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Abstract

Transcriptional patterns are altered in breast cancer. These alterations cap-
ture the heterogeneity of breast cancer, leading to the emergence of molecular
subtypes. Network biology approaches to study gene co-expression are able
to capture the differences between breast cancer subtypes.
Network biology approaches may be extended to include other co-expression
patterns, like those found between genes and non-coding RNA: such as mi-
croRNAs (miRs). Commodore miRs are microRNAs that, based on their
connectivity and redundancy in co-expression networks, have been proposed
as potential control elements of biological functions.
In this work, we reconstructed miR-gene co-expression networks for each
breast cancer molecular subtype. We identified Commodore miRs in three
out of four molecular subtypes. We found that in each subtype, each cdre-
miR had a different set of associated genes, as well as a different set of
associated biological functions. We used a systematic literature validation
strategy, and identified that the associated biological functions to these cdre-
miRs are hallmarks of cancer.

Background

Breast cancer is a heterogeneous disease with many different manifestations.
The heterogeneous nature of breast cancer can be observed at the transcrip-
tional level, in the different gene expression patterns observed. This differ-
ences in breast cancer are at the basis of molecular classifications, such as
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the breast cancer molecular subtypes: Luminal A, Luminal B, Basal, and
HER2-enriched. [22, 34]. These different molecular patterns are associated
to different physiopathological properties, which can be used for clinical ap-
plications [8, 33].

The transcriptional patterns of breast cancer have been explored in pre-
vious works. Our group has found that representing the transcriptional pro-
gram of breast cancer molecular subtypes as co-expression networks, it is
possible by to capture the differences found between each cancer manifes-
tation [15]. We have also shown how genes with coordinated expression
patterns are found associated to each cancer subtype, and through these,
it is possible to identify and associate functional perturbations to molecular
subtypes [1, 2].

The regulatory programs of biological phenotypes are not limited to gene
interactions. Elements such as non-coding RNAs are also involved in the
regulation of gene expression. It has been shown that the transcriptional
patterns of these non-coding RNAs also capture the heterogeneity of breast
cancer molecular subtypes [31]. microRNA (miR) are a class of non-coding
microRNAs that are currently a major study subject in cancer. Our group
has developed work of studying these miRs from a network biology perspec-
tive [16].

Control in complex networks has important applications [26]. In the con-
text of gene expression regulation, the control of gene expression, and more
importantly, the concerted regulation of genes associated to biological func-
tions, could have important biomedical applications. Similar concepts, such
as master regulators[38, 30, 25], have been explored in different biological
concepts, including cancer. In recent work, we introduced the concept of
Commodore miRs (cdre-miRs): microRNAs that are highly connected and
non-redundant in miR-gene co-expression netrowks in breast cancer, that
are theoretically capable of controlling the state of specific biological func-
tions by themselves [14]. In this work we intend to explore whether this
commodore behavior can be found for miRs in networks of different breast
cancer subtypes, how these cdre-miRs differ in each subtype, and how they
are pontentially able to influence the activity of biological process important
for the cancer manifestation.
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Figure 1: The cdre-miR analysis workflow

Materials & Methods

The workflow that was followed in this manuscript consists of the breast
cancer gene and microRNA data acquisition, the co-expression network re-
construction, the identification of cdre-miRs, the functional enrichment of
cdre-miR neighborhoods, and the literature validation of the identified bio-
logical functions. This workflow is represented in Figure 1.

Expression Data

Expression data for microRNA and genes in breast cancer was obtained
from the Cancer Genome Atlas. The subset of breast cancer samples used
in the 2012 TCGA publication [31] includes the molecular subtype sam-
ple classification. We acquired this information from the cBioportal web-
site [6, 17]. We downloaded the expression data for gene and microRNA,
for each molecular subtype: Luminal A (lumA), Luminal B (lumB), Basal,
and HER2-enriched (HER2) from the Genome Data Commons website (
https://portal.gdc.cancer.gov/repository ).

The datasets found in the GDC platform are processed according to
the bioinformatic pipelines found in https://docs.gdc.cancer.gov/Data/

Bioinformatics_Pipelines/Expression_mRNA_Pipeline/ for genes and https:

//docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/miRNA_Pipeline/
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for microRNA, which are referenced in the relevant original publications
[31, 9]. For this work, we used FPKM - normalized data as expression values
for mRNA, and RPMMM data as expression values for microRNA.

microRNA/gene bipartite network reconstruction

We reconstructed a bipartite network representing the co-expression between
microRNA and genes in each molecular subtype. For this, we used mutual
information (MI) as a measure of miR-gene co-expression. Mutual informa-
tion has been widely used for the reconstruction of co-expression networks
[4, 28, 29, 42, 15, 7]. In the previous work by our group, we have successfully
reconstructed miR-gene co-expression networks using this approach [16, 14].

For each molecular subtype, we calculate MI for each miR-gene pair based
on their expression levels in order to fill an incidence matrix. We then select
the miR-gene pairs that will be connected in the network based on their MI
values. Those pairs with an MI value above a certain threshold are kept as
links in the network, while those with an MI value below the threshold are
discarded.

This strategy is the same that was used by our group in the previous miR-
gene co-expression network manuscripts [16, 14]. The MI threshold selected
for each network was set to be that which allowed us to keep the 0.9999
upper quantile of all possible links; this is based on a heuristic described
by our group previously [12]. This allows to recover networks that have a
comparable number of edges for each molecular subtype.

Network analyses

The bipartite networks were analyzed for basic network topological proper-
ties using the igraph package for R [11]. The calculation of bipartite network
properties, including the redundancy coefficient as defined in [24], were com-
puted using the NetworkX package [19] for Python.

Commodore miR identification

In our previous work regarding miR-gene co-expression networks [14], we
defined the concept of a Commodore miR (cdre-miR): a microRNA that has
a high number of neighbors, but a low redundancy coefficient (as defined
by [24]) in a miR-gene co-expression network. In that work, we proposed
considering a highly connected miR node to be, in the context of breast
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cancer, that which has a degree k >= 100, and a redundancy coefficient
rc =< 0.5. In this work, we followed this definition.

Functional enrichment of cdre-miR neighborhoods

Each identified cdre-miR has, by definition, a neighborhood of at least 100
genes. We identified biological functions that are associated to these neigh-
borhoods, and therefore, to each cdre-miR. We performed this functional
enrichment through an over-representation analysis, using the HTSanalyzer
package for R [41]. We tested over-representation of the genesets encom-
passed in the Gene Ontology Biological Process (GO-BP) database [3, 10].
We considered a significance threshold of Adjusted.p−value =< 10−3 in the
hypergeometric test.

Functional category aggregation

We decided to present all the GO-BP categories found to be significantly
associated to each cdre-miR. However, it is possible to leverage the ontology
nature of the GO-BP database to group GO-BP categories that are both
functionally related and composed of similar gene sets. To do this, we used
the Wang similarity score [40], which measures the similarity between GO
terms.

We calculated this similarity score for the GO-BP enriched for each cdre-
miR of each subtype (using the GoSemSim package [43]). Then, we used this
as the basis for a hierarchical clustering method, with which we generated
for each cdre-miR, ten sets of functionally similar GO-BPs. We then selected
as a representative GO-BP for each group, the GO-BP that had the lowest
Adjusted.p− value within the group. The intention behind this is to obtain
a more interpretable set of potential functional targets of cdre-miRs.

Literature validation

We performed systematic queries to the Pubmed database to identify previ-
ously reported associations between the cdre-miRs and the functions iden-
tified in this work. To do so, we used the Rentrez package for R https:

//github.com/ropensci/rentrez. For each subtype, for each cdre-miR, we
performed a query of the form mir + RepresentativeGO −BP considering
each of the ten function groups associated to each cdre-miR.
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Results

miR-gene co-expression networks

We reconstructed miR-gene co-expression networks for each molecular sub-
types. These networks are comparable, by construction, in terms of the
number of edges that they contain, and the number of miR and gene nodes
(as they contain all the miRs and genes measured in the original experi-
ments). The number of connected (k > 0) nodes and connected components
(non-single nodes) in each network is variable, but they are, overall, compa-
rable; this can be seen in Table 1. Visualizations of the largest connected
components is found in the Figure 2. Other network parameters, including
degree distribution, are found in Supplementary File 2.

Table 1: Network parameters

Luminal A Luminal B Basal HER2-enriched
Connected nodes, miR 269 384 414 587
Connected nodes, gene 2630 2731 2699 4011

Edges 6942 6942 6942 6951
Connected components 97 174 212 202
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(a) Luminal A (b) Luminal B

(c) Basal (d) Her2- Enriched

Figure 2: miR - gene co-expression network visualizations for each breast
cancer molecular subtype; largest connected component shown.

It should be noted that in the case of HER2, we observe a slightly higher
number of edges (6951 as opposed to 6942 in the rest of the subtype networks:
this is explained due to the fact that there are links that have the exact
same value than the threshold for HER2, and we did not implement any tie-
breaking methods; we do not consider that the presence of these marginal
edges may affect our downstream analyses.
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Identification of Commodore miRs: non-redundant, highly
connected miRs

We identified 5 miRs that are non-redundant, and highly connected in at
least one molecular subtype. These are:

• mir-139 and mir-150 in the Luminal A subtype

• mir-99a and mir-708 in the Luminal B subtype

• mir-136 and mir-139 in the Basal subtype

Figure 3 illustrates how these commodores are rare in the context of miRs
in breast cancer subtypes. It should be noted that there are no cdre-miR in
the HER2 molecular subtype, while each of the other subtypes possesses two
cdre-miR.

Another thing to highlight is the fact that mir-139 is a commodore in both
the Luminal A and Luminal B subtypes. The scatterplot shows, however,
that they not exhibit the exact same behavior in terms of connectivity and
redundancy. Supplemenary file 3 contains the degree and redundancy values
of each cdre-miR in every subtype, which showcases that the behavior of
miRs is different in each breast cancer manifestation.
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Figure 3: Scatter plot, degree vs redundancy coefficient for miR nodes in
breast cancer molecular subtype networks. Each subtype is represented by a
different color. The plot is divided by the commodore thresholds for degree
(100) and redundancy coefficient (0.5). The upper-left quadrant contains
commodore miRs.
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Functional enrichment of cdre-miR neighborhoods

We analyzed whether the neighborhoods of each cdre-miR could be associ-
ated to biological functions, by means of a hypergeometric test. We found
that all cdre-miRs identified are linked in this fashion to a number of bio-
logical processes, as seen in Table 2. The whole set of enriched processes is
found in Supplementary File 4.

Table 2: Enriched Gene Ontology Biological Processes in the gene neighbor-
hoods of Commodore miRs

subtype miR Enriched GO-BP
Luminal A hsa-mir-139 113
Luminal A hsa-mir-150 170
Luminal B hsa-mir-708 36
Luminal B hsa-mir-99a 46

Basal hsa-mir-136 102
Basal hsa-mir-139 19

In Figure 4 we represent the biological processes associated to each cdre-
miR as a network. This helps illustrate how there are some processes associ-
ated to several cdre-miR, while each cdre-miR has a set of processes that are
uniquely associated to it. Since cdre-miRs are phenotype dependent, Figure
5 helps illustrate more clearly the way in which cdre-miRs are associated to
different functions in each subtype. Finally, in panel5d the different behavior
of mir-139 in the Luminal A and Basal subtypes is illustrated.

Each panel in Figure 5 shows an overlap between the functions associated
to each cdre-miR: this could be due to similarity between their respective
neighborhoods. We provide, in Supplementary File 5, a similarity matrix
of each cdre-miR neighborhood to show that this is not the case. In other
words, each cdre-miR is affecting functions through different co-expressed
gene sets.
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Figure 4: miR - Gene Ontology Biological Process network, containing all
Commodore miRs found in each subtype. The color of GO-BP nodes repre-
sents groups of functionally similar processes.
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Figure 5: Commodore miR - Gene Ontology Biological Process for molecular
subtypes (A-C) and the processes controlled by miR-139 in luminal A and
basal subtypes. GO-BP node colors represent functionally similar processes.

Biological processes aggregated by functional similarity

We grouped biological processes associated to each cdre-miR based on their
functional similarity, as described in the methods section. The purpose of
this was to reduce the number of GO-BP terms and aggregate them into
the most representative (and biologically informative) terms. In Table 3 we
show, for demonstration purposes, the characteristic terms for mir-139 in the
Luminal A subtype. The full set of groups is provided as Supplementary File
6.
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Table 3: Luminal A, miR-139

group
number

characteristic
GO-BP

characteristic GO-BP name Number of
GO-BPs

1 GO:0001525 angiogenesis 14
2 GO:0007186 G protein-coupled receptor

signaling pathway
15

3 GO:0010628 positive regulation of gene
expression

7

4 GO:0043066 negative regulation of
apoptotic process

17

5 GO:0006954 inflammatory response 15
6 GO:0006936 muscle contraction 11
7 GO:0006869 lipid transport 13
8 GO:0006069 ethanol oxidation 9
9 GO:0070374 positive regulation of ERK1

and ERK2 cascade
7

10 GO:0098609 cell-cell adhesion 5

Literature validation results

We systematically searched the biomedical literature to identify previous
mentions of the identified biological functions associated to each cdre-miR.
Table 4 shows the cdre-miR/function pairs for which at least one literature
mention were found.
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Table 4: Literature validation of biological functions associated to cdre-miRs

Subtype miR GO representative term Pubmed
mentions

Luminal
A

hsa-mir-
139

angiogenesis 3

Basal hsa-mir-
139

angiogenesis 3

Luminal
B

hsa-mir-
708

cell adhesion 1

Basal hsa-mir-
136

cell adhesion 5

Basal hsa-mir-
139

cell adhesion 2

Luminal
A

hsa-mir-
139

negative regulation of apoptotic
processes

2

Luminal
A

hsa-mir-
139

positive regulation of gene
expression

7

Basal hsa-mir-
136

regulation of signaling receptor
activity

1

Luminal
A

hsa-mir-
150

signal transduction 30
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Discussion

In previous work [12], we identified non-redundant, highly connected microR-
NAs in miR-gene co-expression networks of breast cancer. We proposed that
this so-called ”commodore” microRNAs are important regulatory elements,
as they are potentially able to influence the expression level of a large set
of genes by themselves; Furthermore, through this regulatory action, these
microRNAs could be able to regulate specific biological processes. As such
miR behavior was not found in healthy breast tissue networks, we speculated
that cdre-miR could confer adaptational advantages to the tumor phenotype.

In this work, we explored cdre-miRs in the context of different manifesta-
tions of breast cancer: the molecular subtypes. We compared and contrasted
these cdre-miRs, as well as their associated functions, and identified common
and unique traits across the breast cancer landscape.

Differences in microRNA roles in breast cancer sub-
types

Considering that expression patterns are different between the molecular sub-
types, we expected to find different sets of cdre-miRs associated to each
molecular subtype. This was the case for three subtypes: Luminal A, Lumi-
nal B, and Basal. In the case of the HER2-enriched, we did not find any miR
that was considered a commodore by our previously established definition.

For each of the remaining subtypes, we identified two miRs that we con-
sidered to be highly connected and non-redundant. None of the subtypes
had the same pair of cdre-miR. Indeed, the only miR that had a commodore
behavior in two subtypes was mir-139, in the Luminal A and Basal subtypes;
nevertheless, as we mentioned in the Results section, this microRNA is linked
to a different gene set, as well as a different function set, in each subtype.

Previous studies have shown that the expression patterns of molecular
subtypes are different not only for genes, but also for microRNAs [31]. Since
co-expression networks can be thought to be abstractions of the regulatory
program behind these expression patterns [13], it is expected to find differ-
ences in these networks between subtypes: including differences in central
nodes in the network. The fact that non-redundant, highly connected miRs
emerge in most (but not all) subtypes could be indicative that having such
regulatory element provides an advantage for the cancer phenotype.
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Possible advantages of commodore microRNAs for breast
cancer

It is well known that microRNAs provide a regulatory mechanism for the
control of gene expression [5]. Also known is the fact that microRNAs are
widely derregulated in most cancer, although whether these are at the gene-
sis of the disease, or a consequence of the pathological state, it is not known
[27]. Since cancer is a complex disease, it is possible that both situations
could happen, and even co-exist.

Potentially oncogenic microRNAs are able to confer functional features
to cancer through their action as regulatory elements of gene expression [32].
Highly central microRNA nodes in miR-gene co-expression networks could
act as control elements of gene expression based on their network connec-
tivity, just like other gene elements have been identified [39]. By controlling
the expression of genes involved in biological functions, these miRs could in
turn control the activity of the function itself. In this context, commodore-
miRs, both highly connected and non-redundant, could theoretically be the
primary drivers of specific alterations of biological function.

Functional heterogeneity and functional convergence

Having different cdre-miRs in each subtype leads to a varied landscape of
altered functions. As we have shown, each cdre-miR in each subtype is asso-
ciated to the expression of different genes, which in turn leads to differences
in the associated functions. We observe that each cdre-miR has a set of func-
tions that are unique to it, in the context of the phenotype in which it acts
as a commodore. This could be one of the origins of the functional diversity
observed and widely reported in breast cancer [18].

On the other hand, we observe that some functions may be affected by
different cdre-miRs, either in the same or in different subtypes. The first
explanation for this could be related to the (small) overlaps in gene neigh-
borhoods observed between the cdre-miRs. But on a deeper level, this could
be indicative of a convergence in biological process (de-)regulation; in other
words, the control of a given function (or a significative subset of said func-
tion) confers an advantage to the tumor phenotype, which emerges regard-
less of the clinical (or molecular) manifestation, through different regulatory
mechanisms. This could also be related to the lack of cdre-miRs in the
HER2-enriched molecular subtype: being mostly driven by the amplification
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of a genomic region [23], the emergence of cdre-miRs is not needed for the
development of this disease manifestation.

When we observe the terms that define the groups of functions associ-
ated to our cdre-miRs, it is can be observed that several of these refer to
well known processes altered in cancer. Furthermore, when we look at the
list of processes that were previously mentioned in the literature as being
associated to breast cancer, we see that all of these belong to the set of
functions known as the hallmarks of cancer [20, 21]. While experimental
validation is still needed, if commodore-miRs are indeed acting as functional
control elements specific to different breast cancer manifestations, then these
could be attractive therapeutic options in the context of precision medicine
[36, 37, 35].

Conclusions

In this work we identify highly-connected, non-redundant (commodore) mi-
croRNAs in the context of breast cancer molecular subtypes. We found that
different molecular subtypes exhibit different sets of these cdre-miRs, each as-
sociated to a specific set of biological functions. We observe that some of the
associated functions are unique to each subtype, reflecting their functional
diversity, while others are common. We found evidence in the literature that
some of these functions being affected by our identified microRNAs; these
functions are well known hallmarks of cancer, which could make targeting
these microRNA a potential therapeutic alternative for different breast can-
cer manifestations.

Supplementary files

Supplementary file 1: Mutual Information thresholds.
Supplementary file 2: Network parameters for each breast cancer molecular
subtype.
Supplementary file 3: Degree and redundancy coefficient of commodore-miRs
in all subtypes.
Supplementary file 4: Enrichment results for each cdre-miR neighborhood
found in each subtype.
Supplementary file 5: Similarity matrix of cdre-miR neighborhoods.
Supplementary file 6: Functional category aggregation.
Supplementary file 7: Bipartite Networks for each molecular subtype.
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Code for this manuscript can be found at https://github.com/guillermodeandajauregui/
cdre-miR-BrCanSub
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