
Practical universal k-mer sets for minimizer schemes

Dan DeBlasio1, Fiyinfoluwa Gbosibo2∗, Carl Kingsford1, and Guillaume Marçais1†

1 Computational Biology Department, Carnegie Mellon University
2 Departments of Computer Science and Mathematics, Lincoln University of Pennsylvania

Abstract

Minimizer schemes have found widespread use in genomic applications as a way to quickly predict the matching
probability of large sequences. Most methods for minimizer schemes use randomized (or close to randomized)
ordering of k-mers when finding minimizers, but recent work has shown that not all non-lexicographic orderings
perform the same. One way to find k-mer orderings for minimizer schemes is through the use of universal k-
mer sets, which are subsets of k-mers that are guaranteed to cover all windows. The smaller this set the fewer
false positives (where two poorly aligned sequences being identified as possible matches) are identified. Current
methods for creating universal k-mer sets are limited in the length of the k-mer that can be considered, and
cannot compute sets in the range of lengths currently used in practice. We take some of the first steps in creating
universal k-mer sets that can be used to construct minimizer orders for large values of k that are practical. We
do this using iterative extension of the k-mers in a set, and guided contraction of the set itself. We also show that
this process will be guaranteed to never increase the number of distinct minimizers chosen in a sequence, and thus
can only decrease the number of false positives over using the current sets on small k-mers.

1 Introduction

The minimizers technique was first used in bioinformatics to speedup the computation of read overlaps in the
overlap-layout-consensus paradigm [17, 18]. In that setting, minimizers allowed reads that have a significant amount
of common sequence, and therefore are likely to have an overlap, to be binned together. This quick pre-processing
step avoids comparing reads that cannot have an overlap, therefore saving large amounts of computation while still
guaranteeing that all matching windows will be identified.

The minimizers technique proved to be very versatile, and since this original use it has been adapted to many different
applications, from k-mer counting [4, 10, 5], to the representation of de Bruijn graphs [1], for example for genome
assembly [22], to read alignment [9, 7], metagenomics [14, 8, 21] and the sparsification of data structures [6]. This
method is also used outside of the realm of bioinformatics, under the name of “winnowing”, independently introduced
by Schleimer et al. [19] for detection of plagiarism. See for example Marçais et al. [12] for an overview.

The minimizers method samples a sequence by selecting the smallest k-mer in every window of w consecutive k-
mers in the sequence (see Section 2.1 for a detailed description). By selecting k-mers this way, two properties are
satisfied:

1. two sequences with a long exact match (i.e., a match of at least w+ k− 1 bases) must select the same k-mers,
and

2. there are no large gap between selected k-mers (never distant by more than w bases).

Applications rely on these two properties (and these properties alone) to guarantee that using minimizers gives
correct algorithms. For example, the overlap computation application above relies on the first property to guarantee

∗Work performed as part of the Internship in Biomedical Research, Informatics, and Computer Science (iBRIC) at the University of
Pittsburgh
†Corresponding Author

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

that two reads sharing a significant amount of sequence must be binned together, therefore avoiding false negatives
(missed overlaps).

It is generally beneficial to select as few k-mers as possible from the sequence. For example, in the case of overlap
computation, this leads to smaller bins and less computation, and in the case of sparse data structures, fewer selected
k-mers imply a sparser data structure. The density is the measure of the number of selected k-mers over the length
of the sequence (see Section 2.1) and a lower density is desirable.

The minimizers method is rather a family of methods parameterized by the length k of the k-mers, the length
w of the windows, and the order imposed on the k-mer to select the smallest k-mer in each window. Generally
the parameters k and w are constrained by the application itself. By contrast, the order on the k-mer is a “free”
parameter: regardless of the choice of the order, the two properties above are satisfied, and the algorithm is correct
for any order.

Although any choice of order leads to correct result, the order has a significant influence on the expected density
of selected k-mers. Therefore, the choice of order with lower density leads to better performance for applications
using minimizers. Finding orders with low density will improve future applications and, because any order satisfy
properties (1) and (2) above, these improved orders could be retrofitted into existing applications.

The problem of finding an optimal order, i.e., an order with the lowest possible density, is still open [13]. Orenstein
et al. [16] proposed a heuristic, DOCKS, that is used to create orders with low density. Unfortunately, this method
has a compute time that is over exponential in k and is impractical for k ≥ 10. Even further optimizations of this
heuristic which reduce computational resource requirements by approximating steps in the procedure can only be
used when k ≤ 13. Furthermore, the use of this method requires storing a very large set of k-mers, too large to be
practical.

Marçais et al. [13] showed a method to create optimal orders when k is asymptotically large. Even though these
orders are close to optimal, they achieve low expected density only for values of k that are too large in practice.

We describe here a new method to generate orders with low expected density for practical values of k and w. The
proposed method is a heuristic that generates orders for values of k up to and greater than 500. It uses DOCKS as a
starting point and extends the order to larger values of k with even lower density than that obtained with DOCKS.
Moreover, the representation of the order is extremely compact (storing general sets in text files sized from a few kB
to a few hundred MB).

We evaluate the method in two different settings. In the first setting, the orders generated are generic and the density
is low in expectation. These orders would be used in applications where the sequences are not known ahead of time.
In the second settings, the sequence is known ahead time (say the human genome reference sequence). Then, our
method generates orders with lower density on this particular sequence than generic orders achieve.

Orders for a wide selection of parameters w and k, generic and for the human sequence (GRCh38 [20]), are available
on the github page, https://github.com/Kingsford-Group/remuval. We also provide a small and easy to use
C++ library (requiring only the use of an additional header file) to make use of these orders.

2 Background and method overview

Our method to create orders of k-mers with low expected density relies on the creation of universal sets of k-mers
with high sparsity [11]. In this section, we give proper definition of these concepts before giving an overview of the
steps of the method. Section 3 gives a detailed description of the method and the proofs of the important theorems.
Finally, Section 4 evaluates the performance of the method to generate orders with low density.

In the following, we consider strings defined on an alphabet Σ of size σ = |Σ|. A k-mer is a string or substring of
length k. Given a sequence S ∈ Σ∗, S[i : `] denotes the substring of S starting at position i and of length `. A window
of w k-mers of S is a substring S[i : w + k − 1] that contains exactly w consecutive overlapping k-mers, namely the
substrings S[i : k], S[i + 1 : k], . . . , S[i + w − 1 : k]. We will make the slight abuse of notation of not distinguishing
between a window ω = S[i : w + k − 1] as a string and as a set of k-mers ω = { S[j : k] | i ≤ j < i+ w }.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

S
o

Ukw

minimizer
in window
non-minimizer
umer in window

singleton umer

minimizer
locations

k-mer

window

umer

Figure 1: Example section of an input sequence S (thick black line). Above S, the k-mers of S drawn according to
their rank for order o. Below S, the windows of S are represented, the triangle giving the position of the umers in
the windows. One umer in this region is a singleton, meaning there is a window for which no other umer is present
(in red).

An order on the k-mers is defined by giving a rank to each k-mer. Formally, an order is a one-to-one function from
the k-mers into the integers o : Σk → [1, σk]. A k-mer m1 is less than k-mer m2 according to order o if its rank is
less than the rank of m2: m1 <o m2 ⇐⇒ o(m1) < o(m2).

2.1 Minimizers and density

We define formally the minimizers method and the main quality measure of an order, the density.

For a sequence S, and parameters k, w and order o defined on the k-mers, the minimizers method considers all the
windows of w overlapping k-mers of S, that is the substrings ωi = S[i : w + k − 1] for 1 ≤ i ≤ |S| − w − k. For each
substring ωi it finds the position of the smallest k-mer and adds it to the set of selected positions (use left most in
case of ties). Formally, the set of selected positions is

Sk,w,o(S) =

{
j

∣∣∣∣ ∃i ∈ [1 : |S| − w − k], j = argmin
i≤x<i+w

o(S[x : k])

}
. (1)

Figure 1 shows an example segment of a sequence.

As two consecutive windows ωi and ωi+1 have almost the same k-mer content (they differ only in the first k-mer of
ωi and the last k-mer of ωi+1), the selected position in these two windows is likely to be identical. Therefore the
minimizers method is a sampling of positions in the string S. The particular density of the sampling is the proportion
of the selected k-mers over the total number of k-mers in S:

dk,w,o(S) =
|Sk,w,o(S)|
|S| − w − k

. (2)

The particular density is the density of an order o on a given sequence S. The density dk,w,o of order o (for parameter
k and w) is the expected density computed, at the limit, on an infinitely long random sequence with characters chosen
IID. Hence the density, defined as an expected value, is not dependent on the choice of a particular sequence.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

Although the density is defined as an expected value, it can be computed exactly by computing the particular density
of a specific finite sequence. A de Bruijn sequence Bk of order k is any sequence of length σk +k−1 containing every
possible k-mer exactly once [2]. As shown by Marçais et al. [11] dk,w,o = dk,w,o(Bm) for any m ≥ w + k. In other
words, a de Bruijn sequence of high enough order behaves with respect to the minimizers method like an infinite
sequence, and this relation allows one to compute the density for an order exactly rather than approximately.

2.2 Universal sets and compatible orders

Universal k-mer sets are central to the construction of orders with low density [11]. In fact, the proposed method,
just like DOCKS [16, 15], is a heuristics to construct universal sets.

A universal k-mer set Uk,w ⊆ Σk is a subset of the σk possible k-mers that is unavoidable for any sequence of w
consecutive k-mers. That is, any string of length L = w + k − 1, which contains exactly w k-mers, contains at
least one k-mer from the set. We use simply U when k and w are arbitrary or can be inferred from context. The
terms universal k-mer and umer (the contraction of “universal mer”) are used interchangeably to refer to a k-mer
u ∈ U .

The set of all k-mers Σk is necessarily a universal set, but much smaller sets exists. The DOCKS heuristic is one
possible heuristics to generate such sets, and we propose here another method.

Given a universal set Uk,w, an order o on the k-mers is compatible with Uk,w if the umers always compare less than
the k-mers not in Uk,w. That is, for any u ∈ Uk,w and v /∈ Uk,w, then u <o v. Although there are many orders
compatible with the universal set Uk,w, we consider here any compatible order.

When using an order o that is compatible with the set Uk,w in the minimizers method on S, then only k-mers from
Uk,w are ever selected. This holds because Uk,w is universal, therefore every possible window contains at least one
element of Uk,w, these elements of Uk,w compare less than any k-mer not in Uk,w, and the smallest element of Uk,w in
the window is selected. Hence, only the umers are relevant and the properties of the universal set define the density
of a compatible order.

One characteristics of universal sets is of particular interest: the sparsity, denoted Sp(U). Every window ω ∈ Σk must
contain at least one umer. Some windows may contain exactly one umer. The proportion of windows containing
exactly one umer over the total number of windows σw+k−1 is called the sparsity of the universal set. Marçais
et al. [11] showed that the expected density of any order compatible with Uk,w is correlated with the sparsity of the
universal set: the higher the sparsity of a universal set, the lower the density of a compatible order.

2.3 Method overview

Our method is an iterative process that starts from universal set Uk′,w for a small length of mers (say k′ < k) and
extends, one base at a time, the mers of Uk′,w to obtain a universal set Uk,w for the desired mer length k. At
each iteration, the universal set is optimized to be smaller and to increase the sparsity (and therefore a low expected
density). Any universal set Uk′,w can be used as a starting point. In practice, we use the DOCKS-generated universal
sets as a starting point as these sets already give compatible orders with low expected density.

There are two operations at each iteration: näıve extension and optimization (known as reMuval). The näıve extension
(Section 3.1) is a simple procedure to create (k + 1)-mers from k-mers which has three interesting properties: first
the set of extended mers is also a universal set for (k + 1) and w (Theorem 1), second the sparsity of the extended
set U · Σ is equal to the sparsity of U (Theorem 2), and third the density of the compatible orders for the extended
set is less or equal to the density of the original set (Theorem 3).

The second operation of reMuval (Section 3.2) uses an Integer Linear Program (ILP) to further reduce the size of the
extended set and increases the number of singleton umers (see Section 3.3 for proper definition). The operation of
increasing singleton umers is not directly equivalent to increasing sparsity (or lowering density), but it is related and
the sparsity of the universal set is guaranteed to be non-decreasing. Additionally, the reMuval operation also preserves
the universal property of the k-mer set (Theorem 4) and can only lower the sparsity (Theorem 5). The difficulty here
is to have an ILP of reasonable size—that does not grow exponentially in size—and that is consequently solvable in a

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

reasonable time in practice. Our method uses a particular trie to encode the umers in an efficient way, and only needs
to consider a small subset of all possible windows of w k-mers to solve the ILP to optimality (Section 3.3).

3 Methods

3.1 Näıve extension

The näıve extension of a k-mer set U is the operation of appending every letter of the alphabet to every k-mer from
a set:

U · Σ = { u · x | u ∈ U, x ∈ Σ } , (3)

where · is the concatenation operator. The first important property of näıve extension is that it preserves universal-
ity.
Theorem 1. The näıve extension Uj,w · Σ of a universal set Uj,w is universal.

Proof. Let p = (m1,m2, ...,mw) be a path of w nodes in the de Bruijn graph Gj+1. The de Bruijn graph of order
j + 1 is the line graph of the de Bruijn graph of lower order j. Therefore, there is a corresponding path p′ of w + 1
nodes in Gj , where each node in p is the edge between two nodes in p′. Because Uj,w is universal, at least one of
the w nodes of p′ \m′w+1, say m′i, is in Uj,w. By construction, the (j + 1)-mer represented by the edge (m′i,m

′
i+1) is

in Uj+1,w, and in turn the corresponding node mi ∈ p is also in the set Uj+1,w. Since this holds for any paths p′ in
Gj+1, Uj+1,w is also universal.

Näıve extension also does not change the sparsity.
Theorem 2. The sparsity of the set U · Σ is equal to that of U .

Proof. Let S be a de Bruijn sequence of order L + 1, for L = w + k + 1 and let ω = S[i : w + k − 1] be a window
of S that contains only one k-mer from u ∈ U . If u is at position x (i.e., u = S[x : k]), then the (k + 1)-mer
u′ = S[x : k + 1] is in U · Σ, and no other (k + 1)-mer of ω′ = S[i : w + k] is in U · Σ. Hence, the sparsity of U · Σ is
greater or equal that of U .

Conversely, a similar argument shows that the sparsity of U · Σ is less or equal that of U , and both sets have the
same sparsity.

Näıve extension, in some sense, also does not increase the density. Because the notion of density is defined for orders
and not universal sets, and because many orderings are compatible with a universal set U , this statement of not
increasing density must be properly qualified.

Let ok and ok+1 be orders defined on the k-mers and (k + 1)-mers respectively. Then order ok+1 is an extension of
order ok+1 means that if k-mer m1 compares less than k-mer m2 according to ok, then any extension of m1 compares
less than any extension of m2 according to ok+1. Formally, for all pairs of distinct k-mers m1,m2 ∈ Σk and for all
x, y ∈ Σ:

m1 <ok m2 ⇐⇒ m1 · x <ok+1
m2 · y. (4)

This property holds, for example, for the lexicographic orders.
Theorem 3. Given orders o and o′ compatible, respectively, with the universal sets Uk,w and its extension Uk,w ·Σ,
where o′ is an extension of o, then

dk+1,w,o′ ≤ dk,w,o . (5)

Proof. Let S be the de Bruijn sequence of order L + 1, for L = w + k − 1, i.e., a de Bruijn sequence of order large
enough to compute the density for both order o and o′. Consider Sk,w,o(S) and Sk+1,w,o′(S), the locations in S
that are chosen by the minimizer method for order o and o′ respectively. Because o′ is an extension of o, the set
Sk+1,w,o′(S) is a subset of Sk,w,o(S).

Suppose it is not, and there exists a position x ∈ Sk+1,w,o′(S) \ Sk,w,o(S). Then the (k + 1)-mer m′ at position x
compares less than all other (k + 1)-mer in some window ω′ = S[i : w + k] (where i ≤ x < i + w + k). Then m,

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

ωi
ωi+1
ωi+2
ωi+3
ωi+4

ωi
ωi+1
ωi+2
ωi+3
ωi+4

x

y y

x

y1

y2

(a)

(b)

S

S
o

o

Figure 2: Minimizer locations on sequence S (a) before and (b) after näıve extension of k-mers x and y and windows
ωi, ..., ωi+4. Before extension the left most copy of y is the minimizer in both windows ωi+1 and ωi+2 (red triangles).
After extension the two instances of y are different, y1 is not the minimum in any window and y2 is now the minimum
in ωi+1 and ωi+2 (blue triangles). Therefore extension reduced the number of selected positions and lowered the
density.

the k-long prefix of m′, must compare less than all other k-mer in the window ω = S[i : w + k − 1], and x is also in
Sk,w,o(S). Contradiction.

It is possible for the density to decrease, and not just stay constant, by näıve extension. In the following example
illustrated in Figure 2, we consider the effect of näıve extension on tie breaking in the minimizers method. Assume
there is a pair of k-mers x < y ∈ Uk,w in a sequence S such that one instance of x appears to the left two instances
of y. For example, x = S[i : k], y = S[j1 : k] and y = S[j2 : k], where i < j1 < j2, and that every other umer that
are close to the instances of x and y (say within w bases) compare higher than y (hence they can be ignored). Then
all 3 position i, j1 and j2 are part of the selected positions.

Suppose that after extensions, the (k + 1)-mers x = S[i : k + 1], y1 = S[j1 : k + 1] and y2 = S[j2 : k + 1] satisfy
x < y2 < y1. This is possible because the two extensions of y may not be equal. This order is possible even for an
extension of the order of U . Then there may not be any window where y1 is the smallest umer and only the positions
i and j2 are selected, thereby lowering the density.

While näıve extension preserves universality and sparsity, and does not increase density, it does not preserve the
optimality of any property. That is, even if U is a universal set of minimum sparsity or minimum density or minimum
size, the näıve extension U · Σ is not guaranteed to be of minimum sparsity or minimum density or minimum size.
This justifies the second step of optimizations to obtain a better set of k-mers.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

3.2 Mu and reMuval

The näıve extension operation generated sets that are not optimal for density. The reMuval operation removes
elements from a universal set U in order to lower the density of the compatible orders.

Given a universal set U which is not of minimum size, there exists a k-mer u such that its removal from U leaves a
smaller but still universal set, that is the set U \ u is also a universal set. Observe that if there exists any window ω
of w k-mers for which u is the only element from U in ω (i.e., ω ∩U = {u}), then u cannot be removed from the set,
or ω would no longer contain a k-mer in the reduced set. Conversely, if every window that contains u also contains
another element from U , we can safely remove u from U and still maintain the universality. We can formally define
the minimum co-occurrence measure for an element u ∈ U as

Mu = min
ω∈Wu

|ω ∩ U | , (6)

where Wu is the set of all windows that contain u.
Theorem 4. Given a universal k-mer set U and a umer u ∈ U such that Mu > 1, the set U \ u is also a universal
set.

Proof. For any window w that contains u there must exist some k-mer u′ ∈ U that is also in w, otherwise Mu would
be 1. Therefore all windows still contain at least one k-mer from U \ u.

We can then remove any u ∈ U where Mu > 1, to produce a smaller universal set. A umer with a co-occurrence
value of 1 (i.e., Mu = 1) is called a singleton umer. We refer to the removal of the non-single umers, i.e., the umers
with high co-occurrence value Mu > 1, from the set U as reMuval.

This operation does not decrease the sparsity.
Theorem 5. If U and U \ u are universal sets, then

Sp(U) ≤ Sp(U \ u). (7)

Proof. Any window has necessarily fewer elements from U \ u than from U . Hence, U \ u has at least as many
windows with only one k-mer and its sparsity is at least as large as that of U .

Unfortunately, the question of whether the density of compatible orders with U and U \ u increases or decreases is
not as simple. For example, take an order o such that u is the largest element in U . Then u is never selected as a
minimizer in any window, because every window contains another element of U that compare less than u. Then the
order o is also compatible with U \ u and the density is unchanged. On the other hand, when u is not the largest
element according to o, the density could go up or down.

Even though we cannot prove a general result on how reMuval affects density, in practice we always see a reduction
(see Section 4).

The order in which the k-mers are removed is significant: if u and u′ have high co-occurrence value, after removing
u′ from the universal set, it is possible for u to now be a singleton in U \ u′, for example if there exists a window ω
such that ω∩U = u, u′. It may not be possible to remove all the umers with high co-occurrence value and depending
on the order of removal, the total number of removed umers may vary.

3.3 ILP formulation of reMuval

Our reMuval method uses an ILP to minimize the number of umers to keep while still having a universal set. We
will define only one set of binary variables, yu, which are 1 when umer u is retained and 0 when it should be removed

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

for all u ∈ U . In the following ILP, W = Σw+k−1 the set of all possible windows:

minimize
∑
u∈U

yu (8)

subject to
∑
u∈ω

yu ≥ 1 ∀ω ∈W. (9)

This ILP is deceivingly simple, as part of the structure of the problem is not directly encoded in the linear constraints
themselves, but in the set W .

Although the objective function of the ILP does not explicitly attempt to maximize the number of singleton k-mers,
after running the ILP, every k-mer that is kept must be a singleton. By contradiction, if there existed a umer u in
the set U ′ of k-mers kept by the ILP with a high co-occurrence value, then the set U ′ \ u would still be a universal
set and setting yu to 0 would give a lower objective.

Also, as expressed above, the size of the ILP is exponential in k and w. Rather than recreating this ILP from scratch
at each iteration of the näıve extension and reMuval loop, we modify the ILP from the previous iteration and use
the singleton umers to reduce the size of the problem.

First, any singleton umer must be kept, hence the ILP will set yu = 1. Given that these variables are not necessary
they are not included in the ILP. Moreover, the set of singleton umers keeps on growing and can be partially inferred
from one iteration to the next. If u ∈ U is a singleton k-mer, then there exists a window ω where ω ∩ U = u, say
u = ω[i : k]. In every extension of the window ω · x, where x ∈ Σ, every (k + 1)-mer is an extension of a k-mer of ω.
Therefore, the only (k + 1)-mer of ω · x that is in U · Σ is the extension u′ = S[i : k + 1] of u, and u′ must have a
co-occurrence number of 1. Hence, at least one extension (and sometimes all extensions) of a singleton umer is also
a singleton umer.

In practice, these singleton umers are kept in a modified trie [3]. This implementation is efficient as when all the
extensions of a singleton are also singletons, it takes no extra memory to store the extensions.

Second, any window which contains a singleton umer necessarily satisfies the constraint in eq 9, regardless of the
values of the other variables. Therefore, this constraint needs not be included in the ILP. Also, the windows that
will be included in the ILP at the next iteration is a subset of the extensions of the windows that are considered in
the current iteration. The algorithm keeps track of only these windows.

The two remarks above allows to construct the ILP without having to consider all possible windows, and also notably
reduces the size of the problem to solve.

3.4 Sequence-specific reMuval

Universal k-mer sets are guaranteed to always have one k-mer in each w-long window, but many application that
use minimizer schemes will only be searching over a single reference sequence, for instance the human genome.
For example, in a read to genome aligner, where the index of the genome is fixed, it is legitimate to optimize the
minimizers scheme for the particular genome sequence.

As k increases, the fixed reference sequence does not contain all possible windows and thus some of the universal
mers cannot occur as minimizers. In these cases the set of k-mers that is used to define a minimizer scheme can
be reduced even further to create a new set UR

k,w,, which is only universal for the reference sequence R. This new

k-mer set is not universal for all strings, but if a window is found that does not contain a k-mer from UR we are
guaranteed that this window is not contained in R. This guarantees, for example, that that even though the set UR

is not universal, the above application of alignment to a genome is still correct: a read not containing a minimizers
from UR does not align to the genome R.

We call “sequence-based reMuval” (described below) the operation restricting a universal set to a specific sequence.
There are two possible ways to generate sequence specific universal sets. Either by applying sequence-based reMuval
first or applying it last. That is, either (1) run the reMuval and extension loop to construct Uk,w then run sequence-
based reMuval to restrict that set, or (2) run sequence-based reMuval to obtain UR

k′,w then run an extension and

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

2 10 20 30

k-mer length

0.3

0.4

0.5

0.6

S
et

S
iz

e
F

ra
ct

io
n

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

Figure 3: Universal k-mer set relative sizes for näıve extension and reMuval with various starting sequence lengths,
k′, compared to that of DOCKS. The set size fraction decreases with each iteration of the iterative procedure, and
is always lower than that of the DOCKS set from which the procedure started started.

sequence-based reMuval loop. These procedures give similar results but, maybe surprisingly, the second method is
less computationally intensive (see Section 4.2).

Sequence-based reMuval. Consider a reference sequence R. Given a universal set U ′ (either a general Uk,w or

some ŨR
k,w constructed by näıve extension), a reference restricted k-mer set UR

k,w is constructed by including in the
ILP (eq 9) only the windows of R that contain more than one umer (element of U ′). While some umers in U ′ are
universal singletons, they may not be sequence-specific singletons, and these must be identified in order to reliably
leave out any window from the ILP. To do so we scan the reference sequence at each iteration before the reMuval
operation.

4 Evaluation of reMuval to find universal sets for large k

We use three metrics of universal k-mer set quality to compare various methods of construction:

• Size – the number of k-mers chosen to be in the universal set, as the fraction of the entire set of k-mers.

• Density – using a minimizer set that is consistent with the universal set, and lexicographic for all umers. (see
Section 2.1)

• Sparsity – the fraction of windows with only one umer. (see Section 2.2)

We will compare these results with a random ordering of all k-mers, which a subset of the authors found to be a good
proxy to many other methods in previous work [11], and when appropriate with the randomized minimizer ordering
over all k-mers. Throughout this sections we use a constant window length w = 6 for comparison.

4.1 Universal k-mer sets

Size. Figure 3 shows the universal k-mer set size of our procedure as the k-mer size is increased. Each of the points
on the plot shows the number of k-mers of a universal k-mer set as a fraction of the total number of k-mers. The
sets were constructed by starting with DOCKS sets of various k′-mer lengths (k′ < k), and are compared to the sizes
of the initial DOCKS sets. The size of the final set size is somewhat dependent on the size of the set when reMuval is
started. This is likely due to the fact that “bad” choices being made early cannot be corrected. That is, once one

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

2 5 10 15

k-mer length

0.24

0.26

0.28

0.30

D
en

si
ty

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

Random

Figure 4: Universal k-mer expected density for näıve extension and reMuval with various starting sequence lengths,
k′, compared to that of DOCKS. The density decreases with each iteration of the iterative procedure, and is always
lower than that of the DOCKS set from which the procedure started started.

k-mer is alone in a window at least some of its extensions must be in all future sets. While DOCKS has more freedom
to not be constrained in the greedy framework, it comes at the expense of the computational resources, and as we
can see, our method is able to construct sets for larger values of k.

Density. As described in Section 2.1 the expected density (and sparsity) for an ordering can be calculated using
a de Bruijn sequence of a long enough order. While this is useful in understanding the performance of an ordering
in general, it is not always feasible in practice. For instance, the de Brujin sequence of order 21 is already ≈ 4 TB
for the DNA alphabet, and is increased in size approximately σ-fold for each additional base in the mer length.
Therefore, while we are able to calculate universal sets for k > 500, we can only compute the expected density up to
k ≤ 15.

Figure 4 shows the densities of a minimizers that are compatible with universal k-mer sets constructed using various
methods across various values of k. There is no obvious relationship between the density of the initial DOCKS and
the eventual asymptotic density of extension procedure. While the question of guaranteeing that density will not
increase after reMuval is still open, it is clear that in practice this never happens. Quite often the density after the
initial rounds of reMuval is decreased substantially. In fact, the reMuval procedure is able to decrease density of the
DOCKS sets even before the first round of näıve extension.

Sparsity. While density and sparsity are negatively correlated, the exact relationship is complicated: the sparsity
is a property of the universal set and the density is a property of a particular compatible order. We additionally
show in Figure 5 the sparsity of the same universal sets shown in Figure 4. These results confirm Theorem 5, that
after reMuval the sparsity can only increase. While the reMuval increases the number of singleton k-mers rather
than singleton windows (windows with only one umer, i.e., the sparsity), it is intuitive that these two measures
would be linked: for each k-mer for which Mu is reduced to 1, at least one additional window also now has only one
umer.

4.2 Human-specific k-mer sets

While we present two methods for finding sequence-specific k-mer sets, contraction of existing sets for a given k and
sequence-specific expansion and reMuval, we found that in practice the latter worked much better. In our tests, both
methods achieved similar results (for k′ = 10, k ∈ [10, 17], difference in density < 10−4, difference in sparsity < 10−4,
difference in set size fraction < 10−3) but the sequence-specific iteration was much more computationally efficient.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

2 5 10 15

k-mer length

0.00

0.05

0.10

0.15

0.20

0.25

S
p

ar
si

ty

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

Figure 5: Universal k-mer expected sparsity for näıve extension and reMuval with various starting sequence lengths,
k′, compared to that of DOCKS. The sparsity increases with each iteration of the iterative procedure, and is always
higher than that of the DOCKS set from which the procedure started started.

This is mostly due to the list of windows that need to be considered in the ILP. This list is quite large when this
is constructed from a universal set for large k. Many fewer of the k-mers in the universal set have a Mu value of 1
when only the human sequence is considered, therefore many more windows need to be included in the ILP. Consider
a subset of umers with the same prefix of length k′ < k that are to be removed when we produced UR

k,w from Uk,w.

If instead we had constructed UR
k′,w then performed expansion, the prefix of these k-mers would have been removed

earlier.

The results in this section examine the quality of sequence-specific k-mer sets produced for the human reference
genome (GRCh38), and compare them to universal k-mer sets. The sequence used additionally includes the human
genome reverse complement sequence in order to include all possible windows that may be encountered when applied.
As mentioned above, because iterative sequence-specific reMuval is more efficient than contraction of existing sets
and provides similar results this is the method used throughout. Because of the computational issues that sequence-
specific set construction presents only k ≤ 18 are presented, but the increase in quality is still considerable.

Size. Figure 6 shows the sizes of both universal k-mer sets and human-specific k-mer sets for increasing values of k.
The solid lines epresent the sequence-specific sets, and the dashed lines are for the universal sets. The blue dot-dash
line shows the fraction of all k-mers that are contained in the human genome. For values of k ≤ 12, the human
genome sequence contains all possible k-mers, so the universal and human specific k-mer sets are approximately the
same size. As the fraction of k-mers present in the human genome drops, so does the size of the sequence-specific
k-mer set. We find that even though the sizes of the k-mer sets are much smaller for the human specific sets, the
sizes of the trie needed to store them is much larger, 12 Gb vs 84 Mb for k′ = 10, k = 17. This means the data
structure is less able to compress the k-mers in the set.

Density and Sparsity Figures 7 and 8 show a decrease in the density factor and increase in sparsity of using se-
quence specific sets versus universal k-mer sets. The density factor using the human genome sequence is substantially
higher than the expected density factor shown in the previous section. While it seems intuitive that the number of
k-mers in the set would decrease as the fraction of k-mers in the human sequence decreases, the difference in sets in
fact happens when the fraction of windows decreases (i.e., k+w− 1 ≥ 12) though the differences are not substantial
until k is larger.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

2 5 10 15 18

k-mer length

0.0

0.2

0.4

0.6

0.8

1.0

S
et

S
iz

e
F

ra
ct

io
n

Universal

Human

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

Human

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The relative size of human-specific and universal k-mer sets. The blue diamond indicate the fraction of
k-mers that are present in the human genome. Human-specific are smaller than universal sets for values of k when
the human genome does not contain all k-mers.

5 Discussion and Conclusion

DOCKS comparison DOCKS and the method presented here are two ways to generate small universal sets with
high sparsity, and these sets can then be used to obtain minimizer methods with low density. The two heuristic
methods differ in their approach to generate these sets. DOCKS starts with a minimum decycling set: a set of k-
mers that if is unavoidable by any “infinitely” long path (i.e., every cycle of the de Bruijn graph). It then iteratively
expand that sets until it is unavoidable by any w-long path. Because it has to enumerate many paths in the full
de Bruijn graph of order k, the methods is computationally and memory expensive for large k. And the lower w is,
the more iterations are needed.

Our method starts a universal set for k′ and w, and then iteratively expand that set to k and w (k′ < k). After the
first iteration, only a subset of the de Bruijn graph of order k′ +w needs to be considered. When w is not too large,
the method can create universal sets for relatively large k.

These two methods are complementary as they generate universal sets for different region of the parameter space.
The orders compatible with these universal sets outperform, both in expectation and on the human sequence, the
usual “random” order. But the gap between the best known lower bound on density and the best known orders is
still wide. The development of new methods to generate orders for minimizers computation remains an interesting
problem with potentially good improvement for bioinformatics algorithms.

Larger k and w Some applications use minimizers with large values of both k and w, for instance the default
settings of MashMap[7] use a minimizers scheme with k = 16 and w = 111, which is outside the limits of both of the
DOCKS and our method. Nevertheless, the universal sets generated may still be of use in that context. First, the
trie data structure (see Section 3.3) used in our method can detect that a query string has a prefix in the trie. This
implies that näıve extension is implemented at no computational or storage cost. Hence the sets are directly usable
for larger values of k. Second, a set which is universal for k and w is also universal for k and w′, for any w′ ≥ w.
Thus any of the sets from either DOCKS our method can be used in practice with larger w, albeit with a loss of
performance.

Increasing w For large values of w our method becomes computationally intractable, both because the initial set
of windows to construct the first ILP becomes very large and also because a smaller percentage of those windows can
be excluded from the subsequent ILPs because they contain singleton umers. For instance, at k = 11 the number
of windows that contain more than one umer is 138,580 for w = 6 but grows to 1,138,888,351 for w = 10 (starting

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

2 5 10 15 18

k-mer length

0.26

0.28

0.30

0.32

0.34

D
en

si
ty

Universal

Human

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

Random

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Human-specific and universal k-mer set densities on the human genome sequence. Generally human-specific
sets have lower density than universal k-mer sets for larger values of k.

2 5 10 15 18

k-mer length

0.0

0.1

0.2

0.3

0.4

S
p

ar
si

ty

Universal

Human

k′=2

k′=3

k′=4

k′=5

k′=6

k′=7

k′=8

k′=9

k′=10

DOCKS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Human-specific and universal k-mer set sparsities on the human genome sequence. Human-specific sets
have more sparse windows than universal k-mer sets for larger values of k

length of k′ = 6). This means that new insights are needed in order to continue progress in generating universal sets
where both w and k are large.

One possible avenue is to perform an iterative extension not only in k, as we presented here, but also in w. That is,
instead of starting with a small k′ and w already at its final value, is it possible to start with small k′ and w′ and
conjointly increase both values?

Keeping with the same framework of extension followed by optimization, extending w does not preserve the same
properties as extending k. For example, with näıve extension, at least one of the extension of a singleton umer is also a
singleton umer. This does not hold when w is extended: a new umer may be introduced into a window with previously
only one umer. Different rules to maintain the optimization problem between iterations are necessary.

Plateau As discussed in Section 4, our method shows a plateau in improvement after some number of iterations.
This is due to the greedy nature of the extension and the overwhelming effect of singleton umers. After at most
w extensions of a singleton umers, all possible σ extensions, and not just 1, of a singleton umer are also singleton
umers. Consequently, there is an exponential number of singleton umers that cannot be optimized by the reMuval

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

operation, and these singleton umers create the plateau.

We can see the results of this in all of the figures above, when the initial universal set k-mer size is small (i.e k′ ≤ 3)
poor choices of singleton umers can be made early limiting the quality of the subsequent solutions. One possible
solution would be to extend in both directions (to the left and right of the window and k-mer). This would likely
still provide the same plateau but possibly at a value of k that is twice as far.

Sequence specific A surprising result is that the sequence-specific k-mer sets are both more computationally
intensive to construct and are much harder to store. This is again likely due to the singleton k-mers, but for the
opposite to the plateau behavior mentioned above. In the generic case, the exponential set of singleton umers are very
easy to encode and reduce the size of the ILP significantly but limit the performance of the method. Because a specific
sequence may not contain all the possible windows after a näıve extension, there are much fewer singleton umers,
which makes the ILP larger but allows for greater optimization. An open question is how to find a sequence-specific
k-mer set that is easy to compute and/or store.

Acknowledgments

The authors would like to thank the organizers of the Internship in Biomedical Research, Informatics, and Computer
Science (iBRIC) at University of Pittsburgh, and Heewook Lee for their support of this work.

Funding

This work was partially supported in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery
Initiative through Grant GBMF4554 to C.K., by the US National Science Foundation (CCF-1256087, CCF-1319998)
and by the US National Institutes of Health (R01GM122935).

Disclosure Statement

C.K. is a co-founder of Ocean Genomics, Inc.

References

[1] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from sequencing data
quickly and in low memory. Bioinformatics, 32(12):i201–i208, June 2016. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btw279.

[2] Nicolaas Govert de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie V. Wetenschappen,
49(7):758–764, 1946.

[3] Rene De La Briandais. File Searching Using Variable Length Keys. In Papers Presented at the the March 3-5,
1959, Western Joint Computer Conference, IRE-AIEE-ACM ’59 (Western), pages 295–298, New York, NY,
USA, 1959. ACM. doi: 10.1145/1457838.1457895. URL http://doi.acm.org/10.1145/1457838.1457895.

[4] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, May 2015. ISSN 1367-4803, 1460-2059. doi:
10.1093/bioinformatics/btv022. URL http://bioinformatics.oxfordjournals.org/content/31/10/1569.

[5] Marius Erbert, Steffen Rechner, and Matthias Müller-Hannemann. Gerbil: a fast and memory-efficient k-
mer counter with GPU-support. Algorithms for Molecular Biology, 12:9, March 2017. ISSN 1748-7188. doi:
10.1186/s13015-017-0097-9. URL https://doi.org/10.1186/s13015-017-0097-9.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

[6] Szymon Grabowski and Marcin Raniszewski. Sampling the suffix array with minimizers. In Costas Iliopoulos,
Simon Puglisi, and Emine Yilmaz, editors, String Processing and Information Retrieval, number 9309 in Lecture
Notes in Computer Science, pages 287–298. Springer International Publishing, Cham, September 2015. ISBN
978-3-319-23825-8 978-3-319-23826-5. doi: 10.1007/978-3-319-23826-5 28. URL http://link.springer.com/

chapter/10.1007/978-3-319-23826-5_28.

[7] Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M. Phillippy. A fast approximate
algorithm for mapping long reads to large reference databases. In S. Cenk Sahinalp, editor, Research in Compu-
tational Molecular Biology, Lecture Notes in Computer Science, pages 66–81, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-56970-3.

[8] Jolanta Kawulok and Sebastian Deorowicz. CoMeta: classification of metagenomes using k-mers. PLOS ONE,
10(4):e0121453, April 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.0121453. URL http://journals.plos.

org/plosone/article?id=10.1371/journal.pone.0121453.

[9] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics,
32(14):2103–2110, 2016.

[10] Yang Li and XifengYan. MSPKmerCounter: A Fast and Memory Efficient Approach for K-mer Counting. arXiv:
1505.06550, May 2015. URL http://arxiv.org/abs/1505.06550.

[11] Guillaume Marçais, David Pellow, Daniel Bork, Yaron Orenstein, Ron Shamir, and Carl Kingsford. Improving
the performance of minimizers and winnowing schemes. Bioinformatics, 33(14):i110–i117, July 2017. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btx235. URL https://academic.oup.com/bioinformatics/article/33/

14/i110/3953951.

[12] Guillaume Marçais, Brad Solomon, Rob Patro, and Carl Kingsford. Sketching and sublinear data struc-
tures in genomics. Annual Review of Biomedical Data Science, 2(1):in press, 2019. doi: 10.1146/
annurev-biodatasci-072018-021156. URL https://doi.org/10.1146/annurev-biodatasci-072018-021156.

[13] Guillaume Marçais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimizers schemes. Bioinfor-
matics, 34(13):i13–i22, June 2018.

[14] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey Koren, and
Adam M Phillippy. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology,
17(1):132, 2016.

[15] Yaron Orenstein, David Pellow, Guillaume Marçais, Ron Shamir, and Carl Kingsford. Compact universal k-
mer hitting sets. In Algorithms in Bioinformatics, Lecture Notes in Computer Science, pages 257–268, Cham,
August 2016. Springer. ISBN 978-3-319-43680-7 978-3-319-43681-4. doi: 10.1007/978-3-319-43681-4 21. URL
https://link.springer.com/chapter/10.1007/978-3-319-43681-4_21.

[16] Yaron Orenstein, David Pellow, Guillaume Marçais, Ron Shamir, and Carl Kingsford. Designing small universal
k-mer hitting sets for improved analysis of high-throughput sequencing. PLOS Computational Biology, 13
(10):1–15, October 2017. doi: 10.1371/journal.pcbi.1005777. URL https://doi.org/10.1371/journal.pcbi.

1005777.

[17] Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A. Yorke. Reducing storage
requirements for biological sequence comparison. Bioinformatics, 20(18):3363–3369, December 2004. ISSN 1367-
4803, 1460-2059. doi: 10.1093/bioinformatics/bth408. URL http://bioinformatics.oxfordjournals.org/

content/20/18/3363.

[18] Michael Roberts, Brian R. Hunt, James A. Yorke, Randall A. Bolanos, and Arthur L. Delcher. A preprocessor
for shotgun assembly of large genomes. Journal of Computational Biology, 11(4):734–752, August 2004. ISSN
1066-5277. doi: 10.1089/cmb.2004.11.734.

[19] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for document fingerprinting.
In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03,
pages 76–85, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi: 10.1145/872757.872770. URL
http://doi.acm.org/10.1145/872757.872770.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

[20] Valerie A. Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-Chuan Chen, Paul A. Kitts,
Terence D. Murphy, Kim D. Pruitt, Françoise Thibaud-Nissen, Derek Albracht, Robert S. Fulton, Milinn
Kremitzki, Vincent Magrini, Chris Markovic, Sean McGrath, Karyn Meltz Steinberg, Kate Auger, William
Chow, Joanna Collins, Glenn Harden, Timothy Hubbard, Sarah Pelan, Jared T. Simpson, Glen Threadgold,
James Torrance, Jonathan M. Wood, Laura Clarke, Sergey Koren, Matthew Boitano, Paul Peluso, Heng Li,
Chen-Shan Chin, Adam M. Phillippy, Richard Durbin, Richard K. Wilson, Paul Flicek, Evan E. Eichler, and
Deanna M. Church. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring
quality of the reference assembly. Genome Research, 27(5):849–864, January 2017. ISSN 1088-9051, 1549-5469.
doi: 10.1101/gr.213611.116.

[21] Derrick E. Wood and Steven L. Salzberg. Kraken: ultrafast metagenomic sequence classification using exact
alignments. Genome Biology, 15(3):R46, March 2014. ISSN 1465-6906. doi: 10.1186/gb-2014-15-3-r46. URL
http://genomebiology.com/2014/15/3/R46/abstract.

[22] Chengxi Ye, Zhanshan S. Ma, Charles H. Cannon, Mihai Pop, and Douglas W. Yu. Exploiting sparseness in
de novo genome assembly. BMC Bioinformatics, 13(Suppl 6):S1, April 2012. ISSN 1471-2105. doi: 10.1186/
1471-2105-13-S6-S1. URL http://www.biomedcentral.com/1471-2105/13/S6/S1/abstract.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652925doi: bioRxiv preprint

https://doi.org/10.1101/652925
http://creativecommons.org/licenses/by/4.0/

