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36 ABSTRACT

37 We investigated whether the categorical perception (CP) of speech might also provide a mechanism that 

38 aids its perception in noise. We varied signal-to-noise ratio (SNR) [clear, 0 dB, -5 dB] while listeners 

39 classified an acoustic-phonetic continuum (/u/ to /a/). Noise-related changes in behavioral categorization 

40 were only observed at the lowest SNR. Event-related brain potentials (ERPs) differentiated phonetic vs. 

41 non-phonetic (category ambiguous) speech by the P2 wave (~180-320 ms). Paralleling behavior, neural 

42 responses to speech with clear phonetic status (i.e., continuum endpoints) were largely invariant to noise, 

43 whereas responses to ambiguous tokens declined with decreasing SNR. Results demonstrate that phonetic 

44 speech representations are more resistant to degradation than corresponding acoustic representations. 

45 Findings suggest the mere process of binning speech sounds into categories provides a robust mechanism 

46 to aid perception at the “cocktail party” by fortifying abstract categories from the acoustic signal and 

47 making the speech code more resistant to external interferences. 

48
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60 1. INTRODUCTION

61 A basic tenet of perceptual organization is that sensory phenomena are subject to invariance: 

62 similar features are mapped to common identities (equivalence classes) by assigning similar objects to the 

63 same membership (Goldstone & Hendrickson, 2010), a process known as categorical perception (CP). In 

64 the context of speech, CP is demonstrated when gradually morphed sounds along an equidistant acoustic 

65 continuum are heard as only a few discrete classes (Bidelman et al., 2013; Harnad, 1987; Liberman et al., 

66 1967; Pisoni, 1973; Pisoni & Luce, 1987). Equal physical steps along a signal dimension do not produce 

67 equivalent changes in percept (Holt & Lotto, 2006). Rather, listeners treat sounds within a given category 

68 as perceptually similar despite their otherwise dissimilar acoustics. Skilled categorization is particularly 

69 important for spoken and written language, as evidenced by its role in reading acquisition (Mody et al., 

70 1997; Werker & Tees, 1987), sound-to-meaning learning (Myers & Swan, 2012; Reetzke et al., 2018), 

71 and putative deficits in language-based learning disorders (e.g., specific language impariment, dyslexia; 

72 Calcus et al., 2016; Noordenbos & Serniclaes, 2015; Werker & Tees, 1987). To arrive at categorical 

73 decisions, acoustic cues are presumably weighted and compared against internalized “templates” in the 

74 brain, built through repetitive exposure to one’s native language (Bidelman & Lee, 2015; Guenther et al., 

75 2004; Iverson et al., 2003a; Kuhl, 1991). 

76 Beyond providing observers a smaller, more manageable perceptual space, CP might also aid 

77 degraded speech perception if phonetic categories are somehow more resistant to noise (Gifford et al., 

78 2014; Helie, 2017). Indeed, categories (a higher-level code) are thought to be more robust to noise 

79 degradations than physical surface features of a signal (lower-level sensory code) (Bidelman et al., under 

80 review; Helie, 2017). A theoretical example of how categorical processing might aid the perception of 

81 degraded speech is illustrated in Figure 1. 

82 [Insert Figure 1 near here]

83 Consider the neural representation of speech as a multidimensional feature space. Populations of 

84 auditory cortical neurons code different dimensions of the acoustic input. Categorical coding could be 

85 reflected as an increase (or conversely, decrease) in local firing rate for stimuli that are perceptually 

86 similar despite their otherwise dissimilar acoustics (“A” and “B”) (e.g., Guenther & Gjaja, 1996; 

87 Guenther et al., 2004; Recanzone et al., 1993). Although noise interference would blur physical acoustic 

88 details and create a noisier cortical map, categories would be partially spared—indicated by the remaining 

89 “peakedness” in the neural space. Thus, both the construction of perceptual objects and natural discrete 

90 binning process of CP might enable category members to “pop out” among a noisy feature space (e.g., 

91 Nothdurft, 1991; Perez-Gay et al., 2018). Consequently, the mere process of grouping speech sounds into 

92 categories might aid comprehension of speech-in-noise (SIN)—assuming those representations are not 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652842doi: bioRxiv preprint 

https://doi.org/10.1101/652842


4

93 too severely compromised and remain distinguishable from noise itself. This theoretical framework 

94 provides the basis for the current empirical study.

95 Building on our recent efforts to decipher the neurobiology of “cocktail party” listening and 

96 understand the physiological mechanisms supporting robust speech perception (for review, see Bidelman, 

97 2017), this study aimed to test whether speech sounds carrying strong phonetic categories are more 

98 resilient to the deleterious effects of noise than categorically ambiguous speech sounds. When category-

99 relevant dimensions are less distinct and perceptual boundaries are particularly noisy, additional 

100 mechanisms for enhancing separation must be engaged (Livingston et al., 1998). We hypothesized the 

101 phonetic groupings inherent to speech may be one such mechanism. Because phonetic categories reflect a 

102 more abstract, higher-level representation of speech (i.e., acoustic + phonetic code), we reasoned they 

103 would be more robust to noise than physical features of speech that do not engage phonetic-level 

104 processing (i.e., acoustic code) (cf. Bidelman et al., under review; Helie, 2017). To test this possibility, 

105 we recorded high-density event-related potentials (ERPs) while listeners categorized speech continua in 

106 different levels of acoustic noise. The critical comparison was between responses to stimuli at the 

107 endpoints vs. midpoint of the acoustic-phonetic continuum. We predicted that if the categorization 

108 process aids figure-ground perception, speech tokens having a clear phonetic identity (continuum 

109 endpoints) would elicit lesser noise-related change in the ERPs than non-phonetic tokens (continuum 

110 midpoint), which have a bistable (ambiguous) percept and lack a clear phonetic identity. 

111 2. MATERIALS & METHODS

112 2.1 Participants

113 Fifteen young adults (3 male, 12 females; age: M = 24.3, SD = 1.7 years) were recruited from the 

114 University of Memphis student body. All exhibited normal hearing sensitivity confirmed via a threshold 

115 screening (i.e., < 20 dB HL, audiometric frequencies 250 - 8000 Hz). Each participant was strongly right-

116 handed (87.0± 18.2% laterality index; Oldfield, 1971) and had obtained a collegiate level of education 

117 (17.8±1.9 years). Musical training is known to modulate categorical processing and SIN listening abilities 

118 (Bidelman & Alain, 2015b; Bidelman & Krishnan, 2010; Bidelman et al., 2014b; Parbery-Clark et al., 

119 2009; Yoo & Bidelman, under review). Consequently, we required that all participants had minimal 

120 music training throughout their lifetime (mean years of training: 1.3±1.8 years). All were paid for their 

121 time and gave informed consent in compliance with the Declaration of Helsinki and a protocol approved 

122 by the Institutional Review Board at the University of Memphis.

123 2.2 Speech continuum and behavioral task

124 We used a synthetic five-step vowel continuum to assess the neural correlates of CP (Bidelman & 

125 Alain, 2015b; Bidelman & Walker, 2017; Bidelman et al., 2014b). Each token of the continuum was 
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126 separated by equidistant steps acoustically based on first formant frequency (F1), but was perceived 

127 categorically from /u/ to /a/. Tokens were 100 ms, including 10 ms of rise/fall time to reduce spectral 

128 splatter in the stimuli. Each contained identical voice fundamental (F0), second (F2), and third formant 

129 (F3) frequencies (F0: 150, F2: 1090, and F3: 2350 Hz). The F1 was parameterized over five equal steps 

130 between 430 and 730 Hz such that the resultant stimulus set spanned a perceptual phonetic continuum 

131 from /u/ to /a/ (Bidelman et al., 2013). Speech stimuli were delivered binaurally at 75 dB SPL through 

132 shielded insert earphones (ER-2; Etymotic Research) coupled to a TDT RP2 processor (Tucker Davis 

133 Technologies).

134 This same speech continuum was presented in one of three noise blocks varying in signal-to-noise 

135 ratio (SNR): clear, 0 dB SNR, -5 dB SNR (Fig. 2). These noise levels were selected based on extensive 

136 pilot testing which confirmed they differentially hindered speech perception. The masker was a speech-

137 shaped noise based on the long-term power spectrum of the vowel set. Noise was presented continuously 

138 so it was not time-locked to the stimulus presentation, providing a constant backdrop of acoustic 

139 interference during the categorization task (e.g., Alain et al., 2012; Bidelman et al., 2018; Bidelman & 

140 Howell, 2016). SNR was manipulated by changing the level of the masker to ensure SNR was inversely 

141 correlated with overall sound level (Binder et al., 2004). Noise block order was randomized within and 

142 between participants. 

143 [Insert Figure 2 near here]

144 The task was otherwise identical to our previous neuroimaging studies on CP (e.g., Bidelman & 

145 Alain, 2015b; Bidelman et al., 2013; Bidelman & Walker, 2017). During EEG recording, listeners heard 

146 150 trials of each individual speech token (per noise block). On each trial, they were asked to label the 

147 sound with a binary response (“u” or “a”) as quickly and accurately as possible. Following the listener’s 

148 behavioral response, the interstimulus interval (ISI) was jittered randomly between 800 and 1000 ms (20 

149 ms steps, uniform distribution) to avoid rhythmic entrainment of the EEG and the anticipation of 

150 subsequent stimuli.  

151 2.3 EEG recording and preprocessing

152 EEGs were recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 scalp locations 

153 (Oostenveld & Praamstra, 2001). Continuous data were digitized using a sampling rate of 500 Hz 

154 (SynAmps RT amplifiers; Compumedics Neuroscan) and an online passband of DC-200 Hz. Electrodes 

155 placed on the outer canthi of the eyes and the superior and inferior orbit monitored ocular movements. 

156 Contact impedances were maintained < 10 kΩ during data collection. During acquisition, electrodes were 

157 referenced to an additional sensor placed ~ 1 cm posterior to the Cz channel. 
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158 EEG pre-processing was performed in BESA® Research (v7) (BESA, GmbH). Ocular artifacts 

159 (saccades and blinks) were first corrected in the continuous EEG using a principal component analysis 

160 (PCA) (Picton et al., 2000). Cleaned EEGs were then filtered (1-30 Hz), epoched (-200-800 ms), baseline 

161 corrected to the pre-stimulus interval, and averaged in the time domain resulting in 15 ERP waveforms 

162 per participant (5 tokens * 3 noise conditions). For analysis, data were re-referenced using BESA’s 

163 reference-free virtual montage. This montage computes a spherical spline-interpolated voltage (Perrin et 

164 al., 1989) for each channel relative to the mean voltage over 642 equidistant locations covering the entire 

165 sphere of the head. This montage is akin to common average referencing but results in a closer 

166 approximation to true reference free waveforms (Scherg et al., 2002). However, reported results were 

167 similar using a common average reference (data not shown).

168 ERP quantification focused on the latency range of the P2 wave as previous studies have shown 

169 the neural correlates of CP emerge around the timeframe of this component (Bidelman & Alain, 2015b; 

170 Bidelman & Lee, 2015; Bidelman et al., 2013; Bidelman & Walker, 2017). Guided by visual inspection of 

171 grand averaged data, we measured the amplitude of the evoked potentials as the positive-going deflection 

172 between 180-320 ms. This window covered both the P2 and following P3b-like deflections (see Fig. 4). 

173 To evaluate whether ERPs showed categorical coding, we averaged response amplitudes to prototypical 

174 tokens at the endpoints of the continuum and compared this combination to the ambiguous token at its 

175 midpoint (e.g., Bidelman, 2015; Bidelman & Walker, 2017; Liebenthal et al., 2010). This contrast (i.e., 

176 mean[Tk1, Tk5] vs. Tk3) allowed us to assess the degree to which noise affected the neural encoding of 

177 phonetic categories (Tk1/5) vs. non-phonetic (Tk3) speech sounds and thus affected categorical 

178 processing. The rationale for this analysis is that it effectively minimizes stimulus-related differences in 

179 the ERPs, thereby isolating categorical/perceptual processing. For example, Tk1 and Tk5 are expected to 

180 produce distinct ERPs due to exogenous processing alone. However, comparing the average of these 

181 responses (i.e., mean[Tk1, Tk5]) to that of Tk3 allows us to better isolate ERP modulations related to 

182 categorical coding (Bidelman & Walker, 2017). 

183 Averaging endpoint responses doubles the number of trials for the prototypes relative to the 

184 ambiguous condition, which could mean differences were attributable to SNR of the ERPs rather than CP 

185 effects, per se (Hu et al., 2010). To rule out this possibility, we measured the SNR of the ERPs as 

186 10log(RMSERP/RMSbaseline) (Bidelman, 2018) where RMSERP and RMSbaseline were the RMS amplitudes of 

187 the ERP (signal) portion of the epoch window (0-800 ms) and pre-response baseline period (-200-0ms 

188 ms), respectively. Critically, SNR of the ERPs did not differ across conditions [F5,70 =0.56, p=0.73], 

189 indicating that neural activity was not inherently noisier for a given token type or acoustic noise level. 

190 2.4 Behavioral data analysis
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191 Identification scores were fit with a sigmoid function P = 1/[1+e-β1(x - β0)], where P is the 

192 proportion of trials identified as a given vowel, x is the step number along the stimulus continuum, and β0 

193 and β1 the location and slope of the logistic fit estimated using nonlinear least-squares regression. 

194 Comparing parameters between SNR conditions revealed possible differences in the location and 

195 “steepness” (i.e., rate of change) of the categorical boundary as a function of noise degradation. Larger β1 

196 values reflect steeper psychometric functions and thus stronger categorical perception. 

197 Behavioral speech labeling speeds (i.e., reaction times [RTs]) were computed as listeners’ median 

198 response latency across trials for a given condition. RTs outside 250-2500 ms were deemed outliers (e.g., 

199 fast guesses, lapses of attention) and were excluded from the analysis (Bidelman et al., 2013; Bidelman & 

200 Walker, 2017).

201 2.5 Statistical analysis

202 Unless otherwise noted, dependent measures were analyzed using a one-way, mixed model 

203 ANOVA (subject=random factor) with fixed effects of SNR (3 levels: clear, 0 dB, -5dB) and token [5 

204 levels: Tk1-5] (PROC GLIMMIX, SAS® 9.4; SAS Institute, Inc.). Tukey-Kramer adjustments controlled 

205 Type I error inflation for multiple comparisons. The α-level for significance was p=0.05. We used robust 

206 linear regression as implemented by the ‘fitlm’ function in MATLAB to assess links between neural and 

207 behavioral measures. 

208 3. RESULTS

209 3.1 Behavioral identification (%, RTs)

210 Behavioral identification functions are shown across the different noise SNRs in Figure 3A. 

211 Listeners’ identification was more categorical (i.e., dichotomous) for clear speech and became more 

212 continuous with poorer SNR. Analysis of the slopes (β1) confirmed a main effect of SNR [F2,28 =35.25, 

213 p<0.0001] (Fig. 3B). Tukey-Kramer contrasts revealed psychometric slopes were unaltered for 0 dB SNR 

214 relative to clear speech (p=0.33). However, -5 dB SNR noise weakened categorization, flattening the 

215 psychometric function (-5dB vs. 0 dB, p<0.0001). These findings indicate the strength of categorical 

216 representations is resistant to acoustic interference. That is, even when signal and noise compete at 

217 equivalent levels, categorical processing persists. CP is weakened only for severely degraded speech (i.e., 

218 negative SNRs) where the noise exceeds the target signal. 

219 Noise-related changes in the psychometric function could be related to uncertainty in category 

220 distributions (prior probabilities) (Gifford et al., 2014) or lapses of attention due to task difficulty rather 

221 than a weakening of speech categories, per se (Bidelman et al., under review). To rule out this latter 

222 possibility, we used Bayesian inference (psignifit toolbox; Schütt et al., 2016) to estimate individual lapse 

223 (λ) and guess (γ) rates from participants’ identification data. Lapse rate (λ) was computed as the 
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224 difference between the upper asymptote of the psychometric function and 100%, reflecting the probability 

225 of an “incorrect” response at infinitely high stimulus levels (i.e., responding “u” for Tk5; see Fig. 3A). 

226 Guess rate (γ) was defined as the difference between the lower asymptote and 0. For an ideal observer 

227 λ=0 and γ=0. We found neither lapse [F2,28 =2.41, p=0.11] nor guess rate [F2,28 =1.45, p=0.25] were 

228 modulated by SNR. This helps confirm that while (severe) noise weakened CP for speech (Fig. 3B), those 

229 effects were not driven by a lack of task vigilance or guessing, per se (Bidelman et al., under review; 

230 Schütt et al., 2016).

231 [Insert Figure 3 near here]

232 The location of the perceptual boundary (Fig. 3C) varied marginally with SNR but the shift was 

233 significant [F2,28 =5.62, p=0.0089]. Relative to the clear condition, -5 dB SNR speech shifted the 

234 perceptual boundary rightward (p=0.011). This indicates a small but measurable bias to report “u” (i.e., 

235 more frequent Tk1-2 responses) in the noisiest listening condition. 

236 Behavioral RTs, reflecting the speed of categorization, are shown in Figure 3D. An ANOVA 

237 revealed RTs were modulated by both SNR [F2,200 =11.90, p<0.0001] and token [F4,200 =5.36, p=0.0004]. 

238 RTs were similar when classifying clear and 0 dB SNR speech (p=1.0) but slowed in the -5 dB condition 

239 (p<0.0001). Notably, a priori contrasts revealed this noise-related slowing in RTs was most prominent at 

240 the phonetic endpoints of the continuum (Tk1-2 and Tk4-5); at the ambiguous (non-phonetic) Tk3, RTs 

241 were identical across SNRs (ps > 0.69). This suggests that the observed RT effects in noise are probably 

242 not due to a general slowing of decision speed (e.g., attentional lapses) across the board but rather, are 

243 restricted to accessing categorical representations. 

244 CP is also characterized by a slowing in RTs near the ambiguous midpoint of the continuum 

245 (Bidelman et al., 2013; Bidelman & Walker, 2017; Bidelman et al., 2014b; Pisoni & Tash, 1974; Poeppel 

246 et al., 2004; Reetzke et al., 2018). Planned contrasts revealed this characteristic slowing in RTs for the 

247 clear [mean(Tk1,2,4,5) vs. Tk3; p=0.0003] and 0 dB SNR (p=0.0061) conditions. This categorical RT 

248 pattern was not observed at -5 dB SNR (p=0.59). Collectively, our behavioral results suggest noise 

249 weakened the strength of CP in both the quality and speed of categorical decisions but only when speech 

250 was severely degraded. Perceptual access to categories was otherwise unaffected by low-level noise (i.e., 

251 ≥ 0 dB SNR). 

252 3.2 Electrophysiological data

253 Grand average ERPs are shown across tokens and SNRs in Figure 4. ERPs showed the most 

254 SNR- and token-related modulations starting around the P2 wave (~180 ms) that persisted for another 200 

255 ms. Visual inspection of the data indicated these modulations were most prominent at centro-parietal 
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256 scalp locations. The enhanced positivity at these electrode sites following the auditory P2 might partly 

257 reflect differences in P3b amplitude (Alain et al., 2001). To quantify these effects, we measured the mean 

258 amplitudes in the 180-320 ms time window at the vertex channel (Cz) (Fig. 5). To assess the degree to 

259 which ERPs showed categorical-level coding, we then pooled tokens Tk1 and Tk5 (those with clear 

260 phonetic identities) and compared these responses to the ambiguous Tk3 at the midpoint of the continuum 

261 (Bidelman, 2015; Bidelman & Walker, 2017). An ANOVA conducted on ERP amplitudes showed 

262 responses were strongly modulated by SNR [F2,70 =8.54, p=0.0005] and whether not the stimulus carried 

263 a phonetic label [Tk1/5 vs. Tk3: F1,70 =19.11, p <0.0001] (Fig. 5B). Planned contrasts by SNR revealed 

264 that neural activity differentiated phonetic vs. non-phonetic speech at clear (p=0.0170) and 0 dB 

265 (p=0.0011) SNRs, but not at -5 dB (p=0.0915). Across SNRs, ERPs to phonetic tokens were largely 

266 resilient to noise [Tk1/5; linear contrast of SNR: t70 = -2.17, p=0.07)]. In contrast, responses declined for 

267 non-phonetic speech sounds [Tk3; t70 = -2.91, p=0.0098]. This indicates that that noise differentially 

268 affected the representation of category prototypes relative to phonetically ambiguous speech. Pooled 

269 across speech tokens, CLARA source analysis (Alain et al., 2017; Bidelman et al., 2018; Iordanov et al., 

270 2014) localized sensor-level activity to bilateral sources in anterior superior temporal gyrus (STG) (cf. 

271 Bidelman & Lee, 2015). These neural findings parallel our behavioral results and suggest the categorical 

272 (phonetic) representations of speech (near STG) are more resistant to noise than those that do not carry a 

273 clear linguistic-phonetic identity.

274 [Insert Figure 4 near here]

275 [Insert Figure 5 near here]

276 3.3 Brain-behavior relationships

277 The effects of noise on categorical neural processing closely paralleled the perceptual data. Figure 

278 6A shows the group mean performance on the behavioral identification task and group mean ERP 

279 amplitudes (180-320 ms window) to the phonetic speech tokens (Tk1/5). For ease of comparison, both the 

280 neural and behavioral measures were normalized for each participant (Alain et al., 2001), with 1.0 

281 reflecting the largest displacement in ERP amplitude and psychometric slopes, respectively. The 

282 remarkably similar pattern between brain and behavioral data imply that perceptual identification 

283 performance is predicted by the underlying neural representations for speech, as reflected in the ERPs. 

284 Indeed, correlational analyses revealed a strong association between behavioral responses and ERPs 

285 elicited by the phonetic (Tk1/5) (Fig. 6B; R2 = 0.15, p=0.0085) but not ambiguous (Tk3) tokens (Fig. 6C; 

286 R2 = 0.03, p=0.23). That is, more robust neural activity predicted steeper psychometric functions. These 

287 findings suggest the neural processing of speech sounds carrying clear phonetic labels predicts more 
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288 dichotomous categorical decisions at the behavioral level; whereas neural responses to ambiguous (non-

289 categorical/non-phonetic) speech tokens do not predict perceptual categorization.

290 [Insert Figure 6 near here]

291 4. DISCUSSION

292 By measuring neuroelectric activity during rapid classification of SIN, our results reveal three 

293 main findings: (1) speech identification is robust to acoustic interference, degrading only at very severe 

294 noise levels (i.e., negative SNRs); (2) the neural encoding of speech is enhanced for sounds carrying a 

295 clear phonetic identity compared to phonetically ambiguous tokens; and (3) categorical neural 

296 representations are more resistant to external noise than their non-categorical counterparts. Our findings 

297 suggest the mere process of categorization—a fundamental operation to all perceptual systems (Goldstone 

298 & Hendrickson, 2010)—aids figure-ground aspects of speech perception by fortifying abstract categories 

299 from the acoustic signal and making the speech code more resistant to external noise interference.

300 Behaviorally, we found listeners’ psychometric slopes were steeper when identifying clear 

301 compared to noise-degraded speech; identification functions became shallower only at the severe 

302 (negative) SNRs when noise levels exceeded that of speech. The resilience in perceptual identification 

303 suggests the strength of categorical representations is largely resistant to signal interference. 

304 Corroborating our modeling (Fig. 1), we found CP was affected only when the input signal was highly 

305 impoverished. These data converge with previous studies (Bidelman et al., under review; Gifford et al., 

306 2014; Helie, 2017) suggesting category-level representations, which are by definition more abstract than 

307 their acoustic-sensory counterparts, are largely impervious to surface degradations. Indeed, as 

308 demonstrated recently in cochlear implant listeners, the sensory input can be highly impoverished, sparse 

309 in spectrotemporal detail, and intrinsically noisy (i.e., delivered electrically to the cochlea) yet still offer 

310 robust speech categorization (Han et al., 2016). Collectively, our data suggest that both the mere 

311 construction of perceptual objects and the natural discrete binning process of CP help category members 

312 to “pop out” amidst noise (e.g., Nothdurft, 1991; Perez-Gay et al., 2018) to maintain robust speech 

313 perception in noisy environments.  

314 Noise-related decrements in CP (Fig. 3A) could reflect a weakening of internalized categories 

315 themselves (e.g., fuzzier match between signal and phonetic template) or alternatively, more general 

316 effects due to task complexity (e.g., increased cognitive load or listening effort; reduced vigilance). We 

317 can rule out the latter interpretation based on our RT data. The speed of listeners’ perceptual judgments to 

318 ambiguous speech tokens (Tk3) were nearly identical across conditions and invariant to noise (Fig. 3D). 

319 In contrast, RT functions became more categorical (“inverted V” pattern) with increasing SNR due 

320 entirely to changes in RTs for categorical members (continuum endpoints). These findings suggest that 
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321 categories represent local enhancements of processing within the normal acoustic space (e.g., Fig. 1) 

322 which acts to sharpen categorical speech representations. That our data do not reflect gross changes in 

323 task vigilance is further supported by two additional findings: (i) lapses in performance did not vary 

324 across stimuli which suggests vigilance was maintained across conditions and (ii) ERPs predicted 

325 behavioral CP only for speech sounds that carried clear phonetic categories (Fig. 6). Therefore, the effects 

326 of noise on CP are most parsimoniously described as changes in the relative sharpness of the auditory 

327 categorical boundary (Livingston et al., 1998). That is, under extreme noise, speech identification is 

328 blurred, and the normal warping of the perceptual space is partially linearized, resulting in more 

329 continuous speech identification.

330 On the basis of fMRI, Guenther et al. (2004) posited that the length of time auditory cortical cells 

331 remain active after stimulus presentation might be shorter for category prototypes than for other sounds. 

332 They further speculated “the brain may be reducing the processing time for category prototypes, rather 

333 than reducing the number of cells representing the category prototypes (Guenther et al., 2004; p.55).” 

334 Some caution is warranted when interpreting these results given the sluggishness of the fMRI BOLD 

335 signal. Still, our data do not agree with Guenther et al. (2004)’s first assertion since ERPs showed larger 

336 (enhanced) activations to categorical prototypes within 200 ms. However, our RT data do agree with their 

337 second hypothesis. We found RTs were faster for prototypical speech (i.e., RTTk1/5 < RTTk3) providing 

338 confirmatory evidence that well-formed categories are processed more efficiently by the brain. 

339 Our neuroimaging data revealed enhanced brain activity to phonetic (Tk1/5) relative to 

340 perceptually ambiguous (Tk3) speech tokens. This finding indicates categorical-level processing occurs as 

341 early as ~150-200 ms after sound arrives at the ear (Alho et al., 2016; Bidelman et al., 2013; Toscano et 

342 al., 2018). Importantly, these results cannot be explained in terms of mere differences in exogenous 

343 stimulus properties. On the contrary, endpoint tokens of our continuum were actually the most distinct in 

344 terms of their acoustics. Yet, these prototypical stimuli elicited stronger neural activity than midpoint 

345 tokens (i.e., Tk1/5 > Tk3), which was not attributable to trivial differences in signal SNR. These results 

346 are broadly consistent with previous ERP studies (Altmann et al., 2014; Bidelman & Lee, 2015; Bidelman 

347 et al., 2013; Bidelman et al., 2014a; Bidelman et al., 2014b; Dehaene-Lambertz, 1997; Phillips et al., 

348 2000), fMRI data (Binder et al., 2004; Kilian-Hütten et al., 2011), and near-field unit recordings (Bar-

349 Yosef & Nelken, 2007; Chang et al., 2010; Micheyl et al., 2005; Steinschneider et al., 2003), which 

350 suggest auditory cortical responses code more than low-level acoustic features and reflect the early 

351 formation of auditory-perceptual objects and abstract sound categories. 

352 ERP effects related to CP (Fig. 5) were consistent with activity arising from the primary and 

353 associative auditory cortices along the Sylvian fissure (Alain et al., 2017). The latency of these 
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354 modulations was comparable to our previous electrophysiological studies on CP (Bidelman & Alain, 

355 2015b; Bidelman et al., 2013; Bidelman & Walker, 2017) and may reflect a modulation of the P2 wave. 

356 P2 is associated with speech discrimination (Alain et al., 2010; Ben-David et al., 2011), sound object 

357 identification (Leung et al., 2013; Ross et al., 2013), and the earliest formation of categorical speech 

358 representations (Bidelman et al., 2013). Categorical neural enhancements (i.e., Tk1/5 > Tk3) also 

359 persisted ~200 ms after P2, through what appeared to be a P3b-like deflection. Whether this wave reflects 

360 a late modulation of P2 or a true P3b response is unclear, the latter of which is typically evoked in 

361 oddball-type paradigms. 

362 A similar “post-P2” wave (180-320 ms) has been observed during speech categorization tasks 

363 (Bidelman & Alain, 2015b; Bidelman et al., 2013), which varied with perceptual (rather) than acoustic 

364 classification. This response could represent integration or reconciliation of the input with a phonetic 

365 memory template (Bidelman & Alain, 2015b) and/or attentional reorienting during stimulus evaluation 

366 (Knight et al., 1989). Similar responses in this time window have also been reported during concurrent 

367 sound segregation tasks requiring active perceptual judgments of the number and quality of auditory 

368 objects (Alain et al., 2001; Alain et al., 2017; Bidelman & Alain, 2015a). The response might thus reflect 

369 controlled processes covering a widely distributed neural network including medial temporal lobe and 

370 superior temporal association cortices near parietal lobe (Alain et al., 2001; Dykstra et al., 2016). The 

371 posterior scalp distribution of this late deflection is consistent with this interpretation (Fig. 4). Paralleling 

372 the dynamics in our neural recordings, studies have shown that perceptual awareness of target signals 

373 embedded in noise produces early focal responses between 100-200 ms circumscribed to auditory cortex 

374 and posterolateral superior temporal gyrus that is followed by a broad, P3b-like response (starting ~300 

375 ms) associated with perceived targets (Dykstra et al., 2016). It has been suggested this later response, like 

376 the one observed here, is necessary to perceive target SIN or under the demands of higher perceptual load 

377 (Dykstra et al., 2016; Gutschalk & Dykstra, 2014; Lavie et al.).

378 What might be the mechanism for categorical neural enhancements (i.e., ERPTk1/5 > ERPTk3) and 

379 their high flexibility in noise? In their experiments on categorical learning, Livingston et al. (1998) 

380 suggested that when “category-relevant dimensions are not as distinctive, that is, when the boundary is 

381 particularly ‘noisy,’ a mechanism for enhancing separation may be more readily engaged” (p. 742). 

382 Phoneme category selectivity is observed early (<150 ms) (Alho et al., 2016; Bidelman et al., 2013; 

383 Chang et al., 2010), particularly in left inferior frontal gyrus (pars opercularis) (Alho et al., 2016), but 

384 only under active task engagement (Alho et al., 2016; Bidelman & Walker, 2017). While some nascent 

385 form of categorical-like processing may occur pre-attentively (Bizley & Cohen, 2013; Chang et al., 2010; 

386 Joanisse et al., 2007; Krishnan et al., 2009), it is clear that attention enhances the brain’s ability to form 

387 categories (Alho et al., 2016; Bidelman et al., 2013; Bidelman & Walker, 2017; Recanzone et al., 1993). 
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388 In animal models, perceptual learning leads to an increase in the size of cortical representation and 

389 sharpening or tuning of auditory neurons for actively attended (but not passively trained) stimuli 

390 (Recanzone et al., 1993). We recently demonstrated visual cues from a talker’s face help sharpen sound 

391 categories to provide more robust speech identification in noisy environments (Bidelman et al., under 

392 review). While multisensory integration is one mechanism that can hone internalized speech 

393 representations to facilitate CP, our data here suggest that goal-directed attention is another.

394 The neural basis of CP likely depends on a strong audition-sensory memory interface (Bizley & 

395 Cohen, 2013; Chevillet et al., 2013; DeWitt & Rauschecker, 2012; Jiang et al., 2018) rather than cognitive 

396 faculties, per se (attentional switching and IQ; Kong & Edwards, 2016). Moreover, the degree to which 

397 listeners show categorical vs. gradient perception might reflect the strength of phonological processing, 

398 which could have ramifications for understanding certain clinical disorders that impair sound-to-meaning 

399 mapping (e.g., dyslexia; Calcus et al., 2016; Joanisse et al., 2000; Werker & Tees, 1987). CP deficits 

400 might be more prominent in noise (Calcus et al., 2016). Thus, while relations between CP and language-

401 based learning disorders remains equivocal (Hakvoort et al., 2016; Noordenbos & Serniclaes, 2015), we 

402 speculate that assessing speech categorization under the taxing demands of noise might offer a more 

403 sensitive marker of impairment (e.g., Calcus et al., 2016). 

404 More broadly, the noise-related effects observed here may account for other observations in the 

405 CP literature. For example, cross-language comparisons between native and non-native speakers’ CP 

406 demonstrate language-dependent enhancements in native listeners in the form of steeper behavioral 

407 identification functions (Bidelman & Lee, 2015; Iverson et al., 2003b; Xu et al., 2006) and more 

408 dichotomous (categorical) neural responses to native speech sounds (Bidelman & Lee, 2015; Zhang et al., 

409 2011). Shallower categorical boundaries for non-native speakers can be parsimoniously described as 

410 changes in intrinsic noise, which mirror the effects of extrinsic noise in the current study. While the noise 

411 sources differ (exogenous vs. endogenous), both linearize the psychometric function and render speech 

412 identification more continuous. Similarly, the introduction of visual cues of a talker’s face can enhance 

413 speech categorization (Bidelman et al., under review; Massaro & Cohen, 1983). Such effects have been 

414 described as a reduction in decision ambiguity due to the mutual reinforcement of speech categories 

415 provided by concurrent phoneme-viseme information (Bidelman et al., under review). Future studies are 

416 needed to directly compare the impact of intrinsic vs. extrinsic noise on categorical speech processing. 

417 Still, the present study provides a linking hypothesis to test whether deficits (Calcus et al., 2016; Joanisse 

418 et al., 2000; Werker & Tees, 1987), experience-dependent plasticity (Bidelman & Lee, 2015; Xu et al., 

419 2006), and effects of extrinsic acoustics on CP (present study) can be described via common 

420 physiological mechanisms.  
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427 Figure Legends

428 Figure 1: Theoretical framework for noise-related influences on categorical speech representations. 

429 (A) The neural representation of speech is modeled as a multidimensional feature space where 

430 populations of auditory cortical neurons code different dimensions (DIM) of the input. DIMS here are 

431 arbitrary but could reflect any behaviorally relevant feature of speech (e.g., F0, duration, etc.) Both 3D 

432 and 2D representations are depicted here for two stimulus classes. Categorical coding (modeled as a 

433 Gaussian mixture) is reflected by an increase in local firing rate for perceptually similar stimuli (“A” and 

434 “B”). (B) Noise blurs physical acoustic details yet spares categories as evidenced by the resilience of the 

435 peaks in neural space. Neural noise was modeled by changing the variance of additive Gaussian white 

436 noise. 

437 Figure 2: Acoustic spectrograms of the speech continuum as a function of SNR. Vowel first formant 

438 frequency was parameterized over five equal steps (430 to 730 Hz, ►), resulting in a perceptual phonetic 

439 continuum from /u/ to /a/. Token durations were 100 ms. Speech stimuli were presented at 75 dB SPL 

440 with noise added parametrically to vary SNR. 

441 Figure 3: Behavioral speech categorization is robust to noise interference. (A) Perceptual 

442 psychometric functions for clear and degraded speech identification. Curves show an abrupt shift in 

443 perception when classifying speech indicative of discrete perception (i.e., CP). (B) Slopes and (C) 

444 locations of the perceptual boundary show speech categorization is robust even down to 0 dB SNR; the 

445 strength of CP diminishes only for highly impoverished signals as indicated by the shallow slope and 

446 slight rightward bias of the curves (i.e., more frequently responding “u”) in the -5 dB SNR condition. (D) 

447 Speech classification speeds (RTs) show a categorical pattern for clear and 0 dB SNR speech; participants 

448 are slower at labeling ambiguous tokens (midpoint) relative to those with a clear phonetic label 

449 (endpoints) (Bidelman & Walker, 2017; Pisoni & Tash, 1974). A categorical RT effect is not observed for 

450 highly degraded speech (-5 dB SNR). errorbars = ± s.e.m.

451 Figure 4: Speech-ERPs as a function of speech token and noise (SNR). Representative electrodes at 

452 central (Cz), temporal (T7/8) and parietal (Pz) scalp sites. Stimulus and noise-related modulations are 

453 most prominent between P2 and P3b (180-320 ms). (A) Phonetic speech tokens (Tk1, Tk5) elicit stronger 

454 ERPs than (B) ambiguous sounds without a clear category (Tk3). Noise weakens and prolongs the neural 

455 encoding of speech. 

456 Figure 5: Categorical neural organization limits the degradative effects of noise on cortical speech 

457 processing. (A) Scalp auditory ERP waveforms (Cz electrode). (shaded regions) Stronger responses are 
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458 observed for phonetic exemplar vs. ambiguous speech tokens [i.e., mean(Tk1, Tk5) > Tk3] but this effect 

459 varies with SNR. Brain volumes show Cortical Low resolution electromagnetic tomography Analysis 

460 Recursively Applied (CLARA; BESA® v7) (Iordanov et al., 2014) functional maps projected onto the 

461 BESA template brain (Richards et al., 2016) [latencies: 240 ms (clear), 272 ms (0 dB), 300 ms (-5 dB)]. 

462 CLARA activations (pooled across all speech tokens) localize ERP activity to anterior superior temporal 

463 cortex bilaterally. As in sensor (scalp) responses (cf. Fig. 4), source activations diminish with increasing 

464 noise (i.e., lower SNRs). (B) Mean ERP amplitude (180-320 ms window) is modulated by SNR and 

465 phonetic status. Categorical neural encoding (Tk1/5 > Tk3) is observed for all but the noisiest listening 

466 condition. errorbars = ± s.e.m. *p<0.05; ** p<0.01.

467 Figure 6: Brain-behavior associations in categorical speech perception. (A) Amplitudes of the 

468 auditory ERPs overlaid with behavioral data (psychometric slopes). Neural and behavioral measures are 

469 normalized for each participant (Alain et al., 2001), with 1.0 reflecting the largest displacement in ERP 

470 amplitude (180-320 ms) and psychometric slopes, respectively. (B-C) Correlations between behavioral 

471 CP and neural responses to (B) phonetic (Tk1/5) and (C) non-phonetic speech tokens (Tk3). Data are 

472 aggregated across SNRs (n=45 observations). Behavioral CP is predicted only by neural activity to 

473 phonetic tokens; larger ERP amplitudes elicited by Tk1/5 speech are associated with steeper, more 

474 dichotomous CP. Solid lines, significant regression; Dotted lines, non-significant regression. ** p<0.01.

475
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