(unique(q_df$y))

 nx = length(ux)

 ny = length(uy)

 col.ref = match(q_df$x, ux)

 row.ref = match(q_df$y, uy)

 all.vec = rep(0, max(row.ref)*max(col.ref))

 vec.ref = (col.ref - 1)*max(row.ref) + row.ref

 all.vec[vec.ref] = 1

 mask.out = matrix(all.vec, max(row.ref), max(col.ref), dimnames = list(uy, ux))

 mask.out

}

#--

# 								function ppmMixEngine

#--

ppmMixEngine = function(datappp, quads, ppmform, all_true, all_test,

 initweights = c("knn","kmeans", "random", "equal"),

 k=1, cov.list, cov.bias=NULL, kVal = NULL, kAreaInt=NULL,

 verbose = TRUE, tol = 0.001, maxit = 50, plots = FALSE)

{

 datamarks = marks(datappp)

 uniquemarks = unique(datamarks)

 unknown = datamarks == "Unknown"

 nclust = length(unique(datamarks)) - 1

 splitppps = split(datappp, as.factor(marks(datappp)))

 for (i in 1:(nclust + 1))

 {

 assign(paste("ppp_", names(splitppps)[i], sep = ""),

 splitppps[[i]])

 }

 #1# Initialization of membership probabilities

 #++

 # Set up otpion for initial weights

 initweights <- match.arg(initweights)

 # for knn method

 if (initweights == "knn"){

 nndists = nndist(datappp, k=k, by = as.factor(marks(datappp)))

 nndists = nndists[,-which(colnames(nndists) == "Unknown")]

 weight_num = apply(nndists, 1, min)/nndists

 init.weight = weight_num/apply(weight_num, 1, sum)

 init.weight[datamarks != "Unknown"] = rep(0, nclust)

 for (i in 1:nclust)

 {

 rowfill = which(datamarks == colnames(nndists)[i])

 init.weight[rowfill, i] = 1

 }

 init.weight[is.nan(init.weight)] <- 1

 iterweights = init.weight

 itermarks = datamarks

 itermarks = colnames(nndists)[apply(init.weight, 1, which.max)]

 }

 #for kmeans method

 if (initweights == "kmeans"){

 xy = coords(datappp)

 ncenter = nclust

 comp_mean = kmeans(xy, ncenter)

 Ccenter = comp_mean$centers

 All_dist_center = matrix(data=NA, nrow=nrow(xy), ncol=nclust)

 for (i in 1:(nclust))

 {

 Di= sqrt((xy$x-Ccenter[[i]])^2 + (xy$y-Ccenter[[i+nclust]])^2)

 All_dist_center[,i] = Di

 }

 colnames(All_dist_center) <- paste("D", 1:nclust, sep = "")

 marksknown = uniquemarks[-which(uniquemarks == "Unknown")]

 colnames(All_dist_center) = marksknown

 weight_num = apply(All_dist_center, 1, min)/All_dist_center

 init.weight = weight_num/apply(weight_num, 1, sum)

 init.weight[datamarks != "Unknown"] = rep(0, nclust)

 for (i in 1:nclust)

 {

 rowfill = which(datamarks == colnames(All_dist_center)[i])

 init.weight[rowfill, i] = 1

 }

 init.weight[is.nan(init.weight)] <- 1

 iterweights = init.weight

 itermarks = datamarks

 itermarks = colnames(All_dist_center)[apply(init.weight, 1, which.max)]

 }

 # for random method

 if (initweights == "random"){

 random.val = runif(nclust*datappp$n, min=0, max=1)

 weight_num = matrix(random.val, datappp$n, nclust)

 init.weight = weight_num/apply(weight_num, 1, sum) # make weights add up to 1

 colmarks = uniquemarks

 colmarks = colmarks[-which(colmarks == "Unknown")]

 colnames(init.weight) = colmarks

 init.weight[datamarks != "Unknown"] = rep(0, nclust)

 for (i in 1:nclust)

 {

 rowfill = which(datamarks == colmarks[i])

 init.weight[rowfill, i] = 1

 }

 init.weight[is.nan(init.weight)] <- 1

 iterweights = init.weight

 itermarks = datamarks

 itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

 }

 # for equal weights method

 if (initweights == "equal"){

 init.weight = matrix(1/nclust, datappp$n, nclust)

 colmarks = uniquemarks

 colmarks = colmarks[-which(colmarks == "Unknown")]

 colnames(init.weight) = colmarks

 init.weight[datamarks != "Unknown"] = rep(0, nclust)

 for (i in 1:nclust)

 {

 rowfill = which(datamarks == colmarks[i])

 init.weight[rowfill, i] = 1

 }

 init.weight[is.nan(init.weight)] <- 1

 iterweights = init.weight

 itermarks = datamarks

 itermarks = colnames(init.weight)[apply(init.weight, 1, which.max)]

 }

 #2# Fit point process models

 #++

 # continue general script for all the methods

 p = table(itermarks)/sum(table(itermarks))

 iterppp = datappp

 marks(iterppp) = as.factor(itermarks)

 Qmask = makeMask(quads)

 Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

 ntile = c(dim(Qmask)[2], dim(Qmask)[1]),

 npix = c(dim(Qmask)[2], dim(Qmask)[1]))

 if(is.null(cov.bias)){

 cov.list = cov.list

 }else{

 pred.list = cov.list

 set.Val = cov.bias #Variables to set to a certain value

 for (v in set.Val){

 pred.list[[v]]$v = kVal*pred.list[[v]]$v

 }

 }

 #continue script with bias

 formchr = as.character(ppmform)[2]

 formsplit = strsplit(formchr, "\\+")

 markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

 if(is.null(kAreaInt)){

 fit1 = ppm(Q, trend = markform, covariates = cov.list,

 gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

 }else{

 fit1 = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

 gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

 }

 #3# Compute predicted intensities

 #++

 if(is.null(cov.bias)){

 fitbef.pred = predict(fit1, covariates = cov.list)

 }else{

 fitbef.pred = predict(fit1, covariates = pred.list)

 }

 if (plots == TRUE)

 {

 plot(fitbef.pred, main="predict - log(fitbef.pred)")

 }

 pfit.b = fitted(fit1)

 loglik.old <- 0.

 loglik.new <- 1.

 #

 # Iterator starts here,

 #

 is_known = which(datamarks != "Unknown")

 niter <- 0

 while(abs(loglik.new - loglik.old)/(1 + abs(loglik.new)) > tol) {

 if(niter >= maxit) {

 warning(paste("E-M algorithm failed to converge in",

 maxit, ngettext(maxit, "iteration", "iterations")),

 call.=FALSE)

 break

 }

 niter <- niter + 1

 #4# Get the predicted intensities at the location S

 #++

 # E - step

 predint = matrix(NA, sum(unknown), nclust)

 for (i in 1:nclust)

 {

 ppp_i = ppp_Unknown

 marks(ppp_i) = as.factor(colnames(iterweights)[i])

 if(is.null(cov.bias)){

 predint[,i] = predict(fit1, locations = ppp_i)

 }else{

 predint[,i] = predict(fit1, covariates = pred.list, locations = ppp_i)

 }

 }

 p_mat = t(matrix(p, ncol(predint), nrow(predint)))

 predint_p = predint*p_mat

 #5# Caluclate New weights

 #++

 iterweights[unknown,] = predint_p/apply(predint_p, 1, sum)

 # end E-step

 #6# We compute species proportions

 #++

 # M - step

 p = apply(iterweights, 2, sum)/sum(apply(iterweights, 2, sum))

 itermarks = datamarks

 itermarks = colnames(iterweights)[apply(iterweights, 1, which.max)] # assign marks based on new weights

 iterppp = datappp

 marks(iterppp) = as.factor(itermarks)

 #7# Update quadrature weights

 #++

 Q = quadscheme(data = iterppp, dummy = quads, method = "grid",

 ntile = c(dim(Qmask)[2], dim(Qmask)[1]),

 npix = c(dim(Qmask)[2], dim(Qmask)[1]))

 formchr = as.character(ppmform)[2]

 formsplit = strsplit(formchr, "\\+")

 markform = as.formula(paste("~", paste(paste(formsplit[[1]], "* marks"), collapse = " + ")))

 #Q$w = sp_wts

 #8# Fit new point process models

 #++

 if(is.null(kAreaInt)){

 fit1.after = ppm(Q, trend = markform, covariates = cov.list,

 gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

 }else{

 fit1.after = ppm(Q, trend = markform, covariates = cov.list, AreaInter(kAreaInt),

 gcontrol = list(epsilon = 1e-6, maxit = 100)) # including known and unknown points

 }

 fit1 = fit1.after

 if(is.null(cov.bias)){

 fitaft.pred = predict(fit1.after, covariates = cov.list)

 }else{

 fitaft.pred = predict(fit1.after, covariates = pred.list)

 }

 if (plots == TRUE)

 {

 plot(envelope(iterppp))

 plot(fitaft.pred, main="predict - log(fitaft.pred)")

 }

 pfit.af = fitted(fit1.after)

 fitted.mix = fit1.after$internal$glmfit$fitted.values

 m.cor <- markcorr(iterppp)

 if (plots == TRUE)

 {

 plot(m.cor)

 }

 # end M-step

 #9# Stopping criterion

 #+++

 # evaluate marginal loglikelihood

 loglik.old = loglik.new

 allp_mat = t(matrix(p, ncol(predint), nrow(iterweights)))

 loglik.new <- sum(log(apply(allp_mat * iterweights, 1, sum)))

 loglik.new

 #loglik for mixture model : iterwights regroups weights for known and unknown observation

 # Prepare weights for the plots

 Weight.df = as.data.frame(iterweights[unknown,])

 if(verbose)

 cat(paste("Iteration", niter, "\tlogLik =", loglik.new,

 "\tp =", signif(p,4), "\n"))

 }

 if(verbose) {

 cat("\nEstimated parameters:\n")

 cat(paste("p [cluster] =", signif(p, 5), "\n"))

 cat(paste("\nloglik.new:\n", signif(loglik.new), "\n"))

 if (plots == TRUE)

 {

 par(xpd=NA)

 known.marks = unique(iterppp$marks)

 plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

 xlab="observations", ylab="weight")

 for (i in 2:nclust) {

 colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

 points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

 i =i + 1

 legend(110,1, c(known.marks), col = c("orange", colvect),

 pch = 16, xjust = 1, yjust = 0, merge = FALSE)

 }

 }

 }

 return(list(z = round(p, digits = 4),

 probs = p,

 niter = niter, maxit = maxit,

 converged = (niter >= maxit),

 New_weights = round(iterweights, digits = 4),

 pfit.b = pfit.b,

 pfit.af = pfit.af,

 fitted.mix = fitted.mix,

 fit.final = fit1.after,

 fitaft.pred = fitaft.pred

 #hist=if(plothist) H else NULL

 # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

 # xlab="observations", ylab="weight"),

 # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

 # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

 # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

 # pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

))

}

Function ppmLoopEngine

#---

scoreweights = function(sp.xy, quad.xy, coord = c("X", "Y"), scores = NULL)

{

 if (is.null(scores)){

 score.all = rep(1, (dim(sp.xy)[1]) + dim(quad.xy)[1])

 }else{

 score.all = c(scores, rep(1, dim(quad.xy)[1]))

 }

 sp.col = c(which(names(sp.xy) == coord[1]), which(names(sp.xy) == coord[2]))

 quad.col = c(which(names(quad.xy) == coord[1]), which(names(quad.xy) == coord[2]))

 X.inc = sort(unique(quad.xy[,quad.col[1]]))[2] - sort(unique(quad.xy[,quad.col[1]]))[1]

 Y.inc = sort(unique(quad.xy[,quad.col[2]]))[2] - sort(unique(quad.xy[,quad.col[2]]))[1]

 quad.0X = min(quad.xy[,quad.col[1]]) - floor(min(quad.xy[,quad.col[1]])/X.inc)*X.inc

 quad.0Y = min(quad.xy[,quad.col[2]]) - floor(min(quad.xy[,quad.col[2]])/Y.inc)*Y.inc

 X = c(sp.xy[,quad.col[1]], quad.xy[,quad.col[1]])

 Y = c(sp.xy[,quad.col[2]], quad.xy[,quad.col[2]])

 round.X = round((X - quad.0X)/X.inc)*X.inc

 round.Y = round((Y - quad.0Y)/Y.inc)*Y.inc

 round.id = paste(round.X, round.Y)

 round.tab = aggregate(data.frame(score.all), list(ID = round.id), sum)

 scorewt = X.inc*Y.inc*score.all/round.tab$score.all[match(round.id, round.tab$ID)]

 scorewt

}

#--

# 								function ppmAddEngine

#--

ppmLoopEngine = function(datappp, all_test, n.sp, addpt = c("normal","Loop_grW", "Loop_hgW"), quads,

 ppmform, delta_max=NULL, delta_min=NULL, delta_step =NULL, num.add = NULL,

 cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

 tol=0.000001, verbose = TRUE, plots = FALSE){

 datamarks = marks(datappp)

 uniquemarks = unique(datamarks)

 unknown = datamarks == "Unknown"

 nclust = length(unique(datamarks)) - 1

 splitppps = split(datappp, as.factor(marks(datappp)))

 for (i in 1:(nclust + 1))

 {

 assign(paste("sp_sub", names(splitppps)[i], sep = ""),

 splitppps[[i]])

 }

 #1# Fit initial point processes

 #+++

 #specie separetely

 ppp_list = list()

 Q = list()

 for (i in 1:nclust) {

 ppp_list[[i]] = unmark(splitppps[[i]])

 Q[[i]] = quadscheme(data = ppp_list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

 i=i+1

 }

 # Fit Poisson PPMs

 ppm_list = list()

 for (i in 1:nclust) {

 ppm_list[[i]] = ppm(Q[[i]], trend = ppmform, covariates = cov.list,

 gcontrol = list(epsilon = 1e-6, maxit = 100))

 i=i+1

 }

 quad.xy = data.frame(X, Y)

 if(is.null(cov.bias)){

 cov.list = cov.list

 }else{#--- Set observer bias variables to kVal

 pred.list = cov.list

 set.Val = cov.bias #Variables to set to a certain value

 for (v in set.Val){

 pred.list[[v]]$v = kVal*pred.list[[v]]$v

 }

 }

 datamarks = marks(datappp)

 uniquemarks = unique(datamarks)

 unknown = datamarks == "Unknown"

 names.mark = uniquemarks[uniquemarks != "Unknown"]

 niter <- 0

 loglik.old.sp = rep(NA, nclust)

 loglik.new.sp = rep(NA, nclust)

 for (i in 1:nclust) {

 loglik.old.sp[i] <- 1.

 loglik.new.sp[i] = ppm_list[[i]]$maxlogpl

 }

 Lcrit = 1.

 Lcrit.vec = rep(NA, maxit)

 breakloop = 0

 is_known = which(datamarks != "Unknown")

 all_wts = array(data = NA, dim = c((maxit + 1), all_test$n, n.sp))

 while(breakloop == 0)

 {

 niter = niter + 1

 #2 Compute predicted intensities

 pr_ppm_list = list()

 for (i in 1:nclust) {

 if(is.null(cov.bias))

 {

 pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = all_test)

 }

 else

 {

 pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = all_test)

 }

 }

 #3 Compute membership probabilities

 all_preds = data.frame(matrix(unlist(pr_ppm_list),

 nrow=length(pr_ppm_list[[1]]), byrow=F))

 test_wts = all_preds/apply(all_preds, 1, sum)

 all_wts[niter,,] = as.matrix(test_wts)

 max_pred = apply(all_preds, 1, which.max)

 max_pred.vec = rep(NA, nclust)

 for (i in 1:nclust) {

 max_pred.vec[i] = sum(max_pred == i)

 i=i+1

 }

 pred.check = as.vector(max_pred.vec)

 # Set up otpion for initial weights

 addpt <- match.arg(addpt)

 #4 Augment points

 if (addpt == "normal")

 {

 addtosp.list =list()

 for (i in 1:nclust) {

 addtosp.list[[i]] = (1:all_test$n)

 i=i+1

 }

 }

 if (addpt == "Loop_grW")

 {

 addtosp.list =list()

 for (i in 1:nclust) {

 addtosp.list[[i]] = which(test_wts[,i] > delta_max)

 i=i+1

 }

 }

 if (addpt == "Loop_hgW")

 {

 if(num.add > all_test$n/n.sp)

 {

 print("Impossible to add so many points, the highest possible number will be used instead")

 num.add = floor(all_test$n/n.sp)

 }

 else

 {

 num.add = num.add

 }

 add_max = apply(test_wts, 2, sort, decreasing = TRUE)[num.add,]

 addtosp.list =list()

 for (i in 1:nclust) {

 addtosp.list[[i]] = if(anyNA(all_test$x[test_wts[,i] >= add_max[i]]) == TRUE) integer() else which(test_wts[,i] >= add_max[i])

 i=i+1

 }

 }

 # lists and vectors needed in the next steps

 sp_aug.list = sp_wts.list = sp_aug_ppp.list = Q_aug.list = ppm.L.list = list()

 ppm.L.pred = ppm.pred.list = list()

 Dloglik = counts.sp = rep(NA, nclust)

 for (i in 1:nclust) {

 sp_aug.list[[i]] = data.frame(X = c(ppp_list[[i]]x, all_testx[addtosp.list[[i]]]), Y = c(ppp_list[[i]]y, all_testy[addtosp.list[[i]]])) # add unknown points to known points of species 1

 quad.xy = data.frame(X, Y)

 #5 update quadrature weights

 #scores for species with known label (weight =1) and for the new obs (test_wts)

 sp_wts.list[[i]] = scoreweights(sp_aug.list[[i]], quad.xy, scores = c(rep(1, ppp_list[[i]]$n), test_wts[addtosp.list[[i]], i])) # generate quad weights for augmented species 1

 # Augmented point patterns

 win = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5)) # added because HPC wouldn't work

 sp_aug_ppp.list[[i]] = ppp(x =sp_aug.list[[i]]$X, y = sp_aug.list[[i]]$Y, window = win)

 # Augmented quadrature scheme

 Q_aug.list[[i]] = quadscheme(data = sp_aug_ppp.list[[i]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

 # Replace quadrature weights with those calculated with the scoreweights function

 # This is necessary because spatstat's quadscheme function treats all points the same.

 # We want to treat the points with unknown labels as "fractional" points with weights coming from the single-species PPMs

 Q_aug.list[[i]]$w = sp_wts.list[[i]]

 #6# Fit new point processes using the augmented points patterns and the quadrature weights

 #+++

 # Augmented PPMs

 if(is.null(kAreaInt))

 {

 ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list,

 gcontrol = list(epsilon = 1e-6, maxit = 100))

 }

 else

 {

 ppm.L.list[[i]] = ppm(Q_aug.list[[i]], trend = ppmform, covariates = cov.list,

 AreaInter(kAreaInt),

 gcontrol = list(epsilon = 1e-6, maxit = 100))

 }

 if (plots == TRUE)

 {

 if(is.null(cov.bias))

 {

 ppm.L.pred[[i]] = predict(ppm.L.list[[i]])

 }

 else

 {

 ppm.L.pred[[i]] = predict(ppm.L.list[[i]], covariates = pred.list)

 }

 plot(ppm.L.pred[[i]], main="predict - ppm.pred")

 }

 # to get the weights

 if(is.null(cov.bias))

 {

 ppm.pred.list[[i]] = predict(ppm.L.list[[i]], location=datappp)

 }

 else

 {

 ppm.pred.list[[i]] = predict(ppm.L.list[[i]], covariates = pred.list, location=datappp)

 }

 # counts per species

 counts.sp[i] = ppp_list[[i]]$n + sum(test_wts[,i])

 #7 Stopping criterion

 loglik.old.sp[i] = loglik.new.sp[i]

 loglik.new.sp[i] = ppm.L.list[[i]]$maxlogpl

 Dloglik[i] = abs(loglik.new.sp[i] - loglik.old.sp[i])

 i=i+1

 }

 DiffL = sum(Dloglik)

 sumL.new = abs(sum(loglik.new.sp))

 Lcrit = DiffL/sumL.new

 Lcrit.vec[niter] = Lcrit

 itercounts = counts.sp

 p = itercounts/sum(itercounts)

 if(verbose)

 {

 cat(paste("Iteration", niter, "\tLcrit =", Lcrit,

 "\tp =", signif(p,4), "\n"))

 }

 # redefine ppms for next iteration

 for (i in 1:nclust) {

 ppm_list[[i]] = ppm.L.list[[i]]

 }

 # break loop

 if (Lcrit < tol)

 {

 breakloop = 1

 }

 if (niter == maxit)

 {

 breakloop = 1

 }

 if (addpt == "Loop_grW")

 {

 delta_max = delta_max - delta_step

 if (delta_max < delta_min)

 {

 breakloop = 1

 }

 }

 if (addpt == "Loop_hgW")

 {

 num.add = num.add + 1

 if (num.add > all_test$n/n.sp)

 {

 breakloop = 1

 }

 }

 }

 # Compute final predicted intensities

 pr_ppm_list.unk = list()

 for (i in 1:nclust) {

 if(is.null(cov.bias))

 {

 pr_ppm_list[[i]] = predict(ppm_list[[i]], locations = datappp)

 }

 else

 {

 pr_ppm_list[[i]] = predict(ppm_list[[i]], covariates = pred.list, locations = datappp)

 }

 pr_ppm_list.unk[[i]] = pr_ppm_list[[i]][-is_known]

 }

 #3 Compute final membership probabilities

 all_preds = data.frame(matrix(unlist(pr_ppm_list.unk),

 nrow=length(pr_ppm_list.unk[[1]]), byrow=F))

 test_wts = all_preds/apply(all_preds, 1, sum)

 all_wts[niter + 1,,] = as.matrix(test_wts)

 if (plots == TRUE)

 {

 par(xpd=NA)

 known.marks = unique(iterppp$marks)

 plot(x=seq_along(Weight.df[,1]), y=Weight.df[,1], col = "orange", pch=16, ylim=c(0,1),

 xlab="observations", ylab="weight")

 for (i in 2:nclust) {

 colvect=c("purple", "turquoise3", "darkred", "green", "brown")[1:nclust-1]

 points(x=seq_along(Weight.df[,i]), y=Weight.df[,i], col = colvect, pch=16, ylim=c(0,1))

 i =i + 1

 legend(110,1, c(known.marks), col = c("orange", colvect),

 pch = 16, xjust = 1, yjust = 0, merge = FALSE)

 }

 }

 return(list(z = round(p, digits = 4),

 New_weights = test_wts,

 all_wts = all_wts,

 ppm_list = ppm_list,

 niter = niter,

 ppm.pred.list = pr_ppm_list,

 ppm.pred.list.unk = pr_ppm_list.unk,

 sp_aug.list = sp_aug.list,

 sp_aug_ppp.list = sp_aug_ppp.list

 #hist=if(plothist) H else NULL

 # plot(x=seq_along(Weight.df$Sp1), y=Weight.df$Sp1, col = "orange", pch=16, ylim=c(0,1),

 # xlab="observations", ylab="weight"),

 # points(x=seq_along(Weight.df$Sp2), y=Weight.df$Sp2, col = "purple", pch=18, ylim=c(0,1)),

 # points(x=seq_along(Weight.df$Sp3), y=Weight.df$Sp3, col = "Turquoise3", pch=17, ylim=c(0,1)),

 # legend(1,1, c("sp1", "sp2", "sp3"), col = c("orange", "purple", "Turquoise3"),

 # pch = c(16, 18, 17), xjust = 1, yjust = 0, merge = FALSE)

))

}

##--

functions and measures of performance

#--

###----------------- IMSE

IMSE = function(mu1, mu2, fun = "log", mu.min = 1.e-5)

{

 mu1.use = mu1

 mu1.use[mu1.use < mu.min] = mu.min

 mu2.use = mu2

 mu2.use[mu2.use < mu.min] = mu.min

 if (fun == "log")

 {

 mu1.use = log(mu1.use)

 mu2.use = log(mu2.use)

 }

 if (fun == "sqrt")

 {

 mu1.use = sqrt(mu1.use)

 mu2.use = sqrt(mu2.use)

 }

 imse = sum((mu1.use - mu2.use)^2)

 imse

}

###----------------- corint for sumcor calculation

corint = function(mu1, mu2, fun = "log", method=c("pearson", "kendall", "spearman"), mu.min = 1.e-5)

{

 mu1.use = mu1

 mu1.use[mu1.use < mu.min] = mu.min

 mu2.use = mu2

 mu2.use[mu2.use < mu.min] = mu.min

 if (fun == "log")

 {

 mu1.use = log(mu1.use)

 mu2.use = log(mu2.use)

 }

 # Set up otpion for initial weights

 addpt <- match.arg(method)

 if (method == "pearson"){

 corint.pea = cor(mu1.use, mu2.use, method = "pearson")

 return(corint.pea)

 }

 if(method == "kendall"){

 corint.kend = cor(mu1.use, mu2.use, method = "kendall")

 return(corint.kend)

 }

 if(method == "spearman"){

 corint.spea = cor(mu1.use, mu2.use, method = "spearman")

 return(corint.spea)

 }

}

###----------------- RSS

RSS = function(weightmatrix, truemarks)

{

 mark.cols = match(truemarks, colnames(weightmatrix))

 correctweights = weightmatrix[cbind(seq_along(mark.cols), mark.cols)]

 RSS = sum((correctweights - 1)^2)

 RSS

}

###----------------- Accuracy

Accuracy = function(all_true, New_weights, test_labels, n.sp){

 W.max = apply(New_weights[(1:nrow(New_weights)),], 1, max)

 C.id = apply(New_weights[(1:nrow(New_weights)),],

 1,function(x) which(x==max(x)))

 indiv_testlab = as.data.frame(cbind(test_labels, C.id, W.max))

 levels(indiv_testlab$test_labels) <- c(unique(test_labels))

 # New method for accuracy

 levels(indiv_testlab$test_labels)

 levels(indiv_testlab$C.id)

 allvec = as.vector(seq(from=1, to=n.sp, by=1))

 CM.acc = confusionMatrix(factor(indiv_testlab$test_labels, levels=allvec),

 factor(indiv_testlab$C.id, levels=allvec))

 m.acc= CM.acc$table

 # some usuful calc

 n = sum(m.acc) # number of instances

 nc = nrow(m.acc) # number of classes

 diag = diag(m.acc) # number of correctly classified instances per class

 rowsums = apply(m.acc, 1, sum) # number of instances per class

 colsums = apply(m.acc, 2, sum) # number of predictions per class

 p = rowsums / n # distribution of instances over the actual classes

 q = colsums / n # distribution of instances over the predicted classes

 # accuracy measure

 accuracy = sum(diag) / n

 accuracy

}

library(spatstat)

library(lattice)

library(sp)

library(maptools)

library(raster)

library(geostatsp)

library(rgdal)

library(lattice)

library(caret)

library(rgeos)

library(scales)

#--

# 								Simulation data

#--

Set up some data

1 # Set up data.ppp, cov.list, ppmform and quads

Generate XY grid

set.seed(10013)

XY = expand.grid(seq(0, 100, 1), seq(0, 100, 1))

X = XY[,1]

Y = XY[,2]

Generate 2 covariates for PPM

v1 = (X - 30)^2 + (Y - 70)^2 - 0.5*X*Y

v2 = (X - 70)^2 + (Y - 60)^2 + 0.9*X*Y

#levelplot(v1 ~ X + Y)

#levelplot(v2 ~ X + Y)

v1 = -1*scale(v1)

v2 = -1*scale(v2)

Matrix of covariates

vmat = as.matrix(data.frame(1, v1, v1^2, v2, v2^2))

Generate true PPM coefficients based on linear and quadratic terms for 2 covariates and including bias

sp1_coef = c(-6.5, 4, -1, 2, -0.6)

sp1_int = exp(vmat %*% sp1_coef)

sp2_coef = c(-4.4, 1.8, -1, 1.5, -0.9)

sp2_int = exp(vmat %*% sp2_coef)

sp3_coef = c(-3.5, -0.5, -0.8, 1, -0.8)

sp3_int = exp(vmat %*% sp3_coef)

sp_int.list = list(sp1_int, sp2_int, sp3_int)

Plot the intensities created

levelplot(sp1_int ~ X + Y)

levelplot(sp2_int ~ X + Y)

levelplot(sp3_int ~ X + Y)

Create pixel images of intensity surfaces for spatstat

sp1_int_im = as.im(data.frame(x = X, y = Y, z = sp1_int))

sp2_int_im = as.im(data.frame(x = X, y = Y, z = sp2_int))

sp3_int_im = as.im(data.frame(x = X, y = Y, z = sp3_int))

Simulate species patterns

sp1_sim = rpoispp(sp1_int_im)

sp2_sim = rpoispp(sp2_int_im)

sp3_sim = rpoispp(sp3_int_im)

sp1_sim

sp2_sim

sp3_sim

plot(sp1_sim, cex = 0.6)

plot(sp2_sim, add = TRUE, col = "red", cex = 0.6)

plot(sp3_sim, add = TRUE, col = "blue", cex = 0.6)

sp_sim.list = list(sp1_sim, sp2_sim, sp3_sim)

Look at the correlation between intensity surfaces

#all

cor1_2 = cor(as.vector(sp1_int), as.vector(sp2_int), use = "complete.obs")

cor1_3 = cor(as.vector(sp1_int), as.vector(sp3_int), use = "complete.obs")

cor2_3 = cor(as.vector(sp2_int), as.vector(sp3_int), use = "complete.obs")

Create list of coavriates

cov.list = list()

for (v in 1:4)

{

v.v = as.im(data.frame(x = X, y = Y, z = vmat[,(v + 1)]))

cov.list[[v]] = v.v

}

names(cov.list) = c("v1", "v1.2", "v2", "v2.2")

set up model formula

cov.mat = vmat[,2:5]

ppmform = as.formula(paste("~", paste(colnames(cov.mat), collapse = "+")))

##

# 				Test new simulation

#---

Call the different functions needed for the test

source("functionTestsim.R")

#___

Create a confusion matrix from the given outcomes, whose rows correspond

to the actual and the columns to the predicated classes.

createConfusionMatrix <- function(act, pred) {

pred <- pred[order(act)]

act <- act[order(act)]

sapply(split(pred, act), tabulate, nbins=3)

}

Function to combine the different methods to compare

Testsims = function(hidepct, n.sims, sp_sim.list, n.sp=n.sp, k = k, cov.list, cov.bias=NULL, kVal=NULL, kAreaInt=NULL, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add)

{

 win = owin(xrange = c(-0.5, 100.5), yrange = c(-0.5, 100.5))

 quads = ppp(X, Y, window = win)

 RSSknn = meanRSSknn = IMSEknn = RSSkmeans = meanRSSkmeans = IMSEkmeans =

 RSSrand = meanRSSrand = IMSErand = RSSequal = meanRSSequal = IMSEequal =

 RSSindiv = meanRSSindiv = IMSEindiv = RSSLoopgr = meanRSSLoopgr = IMSELoopgr =

 RSSLoophg = meanRSSLoophg = IMSELoophg = RSSnorm = meanRSSnorm = IMSEnorm=

 sumcorknn1 = sumcorkmeans1 = sumcorrand1 = sumcorequal1 = sumcorindiv1 = sumcorLoophg1 =

 sumcornorm1 = sumcorLoopgr1 = sumcorknn2 = sumcorkmeans2 = sumcorrand2 = sumcorequal2 = sumcorindiv2 = sumcorLoophg2 =

 sumcornorm2 = sumcorLoopgr2 = sumcorknn3 = sumcorkmeans3 = sumcorrand3 = sumcorequal3 = sumcorindiv3 = sumcorLoophg3 =

 sumcornorm3 = sumcorLoopgr3 = matrix(NA, n.sims, length(hidepct))

 accmatknn = accmatkmeans = accmatrand = accmatequal = accmatindiv = accmatLoop =

 accmatnorm = accmatLoopgr = accmatLoophg = matrix(NA, n.sims, length(hidepct))

 knnpred = kmeanspred = randpred = equalpred = normpred = Lgrpred = Lhgpred =

 indivpred = array(NA, c(quads$n, 3, n.sims, length(hidepct)))

 coef.knn.mat = coef.kmeans.mat = coef.rand.mat = coef.eq.mat =

 array(NA, c(15, 1, n.sims, length(hidepct)))

 coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat = coef.ind.mat =

 array(NA, c(15, 1, n.sims, length(hidepct)))

 for (i in 1:length(hidepct))

 {

 pct_hidden = hidepct[i]

 for (j in 1:n.sims)

 {

 # hide some observations

 sp_hide.list = sp_sub.list = train.list = sp_test.list = list()

 coordtestx.list = coordtesty.list = markshide.list = markstest.list = list()

 coordsubx.list = coordsuby.list = marksub.list = list()

 for (l in 1:n.sp) {

 sp_hide.list[[l]] = sample(1:sp_sim.list[[l]]$n, floor(pct_hidden*sp_sim.list[[l]]$n))

 sp_sub.list[[l]] = sp_sim.list[[l]][-sp_hide.list[[l]]]

 train.list[[l]] = ppp(x = sp_sub.list[[l]]$x, y = sp_sub.list[[l]]$y, window = win)

 sp_test.list[[l]] = sp_sim.list[[l]][sp_hide.list[[l]]]

 coordtestx.list[[l]] = sp_test.list[[l]]$x

 coordtesty.list[[l]] = sp_test.list[[l]]$y

 markshide.list[[l]] = rep(paste("Hidden", l, sep = ""), sp_test.list[[l]]$n)

 markstest.list[[l]] = rep(paste("Sp", l, sep = ""), sp_test.list[[l]]$n)

 coordsubx.list[[l]] = sp_sub.list[[l]]$x

 coordsuby.list[[l]] = sp_sub.list[[l]]$y

 marksub.list[[l]] = rep(paste("Sp", l, sep = ""), sp_sub.list[[l]]$n)

 l=l+1

 }

 all_test = ppp(x = c(unlist(coordtestx.list)),

 y = c(unlist(coordtesty.list)), window = win,

 marks = c(unlist(markshide.list)))

 all_test2 = ppp(x = c(unlist(coordtestx.list)),

 y = c(unlist(coordtesty.list)), window = win,

 marks = c(rep("Unknown", all_test$n)))

 test_labels = as.vector(unlist(markstest.list))

 all_true = ppp(x = c(unlist(coordsubx.list)),

 y = c(unlist(coordsuby.list)), window = win,

 marks = c(unlist(marksub.list)))

 datappp = superimpose.ppp(all_true, all_test2)

 if(is.null(cov.bias)){

 cov.list = cov.list

 }else{#--- Set observer bias variables to kVal

 pred.list = cov.list

 set.Val = cov.bias #Variables to set to a certain value

 for (v in set.Val){

 pred.list[[v]]$v = kVal*pred.list[[v]]$v

 }

 }

 ###

 # Mixture model

 ###---

 simknn = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

 initweights = "knn",

 k=k, ppmform = ppmform, cov.list = cov.list,

 cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

 verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

 simkmeans = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

 initweights = "kmeans",

 k=k, ppmform = ppmform, cov.list = cov.list,

 cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

 verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

 simrandom = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

 initweights = "random",

 k=k, ppmform = ppmform, cov.list = cov.list,

 cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

 verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

 simequal = ppmMixEngine(datappp = datappp, quads = quads, all_true=all_true, all_test=all_test,

 initweights = "equal",

 k=k, ppmform = ppmform, cov.list = cov.list,

 cov.bias = cov.bias, kVal = kVal, kAreaInt = kAreaInt,

 verbose = TRUE, tol = 0.000001, maxit = 50, plots = FALSE)

 # for performance measures

 knn_weights = simknn$New_weights[((all_true$n)+1):nrow(simknn$New_weights),]

 pred.knn = knn_weights

 kmeans_weights = simkmeans$New_weights[((all_true$n)+1):nrow(simkmeans$New_weights),]

 pred.kmeans = kmeans_weights

 random_weights = simrandom$New_weights[((all_true$n)+1):nrow(simrandom$New_weights),]

 pred.random = random_weights

 equal_weights = simequal$New_weights[((all_true$n)+1):nrow(simequal$New_weights),]

 pred.equal = equal_weights

 accmatknn[j, i] = Accuracy(all_true, knn_weights, test_labels, n.sp)

 RSSknn[j, i] = RSS(pred.knn, test_labels)

 meanRSSknn[j, i] = RSS(pred.knn, test_labels)/length(test_labels)

 accmatkmeans[j, i] = Accuracy(all_true, kmeans_weights, test_labels, n.sp)

 RSSkmeans[j, i] = RSS(pred.kmeans, test_labels)

 meanRSSkmeans[j, i] = RSS(pred.kmeans, test_labels)/length(test_labels)

 accmatrand[j, i] = Accuracy(all_true, random_weights, test_labels, n.sp)

 RSSrand[j, i] = RSS(pred.random, test_labels)

 meanRSSrand[j, i] = RSS(pred.random, test_labels)/length(test_labels)

 accmatequal[j, i] = Accuracy(all_true, equal_weights, test_labels, n.sp)

 RSSequal[j, i] = RSS(pred.equal, test_labels)

 meanRSSequal[j, i] = RSS(pred.equal, test_labels)/length(test_labels)

 #--

 if(is.null(cov.bias)){

 pred.knn = predict(simknn$fit.final, locations = sp1_int_im)

 }else{

 pred.knn = predict(simknn$fit.final, covariates = pred.list, locations = sp1_int_im)

 }

 sp.predlist.knn = list()

 for (l in 1:n.sp) {

 sp.predlist.knn[[l]] = as.vector(t(pred.knn[[l]]$v))

 IMSEknn[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.knn[[l]]))

 sumcorknn1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="pearson"))

 sumcorknn2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.knn[[l]], method="kendall"))

 }

 #--

 if(is.null(cov.bias)){

 pred.kmeans = predict(simkmeans$fit.final, locations = sp1_int_im)

 }else{

 pred.kmeans = predict(simkmeans$fit.final, covariates = pred.list, locations = sp1_int_im)

 }

 sp.predlist.kmeans = list()

 for (l in 1:n.sp) {

 sp.predlist.kmeans[[l]] = as.vector(t(pred.kmeans[[l]]$v))

 IMSEkmeans[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.kmeans[[l]]))

 sumcorkmeans1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="pearson"))

 sumcorkmeans2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.kmeans[[l]], method="kendall"))

 }

 #--

 if(is.null(cov.bias)){

 pred.random = predict(simrandom$fit.final, locations = sp1_int_im)

 }else{

 pred.random = predict(simrandom$fit.final, covariates = pred.list, locations = sp1_int_im)

 }

 sp.predlist.rand = list()

 for (l in 1:n.sp) {

 sp.predlist.rand[[l]] = as.vector(t(pred.random[[l]]$v))

 IMSErand[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.rand[[l]]))

 sumcorrand1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="pearson"))

 sumcorrand2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.rand[[l]], method="kendall"))

 }

 #--

 if(is.null(cov.bias)){

 pred.equal = predict(simequal$fit.final, locations = sp1_int_im)

 }else{

 pred.equal = predict(simequal$fit.final, covariates = pred.list, locations = sp1_int_im)

 }

 sp.predlist.equal = list()

 for (l in 1:n.sp) {

 sp.predlist.equal[[l]] = as.vector(t(pred.equal[[l]]$v))

 IMSEequal[j, i] = sum(IMSE(sp_int.list[[l]], sp.predlist.equal[[l]]))

 sumcorequal1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="pearson"))

 sumcorequal2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.equal[[l]], method="kendall"))

 }

 # for intensity plots

 knnpred[,,j,i] = as.matrix(unlist(sp.predlist.knn))

 kmeanspred[,,j,i] =as.matrix(unlist(sp.predlist.kmeans))

 randpred[,,j,i] = as.matrix(unlist(sp.predlist.rand))

 equalpred[,,j,i] = as.matrix(unlist(sp.predlist.equal))

 # for coefficients

 coef.knn.mat[,,j,i] = as.matrix(simknn$fit.final$coef)

 coef.kmeans.mat[,,j,i] = as.matrix(simkmeans$fit.final$coef)

 coef.rand.mat[,,j,i] = as.matrix(simrandom$fit.final$coef)

 coef.eq.mat[,,j,i] = as.matrix(simequal$fit.final$coef)

 #---

 # ppmLoopEngine

 ###---

 simnorm = ppmLoopEngine(datappp, all_test, n.sp, addpt = "normal", quads,

							 ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

							 cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

							 tol=0.000001, verbose = TRUE, plots = FALSE)

 simLoopgr = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_grW", quads,

								 ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								 cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								 tol=0.000001, verbose = TRUE, plots = FALSE)

 simLoophg = ppmLoopEngine(datappp, all_test, n.sp, addpt = "Loop_hgW", quads,

								ppmform, delta_max=delta_max, delta_min=delta_min, delta_step =delta_step, num.add = num.add,

								cov.list, cov.bias=NULL, kVal =NULL, kAreaInt=NULL, maxit = 50,

								tol=0.000001, verbose = TRUE, plots = FALSE)

 # for performance measures

 norm_weights = simnorm$New_weights

 pred.norm = norm_weights

 colnames(pred.norm)= c(unique(test_labels))

	

 Loopgr_weights = simLoopgr$New_weights

 pred.Loopgr = Loopgr_weights

 colnames(pred.Loopgr)= c(unique(test_labels))

	

 Loophg_weights = simLoophg$New_weights

 pred.Loophg = Loophg_weights

 colnames(pred.Loophg)= c(unique(test_labels))

 #

 accmatnorm[j, i] = Accuracy(all_true, norm_weights, test_labels, n.sp)

 RSSnorm[j, i] = RSS(pred.norm, test_labels)

 meanRSSnorm[j, i] = RSS(pred.norm, test_labels)/length(test_labels)

 accmatLoopgr[j, i] = Accuracy(all_true, Loopgr_weights, test_labels, n.sp)

 RSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)

 meanRSSLoopgr[j, i] = RSS(pred.Loopgr, test_labels)/length(test_labels)

 accmatLoophg[j, i] = Accuracy(all_true, Loophg_weights, test_labels, n.sp)

 RSSLoophg[j, i] = RSS(pred.Loophg, test_labels)

 meanRSSLoophg[j, i] = RSS(pred.Loophg, test_labels)/length(test_labels)

 #--

 pr_quad_ppmlist.N = pr_quad_ppmlist.Lgr = pr_quad_ppmlist.Lhg = list()

 for (l in 1:n.sp) {

 if(is.null(cov.bias)){

 pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], locations = quads)

 }else{

 pr_quad_ppmlist.N[[l]] = predict(simnorm$ppm_list[[l]], covariates = pred.list, locations = quads)

 }

 if(is.null(cov.bias)){

 pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], locations = quads)

 }else{

 pr_quad_ppmlist.Lgr[[l]] = predict(simLoopgr$ppm_list[[l]], covariates = pred.list, locations = quads)

 }

 if(is.null(cov.bias)){

 pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], locations = quads)

 }else{

 pr_quad_ppmlist.Lhg[[l]] = predict(simLoophg$ppm_list[[l]], covariates = pred.list, locations = quads)

 }

 }

 # for intensity plots

 normpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.N),

 nrow=length(pr_quad_ppmlist.N[[1]]), byrow=F)

 Lgrpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lgr),

 nrow=length(pr_quad_ppmlist.Lgr[[1]]), byrow=F)

 Lhgpred[,,j,i] = matrix(unlist(pr_quad_ppmlist.Lhg),

 nrow=length(pr_quad_ppmlist.Lhg[[1]]), byrow=F)

 coef.normal.mat = coef.Lgr.mat = coef.Lhg.mat = coef.ind.mat =

 array(NA, c(15, 1, n.sims, length(hidepct)))

 coef.normalvec = coef.Lgrvec = coef.Lhgvec = list()

 for (l in 1:n.sp) {

 # for coefficients

 coef.normalvec[[l]] = as.vector(unlist(simnorm$ppm_list[[l]]$coef))

 coef.Lgrvec[[l]] = as.vector(unlist(simLoopgr$ppm_list[[l]]$coef))

 coef.Lhgvec[[l]] = as.vector(unlist(simLoophg$ppm_list[[l]]$coef))

 l=l+1

 }

 coef.normal.mat[,,j,i] = as.vector(unlist(t(coef.normalvec)))

 coef.Lgr.mat[,,j,i] = as.vector(unlist(t(coef.Lgrvec)))

 coef.Lhg.mat[,,j,i] = as.vector(unlist(t(coef.Lhgvec)))

 sp.predlist.N = sp.predlist.Lgr = sp.predlist.Lhg = list()

 for (l in 1:n.sp) {

 sp.predlist.N[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

 IMSEnorm[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.N[[l]]/(length(simnorm$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

 sumcornorm1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="pearson"))

 sumcornorm2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.N[[l]], method="kendall"))

 sp.predlist.Lgr[[l]] = as.vector(t(pr_quad_ppmlist.Lgr[[l]]))

 IMSELoopgr[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lgr[[l]]/(length(simLoopgr$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

 sumcorLoopgr1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="pearson"))

 sumcorLoopgr2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lgr[[l]], method="kendall"))

 sp.predlist.Lhg[[l]] = as.vector(t(pr_quad_ppmlist.Lhg[[l]]))

 IMSELoophg[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predlist.Lhg[[l]]/(length(simLoophg$sp_aug.list[[l]]$X)))*datappp$n/n.sp))

 sumcorLoophg1[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="pearson"))

 sumcorLoophg2[j, i] = sum(corint(sp_int.list[[l]], sp.predlist.Lhg[[l]], method="kendall"))

 }

 ####

 # Individual PPMs

 ###---

 datamarks = marks(datappp)

 uniquemarks = unique(datamarks)

 colmarks = uniquemarks

 unknown = datamarks == "Unknown"

 names.mark = colmarks[-which(colmarks == "Unknown")]

 Qind = ppm_spind = pr_sp_ppmind = list()

 for (l in 1:n.sp) {

 #specie separetely

 Qind[[l]] = quadscheme(data = sp_sub.list[[l]], dummy = quads, method = "grid", ntile = c(101, 101), npix = c(101, 101))

 # Fit Poisson PPMs

 if(is.null(kAreaInt)){

 ppm_spind[[l]] = ppm(Qind[[l]], trend = ppmform, covariates = cov.list)

 }else{

 ppm_spind[[l]] = ppm(Qind[[l]], trend = ppmform, covariates = cov.list, AreaInter(kAreaInt))

 }

 # Predict intensity at locations where labels are hidden

 ## former label from sp1 tested for the 3PPMs

 if(is.null(cov.bias)){

 pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], locations = all_test)

 }else{

 pr_sp_ppmind[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = all_test)

 }

 }

 sp_predsind = data.frame(matrix(unlist(pr_sp_ppmind),

 nrow=length(pr_sp_ppmind[[1]]), byrow=F))

 ind_wts = sp_predsind/apply(sp_predsind, 1, sum)

 max_predind = apply(sp_predsind, 1, which.max)

 max_predind.vec = as.vector(table(max_predind))

 # calculate accuracy in the same way that we did for the mixture models

 check.id = as.vector(max_predind)

 check.data = as.data.frame(cbind(test_labels, check.id))

 # to deal with some labels not be present in some iterations

 for (l in 1:n.sp) {

 if (anyNA(sum(check.data$test_labels == paste("Sp", l, sep="")))){

 allvec = as.vector(seq(from=1, to=n.sp, by=1))

 levels(check.data$test_labels) = allvec[which(allvec!=l)]

 }else{

 allvec = as.vector(seq(from=1, to=n.sp, by=1))

 levels(check.data$test_labels) = allvec

 }

 }

 testlab = as.data.frame(check.data$test_labels)

 checklab = as.data.frame(check.data$check.id)

 checkD = as.data.frame(check.data)

 m.acc.indiv = createConfusionMatrix(checkD$test_labels, checkD$check.id)

 n.check = sum(m.acc.indiv) # number of instances

 diag.check = diag(m.acc.indiv) # number of correctly classified instances per class

 # accuracy measure

 accmatindiv[j, i] = sum(diag.check) / n.check

 # RSS measure

 # Assign weights

 all_predsind = sp_predsind

 testind_wts = all_predsind/apply(all_predsind, 1, sum)

 colnames(testind_wts) = names.mark

 RSSindiv[j, i] = RSS(testind_wts, test_labels)

 meanRSSindiv[j, i] = RSS(testind_wts, test_labels)/length(test_labels)

 pr_quad_ppmindlist = list()

 for (l in 1:n.sp) {

 if(is.null(cov.bias)){

 pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], locations = quads)

 }else{

 pr_quad_ppmindlist[[l]] = predict(ppm_spind[[l]], covariates = pred.list, locations = quads)

 }

 }

 # for intensity plots

 indivpred[,,j,i] = matrix(unlist(pr_quad_ppmindlist),

 nrow=length(pr_quad_ppmindlist[[1]]), byrow=F)

 coef.ind.mat = array(NA, c(15, 1, n.sims, length(hidepct)))

 coef.indvec = list()

 for (l in 1:n.sp) {

 # for coefficients

 coef.indvec[[l]] = as.vector(unlist(ppm_spind[[l]]$coef))

 l=l+1

 }

 coef.ind.mat[,,j,i] = as.vector(unlist(t(coef.indvec)))

 sp.predindlist = list()

 for (l in 1:n.sp) {

 sp.predindlist[[l]] = as.vector(t(pr_quad_ppmlist.N[[l]]))

 IMSEindiv[j, i] = sum(IMSE(sp_int.list[[l]], (sp.predindlist[[l]]/(length(sp_sub.list[[l]]$X)))*datappp$n/n.sp))

 sumcorindiv1[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="pearson"))

 sumcorindiv2[j, i] = sum(corint(sp_int.list[[l]], sp.predindlist[[l]], method="kendall"))

 }

 cat(paste(i, j, "\n"))

 flush.console()

 }

 }

 return(list(RSSknn = RSSknn, meanRSSknn = meanRSSknn, IMSEknn = IMSEknn, sumcorknn1 = sumcorknn1, sumcorknn2 = sumcorknn2,

 RSSkmeans = RSSkmeans, meanRSSkmeans = meanRSSkmeans, IMSEkmeans = IMSEkmeans, sumcorkmeans1 = sumcorkmeans1, sumcorkmeans2 = sumcorkmeans2,

 RSSrand = RSSrand, meanRSSrand = meanRSSrand, IMSErand = IMSErand, sumcorrand1 = sumcorrand1, sumcorrand2 = sumcorrand2,

 RSSequal = RSSequal, meanRSSequal = meanRSSequal, IMSEequal = IMSEequal, sumcorequal1 = sumcorequal1, sumcorequal2 = sumcorequal2,

 RSSindiv = RSSindiv, meanRSSindiv = meanRSSindiv, IMSEindiv = IMSEindiv, sumcorindiv1 = sumcorindiv1, sumcorindiv2 = sumcorindiv2,

 RSSnorm = RSSnorm, meanRSSnorm = meanRSSnorm, IMSEnorm = IMSEnorm, sumcornorm1 = sumcornorm1, sumcornorm2 = sumcornorm2,

 RSSLoopgr = RSSLoopgr, meanRSSLoopgr = meanRSSLoopgr, IMSELoopgr = IMSELoopgr, sumcorLoopgr1 = sumcorLoopgr1, sumcorLoopgr2 = sumcorLoopgr2,

 RSSLoophg = RSSLoophg, meanRSSLoophg = meanRSSLoophg, IMSELoophg = IMSELoophg, sumcorLoophg1 = sumcorLoophg1, sumcorLoophg2 = sumcorLoophg2,

 accmatknn = accmatknn, accmatkmeans = accmatkmeans, accmatrand = accmatrand, accmatequal = accmatequal, accmatindiv = accmatindiv,

 accmatnorm = accmatnorm, accmatLoopgr = accmatLoopgr,accmatLoophg = accmatLoophg,

 knnpred = knnpred, kmeanspred = kmeanspred, randpred = randpred, equalpred = equalpred, normpred = normpred,

 Lgrpred = Lgrpred, Lhgpred = Lhgpred, indivpred = indivpred, coef.knn.mat = coef.knn.mat, coef.kmeans.mat = coef.kmeans.mat,

 coef.rand.mat = coef.rand.mat, coef.eq.mat = coef.eq.mat, coef.normal.mat = coef.normal.mat,

 coef.Lhg.mat = coef.Lhg.mat, coef.ind.mat = coef.ind.mat

))

}

QuickTest = Testsims(hidepct=c(0.2, 0.5, 0.8), n.sims=5, sp_sim.list, n.sp=3,

 k = 1, cov.list=cov.list, cov.bias=NULL, kVal=NULL, kAreaInt=NULL,

					 delta_max=0.5, delta_min=0.1, delta_step =0.1, num.add = 5)

https://doi.org/10.1111/j.2041-210X.2011.00141.x
https://doi.org/10.1007/0-387-31144-0_2
https://doi.org/10.1007/0-387-31144-0_2
https://doi.org/10.1007/0-387-31144-0_2
https://doi.org/10.1201/b19708
https://doi.org/10.18637/jss.v032.i06
https://doi.org/10.2307/2347614
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

SETURg, BXRSSIAEVE™ 5 RS Nt o e BT fesnae W lopiay e REPT IR PRI e e e
a5 Predicting animal behaviour using deep learning: Gps data alone accurately predict diving in seabirds.

426 Methods in Ecology and Fvolution, 9, 681-692. https://doi.org/10.1111/2041-210x.12926.

«r Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference: A Practical

428 Information- Theoretic Approach. Springer, New York, NY, 2 edition. https://doi.org/10.1007/b97636.

w0 Di Zio, M., Guarnera, U. & Rocci, R. (2007) A mixture of mixture models for a classification problem:
430 The unity measure error. Computational Statistics and Data Analysis, 51, 2573-2585. https://doi.org/
431 10.1016/j.csda.2006.01.001.

s Dunstan, P.K., Foster, S.D., Hui, F.K.C. & Warton, D.I. (2013) Finite mixture of regression modeling
433 for high-dimensional count and biomass data in ecology. Journal of Agricultural, Biological, and

434 Environmental Statistics, 18, 357-375. https://doi.org/10.1007/s13253-013-0146-x.

s Es; B. (1997) A note on the integrated squared error of a kernel density estimator in non-smooth cases.

436 Statistics and Probability Letters, 35, 241-250. https://doi.org/10.1016/S0167-7152(97)00019-9.

s Ferndndez-Michelli, J.I., Hurtado, M., Areta, J.A. & Muravchik, C.H. (2016) Unsupervised classification
238 algorithm based on em method for polarimetric sar images. ISPRS Journal of Photogrammetry and

430 Remote Sensing, 117, 56—65. https://doi.org/10.1016/j.isprsjprs.2016.03.001.

wo Figueirido, M.A. & Jain, A.K. (2002) Unsupervised learning of finite mixture models. IEEE Transactions

a1 on pattern analysis and machine intelligence, 24, 381-396. https://doi.org/10.1109/34.990138.

w> Fraley, C. & Raftery, A.E. (1998) How many clusters? which clustering method? answers via model-based

sz cluster analysis. The computer journal, 41, 578-588. https://doi.org/10.1093/comjnl/41.8.578.

se Frame, S.J. & Jammalamadaka, S.R. (2007) Generalized mixture models, semi-supervised learning, and
445 unknown class inference. Advances in Data Analysis and Classification, 1, 23-38. https://doi.org/10.
446 1007/s11634-006-0001-9.

sr Franklin, J. (2013) Species distribution models in conservation biogeography: developments and challenges.

ws Diversity and Distributions, 19, 1217-1223. https://doi.org/10.1111/ddi.12125.

s Frithwirth-Schnatter, S. (2006) Finite mizture and Markov switching models. Springer series in statistics.

450 Springer. https://doi.org/10.1007/978-0-387-35768-3.

1 Guillera-Arroita, G., Lahoz-Monfort, J.J.; Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy,
452 M.A., Tingley, R. & Wintle, B.A. (2015) Is my species distribution model fit for purpose? matching
453 data and models to applications. Global Ecology and Biogeography, 24, 276-292. https://doi.org/10.
454 1111/geb.12268.

s Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, 1., Sutcliffe, P.R., Tulloch, A.I., Regan,

25

https://doi.org/10.1111/2041-210x.12926
https://doi.org/10.1007/b97636
https://doi.org/10.1016/j.csda.2006.01.001
https://doi.org/10.1016/j.csda.2006.01.001
https://doi.org/10.1016/j.csda.2006.01.001
https://doi.org/10.1007/s13253-013-0146-x
https://doi.org/10.1016/S0167-7152(97)00019-9
https://doi.org/10.1016/j.isprsjprs.2016.03.001
https://doi.org/10.1109/34.990138
https://doi.org/10.1093/comjnl/41.8.578
https://doi.org/10.1007/s11634-006-0001-9
https://doi.org/10.1007/s11634-006-0001-9
https://doi.org/10.1007/s11634-006-0001-9
https://doi.org/10.1111/ddi.12125
https://doi.org/10.1007/978-0-387-35768-3
https://doi.org/10.1111/geb.12268
https://doi.org/10.1111/geb.12268
https://doi.org/10.1111/geb.12268
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

corfec y Pespyeie i he RHRMIArER a5 rpnieg oy Irencao isnay he preRrn RSty 1 fmags avpcble under
as57 R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier,

458 S., Kearney, M.R., Possingham, H.P. & Buckley, Y.M. (2013) Predicting species distributions for

459 conservation decisions. Ecol Lett, 16, 1424-35. https://doi.org/10.1111/ele.12189.

w0 Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. (2003) Knn model-based approach in classification.
a61 R. Meersman, Z. Tari & D.C. Schmidt, eds., On The Move to Meaningful Internet Systems 2003:
262 CooplS, DOA, and ODBASE, pp. 986-996. Springer Berlin Heidelberg, Berlin, Heidelberg. https:
463 //doi.org/10.1007/978-3-540-39964-3_ 62.

ws Hastie, T., J., Tibshirani, R. & Friedman, J. (2001) The Elements of Statistical Learning Data Mining, In-
465 ference, and Prediction, volume 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21606-5.

ws Hefley, T.J., Tyre, A.J., Baasch, D.M. & Blankenship, E.E. (2013) Nondetection sampling bias in marked

a7 presence-only data. Ecol Evol, 3, 5225-36. https://doi.org/10.1002/ece3.887.

ws Hui, F.K.C. (2016) Mixing it Up: New Methods for Finite Mizture Modelling of Multi-Species Data in
469 Ecology. Ph.D. thesis. https://doi.org/10.1017/S0004972715000945.

w Hui, F.K.C., Warton, D.I. & Foster, S.D. (2015) Multi-species distribution modeling using penalized

an mixture of regressions. The Annals of Applied Statistics, 9, 866-882. https://doi.org/10.1214/15-a0as813.

w Illian, J.B., Sgrbye, S.H. & Rue, H. (2012) A toolbox for fitting complex spatial point process models
a3 using integrated nested laplace approximation (inla). The Annals of Applied Statistics, 6, 1499-1530.
s https://doi.org/10.1214/11-a0as530.

s Inoue, K., Stoeckl, K., Geist, J. & Ricciardi, A. (2017) Joint species models reveal the effects of environment
476 on community assemblage of freshwater mussels and fishes in european rivers. Diversity and Distributions,

w23, 284-296. https://doi.org/10.1111/ddi.12520.

s Tovleff, S. (2018) MizAll: Clustering and Classification using Model-Based Mizture Models. R package

a79 version 1.4.2.

w0 Jeffries, N. & Pfeiffer, R. (2001) A mixture model for the probability distribution of rain rate. Environ-

481 metrics, 12, 1-10. https://doi.org/10.1002/1099-095X(200102)12:1<1::AID-ENV425>3.0.CO;2-N.

w2 Jewell, K.J., Arcese, P. & Gergel, S.E. (2007) Robust predictions of species distribution: Spatial habitat
s: models for a brood parasite. Biological Conservation, 140, 259-272. https://doi.org/10.1016/j.biocon.

484 2007.08.017.

w5 Lahoz-Monfort, J.J., Guillera-Arroita, G. & Wintle, B.A. (2014) Imperfect detection impacts the per-
286 formance of species distribution models. Global Ecology and Biogeography, 23, 504-515. https:

//doi.org/10.1111/geb.12138.

Pt

o
Q2

26

https://doi.org/10.1111/ele.12189
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1002/ece3.887
https://doi.org/10.1017/S0004972715000945
https://doi.org/10.1214/15-aoas813
https://doi.org/10.1214/11-aoas530
https://doi.org/10.1111/ddi.12520
https://doi.org/10.1002/1099-095X(200102)12:1<1::AID-ENV425>3.0.CO;2-N
https://doi.org/10.1016/j.biocon.2007.08.017
https://doi.org/10.1016/j.biocon.2007.08.017
https://doi.org/10.1016/j.biocon.2007.08.017
https://doi.org/10.1111/geb.12138
https://doi.org/10.1111/geb.12138
https://doi.org/10.1111/geb.12138
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

SSRGS e S A R AR A om0 ISR T RRRSLAY 15 s, gl under
wo Journal of Statistical Software, 11, 1-18. https://doi.org/10.18637 /jss.v011.i08.
w0 Mahony, M., Donnellan, S.C., Richards, S.J. & Donald, K. (2006) Species boundaries among barred river

401 frogs, mixophyes (anura: Myobatrachidae) in north-eastern australia, with descriptions of two new

402 species. Zootaza, 1228, 35-60. https://doi.org/10.5281/zenodo.172713.

w3 Martinez, D.F. (2015) Mixture-based Clustering for the Ordered Stereotype Model. Thesis, School of
s Mathematics Statistics and Operations Research. https://doi.org/10.13140/RG.2.1.1945.4806.

w5 Matthews, J., Steiner, L. & Gordon, J. (2001) Mark-recapture analysis of sperm whale (physeter macro-
496 cephalus) photo-id data from the azores (1987-1995). Journal of cetacean research and management, 3,

497 219-226.

ws McLachlan, G.J. & Peel, D. (2000) Finite Mizxture Models. Wiley, New York. https://doi.org/10.1002/
499 0471721182.

so Melnykov, V. & Maitra, R. (2010) Finite mixture models and model-based clustering. Statistics Surveys,
so 4, 80-116. https://doi.org/10.1214/09-ss053.

s Mi, X., Bao, L., Jianhua, C. & Ma, K. (2014) Point process models, the dimensions of biodiversity
503 and the importance of small-scale biotic interactions. Journal of Plant Ecology, 7, 126-133. https:

s //doi.org/10.1093/jpe/rtt075.

ss Nezer, O., Bar-David, S., Gueta, T. & Carmel, Y. (2016) High-resolution species-distribution model
506 based on systematic sampling and indirect observations. Biodiversity and Conservation, 26, 421-437.

507 https://doi.org/10.1007/s10531-016-1251-2.

ss O’Hagan, A., Murphy, T.B. & Gormley, I.C. (2012) Computational aspects of fitting mixture models via
500 the expectation—maximization algorithm. Computational Statistics and Data Analysis, 56, 3843-3864.

510 https://doi.org/10.1016/j.csda.2012.05.011.

su Peterman, W.E., Crawford, J.A. & Kuhns, A.R. (2013) Using species distribution and occupancy modeling
512 to guide survey efforts and assess species status. Journal for Nature Conservation, 21, 114-121.

s https://doi.org/10.1016/j.jnc.2012.11.005.

s Quost, B. & Denceux, T. (2016) Clustering and classification of fuzzy data using the fuzzy em algorithm.
515 Fuzzy Sets and Systems, 286, 134-156. https://doi.org/10.1016/j.fss.2015.04.012.

sis R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for

sz Statistical Computing, Vienna, Austria. https://www.R-project.org/.

sis Renner, LW. Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G., Warton, D.I. &

510 O’Hara, R.B. (2015) Point process models for presence-only analysis. Methods in Ecology and Evolution,

27

https://doi.org/10.18637/jss.v011.i08
https://doi.org/10.5281/zenodo.172713
https://doi.org/10.13140/RG.2.1.1945.4806
https://doi.org/10.1002/0471721182
https://doi.org/10.1002/0471721182
https://doi.org/10.1002/0471721182
https://doi.org/10.1214/09-ss053
https://doi.org/10.1093/jpe/rtt075
https://doi.org/10.1093/jpe/rtt075
https://doi.org/10.1093/jpe/rtt075
https://doi.org/10.1007/s10531-016-1251-2
https://doi.org/10.1016/j.csda.2012.05.011
https://doi.org/10.1016/j.jnc.2012.11.005
https://doi.org/10.1016/j.fss.2015.04.012
https://www.R-project.org/
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not
E;eortified &/ g%%r frg)f@w)n'tsttf)lg77@85’%?&75&??@@9@2&3% %%%%ﬁ%fnnast?o;oaﬂigﬁg et.he preprint in perpetuity. It is made available under
s Renner, ILW. & Warton, D.I. (2013) Equivalence of maxent and poisson point process models for species
520 distribution modeling in ecology. Biometrics, 69, 274-281. https://doi.org/10.1111/;.1541-0420.2012.
523 01824.x.

s« Ruete, A. & Leynaud, G.C. (2015) Goal-oriented evaluation of species distribution models’ accuracy
525 and precision: True skill statistic profile and uncertainty maps. Technical report, PeerJ PrePrints.

6 https://dx.doi.org/10.7287 /peerj.prepints.1208v1.

5!

0

so7 - Schank, C.J., Cove, M.V., Kelly, M.J., Mendoza, E., O’Farrill, G., Reyna-Hurtado, R., Meyer, N., Jordan,
528 C.A., Gonzéalez-Maya, J.F., Lizcano, D.J., Moreno, R., Dobbins, M.T., Montalvo, V., Sdenz-Bolafios,
520 C., Jimenez, E.C., Estrada, N., Cruz Diaz, J.C., Saenz, J., Spinola, M., Carver, A., Fort, J., Nielsen,
530 C.K., Botello, F., Pozo Montuy, G., Rivero, M., de la Torre, J.A., Brenes-Mora, E., Godinez-Gomez,
531 0., Wood, M.A., Gilbert, J., Miller, J.A. & Thuille, W. (2017) Using a novel model approach to assess
532 the distribution and conservation status of the endangered baird’s tapir. Diversity and Distributions,

s2 23, 1459-1471. https://doi.org/10.1111/ddi.12631.

s Scrucca, L., Fop, M., Murphy, T.B. & Raftery, A.E. (2016) mclust 5: Clustering, classification and density
535 estimation using gaussian finite mixture models. the R journal, 8, 289-317. https://doi.org/10.21236/
536 ada4b9792.

s Swanepoel, J.W.H. (1988) Mean intergrated squared error properties and optimal kernels when estimating

@

538 a distribution function. Communications in Statistics - Theory and Methods, 17, 3785-3799. https:

//doi.org/10.1080/03610928808829835.

5.

@
©

o Taddy, M.A. & Kottas, A. (2012) Mixture modeling for marked poisson processes. Bayesian Analysis, 7,

5

by

sa 335-362. https://doi.org/10.1214/12-ba711.

5o Thessen, A. (2016) Adoption of machine learning techniques in ecology and earth science. One Ecosystem,

3 1. https://doi.org/10.3897 /oneeco.1.e8621.

5

by

s Tracey, J.A., Zhu, J., Boydston, E., Lyren, L., Fisher, R.N. & Crooks, K.R. (2013) Mapping behavioral
545 landscapes for animal movement: a finite mixture modeling approach. FEcological Applications, 23,

s 654-669. https://doi.org/10.1890,/12-0687.1.

sev Tran, N.Q. (2017) Classification, Novelty Detection and Clustering for Point Pattern Data. Thesis,
548 Faculty of Science and Engineering, Department of Electrical and Computer Engineering. http:

s //hdlLhandle.net/20.500.11937/59025.

s0 van Strien, A.J., van Swaay, C.A. & Termaat, T. (2013) Opportunistic citizen science data of animal
551 species produce reliable estimates of distribution trends if analysed with occupancy models. Journal of

552 Applied Ecology, 50, 1450-1458. https://doi.org/10.1111/1365-2664.12158.

28

https://doi.org/10.1111/2041-210x.12352
https://doi.org/10.1111/j.1541-0420.2012.01824.x
https://doi.org/10.1111/j.1541-0420.2012.01824.x
https://doi.org/10.1111/j.1541-0420.2012.01824.x
https://dx.doi.org/10.7287/peerj.prepints.1208v1
https://doi.org/10.1111/ddi.12631
https://doi.org/10.21236/ada459792
https://doi.org/10.21236/ada459792
https://doi.org/10.21236/ada459792
https://doi.org/10.1080/03610928808829835
https://doi.org/10.1080/03610928808829835
https://doi.org/10.1080/03610928808829835
https://doi.org/10.1214/12-ba711
https://doi.org/10.3897/oneeco.1.e8621
https://doi.org/10.1890/12-0687.1
http://hdl.handle.net/20.500.11937/59025
http://hdl.handle.net/20.500.11937/59025
http://hdl.handle.net/20.500.11937/59025
 https://doi.org/10.1111/1365-2664.12158
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/651125; this version posted May 27, 2019. The copyright holder for this preprint (which was not

RO S e S SRR T i R e e BN R g R s
554 data. Pattern Recognition, 84. https://doi.org/10.1016/j.patcog.2018.07.008.

55 Warton, D.I., Renner, L.W. & Ramp, D. (2013) Model-based control of observer bias for the analysis of

556 presence-only data in ecology. PLoS One, 8, €79168. https://doi.org/10.1371/journal.pone.0079168.

ssv - Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the “pseudo-absence problem”
558 for presence-only data in ecology. The Annals of Applied Statistics, 4, 1383-1402. https://doi.org/10.

550 1214/10-a0as331.

s0 Weinberger, K.Q. & Saul, L.K. (2009) Distance metric learning for large margin nearest neighbor
se classification. Journal of Machine Learning Research, 10, 207-244. https://doi.org/10.1145/1577069.
562 1577078.21,38.

ss Wendel, J., Buttenfield, B.P. & Stanislawski, L.V. (2015) An evaluation of unsupervised and supervised
564 learning algorithms for clustering landscape types in the united states. Cartography and Geographic

565 Information Science, 43, 233-249. https://doi.org/10.1080/15230406.2015.1067829.

s Witten, D.M. (2011) Classification and clustering of sequencing data using a poisson model. The Annals

567 of Applied Statistics, 5, 2493-2518. https://doi.org/10.1214/11-a0as493.

ss Woillez, M., Ressler, P.H., Wilson, C.D. & Horne, J.K. (2012) Multifrequency species classification of
569 acoustic-trawl survey data using semi-supervised learning with class discovery. J Acoust Soc Am, 131,

so EL184-90. https://doi.org/10.1121/1.3678685.

sn - Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B.,
572 Philip, S.Y. et al. (2008) Top 10 algorithms in data mining. Knowledge and information systems, 14,
573 1-37. https://doi.org/10.1007/s10115-007-0114-2.

s Yoo, L., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.F. & Hua, L. (2012) Data
575 mining in healthcare and biomedicine: A survey of the literature. Journal of Medical Systems, 36,

576 2431-2448. 10.1007/s10916-011-9710-5.

s7 Yoo, 1., Hu, X. & Song, 1.Y. (2007) Biomedical ontology improves biomedical literature clustering
578 performance: a comparison study. International Journal of Bioinformatics Research and Applications,

s 3,414-428. https://doi.org/10.1504/IJBRA.2007.015010.

s0 Zhang, L., Liu, C. & Davis, C.J. (2004) A mixture model-based approach to the classification of ecological
581 habitats using forest inventory and analysis data. Canadian journal of forest research, 34, 1150—1156.

582 https://doi.org/10.1139/x04-005.

ss Zhou, Z.H. (2018) A brief introduction to weakly supervised learning. National Science Review, 5, 44-53.
4 https://doi.org/10.1093 /nsr/nwx106.

5

3

29

https://doi.org/10.1016/j.patcog.2018.07.008
https://doi.org/10.1371/journal.pone.0079168
https://doi.org/10.1214/10-aoas331
https://doi.org/10.1214/10-aoas331
https://doi.org/10.1214/10-aoas331
https://doi.org/10.1145/1577069.1577078.21,38
https://doi.org/10.1145/1577069.1577078.21,38
https://doi.org/10.1145/1577069.1577078.21,38
https://doi.org/10.1080/15230406.2015.1067829
https://doi.org/10.1214/11-aoas493
https://doi.org/10.1121/1.3678685
https://doi.org/10.1007/s10115-007-0114-2
10.1007/s10916-011-9710-5
https://doi.org/10.1504/IJBRA.2007.015010
https://doi.org/10.1139/x04-005
https://doi.org/10.1093/nsr/nwx106
https://doi.org/10.1101/651125
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction and background
	New modelling methods
	Notation
	Loop methods
	Mixture of PPMs method

	Simulation framework
	Simulation data
	Suite of Evaluation tools

	Results
	Varying species distributions
	Different abundances and correlated distributions
	Similar abundances and correlated distributions
	Different abundances and non correlated distributions
	Similar abundances and non correlated distribution

	Testing algorithm parameters
	knn method
	Loop grW method
	Loop hgW method

	Discussion
	Conclusion

