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Abstract Grid cells in the medial entorhinal cortex (mEC) encode position using a distributed
representation across multiple neural populations (modules), each possessing a distinct spatial

scale. The modular structure of the representation confers the grid cell neural code with large

capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains

the representation, and updates it based on self motion. Small incompatible drifts in different

modules, driven by noise, can rapidly lead to large, abrupt shifts in the represented position,

resulting in catastrophic readout errors. Here we propose a theoretical model of coupled

modules. The coupling suppresses incompatible drifts, allowing for a stable embedding of a

two dimensional variable (position) in a higher dimensional neural attractor, while preserving

the large capacity. We propose that coupling of this type may be implemented by recurrent

synaptic connectivity within the mEC with a relatively simple and biologically plausible

structure.

Introduction
Much of the research on neural coding in the brain is focused on sensory representations, which

are driven by external inputs that can be precisely controlled experimentally. In comparison,

less is known about neural coding in deep brain structures, in which the dynamics reflect the

outcome of internal computations. A notable exception is the hippocampal formation, where

neural activity has been linked to high level cognitive variables such as an animal’s estimate of

its position within its environment (O’Keefe and Nadel, 1978;Moser et al., 2008; Taube et al.,
1990), or its estimate of elapsed time within a trial of a trained behavioral task (Manns et al.,
2007; Eichenbaum, 2014).
Specifically, the representation of position by grid cells (Hafting et al., 2005) in the medial

entorhinal cortex (mEC) has led to new, unexpected insights on the neural coding of such
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quantities: even though position is a low dimensional variable, it is jointly encoded by sev-

eral distinct populations of cells (modules - Stensola et al. (2012)), exhibiting periodic spatial
responses with varying spatial scales. The spatial responses of all grid cells within a module

are characterized by the same grid spacing and orientation, while differing from each other

only by a rigid translation. The representation of position by each module is ambiguous about

position, but taken together, the joint activity in several modules constitutes a highly efficient

and unambiguous neural code (see Burak (2014)). Due to its distributed organization, the grid
cell code possesses a high dynamic range, greatly exceeding the performance of unimodal

coding schemes such as the representation of position by place cells in the hippocampus (Fiete
et al., 2008; Sreenivasan and Fiete, 2011;Mathis et al., 2012;Wei et al., 2015;Mosheiff et al.,
2017).
Alongside the potential benefits arising from the combinatorial nature of the grid cell code,

the distributed representation of position over several modules and spatial scales poses a

mechanistic challenge to the underlying neural circuitry. The difficulty lies in the hypothesized

role of the hippocampal formation, and specifically the mEC, in maintenance of memory

and spatial computation, as opposed to pure representation. When grid cells update their

activity, e.g., based on self motion, they must do so in a coordinated manner, in order for

them to coherently represent a position in two dimensional space – a variable of much lower

dimensionality than the joint activity of all cells.

Neurons within a module maintain strict relationships in their joint activity (Yoon et al.,
2013). These relationships are maintained across environments (Fyhn et al., 2007); under
abrupt distortions of the environment; in novel environments, in which stable place fields are

absent; under genetic perturbations that disrupt the spatial periodicity in the response of

individual cells (Allen et al., 2014); and in sleep (Trettel et al., 2019; Gardner et al., 2019). The
rigidity of the correlation structure strongly suggests that the neural activity within a module

is tightly coordinated by recurrent connectivity, consistent with attractor models of grid cell

activity (McNaughton et al., 2006; Fuhs and Touretzky, 2006; Guanella et al., 2007; Burak and
Fiete, 2009), which propose that synaptic connectivity restricts the joint activity within a module
to lie on a two dimensional manifold. Additional support for attractor models has been recently

obtained by imaging activity of multiple grid cells using calcium imaging in rats running on

a virtual one dimensional track (Heys et al., 2014; Gu et al., 2018). These studies revealed
a relationship between position on the cortical sheet and the preferred firing locations of

grid cells, as predicted by the variants of attractor models that rely on distance dependent

connectivity.

In contrast to the strong correlation in the activity of neurons within a module, much less is

known about coupling of neurons that belong to different modules. A network of grid cells

organized in m modules, each independently structured as a two dimensional continuous
attractor, possesses a 2m dimensional space of accessible steady states. Yet at any given
time, continuous motion of the animal corresponds to a two dimensional subspace of the

possible local changes in the state of the m modules. Considering that noise may corrupt
the representation of position in each module separately, the maintenance of a coherent
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representation of position across modules necessitates some form of coupling between them

(Welinder et al., 2008; Sreenivasan and Fiete, 2011; Burak, 2014). Fig. 1A demonstrates the
need for this coupling: incoherent drifts in the positions represented by different modules,

accrued due to noise, can rapidly produce a joint representation of position that is incompatible

with any position in the close vicinity of the animal. The desired coupling across modules is

more subtle than the one observed within a module: the coupling should restrict changes in
the states of different modules to lie within the two-dimensional sub-space that corresponds

to smooth movement of the animal within its local environment. However, to preserve the

high dynamic range of the code, the coupling should not restrict the dimensionality of the

accessible steady states.

To further illustrate this point, it is instructive to consider an analogy of grid cell coding to

the representation of a one dimensional position by the rotation angles �1,2 of two meshing
gears (Fig. 1B). We imagine that motion along the one dimensional axis corresponds to

coordinated rotation of the two gears (Fig. 1B, bottom). If the radii R1,2 of the two gears are
incommensurate, a large distance is traversed before the two meshing gears come close to

a previously visited state, thus allowing for a large range of positions to be unambiguously

represented. However, it is crucial in this scheme that during continuous motion, the gears

rotate in a coordinated manner: �̇1R1 = �̇2R2. This relationship between the phase velocities
�̇1 and �̇2 is enforced by the meshing cogs along the circumference of the two gears. In the
absence of this mechanical constraint, small movement of one gear relative to the other can

abruptly transport the represented position to a distant location, unrelated to the original

position. Note that the absolute angles of the two meshing gears are not constrained: in fact,

the large capacity of the representation relies on the fact that any combination of the two

angles is accessible.

Motivated by this analogy, we ask whether synaptic connectivity between grid cell modules

can enforce a similar dynamic relationship between their states. Below, we identify a simple

form of synaptic connectivity between grid cells that can implement this desired form of

coupling. Next, we show that the recurrent connectivity confers the joint representation of

position with resilience to two types of noise: First, noise in the velocity inputs projecting to

different modules. These may differ in different modules, for example, due to synaptic noise.

Second, noise arising from the stochastic dynamics of spiking neural activity within eachmodule.

The outcome is a continuous-attractor representation of position that achieves two goals: First,

the representation is distributed across several modules with different spatial scales, allowing

for combinatorial capacity by preserving the high dimensionality of the accessible steady

states. Second, the neural circuitry that supports this representation is highly robust to noise

when updating the representation based on self-motion, or while maintaining a persistent

representation in short-term memory.

Alongside the recurrent connectivity, it is plausible that feedforward synaptic projections

from the hippocampus to the entorhinal cortex play a role in shaping the grid cell response

(Kropff and Treves, 2008; Dordek et al., 2016; D’Albis and Kempter, 2017;Weber and Sprekeler,
2018). Thus, hippocampal inputs may aid in coupling the states of different grid cell modules
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Figure 1. A. Illustration of the detrimental consequences arising from uncoupled module drifts. Black
dot: location of a static animal. Top panels: schematic representation of the decoded position from the

neural activity in module 1 (left panel) and module 2 (middle panel) at time t = t0. The shaded areas
(cyan, purple) represent locations whose likelihood, given the neural activity, is high. Top right panel:

overlay of the likelihood read out from module 1 and module 2. The maximal likelihood location, based

on activity in both modules, coincides with the animal’s position. Bottom panels: decoded position

based on the neural activity at time t1. Due to independent, noise driven drifts in each module, activity
in module 1 represents positions that are slightly shifted to the left (bottom left), and activity in module

2 represents position that are slightly shifted upward (middle). Even though the shifts are small, the

joint activity in both modules (bottom right) now represents a new maximum likelihood location

(yellow), far away from the true location (black). We refer to such events as catastrophic readout errors.

B. Representation of position along a one dimensional axis (black line) by the rotation angles �1,2 of two
meshing gears that rotate in a coordinated manner in response to motion. The angles �1 and �2,
corresponding to each position, are shown along the blue and red lines. If the radii R1,2 are
incommensurate, a large range of positions can be unambiguously read out from the combination of

the two angles.

(Welinder et al., 2008; Sreenivasan and Fiete, 2011). In addition, sensory inputs that carry
information about the animal’s absolute position may contribute as well, through synaptic

projections to the mEC from other cortical areas. However, there are situations in which

these types of inputs to the mEC cannot ensure appropriate coordination between grid cells

modules. First, under conditions in which sensory inputs are absent or weak, the brain must

rely on idiothetic path integration in order to update its estimate of position. Second, in novel

environments, and following global remapping in the hippocampus (Muller and Kubie, 1987),
it is highly unlikely that specific connections between place cells and grid cells, that couple

the two spatial representations, are immediately established. Hence, coupling modules via

hippocampal inputs would be ineffective in a novel environment. Thus, in this study we focus

on the ability of recurrent connectivity within the entorhinal cortex to maintain a coherent
representation of position across grid-cell modules.
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Results
Theoretical framework
In laying out the principles underlying our proposed synaptic connectivity, we consider first a

one dimensional analogue of the grid cell representation, inspired by the analogy to meshing

gears discussed above: we imagine that an animal moves in one dimension, and neurons in

each grid cell module i jointly represent the modulus of position relative to the grid spacing �i
(for simplicity, from here on, we define the phases �i such that they are in the range [0, 1]):

�i =
xmod �i

�i
. (1)

We hypothesize that the joint dynamics of all grid cells within a module are restricted to lie

in a one dimensional attractor, which we model as a ring attractor (Ben-Yishai et al., 1995;
Zhang, 1996). More specifically, we consider the double-ring architecture (Xie et al., 2002),
which includes a mechanism for updates based on velocity inputs, and was proposed as a

model for integration of angular velocity inputs by head direction cells in rodents. Recent

discoveries in the drosophila melanogaster central complex point to a representation of heading
that is maintained by neural circuitry with close similarity to the this architecture (Seelig and
Jayaraman, 2015; Turner-Evans et al., 2017; Kim et al., 2017; Green et al., 2017). Attractor
models of grid cells in the entorhinal cortex (Fuhs and Touretzky, 2006; Burak and Fiete, 2009)
generalize the double-ring attractor model to motion in two dimensions.

Within the double-ring attractor model (Xie et al., 2002), a module consists of two recur-
rently connected neural sub-populations, each comprising N neurons organized on a ring (left
ring and right ring, Fig. 2A). We denote by

s⃗ =

(

s⃗R
s⃗L

)

(2)

the vector of synaptic activations, where s⃗R and s⃗L represent the synaptic activation of the
right and left sub-populations respectively. The synaptic activation si of neuron i follows the
dynamics:

ṡi +
si
�
= ri = �

( 2N
∑

j=1
Wijsj + I0 ± dI

)

, (3)

where � is the synaptic time constant, ri is the firing rate of neuron i, � is a nonlinear transfer
function, W is the connectivity matrix (Eqs. 8-9), I0 is a constant input, and +dI (−dI ) is the
velocity input to a neuron in the right (left) sub-population. Synaptic weights projecting from

neurons in each ring are shifted clockwise (right) or anti-clockwise (left). When both sub-

populations receive identical feed-forward inputs, activity in the network settles on a stationary

bump of activity. However, selective activation of the right (left) sub-population via the feed-

forward inputs, induces clockwise (anti-clockwise) motion of the activity bump at a phase

velocity proportional to the velocity input dI . Hence, in a noise-free network, the position of
the activity bump is an integral of the velocity input.
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Figure 2. A. Structure of a single module, consisting of a left ring (red) and a right ring (blue), in
accordance with the double ring model (Xie et al., 2002). The two rings receive external inputs
proportional to velocity, with opposite polarities (purple). Synaptic weights project slightly

anti-clockwise (red) and slightly clockwise (blue) from neurons in the left and right sub-populations. B.
True phase � as a function of time (black) in response to an external velocity input, representing a
simulated trajectory, and an estimation of this phase from the velocity approximation !1 (magenta).
Note that � is periodic with period 1, but for presentation clarity we unwrap � to depict a continuous
path along the real axis. C. The coupling of drifts in two modules is achieved by providing the velocity
approximation !1 as a velocity input to module 2 (and vice versa, not shown). Each module is modelled
as a double ring attractor, as in (A). D. Two coupled modules. The velocity input of each module has
three contributions: The external velocity input (purple), the coupling of velocity from the other module

(green), and the self coupling (orange).

Our goal is to couple several such modules such that they will update their states in a

coordinated manner in the presence of noisy inputs. It is essential to couple the modules

based on their drift velocities and not by their absolute phases, as we want to enable all phase

combinations of the different modules to be possible steady states of the population neural

dynamics. Our proposed coupling requires two ingredients: reading out the phase velocity of

each module, and inducing corresponding phase velocities in the other modules. The double

ring model already contains a mechanism for integration of velocity inputs, and therefore our

main challenge is in reading out the phases velocities.

Simple neural readout of velocity
Our first goal is to read out the phase velocity of a single module in our system. It is possible

to compute the drift velocity by projecting Eq. 3 on the eigenvector with zero eigenvalue of

the dynamics (see Appendix 1 and Burak and Fiete (2012)). However, this projection cannot
be evaluated linearly from the neural activity, since the projection coefficients depend on the

location of the activity bump. Instead, we seek a simple estimate of the drift velocity, that can

be implemented in a neural circuit with relatively simple architecture in a biologically plausible
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manner.

Intuitively, in the described framework, most of the motion arises from the differences in

activity between the right and left sub-populations. Therefore, this difference might be close to

the drift velocity �̇. We find, indeed, that the difference between the synaptic activities of the
right and left sub-populations,

! ≡ �
�

(

∑

i∈R
si −

∑

i∈L
si

)

(4)

provides a good approximation for the phase velocity (Fig. 2B), where � is a proportionality
factor. In Appendix 1 we show mathematically that ! ≈ �̇.

Coupling modules by synaptic connectivity
In order to couple themotion of different modules, we use the readout signal !i of eachmodule
i (Eq. 4) as a velocity input to all other modules (Fig. 2C-D, green arrows). In addition, we include
negative self coupling within each module using the same readout signal !i (necessary, as
shown below, in order to prevent instabilities that otherwise arise from the positive feedback

generated by the inter-module couplings), Fig. 2D (orange arrows).

Note that!i is a linear function of synaptic activities within the ring network, with coefficients
that do not depend on the position of the activity bump. Thus, the coupling can be implemented

by recurrent connectivity within the mEC, between modules and within a single module.

To understand how the couplings influence the joint dynamics of the coupled modules,

we analyze the response of a network, consisting of m coupled modules, to external velocity
inputs, b⃗(t). The position of the bump in each module can be represented by a phase �i. We
find that the dynamics of these phases are governed by the following set of coupled differential

equations

̇⃗� = �b⃗(t) + C
(

f ∗ ̇⃗�
)

, (5)

where C is an m × mmatrix whose element Cij represents the coupling strength from module j

to module i, f ∗ ̇⃗� is the convolution of ̇⃗� with an exponential filter f with the synaptic time
scale � (Eq. 36), and � is a constant factor (see full derivation of Eq. 5 in Appendix 2). Thus,
the phase of each module is updated in response to two signals: the external velocity input

projecting into the module (first term in Eq. 5), and the recent history of changes in the phases

of the other modules, conveyed by the coupling signal (second term in Eq. 5).

Much of the system’s response to external velocity inputs can be understood by considering

its dynamics under the assumption that the motion of the animal is sufficiently slow, such

that the components of
̇⃗� vary slowly compared to the synaptic time constant. Under this

assumption, we obtain from Eq. (5)

̇⃗� = X ⋅ b⃗(t) , (6)

where

X ≡ �(I − C)−1 (7)

is the linear response tensor.
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For simplicity, let us consider first only two coupledmodules (each of them one dimensional),

with identical self coupling strength Cs for both modules. The eigenvalues of X, denoted by
X+ and X− (Fig. 3A-C and Appendix 2), indicate how strongly the coupled modules respond
to velocity inputs that drive coordinated and relative motion, respectively. If X− is small,
the modules respond weakly to velocity inputs that attempt to update the phases in an

uncoordinated manner. Thus, if X− is much smaller than X+, we expect the motion of the two
modules to remain coordinated, even if the velocity inputs to the two modules differ.

We choose coupling parameters C1,2,s such that three requirements are fulfilled (see Ap-
pendix 2): First, the modules should respond significantly to inputs that drive coordinated

motion (large X+, Fig. 3A,C). The response to such inputs should not be suppressed since the
system must be able to update its state based on velocity inputs, to correctly represent the

animal’s position in its environment. Second, the modules should respond very weakly to

inputs that drive anti-correlated motion (small relative motion X−, Fig. 3B,C). The self negative
coupling Cs enables us to achieve these two requirements while preserving stability (Fig. 3A-C
and Appendices 2- 3). Our last requirement is the maintenance of a specific ratio between

the module phase velocities, �, that corresponds to the grid spacing ratio between successive
modules (we set � =

√

2 for all modules Stensola et al. (2012)).
Fig. 3E-F demonstrates the response of twomodules to an external velocity input, represent-

ing an animal’s trajectory (shown in Fig. 3D). The input is given only to module 1. In the the case

of uncoupled modules (C1,2,s = 0) only module 1 follows the trajectory, as expected (Fig. 3E). In
the case of coupled modules, both of the modules follow the trajectory quite accurately, with

the desired phase velocity ratio �. Hence, under these conditions, the two coupled modules
shift in a coordinated manner, even if they receive incompatible velocity inputs. Next, we

generalize these results to multiple modules, and to grid cells in two dimensions.

Generalization to two dimensions and several modules
The coupling of modules, described so far, can be easily extended to grid cell responses in two

dimensions. In accordance with grid cell responses in two dimensional arenas, each module is

structured as a two dimensional attractor, whose state is determined by two periodic phases.

Thus, the steady states of the attractor are arranged on a torus instead of a ring. To obtain this

topology, we use a network architecture in which neurons are arranged on a parallelogram,

corresponding to a unit cell of the hexagonal grid (in similarity to Guanella et al. (2007)). The
synaptic connection between any two neurons depends on their distance on the parallelogram,

defined using periodic boundary conditions (Fig. 4A and Methods). The position of the activity

bump must be able to shift in response to a two-dimensional velocity input, in any direction in

the plane. To implement this velocity response, each module contains four sub-populations

(right, left, up, and down). The synaptic weights projecting from neurons in each sub-population

are shifted in a corresponding direction within the neural population (Burak and Fiete, 2009).
In addition, we generalize our network to m grid cell modules. The coupling strengths

Cij thus comprise m2 parameters that we are free to adjust to fulfill a set of requirements,
similar to those applied in the case m = 2. Our most important goal is that the motion of
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Figure 3. A-B. Velocity response of the coupled system to velocity inputs that drive joint motion X+ (A)
or relative motion X− (B) in two coupled modules, as a function of the coupling strengths. C. X± is a
function of one parameter that depends on the coupling strengths (Cs ±

√

C1C2). The magenta and
black circles represent the parameters used in (F), and the corresponding value of X+ and X−. D.
Simulated trajectory, whose derivative is injected as a velocity input only to module 1 in panels (E-F). E.
Response of two uncoupled modules (C1,2,s = 0): the position represented by module 1 tracks the
velocity inputs, module 2 is unresponsive, and the updates in the two modules are not coordinated, as

expected. F. Same as (E) but the modules are coupled with coupling strengths: Cs = −20,
C1 = −Cs∕� ≃ 14.1, and C2 = −Cs ⋅ � ≃ 28.3. The phases of both modules track the velocity inputs in a
coordinated manner, with the desirable velocity ratio �.
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all modules should be coordinated, even if the velocity inputs are not identical. To achieve

this goal, we define a joint motion vector u⃗, such that ui∕uj is the ratio of grid spacings of
modules j and i. We require that this vector is an eigenvector of the linear response tensor,
and minimize the eigenvalues corresponding to all other eigenvectors. If we were able to obtain

eigenvalues that precisely vanish, the response tensor would be a rank one matrix whose

columns are all proportional to u⃗. Under this idealized outcome, any velocity input, regardless
of its direction in the 2m dimensional input space would result in coordinated motion of the
modules. However, the couplings Cij that precisely achieve this goal diverge, in similarity to the
two-module case (Appendix 2). Thus, we impose a constraint on the strength of the synaptic

connections. Another constraint has to do with the stability of the response to dynamic velocity

inputs. We optimize an appropriate target function under these constraints (Appendix 3).

For m = 2 the optimization results in the same solution of coupling parameters Cij that
we found previously. For m > 2 we find that there is considerable freedom in choosing
combinations of Cij that achieve satisfactory coupling (See Appendix 3). One principled way to
reduce this freedom, is to require that there is connectivity only between successive modules.

This choice is compatible with recent observations (Fu et al., 2018) that excitatory synaptic
connectivity within the mEC is relatively short ranged. In our numerical results, we use this

assumption to constrain the structure of the connectivity matrix Cij , but other choices that
include broader connectivity between modules lead to similar coupling between the modules.

To demonstrate how our proposed coupling affects the response of the modules to velocity

inputs, we simulate the described network in two dimensions, with three modules. The

velocity input is a measured rat trajectory from Stensola et al. (2012), with the addition of white
Gaussian noise, drawn independently in the three modules. In a noise-free simulation, the

single cell firing rates form a hexagonal grid pattern as a function of the animal’s location (Fig.

4B), as expected from the network structure, while the spacing ratio between modules is close

to �.
The trajectories of the 2d phases, in response to noisy velocity inputs, are shown, for each

of the three modules, in Fig. 4D (uncoupled modules) and Fig. 4E (coupled modules). In both

cases, the phases follow the animal’s trajectory (Fig 4C) quite closely, but the phases are much

more similar to each other, and to the original trajectory, in the coupled case. The lack of

deviations between the phase trajectories, seen in the coupled case, is an essential difference

between the dynamics of the coupled and uncoupled modules. As discussed in the Introduction,
we expect this difference to strongly impact the stability of the grid cell code. In the following

section we substantiate this point.

Consequences for spatial representation and readout
We next aim to validate our hypothesis that the coupling of modules stabilizes the grid cell

code, and more specifically, prevents catastrophic errors that can be caused by uncoupled drift

in the phases of different modules (Fig. 1A). We simulate the dynamics of our three module

network with noisy velocity inputs based on a measured rat trajectory from Stensola et al.
(2012), as in Fig. 4. We then generate Poisson spikes from the instantaneous firing rates of the
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Figure 4. A. The neurons of each sub-population in the two dimensional case (right, left, up and down)
are organized on a neuronal sheet in the shape of a parallelogram with periodic boundary conditions.

B. Simulated firing rate of a single grid cell from each module, as a function of position, evaluated
during response of the network to a rat trajectory lasting 800 s (taken from Stensola et al. (2012)). C.
Measured rat trajectory over an interval of one minute (Stensola et al. (2012)), whose derivative is
injected as a velocity input to all modules in panels (D-E), with addition of uncorrelated noise in each
module. D. Response of three uncoupled modules. E. Response of three coupled modules. The
phases of the three modules approximately track the velocity inputs in both cases, but the coordination

between phases of the three modules is more tight in (E).
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neurons, and read out the animal’s trajectory from the simulated spikes: we do so both for

coupled modules (Fig. 5A) and for uncoupled modules (Fig. 5B). The readout is accomplished

using a decoder that sums spikes from the recent history, with an exponentially decaying

temporal kernel (see Methods andMosheiff et al. (2017)).
In the case of coupled modules the decoded trajectory is similar to the input (Fig. 5A),

but due to the noise in the inputs, it gradually accrues an error relative to the true trajectory.

Without coupling, the position read out from the network activity diverges sharply from the

true trajectory (Fig. 5B). Moreover, the readout trajectory is often discontinuous in time, and

thus cannot be a good approximation to any reasonable path of the animal. The discontinuity

arises from uncorrelated drifts of the modules which, combined with the periodic nature of the

grid pattern, cause catastrophic readout errors, much larger than the errors accrued in the

phases of each module separately (Fig. 1A).

In order to quantitatively substantiate the relationship between the large deviation of the

decoded trajectory from the true trajectory and the occurrence of catastrophic readout errors,

we repeat the decoding process a hundred times with and without coupling, for a 20 s input
trajectory. In all realizations with coupling, the readout is coordinated with the input trajectory

(Fig. 5C, blue). In contrast, without coupling almost all realizations exhibit discontinuities within

a time interval of 20 s (Fig. 5C, red). The mean square error (MSE) of the decoder increases
as a function of time in the coupled as well as the uncoupled systems (Fig. 5D), as expected

due to noise in the input (as the coupling and inputs are of velocity and not absolute location,

there is no correcting mechanism that can correct coordinated shifts in the phases of all the

modules). However, a few seconds after the start of the simulation, the MSE grows sharply

in the uncoupled system (dashed line in Fig. 5D). The time at which this starts to happen

coincides with the first appearance of discontinuities in the decoded position (compare Fig.

5 panels C and D). Thus, the dramatic reduction achieved by the coupling between modules

arises primarily from the elimination of catastrophic readout errors.

Intrinsic neural noise
Up to this point we presented a theory of several grid cell modules, coupled to each other by

synaptic connectivity within the mEC, such that the coupling significantly suppresses incompat-

ible drifts caused by noisy inputs to the system. Next, we wish to address another important

source of noise, arising from the variability in the spiking of individual neurons within the

grid cell network (Softky and Koch, 1993; Shadlen and Newsome, 1994; Burak and Fiete, 2009).
In similarity to noise in the inputs, stochasticity of the neurons participating in the attractor

network drives errors that accumulate over time with diffusive dynamics (Burak and Fiete,
2009, 2012). To model this process, we replace the firing rate of each neuron in Eq. 3 by a
Poisson spike train (see Eq. 22).

Since we designed our network to be resilient to noisy inputs, it is not obvious that the same

architecture can also provide resilience to intrinsic noise. To address this question, we revisit

first the simple case of two coupled modules in one dimension. In Appendix 1 we show that the

simple readout of velocity used to couple the modules (Eq. 4), is a good approximation for the
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Figure 5. A. Blue trace: measured rat trajectory over a 20 s interval (taken from Stensola et al. (2012)),
used as a velocity input to three coupled modules. Red trace: readout of position, decoded from

simulated Poisson spikes of the coupled system. The spikes are generated by a Poisson process from

the instantaneous firing rates of all cells in the three modules (see Methods). The decoded position is
continuous and similar to the input trajectory. B. Same as (A), but in a network consisting of three
uncoupled modules: all coupling strengths are set to zero. The decoded position is discontinuous in

time, and often sharply deviates from the input trajectory. C. Percentage of decoding success over time.
We repeated the decoding of the animal’s trajectory, as in (A-B), over a hundred simulations with
different realizations of the noise. A success at time t is defined as a trial that did not contain any
discontinuity in the readout up to that time. The success percentage was computed by counting the

number of trials without discontinuities at each time point. The coupled network maintains 100 %
success over time (blue), whereas the success percentage of the uncoupled network decreases

significantly over time: many trials contain discontinuities after a few seconds, and almost all of them

contain discontinuities after 20 s (red). D.Mean square error (MSE) of the decoded trajectory, computed
from the same simulations presented in (C), in the coupled (blue) and uncoupled (red) cases. The
vertical black dashed line in (C-D) represents the first time in which a discontinuity was observed in any
of the trials of the uncoupled network. From this time point onward, the percentage of success of the

uncoupled network descends, and the MSE sharply increases (note the logarithmic vertical scale).
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drift velocity driven by intrinsic neural noise, suggesting that the coupling introduced previously

can help suppress uncoordinated drifts. To quantify the impact of coupling on coordination of

the modules, we compute the diffusion tensor of their phases, using Eq. 25 (the calculation is

based on the theoretical framework laid out in Burak and Fiete (2012), see specifically Eq. S24).
In the uncoupled case the diffusion tensor is isotropic as expected (Fig. 6A, blue line). When

the modules are coupled, with the same coupling strengths as in Fig. 3, the diffusion of the two

modules is highly anisotropic (Fig. 6A). The first principal axis of the diffusion tensor (red ellipse

in Fig. 6A) closely matches the direction of coordinated motion (dashed line in Fig. 6A). The

diffusion coefficient D−, associated with motion in the orthogonal direction, is much smaller
than the diffusion coefficient D+, associated with coordinated motion: D+∕D− ∼ X+∕X− ∼ 40
(compare Figures 3C and 6A). Thus, the coupling strongly suppresses incompatible diffusion of

the two modules.

Next, we evaluate the consequences for representation and readout, arising from the

suppression of incompatible diffusion arising from intrinsic neural noise. We repeat the

simulation of three coupled modules in two dimensions, this time with stochastic (Poisson)

neurons. Discontinuities in the decoded trajectory occur both in the uncoupled and coupled

networks, but they are much more rare in the coupled network (Fig. 6B). Accordingly, the

readout MSE is reduced dramatically in the coupled network (Fig. 6C, note the logarithmic

scale). Thus, the coupling is effective not only in stabilizing the neural representation in

response to noisy inputs, but also with respect to internal stochasticity within the grid cell

network.

In principle, one could seek coupling parameters such that diffusion would be suppressed

in all directions. However, recall our requirement (1) from section Coupling modules by synaptic
connectivity, that the network must respond with sufficient gain to external inputs, to follow an
animal’s trajectory. As we keep the joint response strong, we cannot reduce the joint diffusion

simultaneously, and we are satisfied with coupling of the diffusive drift, without eliminating

coordinated diffusion.

Discussion
Previous works (Fiete et al., 2008; Mathis et al., 2012; Wei et al., 2015; Mosheiff et al., 2017)
have shown that grid cell activity, viewed as a neural code for position, achieves a high dynamic

range (ratio of capacity and resolution Burak (2014)) due to the splitting of the representation
across multiple modules. In this work we addressed a key difficulty with this idea: the combina-

torial nature of the representation, arising from the existence of multiple modules, leads to

high vulnerability to noise. Small uncoordinated errors in the phases of the different modules

can shift the represented position to a far away location. As a possible solution to this difficulty,

we proposed a simple architecture of synaptic connectivity between grid cell modules, that

can suppress incompatible drifts. The functional coupling between modules, arising from our

proposed synaptic connectivity involves velocities, not absolute phases. Consequently, the

coupling does not limit the combinations of possible phases of the different modules, and thus
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Figure 6. A. Diffusion tensor of a Poisson spiking neural network, consisting of two modules in one
dimension, computed using Eq. 25, and illustrated as an ellipse. Axes of the ellipse are aligned with the

eigenvectors of the diffusion tensor, and the lengths of each axis represents the diffusion coefficient

along the corresponding direction. Without coupling the diffusion tensor is isotropic (blue circle). When

coupling the modules using the same coupling strengths as in Fig. 3F, the diffusion tensor becomes

highly anisotropic (red ellipse). The diffusion in this case is almost exclusively in the direction of the first

principal component (major axis of the ellipse). This direction closely matches the direction of

coordinated drift (u⃗+ in Eq. 55, dashed line). B.-C. same as Fig. 5C-D, but for the internal noise case.

does not affect the capacity of the code.

Similar principles may apply to storage in working memory and coding of other continuous,

low dimensional variables in the brain. Thus, the main contribution of our work from the

theoretical perspective, is that it identifies a way to couple several low dimensional continuous

attractors of dimension d (in the case of grid cells, d = 2), to produce a persistent neural
representation of a single, d dimensional variable with high dynamic range. The dynamics of
the network are characterized by two seemingly contradictory features: first, the steady states

of the system span a space of dimension md, where m is the number of modules. Second,
during maintenance and continuous update of the stored memory, the joint state of the

modules is dynamically restricted to lie in a much smaller, d-dimensional subspace. This
enables the continuous embedding of a d dimensional variable in the larger, md dimensional
space, without allowing for noise to shift the state of the system outside the appropriate, d
dimensional local subspace.

Our proposed mechanism for coupling modules is complementary to another possible

mechanism, of coupling grid cell modules through the reciprocal synaptic connectivity between

the entorhinal cortex and the hippocampus (Welinder et al., 2008; Sreenivasan and Fiete,
2011; Burak, 2014). Since biological systems often harness multiple mechanisms to achieve
the same function, both mechanisms might act in parallel to stabilize the grid cell code against

catastrophic readout errors. As discussed in the introduction, it is highly unlikely that coupling

via the hippocampus could work in a novel environment, following global remapping. On the

other hand, it is of particular importance for the brain to establish a geometric representation

of position, aided by idiothetic path integration, under this scenario. Thus, the velocity coupling

mechanism proposed in this work may play an especially important role in generating a

cognitive map of a novel environment.
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A model that involves synaptic coupling between modules, of a different architecture than

the one considered here, has been recently proposed in Kang and Balasubramanian (2018).
This model does not explore the consequences of noise on coding stability, and its primary

goal is to explain the ratios between grid spacings. Hence, Kang and Balasubramanian (2018)
address different questions from those studied in the present work. Nevertheless, it is plausible

that the synaptic connectivity proposed by Kang and Balasubramanian stabilizes the dynamics

against incompatible motion of the modules. An important difference between the network

architecture explored in Kang and Balasubramanian (2018) and the architecture explored here,
is that we consider all to all connectivity between grid cells, which is invariant to any static,

relative shift in the module phases. Hence, all combinations of phases are steady states of

the dynamics. In contrast, the synaptic connectivity considered in Kang and Balasubramanian
(2018) is spatially local. Consequently, it tends to produce interlocked patterns of activity
in adjacent modules, with shared spatial periodicity, and preferred relative spatial phases.

These properties of the activity patterns are expected to limit the representational capacity

of the code. Here we addressed a different computational goal, of stabilizing a distributed

representation of position over multiple modules, without compromising the dynamic range of

the neural coding scheme.

Our focus in this work was on the suppression of relative motion across modules, but noise

in the inputs, or in the intrinsic activity within the network, drives also coordinated motion. It is

possible to suppress the latter type of random motion by increasing the negative feedback in

the system (Fig. 3A,C). In choosing our optimization goal for the coupling parameters, we did

not attempt to suppress coordinated drift for two reasons. First, coordinated drift is much less

detrimental from the coding perspective than relative drifts, as discussed in the introduction.

Second, suppressing the coordinated motion comes with an inevitable cost: a reduction in

the gain of the system’s velocity response. Nevertheless, it is interesting to consider also the

suppression of coordinated drift. Next, we briefly discuss the possible implementation of this

goal.

For simplicity, consider a single one dimensional module, structured as a ring attractor:

in this situation, there is only coordinated motion. As in any continuous attractor network,

stochasticity of neural activity within the network introduces random drift (Burak and Fiete,
2012). In the double ring architecture (Xie et al., 2002), much of the drift arises from fluctuations
in the difference of activity between the two sub-populations that drive left and right motion.

Using the negative self-coupling of velocities, introduced in this work, it is possible to suppress

these fluctuations and substantially reduce the noise-driven drift. It is interesting to compare

this mechanismwith another proposal (Lim and Goldman, 2014) for stabilization of thememory
stored in a single ring attractor, using negative derivative feedback (Lim and Goldman, 2013).
In Lim and Goldman (2014) the stabilization slows down the dynamics of all neurons in the
network, thereby slowing down the relaxation of any deformation in the shape of the activity

bump – not only the position of the activity bump on the ring attractor. In contrast, within the

architecture considered here, the unimodal shape of the activity bump is maintained, while

the velocity feedback mechanism slows down only noise driven diffusion of its position. Thus,
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the velocity coupling mechanism identified in this work may be relevant to the stabilization of

short-term memory in head directions cells of rodents (Taube, 2007) and insects (Seelig and
Jayaraman, 2015), where there is no evidence for slowly decaying deformations in the shape
of the activity bump.

Experimental predictions

The grid spacing of a single module is determined by the velocity input strength � (Eq. 21):
larger values of � lead to smaller grid spacing. Thus, in an uncoupled network the grid spacing
ratios are determined by the input strengths �. However, in the network of coupled modules
the spacing ratios are determined primarily by the inter-module coupling parameters. Each

velocity input strength � affects all the grid spacings, but has little effect on the spacing ratios.
For example, even if the �s are identical in all modules, or if only one module receives a
velocity input, all modules shift their states with a velocity ratio that matches the desired grid

spacing ratio. An interesting prediction arises under a scenario in which one of the modules is

disconnected from the others. This removes positive couplings from the other modules, but

leaves the negative self coupling within the module intact. Hence, the disconnected module

is expected to weaken its response to velocity inputs, and increase its grid spacing. Similarly,

other grid spacings, of modules that were originally connected to the disconnected module,

are expected to increase as well.

The joint activity of grid cells can be expected to lie within a two dimensional space when

salient sensory cues are available to the animal, regardless of the existence of an inter-module

coupling mechanism. The existence of a coupling mechanism must therefore be tested under

conditions in which external sensory cues are weak (Burak, 2014). It is instructive to compare
this goal with what has been learned about population activity within a single module (Yoon
et al., 2013; Fyhn et al., 2007; Allen et al., 2014; Trettel et al., 2019; Gardner et al., 2019). In
that context, simultaneous recordings from pairs of grid cells were highly informative, since

grid cells from a single module exhibit strong correlations (or anti-correlations) in their joint

spiking activity. The preservation of these correlations, under conditions in which the animal’s

sense of position is disrupted, supports an interpretation that the correlations are maintained

by recurrent connectivity within each module. In contrast, cells belonging to different modules

are expected to fire together in some positions in space, and refrain from firing together in

other parts of the environment. Averaged over motion in a large environment, cell pairs from

different modules are expected to exhibit weak correlations in their activity, even if the updates

of module phases are fully coordinated.

Analysis of spike correlations in grid cells from different modules (Trettel et al., 2019;
Gardner et al., 2019) confirms this expectation. During free running, spike correlation functions
of grid cells from different modules are much weaker than those observed within a module.

Despite being weak, these correlations can be statistically significant. Their existence originates

from the fact that in any specific environment, and especially in small enclosures, the firing

fields of two grid cells with different spatial scales slightly favor correlated or uncorrelated firing,

depending on the precise overlap between the spatial receptive fields of the two cells. During
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sleep, these weak correlations are significantly reduced (Trettel et al., 2019; Gardner et al.,
2019). A possible interpretation of this result is that there is no coupling between modules
during sleep. However, an alternative explanation is that the reduction in correlations reflects

an increase in the repertoire of positions and environments represented in the sleep state:

regions of joint firing and regions of disjoint firing are expected to average out more evenly

under such circumstances, leading to weaker correlations.

In order to test for the existence of a velocity coupling mechanism, it is desirable to test for

correlations in the updates of phases of different modules, instead of testing for correlations

in their absolute phases. This will require simultaneous recordings from multiple grid cells,

of sufficient numbers that will enable reliable tracking of the module phases. Appropriate

recordings are not yet available, but techniques that enable simultaneous monitoring of large

neural populations of the mEC (Jun et al., 2017; Gu et al., 2018; Obenhaus et al., 2018) [CITE:
see comment below] are likely to enable their acquisition in the coming years. In similarity

to the experiments that provided insights on the low dimensionality of activity within each

module, it will be necessary to test for inter-module coupling under conditions in which the

animal’s internal sense of position is not anchored to salient external cues.

Our model assumes that grid cells in the mEC are involved in idiothetic path integration, and

harnesses ingredients from models of path integration in the grid cell system to generate the

coupling between modules. It is widely hypothesized that grid cells are indeed involved in path

integration (Hafting et al., 2005;McNaughton et al., 2006;Moser et al., 2008; Burak, 2014), but
this involvement is not experimentally established (see, however Gil et al. (2018)). Accordingly,
a specific role of any particular cell type within the mEC in idiothetic path integration is not yet

identified. A specific population of cells that may provide the substrate for the connectivity

proposed in our model are the conjunctive cells observed mostly in layer III and deeper layers

of the mEC (Sargolini et al., 2006), which play a pivotal role in models of path integration in the
grid cell system. We note that these cells are tuned to head direction more closely than heading

(Raudies et al., 2015), a difficulty that faces all models of path integration within the mEC. The
resolution of this difficulty may involve computational elements within the entorhinal circuitry

that have not yet been identified. Thus, future experimental findings concerned with the

mechanisms underlying path integration may call for (and enable) corresponding refinements

of our model.

Very little is known about synaptic connectivity between grid cells in the mEC, especially for

cells belonging functionally to different modules. An important conclusion of our work is that

synaptic connectivity between different modules may be beneficial for dynamically stabilizing

the grid cell representation during path integration and memory maintenance. The specific

form of connectivity that we identify is appealing for several reasons: first, it involves broad,

relatively unstructured connectivity between grid cells, that depends only on their preferred

heading preference. A second appealing feature of our proposed architecture is that it is

sufficient to couple grid cells from modules with adjacent spacings, to achieve the desired

stabilization of the grid cell representation. Since there is a relationship between grid spacing

and position along the dorsal-ventral axis (Hafting et al., 2005; Stensola et al., 2012), all-to-all
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couplings between modules would require long-range connectivity within the mEC. Recent

evidence (Fu et al., 2018) hints that synaptic connections between excitatory cells in the mEC
may be more limited in range, but of sufficient spatial extent to allow for coupling of adjacent

modules.

Methods
Model and simulations details
The dynamics of the network are described by Eq. 3 (or by Eq. 22 for the Poisson spiking

neuron case). The synaptic time constant � = 10ms, the transfer function �(x) = �−1max(x, 0),
and I0 = 3. All simulations were done using the Euler method for integration, with a time step
dt = 0.1ms.

One dimensional module

In the one dimensional simulations the synaptic activation vector (Eq. 2) includes synapses

of the right and left sub-populations, each comprising N = 1000 neurons. Each neuron has a
preferred phase �i ∈ [0, 1], uniformly arranged on a ring. The connectivity matrixW is defined

by

W =

(

W + W −

W + W −

)

, (8)

where

W ±
ij = w

(

|�i − �j ∓ '|P
)

, w(�) = A
2N

[

exp
(

− �2

2�2

)

− 1
]

. (9)

W ± is a N ×N matrix, ' = 0.2, A = 200, �2 = 0.1, and |x1 − x2|P is the minimal distance between
two points x1,2 ∈ [0, 1] with periodic boundary conditions on [0, 1], namely

|x|P = min
{

|x|mod 1, 1 − |x|mod 1
}

. (10)

Coupled modules

Consider m coupled modules. The firing rate (Eq. 3) of neuron i from module � is (Fig. 2D):

r�,i = �

( 2N
∑

j=1
Wijs�,j + I0 ± b� ± a

m
∑

�=1
C��!�

)

, (11)

where !� is the velocity estimation of module � (Eq. 4) , C�� is the coupling strength from
module � to module � (C�� is the self coupling strength of module �), and the sign ± is equal
to + (−) if the neuron i belongs to a right (left) sub-population. The proportionality factor

a =
[

�
∑2N
i=1 �

′(ḡi)
]−1
is included to simplify the units of the coupling strengths C��. Note that

a ⋅ !i does not depend on the parameter �. Thus, the choice of � is of no consequence for the
dynamics, and this parameter is included only for the sake of derivation convenience.
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The coupling between the modules can be interpreted as arising from synaptic connectivity.

This can be seen by re-writing Eq. 11 as:

r�,i = �

( 2N
∑

j=1
Wijs�,j + a

m
∑

�=1
C��

2N
∑

j=1
W c
ijs�,j + I0 ± b�

)

, (12)

where the 2N × 2N coupling connectivity matrix is:

W c =
�
�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ⋯ 1 −1 ⋯ −1
⋮ ⋮ ⋮ ⋮

1 ⋯ 1 −1 ⋯ −1
−1 ⋯ −1 1 ⋯ 1
⋮ ⋮ ⋮ ⋮

−1 ⋯ −1 1 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

In the case of m = 2 we use the coupling parameters: Cs = −20, C12 = C1 ≈ 14.14 and C21 =
C2 ≈ 28.3. In the case of m = 3 we use the parameters: Cs = −20, C12 ≈ 14.14, C21 = C23 ≈ 9.4,
C32 ≈ 28.3, and C13 = C31 = 0. Additional details on the choice of coupling parameters are
provided in Appendices 2 and 3.

Two dimensional modules

In two dimensions each module contains four sub-populations, and the synaptic activation

vector is:

s⃗ =

⎛

⎜

⎜

⎜

⎜

⎝

s⃗R
s⃗L
s⃗U
s⃗D

⎞

⎟

⎟

⎟

⎟

⎠

(14)

Each sub-population contains N2 = 642 neurons, arranged on a parallelogram. The preferred
phase of the i’th neuron in each sub-population is:

�⃗i =

(

�xi
�yi

)

= xiu⃗1 + yiu⃗2, u⃗1 =

(

1
0

)

, u⃗2 =

(

0.5
√

3
2

)

. (15)

where xi and yi are distributed uniformly in the interval [0, 1]. The connectivity matrix is now:

W =

⎛

⎜

⎜

⎜

⎜

⎝

W R W L W U W D

W R W L W U W D

W R W L W U W D

W R W L W U W D

⎞

⎟

⎟

⎟

⎟

⎠

, (16)

where

W R,L
ij = w

⎛

⎜

⎜

⎝

|

|

|

|

|

|

�⃗i − �⃗j ∓

(

'
0

)

|

|

|

|

|

|P2

⎞

⎟

⎟

⎠

, W U,D
ij = w

⎛

⎜

⎜

⎝

|

|

|

|

|

|

�⃗i − �⃗j ∓

(

0
'

)

|

|

|

|

|

|P2

⎞

⎟

⎟

⎠

, (17)
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and

w(�) = A
4N2

[

exp
(

− �2

2�2

)

− 1
]

. (18)

The distance measure | ⋅ |P2 is defined using periodic boundary conditions on the parallelogram

(see Fig. 4A): |x⃗1 − x⃗2|P2 is the minimal distance between the two points x⃗1 and x⃗2 on the
torus that is created by gluing the opposite edges of the parallelogram defined by the vertices

(0, 0), (1, 0), (12 ,
√

3
2 ), (

3
2 ,

√

3
2 ) (Fig. 4A, compare with Eq. 10, used in the one dimensional case).

The firing rate of neuron i ∈ {sub-population R or L} from module � is:

r�,i = �
⎛

⎜

⎜

⎝

4N2
∑

j=1
Wijs�,j + I0 ± b�,x(t) ± a

m
∑

�=1
C��!�,x

⎞

⎟

⎟

⎠

, (19)

where

!�,x ≡
�
�

(

∑

i∈R
s�i −

∑

i∈L
s�i

)

. (20)

Firing rates of neurons from the up and down sub-populations are obtained from Eqs. 19-20

by replacing x → y, , R→ U , and L→ D.
In each module, responses to horizontal and vertical velocity inputs are independent:

the right and left sub-populations respond to the horizontal velocity inputs, and affect �x,
while the up and down sub-populations respond to the vertical velocity inputs and affect

�y. Hence, the two-dimensional response tensor separates into independent, horizontal and
vertical components with the same structure as in the one dimensional case. Since the linear

response tensor (in each direction) is identical to that of the one dimensional case, the coupling

parameters are chosen in the same way in one and two dimensions.

External velocity input

The external velocity input to module � (in two dimensions) in q ∈ {x, y} direction is (Eq. 19):

b�,q(t) = �
(

vaq(t) + ��,q(t)
)

. (21)

� is a proportionality factor that depends on the module, vaq(t) is a the component of the
animal’s velocity in the q direction, and ��,q(t) is a white noise process with ⟨��,q(t)��,q′(t′)⟩ =
�2�qq′����(t − t′). In Fig. 4B and Fig. 6B-C the external input is not noisy, so � = 0. In Fig. 4D-E
and Fig. 5, � = 0.02m ⋅ s−0.5.

In Fig. 3E-F (one dimension) 1 = 0.06 and 2 = 0. In the simulations of Figs. 4-6 (two
dimensions) 1 = 0.06 , 2 = �0.06 , 3 = �20.06. Thus, even without coupling of the modules,
the spacing ratio � is achieved by the ratios of the inputs strengths �, and therefore we can
compare between the coupled and uncoupled phases and readout (Figs. 4-6).

Spiking network
In the case of spiking Poisson neurons Eq. 3 is replaced by:

ṡi +
si
�
=
∑

�
�(t − t�i ) , (22)
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where
∑

�
�(t − t�i ) (23)

is the spike train of neuron i, and t�i are the spike times. Each neuron i generates spikes
sampled from a Poisson distribution with a firing rate ri(t), as defined in Eq. 3 (Stevens and
Zador, 1996; Gerstner and Kistler, 2002; Burak and Fiete, 2012).

Decoding
Decoding of the animal’s trajectory, based on spike trains, is performed in Figs. 5-6 using a

decoder that sums spikes from recent history with an exponential temporal kernel (Mosheiff
et al., 2017). In Fig. 5 we simulate a spike train for each neuron (Eq. 23), sampled from an
inhomogeneous Poisson process with a firing rate ri(t) (note that the the network dynamics are
deterministic and spikes are used only in the readout process). In Fig. 6 the stochastic spike

train is part of of the dynamics (Eq. 22). In both cases, the decoded location of the animal in

time t is (Eqs. S10, S11 and S13 inMosheiff et al. (2017)):

̂⃗x(t) = argmaxx⃗
∑

i
ln
[

r̄i(x⃗)
]

∫

t

−∞
dt′exp

(

− t − t
′

�d

)

∑

�
�(t − t�i ) . (24)

The summation is over all neurons. Here �d = 10ms for all modules. The integral in Eq. 24 yields
an effective spike count of neuron i, weighted in time using a decaying exponential kernel, and
r̄i(x⃗) is the receptive field of neuron i at location x⃗, measured separately from the firing rate of
each neuron in the steady state of the dynamics.

Diffusion tensor
Consider a system of spiking Poisson neurons, and m one dimensional modules. The internal
noise introduces a diffusive drift. The network is now a single continuous attractor with

dimension m (see Appendix 4). Hence, the diffusion tensor is a m × m matrix, that can be
calculated using Eq. S24 in Burak and Fiete (2012), for the dynamics of the m dimensional
attractor (Eqs. 73, 74 and 75 in Appendix 4):

D��(�⃗) =
1
2

2Nm
∑

i=1
��,i(�⃗)��,i(�⃗)r̄i(�⃗) . (25)

where the summation is over all neurons, r̄i(�⃗) is the firing rate of neuron i in the steady state
of the system, and ��(�⃗) is the left null eigenvector of the dynamics (Eq. 74) corresponding to a
phase shift in the direction of module � (calculated numerically).
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Appendix 1

Readout of the phase velocity
In this Appendix, we derive the relationship between ! (Eq. 4) and the phase velocity �̇
(Eq. 1) . To simplify the presentation, we consider separately two situations: first, a noise

free network, in which the phase velocity is driven by velocity inputs. Second, a module

consisting of Poisson spiking neurons where, for simplicity, we set the velocity inputs to

be zero. In the latter case the phase velocity is driven by the stochasticity of the neurons

participating in the network dynamics. From the derivation it is easily seen that in the

general case, and as long as the linearization of the dynamics (forming the basis of the

calculation in both cases) is valid, the phase velocity, as well as ! can be expressed as a
sum of independent contributions arising from the two sources considered below.

Phase velocity due to velocity inputs
Consider a single one dimensional module, whose dynamics follow Eq. 3, and whose

synaptic connectivity is described by the double ring model, as specified by Eqs. 8-10.

We expand the dynamic equation around a steady state s̄(�), so that si = s̄i(�) + �si, and
assume small velocity input dI(t) (see similar expansion in Burak and Fiete (2012)). After
linearization:

̇�si =
2N
∑

j=1
Kij(�)�sj ± dI(t)�′(ḡi(�)) (26)

where

Kij(�) = −
1
�
�ij + �′(ḡi(�))Wij (27)

and ḡi(�) =
∑2N
j=1Wij s̄j + I0 is the synaptic input in the steady state s̄i(�). The velocity of

the phase � is obtained by projection of Eq. 26 on the left eigenvector of K with zero
eigenvalue, v⃗(�) (Burak and Fiete, 2012). After some algebra we obtain

�̇ = vT ⋅ �̇⃗s = �dI(t) , (28)

where

� =

(

∑

i∈R
vi�

′(ḡi) −
∑

i∈L
vi�

′(ḡi)

)

. (29)

Hence, �̇ is proportional to the velocity input dI(t).
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Let us define the 2N dimensional vector:

v⃗0 = �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
...
1
−1
...
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (30)

where � is a constant, whose value is determined below. The projection of Eq. 26 on v⃗0
results in

vT0 ⋅ �
̇⃗s = −

vT0 ⋅ �s⃗
�

+
2N
∑

i=1
v0,i�

′(ḡi)Wij�sj + dI(t)
2N
∑

i=1

v20,i
�
�′(ḡi) . (31)

The second term on the right hand side of Eq. 31 vanishes due to the symmetry of �′(ḡi) to
exchange of the right and left sub-populations, the antisymmetry of v0 to this exchange,
and the structure of the matrixW . Using the definition of ! (Eq. 4), we can write:

! =
vT0 ⋅ s⃗
�

=
vT0 ⋅ �s⃗
�

. (32)

Thus, Eq. 31 becomes:

�!̇ = −! + �̃dI(t) , (33)

where

�̃ = 2�
∑

i∈R
�′(ḡi) . (34)

In Eq. 34 we use again the symmetry �′(ḡR,i) = �′(ḡL,i). We set � (Eq. 30) such that �̃ = �.
Using Eqs. 29 and 34:

� =
∑

i∈R vi�
′(ḡi) −

∑

i∈L vi�
′(ḡi)

2
∑

i∈R �′(ḡi)
. (35)

From Eq. (33) we see that the readout velocity ! is a convolution of �dI(t), with the filter

f (t) = 1
�
exp

(

− t
�

)

. (36)

Combining Eqs. 28 and 33 we conclude that

!(t) = f (t) ∗ �̇(t) . (37)

Hence, ! is equal to the phase velocity, smoothed over a relatively short time scale set by
the synaptic time constant (� = 10ms).

28 of 37

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651513doi: bioRxiv preprint 

https://doi.org/10.1101/651513


Phase velocity due to internal noise
Consider next a single one dimensional module with Poisson spiking neurons, following

the dynamics of Eq. 22. In the limit of large firing rates, Eq. 22 can be replaced by

ṡi +
si
�
= ri + �i , (38)

where �i is a white noise process with ⟨�i(t)�j(t′)⟩ = ri(t)�ij�(t − t′) (Burak and Fiete, 2012).
We use a similar expansion as in Appendix 1, and project the linearized dynamics on v⃗(�),
the left null eigenvector of K , to obtain:

�̇ = vT ⋅ �̇⃗s = dI(t)
2N
∑

i=1

viv0,i
�

�′(ḡi) + vT ⋅ �⃗ . (39)

The first term on the right hand side of Eq. 39 is the contribution to the phase velocity

arising from the velocity inputs, discussed above. From here on we assume that the velocity

input vanishes. The only contribution to the phase velocity is then the second term of

Eq. 39, originating from the neural stochasticity. In order to relate this term to !, let us
define:

v⃗(�) = v⃗+ + v⃗− (40)

v⃗+ =
1
2

(

v⃗L + v⃗R
v⃗L + v⃗R

)

, v⃗− =
1
2

(

v⃗R − v⃗L
v⃗L − v⃗R

)

, (41)

where v⃗R and v⃗L are the first or last N coordinates of v⃗(�), respectively (Appendix 1 Fig. 1).
Eq. 39 becomes:

�̇ = (vT− + v
T
+) ⋅ �⃗ . (42)

Appendix 1 Figure 1. A. The left eigenvector of K with zero eigenvalue, v⃗(� = 0.5) (the bump is
centered around � = 0.5), computed numerically. The first N coordinates of v⃗ (right sub-population)
in red, and the last N coordinates of v⃗ (left sub-population) in blue. B. v⃗− (red and blue for the right
and left sub-population respectively), and v⃗+ (yellow, identical for both of the sub-populations), as
defined in Eq. 41. The black dashed line represents the firing rate bump of the steady state

(unitless for the sake of comparison with v⃗).
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Next, we examine the structure of v⃗+ and v⃗−. The left and right components of v+ are
spatially antisymmetric with respect to the peak of the activity bump, and precisely vanish

at the center of the bump (yellow trace in Appendix 1 Fig. 1B). The components of v−
are symmetric (blue and red traces). We note that the Poisson noise is expressed only

within the relatively narrow extent of the activity bump (dashed line). Two consequences

follow: first, v⃗T+ ⋅ �⃗ is very small due to the nearly vanishing values of v+ on the activity bump.
Second, the components of v− are nearly constant in magnitude along the narrow extent
of the bump, but have opposite signs in the left and right sub-populations. This magnitude

can be evaluated by rewriting Eq. 35 as:

�
∑

i∈R
�′(ḡi) =

∑

i∈R
v−i�

′(ḡi) . (43)

Thus, the magnitude of v− along the activity bump is approximately �, and v⃗T− ⋅ �⃗ ≈ v⃗
T
0 ⋅ �⃗.

Hence, Eq. 42 becomes:

�̇ ≈ vT0 ⋅ �⃗ . (44)

We now project the linearized dynamics of Eq. 38 on the vector v⃗0 to obtain:

�!̇ = −! + vT0 ⋅ �⃗ ≈ −! + �̇ . (45)

Thus, ! is a convolution of the velocity phase with the exponential filer f , with the synaptic
time integration �. Therefore:

! = f ∗ �̇ , (46)

as in the case of phase velocity due to external inputs.
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Appendix 2

Linear response tensor
We next wish to understand how our system of coupled modules responds to an external

velocity input b⃗(t). First, consider two modules, each in one dimension, that follow the
dynamics of Eq. 3. The synaptic activation vector is now 4N dimensional and has the form:

s⃗ =

(

s⃗1
s⃗2

)

=

⎛

⎜

⎜

⎜

⎜

⎝

s⃗1,R
s⃗1,L
s⃗2,R
s⃗2,L

⎞

⎟

⎟

⎟

⎟

⎠

. (47)

The firing rate of neuron i from module 1 is (Fig. 2D):

r1,i = �

( 2N
∑

j=1
Wijs1,j + I0 ± b1 ± aC1!2 ± aCs!1

)

, (48)

where the total velocity input is dI = b1 + aC1!2 + aCs!1. A similar equation for the rate r2,i
is obtained by switching the indices 1↔ 2 in Eq. 48. The constant

a = 1
�
∑2N
i=1 �′(ḡi)

= 1
�

(49)

is a proportionality factor that could in principle be absorbed into the definition of the

coupling strength parameters, but makes the units of the coupling strengths C� more
convenient. Substitution of dI and Eq. 37 in Eq. 28 yields:

�̇1 = �b1 + C1f ∗ �̇2 + Csf ∗ �̇1 . (50)

More generally, for mmodules:

̇⃗� = �b⃗(t) + f ∗ C ̇⃗� . (51)

Thus, the phase velocities are proportional to the external velocity input, plus the velocities

of all other modules filtered in time, and coupled by the matrix C. If we assume that the

velocity is sufficiently small, that the position can be regarded as fixed within the synaptic

time scale, the convolution with the filter f can be omitted (note that the integral of f ,
Eq. 36 , is equal to unity), and we obtain:

̇⃗� = �(I − C)−1 ⋅ b⃗(t) ≡ X ⋅ b⃗(t) , (52)

where X is the linear response tensor.
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Two modules
In the case of two modules and identical self coupling strength Cs for both modules, we
can easily find the eigenvalues X± and eigenvectors of X. The coupling matrix in this case
is:

C =

(

Cs C1
C2 Cs

)

. (53)

Using Eq. 7 we obtain:

X± =
�

1 − C±
= �
1 − (Cs ±

√

C1C2)
. (54)

The eigenvectors of X are:

u⃗± =

(

√

C1
±
√

C2

)

. (55)

Thus, the phase motion of the two modules can be represented as:

(

�̇+
�̇−

)

=

(

X+ 0
0 X−

)

⋅

(

b+
b−

)

, (56)

where
(

�+
�−

)

= 1
2
√

C1C2

(

√

C2�1 +
√

C1�2
√

C2�1 −
√

C1�2

)

. (57)

Here, �± are the joint or relative phases of themodules, respectively. We choose parameters
such that X+ is large and X− is small in order to obtain large joint motion and small relative
motion between modules for any external input. Note that X− ≈ 0 implies that �̇− ≈ 0 (Eq.
56), and in this case (Eq. 57):

�̇1
�̇2
≈

√

C1
C2

. (58)

Thus, we can set the velocity ratio between modules (namely, the spacing ratio �), by the
ratio of the coupling parameters, using Eq. 58. We choose

√

C2
C1

= � =
√

2 . (59)

We choose X+ = � to maintain the same response to coordinated velocity inputs, as
in the case of no coupling. Using Eq. 54 we see that this requires Cs +

√

C1C2 = 0, which
implies

C1 = −Cs∕�

C2 = −�Cs , (60)

and

X− =
�

1 − 2Cs
(61)
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To obtain small X−, Cs should be negative, with a large absolute magnitude. Note that a
large positive magnitude of Cs, although seems here as a suitable choice, would cause
instability of the system (discussed in Appendix 3).
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Appendix 3

Optimization of the coupling strengths for mmodules
We now wish to find appropriate coupling strengths, Cij , in the general case of mmodules,
while allowing for different self couplings in each module. We optimize Cij as follows.
Let u⃗ be a vector in the direction of the mutual motion of �⃗. The ratios of the compo-

nents of u⃗ are the ratios between corresponding grid spacings. We demand that u⃗ is an
eigenvector of X (Eq. 7) with an eigenvalue �. Under this choice, the motion response in
the mutual direction is the same as without coupling (where

̇⃗� = �b⃗, Eq. 52). Any other
eigenvalue of X should be close to zero, such that the motion in any direction, other than
the mutual direction, is small.

Equivalent requirements are that u⃗ is an eigenvector of C with eigenvalue 0, and any
other eigenvalue of C has a large magnitude (see Eq. 52). In addition, as discussed below
(Stability conditions) all the eigenvalues of C must be smaller than unity, which excludes
the possibility that they take large positive values. In order to find the optimal coupling

parameters we minimize the Lagrangian:

 = T r(C) +
m
∑

i=1
�i

m
∑

j=1
Cijuj +

m
∑

i=1
i(C2ii −K) . (62)

The first term of the Lagrangian favors negative eigenvalues with large absolute magnitude,

whereas the second term, involving m Lagrange multipliers �i, enforces the existence of
the eigenvector u⃗ with eigenvalue 0. As the coupling magnitudes cannot be infinitely large,
we constrain the self couplings by requiring that C2ii < K , where K > 0 is a constant. This
constraint is enforced by the third term in Eq. 62, where i ≥ 0’s are Karush-Kuhn-Tucker
multipliers. We demand:

)
)Cij

= 0 , (63)

)
)�i

= 0 , (64)

i
(

C2ii −K
)

= 0 , (65)

which results in:

Cii = −
√

K ≡ Cs, Cu⃗ = 0 . (66)

For m = 2 and u⃗ =

(

1
�

)

we obtain a single solution:

C =

(

Cs −Cs∕�
−�Cs Cs

)

, (67)
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which is identical to the solution we found in Appendix 2.

For m > 2 and a given vector u⃗ there are multiple solutions. For example, for m = 3 and
ui = �i−1, the solutions are the all Cij ’s that obey:

Cs + �C12 + �2C13 = 0 , (68)

C21 + �Cs + �2C23 = 0 , (69)

C31 + �C32 + �2Cs = 0 . (70)

Making the additional choice that only successive modules are coupled yields the solution:

C =

⎛

⎜

⎜

⎜

⎝

Cs −Cs∕� 0
−�Cs − �2C23 Cs C23

0 −�Cs Cs

⎞

⎟

⎟

⎟

⎠

, (71)

where there is a freedom in choosing C23. In Figures 4,5 and 6 we chose C23 = C21.
In principle, other constraints on the coupling strengths can be used instead of the

requirement that Cii < K for all i. For example, limiting the magnitude of all the coupling
strengths (C2ij < K), instead of only the magnitude of the self couplings, yields solutions
with smaller range of allowed parameters (in the case of multiple solutions), but otherwise

identical structure. A different possible constraint is of the form
∑m
i,j=1 C

2
ij < K. This

constraint results in a symmetric solution: Cij ∝
uiuj
∑

k u
2
k
− �ij . We prefer the constraint in Eq.

62 as we do not see a compelling reason to limit all of the coupling parameters together

instead of limiting them separately.

Stability conditions
To map the stability conditions of the coupled network, we consider the dynamics of the

velocity estimation !⃗ (Eq. 33). As Eq. 33 is obtained by projecting the full dynamics of the
network on the vector v⃗0, stable network would result in finite !⃗. We substitute the total
velocity input dI⃗ = aC ⋅ !⃗ + b⃗(t) in Eq. 33 and obtain:

� ̇⃗! = −!⃗ + C ⋅ !⃗ + �b⃗(t) = −(I − C) ⋅ !⃗ + �b⃗(t) . (72)

Thus, in order to maintain the stability of !⃗, as well as the stability of the full network, all
eigenvalues of C must be smaller than unity, and all eigenvalues of X (Eq. 7) must be
positive.
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Appendix 4

The coupled network as a single attractor
In this Appendix we consider the system as a single neural network with recurrent con-

nectivity that includes both the inter- and intra-modular synaptic connections, instead of

thinking of the system as composed of m coupled attractors (modules). The derivation of
the system dynamics presented here, is necessary in order to calculate the diffusion tensor

(Eq. 25). In addition, it offers an alternative approach for obtaining the linear response

tensor X, and provides some additional insights on the behaviour of the network.
We expand the dynamics of Eq. 3 around the steady state s̄(�) (see similar expansion

in Appendix 1). The dynamics of neuron i from module � (for simplicity, we assume one
dimensional modules) can be written as:

�ṡi =
2Nm
∑

j=1
Km,ij ⋅ �sj ± b��′

[

ḡi(�)
]

, (73)

where the sign ± is + (−) if neuron i belongs to a right (left) sub-population. Here, Km is a
2Nm × 2Nmmatrix:

Km =

⎛

⎜

⎜

⎜

⎜

⎝

K + Bs B12 ⋯ B1m
B21 K + Bs ⋮

⋮ K + Bs Bm−1,m
Bm1 ... Bm,m−1 K + Bs

⎞

⎟

⎟

⎟

⎟

⎠

, (74)

where K is defined in Eq. 27, and

B�� =
aC���
�

(

−Φ′ Φ′

Φ′ −Φ′

)

, Φ′ =

⎛

⎜

⎜

⎜

⎝

�′(ḡ1(�)) ... �′(ḡ1(�))
⋮ ⋱ ⋮

�′(ḡN (�)) ... �′(ḡN (�))

⎞

⎟

⎟

⎟

⎠

. (75)

As the system is a continuous attractor of dimension m, there exist m left eigenvectors of
Km with zero eigenvalue, �⃗�(��), which we compute numerically. The diffusion tensor is
computed using Eq. 25, using these vectors �⃗�(��).
By projecting Eq. 73 on �⃗�(��) we obtain the linear response tensor X, such that Eq. 6 is

valid. Explicitly:

X�� =
∑

i∈�
��,i�Ii�

′(ḡi(�)) , (76)

where,

�Ii =

⎧

⎪

⎨

⎪

⎩

−1 i ∈ {lef t}

1 i ∈ {right}
, (77)
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and i ∈ �means that the ith neuron belongs to module �. Using this approach numerically,
yields nearly identical results as Eq. 52.
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