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Abstract. Cell classifiers are decision-making synthetic circuits that al-
low in vivo cell-type classification. Their design is based on finding a
relationship between differential expression of miRNAs and the cell con-
dition. Such biological devices have shown potential to become a valuable
tool in cancer treatment as a new type-specific cell targeting approach.
So far, only single-circuit classifiers were designed in this context. How-
ever, reliable designs come with high complexity, making them difficult
to assemble in the lab. Here, we apply so-called Distributed Classifiers
(DC) consisting of simple single circuits, that decide collectively accord-
ing to a threshold function. Such architecture potentially simplifies the
assembly process and provides design flexibility. Here, we present a ge-
netic algorithm that allows the design and optimization of DCs. Breast
cancer case studies show that DCs perform with high accuracy on real-
world data. Optimized classifiers capture biologically relevant miRNAs
that are cancer-type specific. The comparison to a single-circuit classi-
fier design approach shows that DCs perform with significantly higher
accuracy than individual circuits. The algorithm is implemented as an
open source tool.

Keywords: synthetic biology · Boolean modeling · genetic algorithms ·
miRNA profiling · cell classifiers · cancer.

1 Introduction

Synthetic biology has shown its immense potential in recent years in a wide array
of applications. This is particularly true for the medical field, where synthetic
biological systems are developed for versatile employment from diagnostics to
treatment [29, 25]. Research in design and construction of cell classifier circuits
touches on both these areas. Cell classifiers are molecular constructs capable of
sensing certain markers in the environment, processing the input and reacting
with a signal-specific output. A prime example for this are miRNA-based clas-
sifiers that distinguish cell states, e.g., as healthy or diseased, based on their
miRNA expression profiles applying boolean logic (Fig. 1A) [27, 16]. These cir-
cuits can be delivered to cells on plasmids or viral vectors and trigger the pro-
duction of a desired output, e.g., a toxic compound causing cell apoptosis in
diseased cells (Fig. 1B).
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Fig. 1. (A) An exemplary boolean design of a two miRNA-input cell classifier. (B) A
schema showing two types of cells, healthy and diseased (dashed line). The classifiers
are delivered to the cells, sense the internal input levels and respond with respect to a
given cell condition.

A variety of different approaches to designing synthetic circuits is available
[18, 13, 26]. However, to confront many application-derived limitations, circuit
designs must be often tailored to rigorous specifications. Since cell classifiers
must be feasible to implement in the lab, many constraints are posed on the
building blocks of these circuits that need to be encoded in the design problem.
So far, two different methods for single-circuit classifiers were described [16, 1].
Mohammadi et al. [16] proposed a heuristic approach that allows to optimize a
classifier’s topology using a mechanistic model of the circuit and a predefined set
of biochemical parameters. Another approach was presented by Becker et al. [1].
The authors propose a method for finding globally optimal classifiers represented
by boolean functions based on binarized miRNA expression data. To search
through the entire space of solutions in a short time frame the authors apply logic
solvers. Becker et al. compare their results to the previously mentioned state-of-
the-art method demonstrating significant improvement in binary classification
of presented classifiers [1].

While this research shows that theoretically single-circuit classifiers can per-
form such classification tasks [16, 1], there is a number of challenges for the
approach in application. Depending on the heterogeneity of the data, to obtain
a clear-cut classification often a circuit of high complexity is needed. Generally,
the cost both in time and money for classifier circuit construction in the lab
goes up the larger and more complex the circuit architecture gets, quickly be-
coming not feasible at all [16]. A further problem is the robustness needed for
reliable performance when faced with uncertainty and noise in signals and wide
ranging possibilities for perturbations of the classifier functionality in natural
environments. To address these issues the principles of distributed classification,
as inherent in many natural systems such as the immune system and shown to
be an effective strategy, e.g., in machine learning, can be exploited [23, 20]. Here,
the idea is to design a set of different classifier circuits, also called distributed
classifier, that perform classification in an integrated manner. Such a set can
consist of rather simple classifiers that still perform better and more robustly
than a complex single circuit classifier, since the individual classification results
are aggregated which compensates for individual mistakes. A theoretical design
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of such a distributed classifier based on synthetic gene circuits was presented by
Didovyk et al. [3]. The classifier is optimized by training a starting population
of simple circuits on the available data similarly to machine learning algorithms,
i.e., by presenting learning examples and successively removing low-performance
circuits. While this work considers only a quite specific scenario and the ap-
proach has some drawbacks such as strong dependence on the quality of the
starting population, it highlights the potential of the underlying idea of using
distributed classifiers.

Here, we adapt the distributed classifier approach proposed by Didovyk et al.
[3] to the problem of cell classifier design. We define a Distributed Classifier (DC)
as a set of single-circuit classifiers that decide collectively based on a threshold
function. Biologically, the threshold may correspond to a certain concentration
of the drug that allows to treat the cells or fluorescent marker allowing to clas-
sify the cell type [3, 16, 15]. According to Mohammadi et al. [16] such threshold
manipulation may be achieved by changing the biochemical parameters of a cir-
cuit model. Due to the high complexity of the problem, we apply a heuristic
approach to design and optimize DCs, namely, a genetic algorithm (GA). GAs
are evolution-inspired metaheuristics that allow to optimize populations of indi-
viduals [14]. Such evolutionary approaches were successfully applied to various
biological questions [12], e.g., design of synthetic networks and, in particular,
design of single-circuit classifiers [26, 16]. Due to the high flexibility of GAs in
terms of design and parameters, the algorithm may be efficiently adapted to the
distributed classifier problem.

In this article, we illustrate the potential of distributed classifiers in appli-
cation, in particular, in cancer cell classification. The following section contains
preliminaries including the definition of a single-circuit and distributed classifier.
Section 3 describes the architecture of the proposed genetic algorithm for the
design and optimization of DCs. In Section 4 we present case studies performed
on real-world breast cancer data and compare the results with a single-circuit
design method proposed by Becker et al. [1]. Finally, we discuss the distributed
classifier performance and comment on potential future work.

2 Preliminaries

In this section we describe the data we employ to designing classifiers, intro-
duce single-circuit and distributed classifiers and propose binary classification
measures that allow to evaluate their performance.

2.1 miRNA Expression Data

The proposed method is a boolean approach and utilizes binarized and anno-
tated data. While our focus is on miRNA expression profiles, the approach can
naturally be applied to any data set of the format introduced below.

In cancer research, differentially expressed miRNAs provide a valuable source
of information about tumor development, progression and response to a therapy
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[10, 9]. Thus, dysregulated miRNAs have been considered as potential biomarkers
for cancer diagnosis and treatment. One of the approaches allowing to distin-
guish up- and down-regulated miRNAs is discretization of the expression data
into a finite number of states. Discretization provides clear and interpretable
information about the miRNA behaviour and makes the learning process from
the data more efficient [7]. However, the procedure is also related to a potential
information loss. We comment on this issue in Section 5.

We define a data set D = (S,A) as a finite set of samples S ⊆ {0, 1}m, where
m ∈ N is the number of miRNAs and A : S −→ {0, 1} is sample annotation.
The first column includes unique sample IDs and the second the annotation of
samples, where 0 is assigned to negative class samples and 1 to positive. The
following columns are miRNA expression profiles that describe the miRNA reg-
ulation among the samples. miRNAs are binarized into two states: up-regulated
(1/positive) and down-regulated (0/negative), according to a given threshold.
An example of a data set is presented in Table 1.

ID Annots miR-a miR-b miR-c

1 0 0 1 0

2 0 0 1 0

3 1 1 0 0

4 1 0 0 0

5 1 1 0 0

Table 1: The data: miRNA expression profiles

A miRNA is non-regulated when for every sample its state is either 0 or 1
(e.g., Table 1, miR-c). Some miRNAs can perfectly separate the samples into the
two categories implied by the annotation (e.g., Table 1, miR-b). In the following
section we introduce single-circuit classifiers that process miRNAs as inputs to
classify cell states.

2.2 Single-circuit Classifier

A single-circuit cell classifier may be represented by a boolean function f :
S −→ {0, 1}. To make a classifier feasible to construct in the lab additional
constraints must be imposed on the function. We adopt here the constraints
introduced by Mohammadi et al. [16]. Accordingly, the function should be given
in Conjunctive Normal Form (CNF), i.e., a conjunction of clauses where each
clause is a disjunction of negated (negative) or non-negated (positive) literals.
It may consist of: (i) negative literals only in 1-element clauses (NOT gates) (ii)
at most 3 positive literals per clause (OR gate) (iii) up to 10 literals and up to 6
clauses in total (iv) including at most 4 NOT gates and 2 OR gates. An example
of a classifier satisfying the above-mentioned constraints is presented below.

¬miR-a ∧ (miR-b ∨miR-c) (1)
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The function should output 1/True in case of cancerous and 0/False in case
of healthy cells. The example function presented in Eq. 1 classifies a cell as
positive/1 if miR-a is down-regulated and at least one of the other miRNAs
(miR-b or miR-c) is up-regulated.

2.3 Distributed Classifier

Here, we introduce a concept of Distributed Classifier (DC ) for the cell classi-
fication problem. A DC is a finite set DC = {f1, ..., fc}, where fi is a boolean
function fi : S −→ {0, 1}, to which we will refer from now on as a Rule, c ≤ cmax,
c ∈ N is the DC size and cmax ∈ N is an upper bound for the DC size. Motivated
by Section 2.2 a Rule must be a boolean function in a Conjunctive Normal Form
consisting of at most two single-literal clauses. An example of a DC is presented
below.

{ miR-a, miR-b ∧ ¬miR-c, miR-a ∧miR-d} .

We assume that each Rule in the set must be unique, i.e., we do now allow copies
of Rules in the DC. Also, two identical miRNA IDs cannot occur in one Rule.
The DC categorizes cells according to a threshold function FDC : S −→ {0, 1}
with

FDC(s) =

{
0,
∑c

i=1 fi(s) < θ

1,
∑c

i=1 fi(s) ≥ θ
, (2)

where s ∈ S is a sample and θ ∈ [0, c] is a threshold. Here, we use θ = bα · ce as
the threshold, where α is a ratio that allows to calculate the decision threshold
based on the classifier size. The threshold is then rounded half up. FDC returns
1/True if a certain number of Rules (θ) outputs 1/True, e.g., α = 0.5 for c =5
indicates that at least 3 Rules must output 1/True to classify a cell as positive.

Depending on α one may receive different results. In case of a very low thresh-
old, e.g., if only one Rule outputing 1/True results in DC outputing 1/True, the
DC becomes simply a disjunction of Rules. Note, that the function may then
classify in favor of the positive class, as the decision to classify a sample as
positive is in fact made by only one rule. This effect is already reduced by not
considering 2-literal OR gates as rules. Otherwise, if the threshold is very high,
i.e., all the rules must output 1 for the DC to output 1, the function takes a form
of a conjunction of clauses staying close to the single-circuit classifier. Unlike the
disjunction, a conjunction may classify in favor of the negative class which may
decrease the sensitivity of the method. Applying intermediate thresholds results
in different combinations of those functions, therefore, different classification
performance. In terms of cell classifiers applied as a cancer treatment, one may
consider a following problem: in case of high α, the classifier may misclassify
the diseased cells resulting in false negatives. Thus, the treatment may be less
effective. However, low α may result in misclassification of healthy cells which
makes the treatment more toxic as the drug is released in those cells (false pos-
itives). Here, one should consider what type of errors is less desirable and apply
a suitable threshold. We discuss this issue further in Section 4.
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2.4 Evaluation

Here, we introduce the measures we employ to evaluate DCs in terms of their
binary classification. Many metrics that may be applied are available [21]. How-
ever, real-world expression data is often heavily imbalanced, i.e., the samples are
not equally represented in the two classes. Data imbalance may significantly in-
fluence the classification results [28]. Balanced Accuracy (BACC) is an intuitive
and easily interpretable metric that allows to balance the importance of samples
in both classes (Eq. 3) [21]. Thus, as a main measure of classifier’s performance
we apply BACC.

BACC(DC,D) =
TP
P + TN

N

2
(3)

To evaluate other aspects of classification correctness we employ additional com-
mon metrics such as sensitivity (TP/(TP +FN)), specificity (TN/(TN +FP ))
and accuracy ((TP + TN)/(T + N)). Sensitivity represents the ability of the
method to correctly distinguish samples belonging to the positive class, while
specificity represents those belonging to the negative class. Accuracy gives in-
formation about the proximity of results to the true values, but does not take
data imbalance into account.

3 Genetic Algorithm

In this section we present the architecture of a GA applied to design and opti-
mization of DCs. In the following sections we describe the core structure of the
algorithm (Algorithm 1) as well as the used parameters and operators. Detailed
algorithms, related to, e.g., particular operators, may be found in the Appendix.

3.1 General description

The input miRNA expression data must be formatted as described in Section
2.1. To optimize the DCs, seven parameters must be specified: iter - number of
iterations, ps - population size, cp - crossover probability, mp - mutation proba-
bility, ts - tournament size, cmax - maximal size of a classifier, α - the decision
threshold ratio. As output, the algorithm returns a list of all best solutions found
over the GA’s iterations according to their balanced accuracy (DCbest). In case
of single-circuit classifiers, besides the accuracy, the complexity of a solution is
also taken into account [16, 1]. Thus, we choose the shortest solution (consisting
of the lowest number of rules) as the optimal one.
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Algorithm 1: A genetic algorithm for DC design

Data: dataset D
Parameters: iter, ps cp, mp, ts, cmax, α
Output: DCbest

Population ←− InitializePopulation(D, ps, cmax)
DCbest ←− Evaluate(Population, D, α)
for i = 0 to iter do

for i = 0 to ps/2 do
Parent1, Parent2 ←− SelectParents(Population)
Parents ←− Add(Parent1, Parent2)

end
for i = 0 to ps/2 do

Parent1, Parent2 ←− DrawParents(Parents)
Child1, Child2 ←− Crossover(Parent1, Parent2, cp, cmax)
NewPopulation ←− Add(Child1, Child2)
RemoveUsedParents(Parent1, Parent2, Parents)

end
Population ←− Mutate(NewPopulation, D, mp, cmax)
DCbest ←− Evaluate(Population, D, α)

end

The algorithm starts with a random generation of an initial population. Next,
the population is evaluated and a list of best solutions DCbest is created. Having
the initial population generated, the algorithm starts with a first generation. At
the beginning, ps individuals are selected as potential parents to be recombined.
Next, the crossover occurs with the probability cp. As classifier sizes may differ,
we propose two recombination strategies described further in section 3.4. Next,
individuals in the new population may mutate with the probability mp. The
population is then evaluated, i.e., list DCbest of best solutions is updated. All
the described steps in a generation are repeated iter times. Below we explain
the details of the algorithm design.

3.2 Fitness Function and Evaluation

As described in Section 2.4, to evaluate the classification performance of a dis-
tributed classifier we apply balanced accuracy as the fitness function. To count
TPs and TNs we iterate over samples and evaluate the performance of a classifier
according to the threshold function described in Section 2.3. The classification
threshold is specified by the user. In Section 4 we discuss the influence of different
thresholds on the results.

3.3 Population

Individual Encoding An individual (i.e., a DC) is encoded as a vector of
single rules. A unique ID and a fitness score is assigned to each individual.
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Both, the distributed classifier and single rules must satisfy previously described
constraints (see Section 2.3). Note, rules must consist of unique miRNA-inputs
and DCs must consist of unique rules.

Initial Population An initial population of a given size (ps) is generated ran-
domly, i.e., each classifier and each single rule in the classifier is randomly ini-
tialized. Individuals in the population may be of a different size c (maximally
cmax). Thus, to generate a new individual, c must be first defined. Then, each
single rule is generated in a few steps. First, the rule size is chosen. Next, num-
bers of positive and negative inputs in a rule are defined. Finally, miRNA IDs
are assigned to the inputs. For more details see Appendix (Algorithm 2).

3.4 Operators

Selection Parents, to be potential candidates for recombination, are chosen
in a process of tournament selection. Many selection operators are described in
the literature. Tournament selection allows to maintain diversity in the popu-
lation and can be efficiently implemented [24]. In each selection iteration two
parents are chosen in separate tournaments. To select one parent, a number of
ts individuals is randomly chosen from the current population to participate
in a tournament. The winning candidate is an individual with the best fitness
score. The first and the second parent must be different individuals. Thus, in
each iteration, after choosing the first parent, its ID is temporarily blocked to
be re-selected. The steps are repeated to form a population of selected individ-
uals of the size of the original population (ps). For more details see Appendix
(Algorithm 3).

Crossover In each crossover iteration two parents are randomly chosen from a
population of selected individuals to recombine. Crossover occurs with the prob-
ability cp. To decide whether parents exchange information a random number
p is chosen. If p ≤ cp then the parents recombine to generate offspring. Other-
wise, parents are copied to a new population. As individuals may have different
sizes, we apply two strategies. If chosen parents are of the same size we perform
standard uniform crossover. Otherwise, to preserve equal chance for each rule to
be swapped, we apply index-based crossover. The crossover index is chosen ran-
domly and allows to change the position of a shorter individual in relation to the
second one. Here, the rules may be either swapped or, if there is no possibility
to swap them due to different sizes, a rule from a larger classifier may be copied
to the offspring. Note, that the index-based crossover may shorten the size of an
individual as additional rules cannot be added to the larger classifier. After the
crossover, the parents are removed from the population of selected individuals.
For more details see Appendix (Algorithm 4 and 5).

Mutation Mutation may occur on two levels: both, rules and inputs may mu-
tate. A rule may (i) be removed from a classifier, (ii) be added to a classifier and
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(iii) be copied from one classifier to another. As mentioned before, index-based
crossover may shorten the classifier. Here, two possibilities to extend the size of
a classifier are available: a new rule may be initialized and added to a classi-
fier or copied from another classifier. These two options balance the influence of
crossover on the size of classifiers. An input may (i) be removed from a rule, (ii)
be added to a rule, (iii) may change the sign (i.e., become a negative or positive
input respecting the constraints described in Section 2.3). Rules, being larger
components affecting the classifier size, mutate with a lower probability than
inputs (0.2). Note, the maximal size of a classifier (cmax) must be preserved. For
more details see Appendix (Algorithm 6).

4 Case Studies

In this section, we illustrate the potential of DCs in application, in particular, in
cancer cell classification by performing case studies on real-world breast cancer
data. We first describe the data sets used to evaluate DC performance. Then, we
present results of parameter tuning and cross-validation. We analyze classifier
performance, as well as the relevance of chosen miRNAs. Finally, we compare
DCs with a single-circuit classifier design approach.

4.1 Breast Cancer Data

Dataset Samples Positive Negative miRNAs filtered miRNAs

All 178 167 11 478 57

Triple- 82 71 11 456 52

Her2+ 86 75 11 438 19

ER+ Her- 32 21 11 392 18

Cell Line 17 6 11 375 59

Table 2: Breast Cancer data description.

To evaluate the performance of our approach we use Breast Cancer data sets
previously applied by Becker et al. [1] and Mohammadi et al. [16] to the de-
sign of single-circuit classifiers. Originally the data was described by Farazi et
al. [6] and pre-processed by Mohammadi et al. [16]. The details about the sam-
ples and miRNAs may be found in Table 2. The data set All includes samples
of different breast cancer subtypes. This allows to compare breast cancer sam-
ples with the control (negative samples). The following data sets are subsets
representing different breast cancer subtypes containing information about the
differences between particular subtypes and the control. Note, the data sets are
significantly imbalanced as the negative class is heavily underrepresented. The
data is formatted according to the description presented in Section 2.1. In terms
of cell classifiers, non-regulated miRNAs do not carry any information. Thus, we
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remove them from the data sets before optimizing the classifiers. The last two
columns of Table 2 include numbers of miRNAs before and after the filtering
procedure.

4.2 Parameter tuning

To tune the parameters of the genetic algorithm we applied a random search
approach. Random search methods allow to obtain results similar to the grid
search approach, while decreasing the computational cost [2]. This provides an
opportunity to extend the range of tested parameters. To tune the parameters
we used the Breast Cancer All data set. We performed 3-fold cross-validation
and repeated each GA run 10 times to obtain the average balanced accuracy
on the test data. We have randomly chosen 300 combinations of 5 parameters
in following ranges: iter: 25 - 100, step 25; ps: 50 - 300, step 50; cp: 0.1 - 1.0,
step 0.1; mp: 0.1 - 1.0, step 0.1; ts: 10 - 50%, step 10% (of ps). We tuned the
parameters for α = 0.50 and cmax=5 and chose a following set of parameters
based on average scores: iter = 75, ps = 200, cp = 1.0, mp = 0.3, ts = 10%
(20 individuals). We apply those parameters to all case studies presented in the
following sections.

4.3 Cross-validation

To evaluate the classifiers accuracy we performed 3-fold cross-validation for the
breast cancer data sets presented in Section 4.1. We divided the data sets in
3 folds nearly equal in terms of the number of samples representing each class
per fold. For all tests we apply cmax=5. The classifier size cmax=5 allows to
preserve the maximal number of miRNA inputs as proposed for single-circuit
classifiers [16, 1]. Maintaining similar complexity of classifiers allows to compare
the DC-based method to another approach.

We test eight different values of α: 0.25, 0.35, 0.40, 0.50, 0.60, 0.65, 0.75, 0.85,
to evaluate the influence of the threshold function on the classification accuracy.
The best results are presented in Table 3 (complete results for different α values
may be found in the Appendix, Table A2). The DCs presented in the results
are the first best shortest classifiers found by the algorithm. If identical BACC
values for the testing data were obtained for more than one α, we present results
for a DC with the highest BACC value on the training data. Otherwise (equal
training BACC values), we present an exemplary result for a chosen threshold.
Table 3 includes the α-s and performance scores. All scores except of BACC
(train) were calculated on the testing data.
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Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.50 0.92 0.92 0.92 0.92 0.98

Triple- 0.85 0.92 0.75 0.89 0.83 0.98

Her2+ 0.75 0.99 0.61 0.94 0.80 0.96

ER+ Her- 0.50 0.90 0.64 0.82 0.77 0.93

Cell Line 0.25 1.00 1.00 1.00 1.00 1.00

Table 3: Results of 3-fold cross-validation. For the Breast Cancer All data set we
found DCs performing with identical score values for two α values (0.50, 0.60)
and for ER+Her- for 6 different α values (0.35, 0.50, 0.60, 0.65, 0.75, 0.85)

High BACC values obtained for the training data sets, as well as the average
final population BACC values (0.91), show that the populations converge over
the iterations resulting with high-performing DCs. The BACC values measured
for the testing data sets are significantly higher for the largest and the smallest
data sets than for the intermediate-size ones. The accuracy is higher than BACC
for all data sets as the metric is not sensitive to data imbalance.

The sensitivity is high for all data sets meaning that the method success-
fully classifies samples belonging to a positive class. However, the specificity is
decreased for intermediate-size data sets. Note, the data sets are significantly im-
balanced, i.e., the negative class is strongly underrepresented. Thus, even small
number of errors results in substantially decreased specificity.

The best α values differ among the data sets. For the largest one, α is equal
or not much higher than 50%. The data sets of intermediate sizes (Triple- and
Her2+) favoured two more extreme α values. For the ER+Her- several α values
returned identical results (Appendix, Table A2). For the smallest data set the
lowest α value resulted in the highest BACC. Thus, the threshold seems to be
data-specific and should be adjusted to the data set for the DC to perform well.

Applying a certain threshold caused a shift in average numbers of certain
types of errors. Here, we analyze average numbers of FPs and FNs observed
among all data sets for two extreme applied α values. As expected, in case of
a high threshold (0.85) the shift is displayed towards misclassification of the
positive samples (FPavg = 1.00, FNavg=2.00). Otherwise, the low threshold
(0.25) causes more frequent misclassification of negative samples (FPavg = 1.20,
FNavg=0.87). Thus, one may take it into account while designing a classifier.
Complete information about average FPs and FNs for different thresholds may
be found in the Appendix, Table A1.

All the tests were performed using Allegro CPU Cluster provided by Freie
Universitaet Berlin3. An average runtime for one fold of cross-validation for all
the data sets employed in the case studies is 25 min 42 sec. Thus, the tests may
be also performed on a personal computer. However, the breast cancer data sets
consist of up to 180 samples and about 50 relevant miRNAs. Thus, one should

3 https://www.allegro.imp.fu-berlin.de/Cluster
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consider performing extended scalability tests to estimate the runtime limits of
the method.

4.4 Analysis of input viability

In this section we analyze miRNA inputs that occur in two exemplary classifiers.
We chose the best performing classifiers for the largest data set (All) representing
all subtypes and the smallest Cell Line data set.

For breast cancer All two different α values resulted in the highest BACC. We
found that classifiers for each cross-validation fold in the data set are identical
for both α values. Also, all the classifiers are of the same size c = 4. In this
case the applied α does not change the threshold function between both values
(0.50 and 0.60), i.e., for all data sets at least 2 Rules must output 1 to classify
a cell as positive. Below we present a DC found for the third cross-validation
fold of the All data set. The classifier consists of 4 different 1-input rules. We
analyzed the miRNAs and found that all of them may be relevant for cancer
sample classification. The classifier is presented below.

{ ¬miR-378, miR-200c, ¬miR-145, ¬miR-451-DICER1 }

miR-378, miR-145, miR-451-DICER1 are described as down-regulated in
breast cancer [4, 6], e.g., the study by Ding et al. [4] has shown that underex-
pression of miR-145 is related to increased proliferation of breast cancer cells.
Also, miR-378 occurred as down-regulated in the best 1-input single-circuit clas-
sifier presented previously by Becker et al. for the same data set [1]. miR-200c
is marked as up-regulated in breast cancer in [22].

Another classifier we present is a DC for the third cross-validation fold for
the Cell Line data set:

{ ¬miR-146a, ¬miR-143 }

For most of the α values the performance of found DCs was very low for this
particular fold in the Cell Line data set (BACC = 0.50). A perfect classifier of
size 2 performing with BACC = 1.00 on both training and testing data was found
with α = 0.25, i.e., one of 2 rules must output 1 to classify the cell as positive.
We found that both, miR-146a and miR-143, are described as down-regulated
in breast cancer [11, 17].

4.5 Comparison to other methods

We optimized single-circuit classifiers with the ASP-based method proposed by
Becker et al. [1] by performing 3-fold cross-validation using the same data sets
and identical division into folds. The objective function of the ASP algorithm is
based on the minimization of the total number of classification errors. Note that
the ASP method may return several optimal classifiers. Different combinations of
FPs and FNs influence Balanced Accuracy. Thus, to increase the chance of ASP
to perform well, we have chosen the best classifiers according to their BACC.
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Here, we do not compare our results to Mohammadi et al. [16] as the approach
did not perform better than the ASP-based approach as described by Becker et
al. in terms of binary classification [1].

Dataset Method Sensitivity Specificity ACC BACC BACCtrain

All GA 0.92 0.92 0.92 0.92 0.98
ASP 0.96 0.47 0.93 0.72 0.92

Triple- GA 0.92 0.75 0.89 0.83 0.98
ASP 0.89 0.44 0.83 0.67 0.96

Her2+ GA 0.99 0.61 0.94 0.80 0.96
ASP 1.00 0.61 0.95 0.81 0.96

ER+ Her- GA 0.90 0.64 0.82 0.77 0.93
ASP 0.90 0.64 0.82 0.77 0.93

Cell Line GA 1.00 1.00 1.00 1.00 1.00
ASP 0.83 1.00 0.93 0.92 1.00

Table 4: Comparison of results of 3-fold cross-validation for the ASP-based ap-
proach proposed by Becker et al. [1] and for the GA for α values presented in
Table 3.

The DC-based method outperformed the single-circuit approach in 3 of 5
case studies. For two other data sets the resulting BACC (test) values are either
identical (ER+Her-) or very similar (Her2+). This may imply that further im-
provement of classifier performance for those data sets is not possible with the
currently applied techniques. The training BACC values are also significantly
higher for the DC-based approach. Note, the DC-based design method explores
a different search space than the single circuit approach. Although single circuits
are also allowed as 1-rule classifiers, their complexity is substantially lower in
comparison to single circuits. Additionally, ASP returns globally optimal solu-
tions, i.e., it adjusts the classifier perfectly to the training data, which may cause
overfitting. Although, the classifiers obtain high BACC on the training data (av-
erage for all data sets: 0.95), the classifiers may be too specific to perform well
on the testing data.

5 Discussion

In this article, we introduced a new approach to cell classifier design. The concept
of DCs proposed by Didovyk et al. [3] was re-formalized in the context of miRNA-
based cell classification. We designed and implemented a genetic algorithm that
allows design and optimization of DCs. We performed case studies on real-
world data and compared our results to a single-circuit design method obtaining
significantly higher or similar accuracy.

DCs show immense potential as an alternative to single-circuit designs. Pre-
sented case studies demonstrate the DC’s ability to perform classification on
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real-world cancer data. The results obtained on the training data show that
the proposed genetic algorithm allows to optimize classifiers that achieve high
accuracy. The cross-validation demonstrates that the optimized DCs classify
unknown data with high accuracy. Although, the algorithm performs better on
the largest and the smallest data sets than on the intermediate-size ones, the
results for Her2+ and ER+Her- are very similar which may suggest that for
those data sets significant improvement is not possible. The data sets for which
the algorithm returns the worst results (Her2+, ER+Her-) are ones with the
lowest number of relevant miRNAs. Thus, the number of possible solutions is
significantly decreased in contrast to other data sets. The comparison to a single-
circuit design method shows that DCs outperformed single-circuit classifiers on
most of the presented data sets according to balanced accuracy. The improve-
ments in binary classification may be a result of applying a different strategy to
cell classifier design. Here, single-circuit decision is complemented by a collec-
tive classification based on a threshold function. Thus, the DCs may be more
resistant to data noise than single-circuit classifiers.

Generally, the problem of designing reliable and efficient DCs begins with the
initial data processing. As mentioned before, the data sets employed for the case
studies are significantly imbalanced. Although we apply an objective function
that allows to partially overcome this issue, one may consider applying data
balancing methods such as weighted schemes that balance the sample importance
[8].

Our approach to the design of DCs is based on binarized data sets. As men-
tioned before, data discretization allows obtaining clear-cut information about
miRNA regulation and efficient exploration of the search space. One advantage
of this data processing procedure is absorption of noise coming from, e.g., lab
artifacts. However, simultaneously some information that may be valuable for
the classification is lost. Considering binarization according to a given threshold,
miRNAs having their concentrations significantly higher (or lower, respectively)
than the threshold may be more informative. Thus, one may introduce a multi-
objective function that allows to optimize both, the accuracy and the use of
particular miRNAs according to, e.g., a weighted scheme favoring more reliable
miRNAs.

Adapting the ASP approach to single circuit classifier design, one could apply
ASP to the optimization of DCs, obtain globally optimal solutions and compare
with the heuristic approach. However, ASP searches through the entire solution
space; thus, the runtime may be significantly increased with the rising number
of possible combinations. As we expect that this may significantly limit the
ASP-based optimization, one may explore other possibilities. In the proposed
GA the initial population is generated randomly, i.e., there is no preference in
choosing particular miRNAs or gate signs that built rules. One may optimize
the initial population by creating rules taking such preferences into account.
The ASP allows to optimize single short classifiers with relaxed constraints in a
short time, e.g., allowing up to a certain number of errors. This may generate a
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pool of rules that are pre-optimized resulting in a better starting point for the
algorithm.

Although the results demonstrate that classifiers perform with high accuracy,
the possibilities to further develop the presented method should be explored.
Certainly, the approach must be tested using more data representing variety
of cancer types. Although the proposed genetic algorithm performed well on
the presented case studies, particular parts of the algorithm may be improved.
One may consider to extend the parameter tuning procedure by applying more
sophisticated methods such as GAGA approach using a metaGA above the main
algorithm to tune the parameters [5]. Also, different selection operators may be
tested to evaluate the influence of a chosen operator on the results [24]. Although
tournament selection is described in the literature as a well-performing operator,
some other operators may be more accurate for particular problems than the
commonly recommended ones.

Although DCs are not yet applied in terms of cancer cell classification, the
approach should be further investigated. DCs are designed based on available
building blocks that are in fact single-circuit classifiers. Mohammadi et al. [16]
presented a biochemical model of a single-circuit classifier that allows to manip-
ulate the output compound concentration. Thus, the biological output threshold
for a given classifier may be adjusted to perform the classification in living cells.
As the on-off single-circuit response may be regulated on the biological level, the
sum of their outputs should also be adaptable for a given DC. This needs to be
investigated through further work in the lab.

Data and Software Availability

The algorithm is implemented in Python 3. The scripts, as well as the data
used to tune the parameters and test the algorithm’s performance including the
results, are available at GitHub [19].
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Appendix

Algorithm 2: Population initialization

Data: dataset D
Parameters: ps, cmax

Output: Population
for i = 1 to ps do

c ←− DrawInRange(1, cmax)
for i = 1 to c do

rs ←− DrawInRange(1, 2)
neg ←− DrawInRange(1, 2)
pos ←− 2 - neg
Rule ←− InitializeRule(rs, n, p)
Individual ←− Add(Rule)

end
Population ←− Add(Individual)

end

Algorithm 3: Selection of parents

Input: Population
Parameters: ps, ts
Output: Parent1, Parent2
for i = 1 to ts do

Candidate ←− DrawInRange(1, ps)
Candidates ←− Add(Candidate)

end
Parent1 ←− SelectBest(Candidates)
ps ←− BlockID(Parent1, ps)
for i = 0 to ts do

Candidate ←− DrawInRange(1, ps)
Candidates ←− Add(Candidate)

end
Parent2 ←− SelectBest(Candidates)
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Algorithm 4: Crossover

Input: Parent1, Parent2
Output: Child1, Child2
probability ←− DrawProbability(0,1)
if probability ≤cp then

Parent1, Parent2 ←− AssignParentsBySize(Parent1, Parent2)
ParentSize1 ←− Size(Parent1)
ParentSize2 ←− Size(Parent2)
if ParentSize1 - ParentSize2 6= 0 then

CrossoverIndex ←− DrawInRange(1, ParentSize1 -
ParentSize2)
Child1, Child2 ←− IndexCrossover(Parent1, Parent2,
ParentSize1, ParentSize2, CrossoverIndex)

else
Child1, Child2 ←− UniformCrossover(Parent1, Parent2)

end

end

Algorithm 5: Index-based crossover

Input: Parent1, Parent2, ParentSize1, ParentSize2, CrossoverIndex
Output: Child1, Child2
for i = 1 to ParentSize1 do

SwapMask ←− DrawInRange(0, 1)
if SwapMask = 1 then

if i < CrossoverIndex OR i ≥CrossoverIndex+ParentSize2 then
Child2 ←− CopyRule(Parent1, i)

else
Child1 ←− CopyRule(Parent2, i)
Child2 ←− CopyRule(Parent1, i)

end

else
if i < CrossoverIndex OR i ≥CrossoverIndex + ParentSize2
then
Child1 ←− CopyRule(Parent1, i)

else
Child1 ←− CopyRule(Parent1, i)
Child2 ←− CopyRule(Parent2, i)

end

end

end
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Algorithm 6: Mutation

Input: Population, cmax

Output: Population
for i = 1 to ps do

probability ←− DrawProbability(0,1)
if probability ≤mp then

MutationLevel ←− DrawInRange(1, 5)
if MutationLevel = 1 then

MutationType ←− DrawItem(add, remove, copy)
switch MutationType do

case add do
AddRule(Population, i, cmax)

end
case copy do

CopyRule(Population, i, cmax)
end
case remove do

RemoveRule(Population, i)
end

end

else
MutationType ←− DrawItem(add, remove, sign)
switch MutationType do

case add do
Rule ←− DrawRule(1, ps)
AddInput(Population, i, Rule)

end
case remove do

RemoveInput(Population, i, cmax, Rule)
end
case sign do

ChangeInputSign(Population, i, Rule)
end

end

end

end

end
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Threshold FPavg FNavg

0.85 1.00 2.00

0.75 0.93 1.20

0.65 1.13 1.20

0.60 0.93 1.47

0.50 0.93 1.47

0.40 1.27 1.27

0.35 1.20 0.73

0.25 1.20 0.87

Table A1: Average number of FPs and FNs for different thresholds (for all
datasets).
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Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.85 0.89 0.83 0.88 0.86 0.96
0.75 0.94 0.81 0.93 0.87 0.98
0.65 0.95 0.72 0.93 0.83 0.98
0.60 0.92 0.92 0.92 0.92 0.98
0.50 0.92 0.92 0.92 0.92 0.98
0.40 0.94 0.64 0.92 0.79 0.99
0.35 0.97 0.72 0.96 0.85 0.99
0.25 0.96 0.72 0.94 0.84 1.00

Triple- 0.85 0.92 0.75 0.89 0.83 0.98
0.75 0.96 0.67 0.92 0.81 0.99
0.65 0.94 0.58 0.89 0.76 1.00
0.60 0.93 0.64 0.89 0.78 1.00
0.50 0.93 0.64 0.89 0.78 1.00
0.40 0.94 0.56 0.89 0.75 1.00
0.35 0.94 0.53 0.89 0.74 0.99
0.25 0.94 0.53 0.89 0.74 1.00

Her2+ 0.85 0.99 0.44 0.92 0.72 0.96
0.75 0.99 0.61 0.94 0.80 0.96
0.65 0.99 0.53 0.93 0.76 0.96
0.60 1.00 0.53 0.94 0.76 0.96
0.50 1.00 0.53 0.94 0.76 0.96
0.40 0.99 0.53 0.93 0.76 0.96
0.35 1.00 0.53 0.94 0.76 0.96
0.25 1.00 0.53 0.94 0.76 0.93

ER+ Her- 0.85 0.90 0.64 0.82 0.77 0.93
0.75 0.90 0.64 0.82 0.77 0.93
0.65 0.90 0.64 0.82 0.77 0.93
0.60 0.90 0.64 0.82 0.77 0.93
0.50 0.90 0.64 0.82 0.77 0.93
0.40 0.90 0.53 0.78 0.72 0.93
0.35 0.90 0.64 0.82 0.77 0.93
0.25 0.90 0.53 0.78 0.72 0.91

Cell Line 0.85 0.67 1.00 0.87 0.83 1.00
0.75 0.67 1.00 0.87 0.83 1.00
0.65 0.67 1.00 0.87 0.83 1.00
0.60 0.67 1.00 0.87 0.83 1.00
0.50 0.67 1.00 0.87 0.83 1.00
0.40 0.67 1.00 0.87 0.83 1.00
0.35 1.00 0.89 0.93 0.94 1.00
0.25 1.00 1.00 1.00 1.00 1.00

Table A2: Results of 3-fold cross-validation.
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