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Abstract—While Granger Causality (GC) has been often em-
ployed in network neuroscience, most GC applications are based
on linear multivariate autoregressive (MVAR) models. However,
real-life systems like biological networks exhibit notable non-
linear behavior, hence undermining the validity of MVAR-based
GC (MVAR-GC). Current nonlinear GC estimators only cater for
additive nonlinearities or, alternatively, are based on recurrent
neural networks (RNN) or Long short-term memory (LSTM)
networks, which present considerable training difficulties and tai-
loring needs. We define a novel approach to estimating nonlinear,
directed within-network interactions through a RNN class termed
echo-state networks (ESN), where training is replaced by random
initialization of an internal basis based on orthonormal matrices.
We reformulate the GC framework in terms of ESN-based
models, our ESN-based Granger Causality (ES-GC) estimator in
a network of noisy Duffing oscillators, showing a net advantage
of ES-GC in detecting nonlinear, causal links. We then explore
the structure of ES-GC networks in the human brain employing
functional MRI data from 1003 healthy subjects drawn from
the human connectome project, demonstrating the existence of
previously unknown directed within-brain interactions. ES-GC
performs better than commonly used and recently developed
GC approaches, making it a valuable tool for the analysis of
e.g. multivariate biological networks.

I. INTRODUCTION

Multivariate Granger causality [[1], [2] estimates how much
the forecast of a timeseries can be improved by including
information from the past of another timeseries, while ac-
counting for additional, mutually interacting signals. It is
defined in terms of conditional dependencies in the time or
frequency domains [3]], and can be considered an estimator
for directed information flow between pairs of nodes (possibly)
belonging to complex networks [4]. Granger Causality(GC)-
based approaches, including the nonlinear Kernel approach|5]
and the recent State Space (SS) (SS-GC) reformulation [6],
have been employed in a vast number of problems which can
be assimilated to network science, and the majority of CG
applications are based on linear multivariate autoregressive
(MVAR) models [2]]. However, it is well known that real-life
systems in general (and biological networks in particular) ex-
hibit notable nonlinear behavior, hence undermining the valid-
ity of MVAR-based approaches in estimating GC (MVAR-GC)
[7]. A typical case study is the analysis of brain networks from
functional MRI (fMRI) signals, which result from convolving
neural activity with a locally hemodynamic response function
(HRF) [8], [9]. Here, a linear MVAR approach is not suitable
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for reconstructing neither the nonlinear components of neural
coupling, nor the multiple nonlinearities and time-scales which
concur to generating the signals. Instead, neural network (NN)
models more flexibly account for multiscale nonlinear dynam-
ics and interactions [[10]. For example, multi-layer perceptions
[11] or neural networks with non-uniform embeddings [12]
have been used to introduce nonlinear estimation capabili-
ties which also include “extended” GC [13[] and wavelet-
based approaches [14]. Also, recent preliminary work has
employed deep learning to estimate bivariate GC interactions
[15], convolutional neural networks to reconstruct temporal
causal graphs [[16] or Recurrent NN (RNN) with a sparsity-
inducing penalty term to improve parameter interpretability
[17], [18]. While RNNs provide flexibility and a generally
vast modelling capability, RNN training can prove complex
and their employment in real-world data, where data paucity
is often an issue, may prove impractical and/or unstable. In this
respect, a subclass of RNN, termed long-short term memory
(LSTM) models, have been designed to explicitly include a
“forgetting element” [19] which facilitates training (see [20]
and references therein for a general discussion of LSTM in
various learning tasks), and one paper also employed LSTM
models in brain connectivity estimation [21]]. Still, successful
design and training of both RNN and LSTM models requires
memory-bandwidth-bound computation, involves in-depth tai-
loring to a specific application, and the final architecture is
often defined through trial and error procedures.

In this paper, we introduce a novel approach to estimating
nonlinear, directed within-network interactions while retaining
ease of training and a good degree of generality. Our frame-
work is based on a specific class of RNN termed echo-state
networks (ESN) [22]]. The peculiarity of ESN is that, contrary
to the general RNN model, ESN weights are not trained but
rather randomly initialized, after which a linear mixing matrix
is employed to map internal states to predicted outputs. The
main hypothesis is that a fixed but randomly connected RNN
can provide output with a state space rich enough to provide
flexible fitting capabilities while eliminating the training issues
common in RNNs. In addition, we modify and optimize the
current ESN formulation to simultaneously model nonlinear,
multivariate signal coupling while decoupling internal model
representations into separate orthonormal weight matrices.
We then reformulate the classical GC framework in terms
of ESN-based models for multivariate signals generated by
arbitrarily complex networks, and characterize the ability
of our ESN-based Granger Causality (ES-GC) estimator to
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capture nonlinear causal relations by simulating multivariate
coupling in a network of interacting, noisy Duffing oscillators.
Synthetic validation shows a net advantage of ES-GC over
other estimators in detecting nonlinear, causal links. As proof-
of-concept, we then explore the structure of EC-GC networks
in the human brain employed functional MRI data from 1003
healthy subjects scanned at rest at 3T withing the human
connectome project (HCP), demonstrating the existence of
previously unknown directed within-brain interactions.

II. METHODS

A. Granger causality

GC was introduced [23], [24] under the assumptions that
a) the cause happens prior to its effect, and b) the cause
contains unique information about the future of the effect.
Under these assumptions, given a time-evolving system u(t)
with L components {uq,usg, ... ur}, component u; is said to
be causal on component u; (u; — u;) if:

Plus(t +1) | Z(a(®)] # Plu(t + 1) | @) (1)

where P is a probability density function, while Z(u(t))
and Z(u(~7)(t)) denote (with loose notation) all information
provided by u up to time ¢ including or excluding component
7, respectively.

A common simplification is that Z(u(t)) can be represented
by a MVAR process defined over u. The inequality () is then
replaced by a test of equality between the estimated variances
of the two distributions, i.e. Var(¢’) # Var(e), where ¢ and &’
are the prediction errors derived from the so called restricted
model (RM) and an unrestricted model (UM), respectively:

i(t) = wi(t) — (i k’i,TU> ul=7) (1)
T=1
() = u;(t) — (Z kw[f) u(t)

where L7u(t) = u(t—7) is the lag operator, the autoregressive
order p is a suitably chosen parameter, and k’; , and k; , are
to be estimated from data. Further, it is common practice to
use the logarithm of the ratio of average squared residuals
(€; = (¢?)) as a measure of MVAR-GC strength as follows:
Sji = log(egﬂ)/ei) [1]. This measure also has a natural
interpretation as the rate of “information transfer” between
¢ and j and has been shown to be equal to the transfer
entropy between 7 and j in the case of Gaussian variables
[25]-[27]]. Similarly, K-GC[5] is a nonlinear reformulation
of GC based on searching for linear relations on a Hilbert
space into which data has been embedded [28]]. Also, more
recently [6] the MVAR approach has been refined through
a latent state-space (SS) model, where the inference of SS-
GC is done over observables which are a linear mixture v(t)
of the state variables u(t) with added white Gaussian noise:
v(t) = Au(t)+£(t) (where A is a mixing matrix). SS-GC has
been extended in [29] to define multiscale causality, and has
been shown to augment performance when classical MVAR
methods fail [30].
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Schematic representation of ES-GC.

Figure 1.

B. Echo State Network based causality

ESNs were introduced as a specific type of RNN which can
be associated with an architecture and a supervised learning
principle. In an ESN, a random, large and fixed RNN is fed
with input signals eliciting a nonlinear response in each neuron
within the network’s “reservoir”. The output is then derived
as a linear combination of these nonlinear responses. In this
way, the information Z(u(t)) can be encoded through an M-
dimensional array (the “reservoir”) of dynamical states x(t)
which evolve in time as a function of the input u and of
previous states x(¢ — 1). The reservoir is often [31] modeled
with an exponentially decaying memory and an innovation
terms x whose relative contribution is linearly weighted by
the so called leak-rate o

x(t)=(1—-a)x(t—1)+ ax(t). (3)

Additionally, the innovation term is a nonlinear function of
the contribution of two other terms: a linear combination
of the input states W™u(¢), and a linear combination of
the previous reservoir states Wx(¢t — 1), yielding X(t) =
f (WL u(t)] 4+ Wx(t—1)). W € RM*M s a mixing
matrix between reservoir states, and Wi* € RM*L j5 a
mixing matrix between input states. Typically, both W and
Win are constant and randomly initialized, and W is usually
a sparse matrix whose initialization is controlled by its largest
eigenvalue p (the so-called spectral radius) and its density.
Also, a typical choice for the function f : RM — RM is an
element-wise sigmoid function (e.g. hyperbolic tangent) which
is symmetrical around the origin, approximates identity for
“small” inputs, and is asymptotically bounded. The choices of
a, W™ and W are crucial for forecasting accuracy [22].

C. Redefining Causality trough ESNs

For a suitable choice of reservoir size M, leak parameter «,
spectral radius p, matrix W and matrix W, we can define an
“extended” state z(t) = [1;x(t), u(t)] which, arguably, con-
tains (most of) Z(u(t)). Then, under a linear approximation,
we can assume that the expected value of w;(t + 1) | Z(u(t))
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can be written as a linear combination of an “optimal” matrix
WO (to be estimated numerically) and z(t):

Elu;(t + 1) | Z(u(t))] = W™z(t) ; )

given a realization of the system, W% ¢ RIX(1+M+L) jg
found by minimizing the sum of the squared residuals gener-
ated when using the next time-point of the ¢-th component as
the ‘influenced’ variable. Then, the RM and UM in equation
(@) can be reformulated as:

) = ug(t+1) — Wz (1) (RM)
ei(t) = wi(t + 1) — Wz(2) (UM)

and, just like in the classical definition of GC, s;_; =
1og(e§_j)/ei) is the estimate of ES-GC strength.

In this paper, under the assumption that each component of
u interacts weakly (as compared to its own dynamics) with
other components, we introduce the choice of W as a block
diagonal matrix W = diag(W1, Wy, ..., W). Equivalently,
we assume that, for each component ¢, the expected value
of u;(t + 1) | Z(u(t)) is linearly separable in terms of all
echo states including its own. Figure [I] shows a pictorial
representation of this model, which can also be thought of
as a larger ESN composed of several separable ESNs. As a
further improvement, in this paper we introduce the use of or-
thonormal matrices (as opposed to sparse, randomly initialized
matrices) as the block diagonal matrices W, obtained through
random initialization followed by orthonormalization. This is
heuristically motivated by the idea of providing the network
with a “maximally orthogonal” basis for signal representation.
Experimentally, we found that this choice i) consistently yields
superior forecasting performance in terms of residual sum
of squares of univariate models, and ii) renders performance
largely insensitive to the choice of parameters (p, W™) within
a wide range of values (data not shown).

®)

D. Synthetic validation of ES-GC and comparison to other
estimators

1) Network generation: In order to compare the
performances of ES-GC, SS-GC, K-GC and MVAR-GC
in detecting true causal connections within complex directed
networks, we generate data from a family of 10-node ground-
truth random networks derived by the Erdos-Rényi model
[32], [33]. This entails randomly sampling from a uniform
graph distribution, i.e. a graph is constructed by connecting
nodes randomly or, equivalently, each edge is included in
the graph with constant probability independent from every
other edge. Specifically, starting with L disconnected nodes,
“edges” (i.e. connections) between two not already connected
nodes are successively and randomly assigned up to the
required density. Bidirectional connections as well as loops
are explicitly allowed. The total number of edges n. depends
on the network density d, which, for a network with L
nodes, is defined as n./(L(L — 1)). Here, we generated
graph families at 9 different densities, where values are
chosen so that the corresponding densities are approximately
equidistant on a logarithmic scale between 0.01 and 1: d, =
{0.022,0.044,0.067,0.1,0.154,0.249, 0.387, 0.584, 0.822}.
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Figure 2. Top: example networks used to generate synthetic data at densities
dn = 0.1544,0.2485,0.387,0.5837. Bottom: signals from a network of
forced, weakly coupled Duffing oscillators (eq.(6)). Parameters were chosen so
that: i) each oscillator would exhibit chaotic behaviour even without coupling;
ii) none of any two oscillators would be synchronized regardless of network
density or coupling strength. In this paper, v = 0.5, = —1,a = 1,5 = 0.3;
w; is randomly chosen from the interval [1.19;1.21] and ¢; is randomly
chosen from the interval [0; 27]; & = oTo where 0 = mT(0.05 I)m and m
is a matrix whose elements are randomly sampled from a uniform distribution
in the [-1;1] interval.

For each value of d, we generate 30 different networks to
account for fluctuations with respect to network topology.
Each network is described by a binary, zero-diagonal,
asymmetric adjacency matrix A, whose elements Aj;;
represent the direct influence of node j on note ¢. Examples
of the generated networks at different densities are shown in
Fig.

2) Node-wise Duffing oscillators: For each ground-truth
network, a set of forced, noisy, weakly coupled, Duffing
oscillators u = {uy,...,ur} are generated and assigned to
network nodes as follows:

u; = v + cij(uj —up) + &

6
b = —0v; — Bu; — au® + 1y cos (wit + ;) ©

where &;(t) is a spatially correlated white noise process:
(&(t),&(T)) = o6(t — 7)%;5. The coupling coefficient c;;
is defined by a global coupling strength w and a ground-
truth matrix A that defines the topology of the network.
Specifically, for the i-th node, if A;; = 0 then ¢;; = 0;
otherwise c;; is equal to w normalized by the number of
incoming connections ¢;; = w/ Zl A;j. Here, nine values
(approximately equidistant on a logarithmic scale) for w were
employed (w = 0.02 — 0.5). Each networks was evolved for
a total of 10000 timepoints (At = 0.5, undersampled from a
signal generated with a stochastic second-order Runge-Kutta
numerical integration scheme with integration step At’ = 0.1).
Example synthetic signals are shown in Fig. 2] along with
details about parameter choices.

3) Causality estimation in ground truth networks: For each
set of synthetics signals (30 networks x 9 density values x 9
coupling strengths = 2430 networks with 10 nodes each), the
four estimation methods (ES-GC, SS-GC, K-GC and MVAR-
GC) were employed for ground-truth network reconstruction.
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Figure 3. ROC curves relative to ES-GC, SS-GC, K-GC and MVAR-GC.
ROC curves (built over the prediction of (102 — 10) links for each of 30
networks and successively averaged) are shown (solid lines) along with a
+ 1 standard deviation interval (shaded areas). ROC curves are show for
parameters: density d, = 0.154, coupling strength w = 0.1. All other
parameters are kept constant (see Fig. Q)

For each {w, d,} pair, the performance of each estimator was
quantified through a receiver operating characteristic (ROC)
curve built by varying the threshold in causality strength used
for edge acceptance across all network edges. Performance
metrics derived at each density and coupling strength were
averaged across the 30 networks. H

For both SS-GC and MVAR-GC, the optimal autoregressive
order p was chosen according to the Akaike information
criterion (AIC) within the range 1-25 [34f] (p = 20 for both
estimators). The optimal p was not significantly sensitive to
network density (data not shown). ES-GC hyperparameters
were chosen by performing a 3-1 train-test split on univariate
data generated from one network node and minimizing pre-
diction error on the test set as a function of reservoir size M
(interval: 1-500), leak-rate « (interval: 0.1-0.9) and spectral
radius p (interval: 0.01-1) [35]]. This procedure was repeated
for varying data length (interval 2048-65536) This resulted in
M = 2500 (corresponding to a reservoir of 250 neural units
for each of the 10 nodes), o = 0.3 and p=0.9.

The area under the ROC curve (AUC) was employed as a
performance metric. Since SS-GC is an explicitly multi-scale
method [29]], SS-GC estimations were repeated at 18 different
scales (1-18). In this paper, all AUC values presented for SS-
GC are the highest value achieved amongst all scales. A simi-
lar procedure was followed for K-GC, where estimations were
repeated while concurrently varying model order (interval: 1-

In-house developed code for ES-GC estimation is available on GitHub
repository: https://github.com/andreaduggento/EchoState-GrangerCausality

7) and polynomial kernel order (interval: 1-7). All AUC values
presented are the highest value achieved within this parameter
space. Additionally, we evaluated detection performance of all
causality estimators in terms of the positive predictive value
(PPV) of the top 10% strongest connections.

E. Estimation of the human between-network connectome
from fMRI data

As an example application to biological data, we use in-vivo
fMRI data from 1003 subjects made available by the Human
Connectome Project [36] as part of the S1200 PTN release.
The subjects included underwent 4 sessions of 15-minute
multi-band (repetition time (TR) = 0.72s) resting-state fMRI
scans on a 3 Tesla scanner with isotropic spatial resolution of
2 mm, for a total of 4800 volumes per subjects. Preprocessing
details can be found in [37]. After pre-processing, a group-
principal component analysis [38] output was generated and
fed into group-wise spatial independent component analysis
(ICA) using FSL MELODIC tool [39] to obtain 15 distinct
spatiotemporal components. Subject- and components- specific
timeseries were then extracted, and a directed connectome
was built for each subject through our ES-GC method. ES-
GC hyperparameters were chosen as described above (using a
train-test split of ICA-timeseries data), resulting in M = 60
(corresponding to a reservoir of 4 neurons for each of the
15 components) leak-rate o = 0.6, and spectral radius p=0.9.
Interestingly, we obtained a smaller optimal reservoir and a
larger optimal leak-rate as compared to the synthetic data
case, possibly indicating less rich ‘dynamics’ in fMRI data
as compared to networks of nonlinear duffing oscillators.

III. RESULTS
A. Synthetic validation results

Figure [3] shows the comparison between the ROC curves
obtained when using ES-GC, SS-GC, K-GC and MVAR-GC
for exemplary density and coupling parameters d, = 0.154
and w = 0.1. ES-GC clearly outperforms SS-GC (even at its
optimal scales), K-GC and MVAR-GC (which only delivers
chance-level performance). Additionally, the ROC curves show
how for ES-GC true positive rates/false positive rates are
larger/smaller (respectively) than for other estimators at every
discrimination threshold (i.e. operating point of the ROC
curve).

Since performance of any causality estimator is expected to
increase with coupling strength and to fluctuate with network
density, we inspected AUC as a function of w with fixed d, and
vice versa (Figure E[) For all estimators, the AUC increases
with coupling strength (a higher coupling corresponds to
a larger multivariate transfer entropy [25] up to the onset
of generalized synchronization (data not shown)). ES-GC
performs notably better than other estimators at all network
densities and all coupling strengths. Also, Figure [5] shows the
comparison in PPV (for the top 10% strongest connections)
between all frou estimation methods. For all estimators, PPV
increases both with coupling strenght and with density. Again,
ES-GC delivers notably higher PPV than other estimators at
all network densities and all coupling strengths.
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Figure 4. AUC comparison between ES-GC, SS-GC, K-GC and MVAR-GC
with respect to coupling strength (left) and network density (right). For each
method, AUCs were computed from ROC curves built over the prediction of
(102 — 10) links for each of 30 networks and successively averaged (solid
lines). A £ 1 standard deviation interval is also shown as shaded areas.

density 0.154444 coupling strength 0.1

1.0 1.0
— ES m— ES
SSs SS
0.8F m= K 1 0.8F m== K
= MVA| m== MVAR
0.6} 0.6}
= >
o o
o o
0.4} 0.41
0.2} 1 0.2}
0.0 0.0
0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20 0.50
coupling w density d,

Figure 5. PPV of the top 10% connections between ES-GC, SS-GC, K-GC
and MVAR-GC with respect to coupling strength (left) and network density
(right). For each method, the PPVs built over the prediction of 30 different
networks were averaged (solid lines); for each method shaded areas indicate
the mean PPV =+ 1 standard deviation.

In-vivo human connectome results

ES-GC estimation in the full HCP sample resulted in
4 % 1003 = 4012 asymmetric adjacency matrices. For the pur-
pose of visualization (see below), we calculated the element-
wise median matrix across subjects and scans, which was
then thresholded at the 90th percentile. The resulting directed,
within-component connectome derived from 1003 healthy sub-
jects is shown in Fig. [6] (see Figure caption for the physiolog-
ical significance of each of the 15 components). These results
suggest a strong bidirectional interaction between the Default
Mode Network and the Salience network, a direct modula-
tion of the Striate Visual Network by the Visuo-Prefrontal
Network (but not vice versa) and a direct modulation of
the Hippocampal-Cerebellar Network by the Sensory/Motor-

Figure 6. Graphical summary of in-vivo results. Directed, between-
component brain connectivity network derived in 1003 HCP subjects (top
10% in median across subjects) is displayed. Color indicates the ‘influencing’
component. The significance of physiological networks can be summarized
as follows : 1: Visuo-Prefrontal Network, 2: Default Mode Network,
3: Extra-striate Visual Network , 4: Visuo-Parieto-Premotor Network, 5:
Left Fronto-Parieto-Cerebellar Network, 6: “Salience” Network, 7: Right
Fronto-Parieto-Cerebellar Network, 8: Hippocampal-Cerebellar Network, 9:
Hippocampal-Posterior Cingulate Network, 10: Fronto-Temporal- Network,
11: Sensory-Motor Network, 12: Striate Visual Network, 13: Sensory/Motor-
Limbic Network, 14: Fronto-Polar Network, 15: Cingulate Cortex Network.

Limbic-Network, which was only recently defined [40].

IV. DISCUSSION AND CONCLUSIONS

In this paper we transition away from classical causality
quantifiers and define a novel approach to estimating nonlinear,
directed network interactions through a specific class of RNNs
(namely echo-state networks, or ESN) which do not suffer
from training difficulties common in RNNs. We modify the
current ESN formulation to represent nonlinear, multivariate
signal coupling while decoupling internal model representa-
tions and using separate, heuristically motivated orthonormal
bases for network weights. We then reformulate the classical
GC framework in terms of ESN-based models for multivari-
ate signals generated by complex networks. Our method is
validated through extensive synthetic data simulation, where
we find that ES-GC largely outperforms state-of-the art linear
methods. Interestingly, in our model system, the coupling
value w = 0.1 marks a transition across chance-level perfor-
mance for classical MVAR-GC. This indicates that ESN-, K-
and SS-based GC are capable of a non-random resolution of
true links in a system where coupling is so weak that standard
MVAR-GC analysis fails. Also, for all methods, performance
mostly deteriorates with increasing network density. This is
possibly due to the complex interplay between the dynamics
of a high number of ‘causal’ nodes. Still, across the whole
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parameter space and model system parameters tested in this
paper, ES-GC performs notably better than other methods. Im-
portantly, these overall considerations also hold when looking
at the PPV achieved when predicting the top 10% strongest
connections, indicating that in possible applications (like e.g.
the approach we adopted in this paper when deriving our
proof-of-concept directed connectome) targeted at interpreting
the strongest links ES-GC would deliver the best true-positive
rate. While these results have been derived using forced,
weakly coupled stochastic oscillators, the generality of the ES-
GC framework allows to hypothesize that it could deliver supe-
rior performance in a larger class of dynamical situations like
e.g. non-synchronized, weakly interacting, possibly chaotic
and forced dynamical systems, in which causality detection
is extremely challenging. Importantly, these circumstances are
ubiquitous in biophysics and biomedical signals, where the
detection of causal links in weakly interacting systems is
often the stepping stone for physiological interpretation. In
this context, our method was able to uncover direct functional
links between sub-networks of the brain which have not been
previously described. Relatedly, while the fMRI results in this
paper are intended to demonstrate a possible application of
our novel methods to real-world brain data, it is interesting to
note the application of GC in neuroscience in general have
been the object of constructive discussions [30], [41]-[44]
which ultimately confirmed its applicability provided possible
methodological pitfalls are avoided. For example, it is well
known that fMRI signals are a surrogate of neuronal activity,
and that the convolution with a locally varying HRF can
confound causality results. Blind deconvolution methods have
been proposed in this respect [45]. Still, the application of
this type of pipeline is not yet widespread in fMRI studies
using causality methods, and the importance and applicability
of such methods in cases where fMRI time-series data is
averaged over relatively large brain regions stemming from
low-dimensional independent component analysis (line in this
paper) remains to be investigated. Also, accurate synthetic
simulations of neuronal spiking and neurovascular coupling
have shown that the top percentiles in the median causal
adjacency matrix computed across subjects can be interpreted
with extremely good positive predictive value [9]. Relatedly,
it has been shown that GC in general is applicable to fMRI
data and that HRF convolution retains monotonicity between
fMRI causality and neural causality at realistic fMRI temporal
resolution and noise level [46], which corroborates the idea of
reliably interpreting the top percentiles of causal connections
found in a large number of subjects. Also, the importance
of accounting for nonlinearity in GC estimates in fMRI
(which is included in our model) as well as the problem
of non-overlapping regions of interest across subjects (which
is circumvented by employing group-ICA) and of employing
non-equilibrium timeseries (which, however, does not apply to
independent components derived from resting spate data like
in this paper) have been previously underlined [47].

In summary, ES-GC performs significantly better than com-
monly used and recently developed GC detection tools, even in
complex networks with nonlinear signals and weak coupling,
making it a valid tool for the analysis of e.g. multivariate

biological networks. Future work will address the incorpo-
ration of structural priors from e.g. diffusion MRI [48] as
well as the reformulation through recent, more sophisticated
NN architectures (e.g. combinations of combination of ESN
and LSTM models [49]]) which have been built to facilitate
training.
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