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Abstract

Sleep-disordered breathing (SDB) is a common disorder associated with significant morbidity. Through 

the NHLBI Trans-Omics for Precision Medicine (TOPMed) program we report the first whole-genome sequence 

analysis of SDB. We identified 4 rare gene-based associations with SDB traits in 7,988 individuals of diverse 

ancestry and 4 replicated common variant associations with inclusion of additional samples (n=13,257). We 

identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. 

Transcription factor binding site enrichment identified associations with genes implicated with respiratory and 

craniofacial traits. Results highlighted associations in genes that modulate lung development, inflammation, 

respiratory rhythmogenesis and HIF1A-mediated hypoxic response.
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Introduction

Sleep-disordered breathing (SDB) is a prevalent disorder associated with increased mortality and 

morbidity [1–4]. The most common type of SDB is obstructive sleep apnea (OSA), characterized by repeated 

airway collapse leading to intermittent hypoxemia and sleep disruption, that is increaed in prevalence with older 

age and male sex [5]. The disease appears to be multifactorial, reflecting variable contributions of abnormalities in

ventilatory control, craniofacial anatomy, and adiposity [5–11]. Due to an incomplete understanding of its 

pathophysiology, standard OSA treatment only addresses the downstream manifestations of airway collapse 

through nightly use of pressurized air to the nasopharynx, a therapy that often is poorly tolerated. Therefore, there 

is a critical need to identify molecular pathways that could provide specific therapeutic targets. The need for 

overnight studies to phenotype SDB traits has limited the available sample size for genetic analyses, and only 

several common-frequency genome-wide analysis studies have been reported [11–15]. Increased statistical power 

may increase the genetic resolution of regions that may not be adequately tagged by current genotyping arrays due

to population differences and/or reduced linkage disequilibrium with biologically relevant regions [16].

The Trans-Omics for Precision Medicine (TOPMed) program is an NIH National Heart, Lung, and Blood 

Institute program designed to improve the understanding of the biological processes that contribute to heart, lung, 

blood, and sleep disorders [17]. TOPMed has generated whole-genome sequencing (WGS) data on over 100,000 

individuals from multiple cohorts at >30× depth, including seven studies with objective assessment of SDB. A 

variant imputation server using TOPMed data also allows for high-quality imputation of non-sequenced genotype 

chip data [18]. A complementary initiative sponsored by the Centers for Common Disease Genomics (CCDG) of 

the NIH National Human Genome Research Institute has generated sequencing data from additional individuals in

two TOPMed cohorts (https://www.genome.gov/27563570). These initiatives provide the ability to examine the 

genetics of SDB at unprecedented detail in African-Americans (AA), Asian-Americans (AsA), European-

Americans/Australians (EA), and Hispanic/Latino-Americans (HA).

In this first WGS analysis of SDB, we examine the apnea-hypopnea index (AHI), the standard clinic 

metric of SDB, and four complementary measurements of overnight hypoxemia: average and minimum 

oxyhemoglobin saturation (SpO2) during sleep and the percent of the sleep recording with SpO2 < 90% (Per90); 

and the average desaturation per hypopnea event. These indices were chosen because of clinical relevance, high 

heritability, or prior significant GWAS findings [7–9,11,14]. We examined 7,988 individuals with objectively 

measured SDB and WGS data in conjunction with data from 13,257 individuals with imputed genotype data.
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Met  hods  

Each study had a protocol approved by its respective Institutional Review Board and participants 

provided informed consent. A study overview is provided in Supplementary Figure 1. There were two classes of

data: “WGS studies” had WGS performed by the TOPMed program and, in some cases, in additional participants 

by the CCDG program (referred to as “WGS” studies); “Imputed studies” had array-based genotyping later 

imputed using the TOPMed imputation server (as described below). Some studies with WGS contributed imputed

study data from additional array-based genotyped individuals.

WGS studies

The Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), and the

Framingham Heart Study Offspring Cohort (FHS) included individuals who participated in the Sleep Heart Health

Study (SHHS), who underwent polysomnography (PSG) between 1995 – 1998 using the Compumedics PS-2 

system [19–22]. These samples included 1,028 EAs from ARIC; 151 AAs and 557 EAs from CHS; and 478 EAs 

from FHS.

The Multi-Ethnic Study of Atherosclerosis (MESA) is investigating the risk factors for clinical 

cardiovascular disease [23]. PSG was obtained between 2010 – 2013 using the Compumedics Somte system [24]. 

This analysis includes data from 698 EAs, 486 AAs, 456 HAs, and 229 AsAs.

The Cleveland Family Study (CFS) was designed to investigate the familial basis of SDB, with four visits

occurring from 1990 – 2006 [25]. Sleep was assessed either in a clinical research center using full PSG 

(Compumedics E series) (visit 4); or in the latest available prior examination using an in-home sleep apnea testing

device (Edentrace). Data were analyzed from 505 AAs and 485 EAs (339 AAs and 234 EAs with full PSG data).

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is studying multiple health 

conditions in HAs [26,27]. Home sleep apnea testing was performed during the baseline examination (2008 – 2011) 

using the ARES Unicorder 5.2, a validated device including a forehead-based reflectance oximeter, a nasal 

pressure cannula and pressure transducer, an accelerometer, and a microphone [28]. 2,339 individuals provided 

data.

The Jackson Heart Study (JHS) is investigating cardiovascular disease in AAs [29]. An in-home sleep 

study was performed from 2012 – 2016 using a validated Type 3 sleep apnea testing device (Embla Embletta 

Gold) [30,31]. 575 individuals contributed data.

Imputed genotype studies
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The Osteoporotic Fractures in Men Study (MrOS) is a multi-center cohort study initially designed to 

examine the risk factors for osteoporosis, fractures, and prostate cancer in older males [32,33]. An ancillary study 

(MrOS Sleep; 2003 – 2005) focused on outcomes of sleep disturbances used PSG and nearly identical procedures 

as in MESA (Compumedics Safiro system) [34]. 2,181 EA individuals were included, with genotyping performed 

using the Illumina Human Omni 1 Quad v1-0 H array.

The Starr County Health Studies (Starr) investigates the risk factors for diabetes in Mexican-Americans 

[35,36]. An in-home sleep apnea study occurred between 2010 and 2014 using a validated instrument that records 

finger pulse oximetry, actigraphy, body position, and peripheral arterial tonometry (Itamar-Medical WatchPAT-

200) [37]. 782 HA individuals were studied, using Affymetrix 6.0 genotyping data.

The Western Australian Sleep Health Study (WASHS) is a clinic-based study focused on the 

epidemiology and genetics of SDB [38]. PSG was obtained from 1,508 European-ancestry patients (91% referred 

for SDB evaluation) from 2006 – 2010 (Compumedics Series E). Genotyping was performed using the Illumina 

Omni 2.5 array. 

Imputed genotype data were available for additional members of the TOPMed cohorts described above. 

Study/population combinations with fewer than 100 individuals were excluded. ARIC contributed an additional 

631 EA individuals (Affymetrix 6.0; dbGaP phg000035.v1.p1). CFS contributed 225 AA and 218 EA individuals 

(Affymetrix 6.0; Illumina OmniExpress+Exome, Exome, and IBC). CHS contributed 365 individuals (Illumina 

CNV370 and IBC; phg000135.v1.p1 and phg000077.v1.p1). FHS contributed 192 EA individuals (Affymetrix 

500k; phg000006.v7). HCHS/SOL contributed 7,155 HA individuals (Illumina Omni 2.5; phg000663.v1).

Phenotype and covariate definitions

We examined several SDB measures, including specific measures of OSA: AHI (number of apneas plus 

hypopneas per hour of sleep, with a minimum 3% desaturation per event) and average oxyhemoglobin 

desaturation per apnea or hypopnea; and measures of SDB severity [7–9]: average and minimum SpO2 and the 

percentage of the night with SpO2 < 90% (Per90). Apart from WASHS, all sleep data were scored by blinded 

scorers at one central Sleep Reading Center with high levels of scorer reliability using well-defined procedures 

[39,40]. We adjusted for age, age2, sex, age × sex, body mass index (BMI), and BMI2 due to known age and sex 

effects, some of which are non-linearly associated with outcomes, and our goal of identifying obesity-independent

loci. Age and BMI were obtained at the time of the sleep recording. Phenotype analyses were pooled within 

populations to aggregate very rare variants for testing, and therefore further adjusted for study. Cryptic relatedness

and population substructure were controlled for using linear mixed models. Genomic control was applied to 

population-specific results (or cohort-specific imputed genotype results).
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WGS and genotyping

Sequence data were derived from the TOPMed Freeze 6a release, jointly called by the TOPMed 

Informatics Research Center at the University of Michigan (http://github.com/statgen/topmed_variant_calling). 

The methodology was described elsewhere [17]. In brief, WGS was performed at the Broad Institute (ARIC, FHS, 

MESA), Baylor College of Medicine (ARIC, CHS, HCHS/SOL), and the University of Washington (CFS, JHS). 

Additional ARIC and HCHS/SOL WGS funded by CCDG and performed at Baylor College of Medicine were 

included in the jointly-called data. TOPMed and CCDG calling pipelines have functionally equivalent outcomes 

despite data processing differences (as detailed in [41]). WGS data were merged and normalized; inferred sequence

contamination was identified; and SNPs and small indels were detected (structural variants are not currently 

available). Lower quality variants were excluded using Mendelian consistency checks. Variants were aligned to 

Build 38 and annotated using snpEff 4.3t [42]. We excluded variants with <10× depth or >5% missingness, leaving

152.7 million polymorphic variants in 7,988 individuals with SDB phenotypes.

Genotype data were imputed using the TOPMed Imputation Server [18] using a Freeze 5b (Build 38) 

template. Forward strand checks were performed using the Strand database and the Haplotype Reference 

Consortium imputation preparation script (https://www.well.ox.ac.uk/~wrayner/tools/) and confirmed using 

Ensembl variant allele checks and internal QC performed on the server. Study-level data were imputed separately.

Analyses on variants with r2 score > 0.5 were therefore performed separately for each study.

Statistical analyses

Single and grouped variant analyses were performed using EMMAX and MMSKAT, both within the 

EPACTS suite (v3.3, https://genome.sph.umich.edu/wiki/EPACTS) [43]. WGS genetic relatedness matrices 

(GRM) were constructed using autosomal variants (MAF > 0.1%) following a comparison of EPACTS point-wise

heritability estimates of the AHI using different minimal MAFs. A grid search identified optimal GRM 

parameters with imputed data (MAF > 0.5%, r2 > 0.90) using 929 ARIC individuals with imputation and WGS 

data. Log10 P-values using identical association test parameters had a Spearman’s ρ correlation of 0.951 between 

WGS and imputed data. Matrices were constructed separately for each study + population combination (due to 

potentially differential imputation coverage).

Gene-based group sets were constructed with a series of filters considering non-pseudogenes expressed in

any GTEx v7 tissue. A variant could be assigned to one or more Ensembl genes based on SNPEff annotations 

[42,44]. We examined 5_prime_UTR_premature_start_codon_gain_variant, bidirectional_gene_fusion, 

conservative_inframe_deletion, conservative_inframe_insertion, disruptive_inframe_deletion, 

disruptive_inframe_insertion, exon_loss_variant, frameshift_variant, gene_fusion, intiator_codon_variant, 

missense_variant, non_canonical_start_codon, splice_acceptor_variant, splice_donor_variant, 
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splice_region_variant, start_loss, stop_gained, stop_lost, and stop_retained_variant mutations. We also included 

variants located within experimentally derived promoter regions and Ensembl-derived Tarbase miRNA binding 

sites; and regulatory variants located within 1000 bases of a particular gene, including ChIP-seq determined 

transcription factor binding sites (TFBS), and Ensembl-derived CTCF, TFBS, and promoter sites [44–46]. Group set

variants were filtered by requiring either a FATHMM-XF score > 0.5 or a CDTS < 1% constrained region score 

[47,48]. Exonic variants could alternatively have a PrimateAI score > 0.803 or a Havrilla et al. < 1% constrained 

coding region score [49,50]. 

Gene-based tests considered variants in WGS-only data (MAF < 5%). Pooled (across cohort) analyses 

were performed within each population in order to aggregate information on very rare variants across studies. 

Combined population results were obtained through meta-analysis of p-values weighted by sample size (due to 

potentially different MAF spectra driven by population demography). A significance level of p < 4.51 × 10-8 was 

used, reflecting a Bonferroni adjustment for all genes tested across all phenotype and population configurations.

A second set-based analysis was designed to query for TFBS annotation enrichment [51]. We performed 

250 base-pair sliding window analyses (to improve power by aggregating additional variants beyond an 

approximate ChIP-seq peak width of 100 base-pairs). We filtered for variants with either a FATHMM-XF score >

0.5 or a CDTS 1% score with no MAF cut-offs and meta-analyzed MMSKAT results across the 4 populations, 

noting windows with p-values < 0.01. These intervals were tested for enrichment of ChIP-seq coordinates with at 

least 50% physical overlap for up to 437 transcription factors using ReMap 2018 v1.2 

(http://tagc.univ-mrs.fr/remap/index.php?page=annotation) [52].

Single-variant EMMAX tests examined common variants (MAF > 0.5%). Meta-analysis across 

populations (and imputed genotype studies) used METAL with genomic control [53]. We performed bidirectional 

discovery and replication using the WGS and imputed samples (noting the high genomic resolution in the WGS 

samples and the higher sample size in the imputed data). We report results including at least 1000 individuals, 

discovery association p-values < 1 × 10-5 and replication association p-values < 0.05. Significance was defined as 

p < 1 × 10-8 in joint analyses, reflecting adjustment for five correlated phenotypes (Supplementary Table S3). We 

performed MetaXcan imputed GTEx gene expression analyses using joint EA results in selected tissues relevant 

to SDB and GIGSEA pathway analyses of MetaXcan output in whole blood (to maximize power), with empirical 

p-values incorporating 10,000 permutations [54,55].
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Results

Study sample

A study overview is provided in Supplementary Figure 1. Tables 1 and 2 provide a summary of the 

study samples and SDB traits analyzed using WGS and imputed genotypes, respectively. In total, there were 

21,244 individuals (1,942 AAs; 229 AsAs; 8,341 EAs; and 10,732 HAs). Median AHI levels ranged from mildly 

to moderately elevated, reflecting the age range and sex distribution of each cohort. Pairwise correlations of 

phenotypes and covariates are provided in Supplementary Table 3.

Gene-based r  esults  

Gene-based rare variant results are presented in Table 3 (for meta-analyzed results across multiple 

populations) and in Table 4 (for secondary population-specific results). Collectively, we identified 4 significantly 

associated genes (Bonferroni p < 4.51 × 10-8). ARMCX3, identified in the multiple-population analysis, is an X-

linked protein-coding that was associated with average desaturation (p = 5.29 × 10-8). Two protein-coding genes 

were identified in population-specific analyses of Per90: MRPS33 (p = 1.22 × 10-9) and C16orf90 (p = 1.36 × 10-

8). We identified 12 suggestively associated genes (p ≤ 4.22 × 10-7). Three genes are druggable [56,57]. Nominally 

significant results (p < 0.01) and additional details are presented in Supplementary Tables 4 and 5.

Single-variant results

We identified four genome-level significant loci in single-variant analyses (MAF > 0.5%; p < 1.0 × 10-8; 

Table 5). In multiple-population analyses, the 2q12 locus (rs77375846; IL18RAP) was associated with average 

event desaturation in a multiple-population analysis (combined p = 1.57 × 10-9) and minimum SpO2 (consistent 

with a previous report [14]). Two novel population-specific loci were identified. The 8p12 locus (rs35447033, 

NRG1) was associated with AHI in EAs (combined p = 3.02 × 10-9, Figure 1). The 5p13 locus (rs28777; 

SLC45A2) was associated with average SpO2 in EAs (combined p = 8.08 × 10-10, Figure 2). In HAs, the 1q32 

locus (rs116133558; ATP2B4) was associated with Per90 (combined p = 3.51 × 10-10) and with average SpO2 (as 

previously identified [11]). Twelve additional regions were suggestively associated (p < 1.0 × 10-7). 

Supplementary Table 6 provides additional context for all variants in these loci (p < 1.0 × 10-7), including 

imputation quality, significant eQTLs, and overlap with epigenetic regions [58–61]. Manhattan and QQ plots 

corresponding to the significant associations are provided in Supplementary Figures 2 – 5.

MetaXcan imputed g  ene expression and GIGSEA pathway analyses  
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We used joint WGS and imputed EA results to impute associations with gene expression levels using a 

MetaXcan framework for 6 tissues (subcutaneous and visceral omentum adipose, lung, monocytes, skeletal 

muscle, and whole blood). No individual tests reached Bonferroni significance (p < 2.60 × 10-7; Supplementary 

Table 7). Genes that were observed in the top 10 results across the varied analyses (Supplementary Table 8) 

included ZNF83 (15 instances) and CHRNE (13 instances).

Whole blood MetaXcan results (with the largest sample size) were further evaluated in GIGSEA-based 

pathway analyses. KEGG pathway results are shown in Supplementary Table 9. The most significantly 

associated pathway was KEGG_STEROID_HORMONE_BIOSYNTHESIS (average SpO2 empirical p-value = 

7.00 × 10-4). KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY was observed in the top 10 results 

for 4 of the 5 phenotypes. Gene-centric transcription factor binding site (TFBS) enrichment analysis results are 

presented in Supplementary Table 10. V$PEA3_Q6 (ETV4) was the most significantly associated TFBS 

(average desaturation empirical p-value = 3.00 × 10-4) and was the strongest association for AHI and minimum 

SpO2 (empirical p-values 0.002 and 0.001, respectively). The most significant miRNA binding site enrichment 

analysis association was GCATTTG,MIR-105 (average SpO2 p = 0.002; Supplementary Table 11). 

AGGCACT,MIR-515-3P (the strongest AHI association, p = 0.009) was observed in the top ten results for four 

phenotypes.

ChIP-seq transcription factor binding site interval enrichment

We performed a sliding window analysis to examine enriched intervals containing ChIP-seq derived 

coordinates for up to 437 transcription factors (Table 6, Supplementary Table 12). FOXP2 TFBS were 

consistently the most enriched for all phenotypes. Other notable transcription factors in the top 5 included EGR1, 

KDM4B, KDM6B, and TP63. KDM4B and KDM6B are druggable [56,57]. Leading sliding window results are 

provided in Supplementary Table 13.

Page 10 of 36

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/652966doi: bioRxiv preprint 

https://doi.org/10.1101/652966


Cade et al.: WGS analyses of sleep-disordered breathing
Discussion

Sleep-disordered breathing (SDB) is associated with increased risk of a wide range of disorders, including

atrial fibrillation, cancer, cognitive impairment, diabetes, liver, and interstitial lung diseases, as well as premature 

mortality [3,4,62–67]. Treatment options, however, are limited by a lack of knowledge of molecular pathways, 

including those that may be “druggable”. Recent analyses of SDB traits have focused on common variants and 

identified several preliminary genome-level significant associations using GWAS, admixture mapping, and 

linkage approaches [11–15], but did not address gene-based or rare variant effects. Ten studies and over 21,000 

individuals of multiple ancestries with WGS data at unprecedented resolution from the NHLBI TOPMed program

combined with densely imputed data from other sources contributed to these results. We identified several variant,

gene-based, and pathway-level associations. Analyses adjusted for obesity, a major SDB risk factor, identified 

loci and genes implicated in pulmonary, inflammatory, and craniofacial pathways. Some associations were 

population-specific, while others were sex-specific, consistent with population differences and strong sex 

differences for SDB [24,68–70]. Notably, across multiple ancestral groups, we identified a set-based rare-variant 

association (p = 3.48 × 10-8) on chromosome X with ARMCX3.

Gene-based result  s  

Across multiple populations, ARMCX3 (ALEX3) and the RNA anti-sense gene ARMCX3-AS1 were 

associated with apnea-hypopnea triggered intermittent hypoxia. ARMCX3 regulates mitochondrial aggregation 

and trafficking in multiple tissues and facilitates neuronal survival and axon regeneration [71–73]. Wnt signaling 

regulates reactive oxygen species (ROS) generation and ARMCX3-associated mitochondrial aggregation [72,74]. 

Potential mechanisms for further study include sensitized carotid body chemoreflexes, interaction with 

inflammatory mechanisms, and neuronal dysfunction within respiratory centers. Sleep apnea and reduced 

ventilatory drive are enriched in individuals with a primary mitochondrial disorder [75]. Mitochondria are an 

important source of ROS, which modulate the acute hypoxic ventilatory response. Mitochondria impact HIF1A 

signaling and may contribute to oxygen sensing [76–79]. ROS are required for intermittent hypoxia-induced 

respiratory long-term facilitation [80,81]. These effects may mitigate the level of hypoxia resulting from recurrent 

apneas, or conversely, lead to ventilatory instability, promoting apnea occurrence. Mitochondrial ROS also 

activate the NLRP3 inflammasome in multiple pulmonary diseases, consistent with an inflammation model that 

includes our IL18-pathway and HK1 results, ROS-related proinflammatory responses to lung capillary pressure, 

and evidence of alveolar epithelial injury/SDB interactions [14,82–87]. Our findings suggest value in investigating the

mechanisms by which ARMCX3 predisposes to SDB, and whether these associations are mediated by neuronal 

dysfunction and/or ROS and carotid body sensitization, and interact with the inflammasome.

Additional genes were significantly associated in population-specific analyses, including the 
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mitochondrial ribosomal gene MRPS33. Mitoribosomes are responsible for expression of the 13 essential 

components of the oxidative phosphorylation system, and a majority of the small subunit proteins have been 

implicated in disease [88]. The expression of several small and large subunit proteins are altered in a hypoxic 

environment [89]. MRPS33 expression varies with oxygen treatment in COPD [90].

Single-variant results

We identified four common frequency associated loci, including multiple-population associations with 

the IL18RAP region. The IL18RAP region has been associated with minimum SpO2 [14], and here we further 

identify an association with average event desaturation, highlighting a role in an OSA-specific trait. Multiple 

variants in this region are also GTEx eQTL variants for both interleukin-18 receptor subunits IL18RAP and 

IL18R1 (Supplementary Table 6) and experimental studies support a role for IL18 signaling in mediating this 

association, possibly through effects of pulmonary inflammation on gas exchange (reviewed in [14]).

We identified three population-specific loci, including two novel associations in individuals of European 

ancestry (Figures 1 and 2). 65 variants in the NRG1 region were associated with the AHI (p < 1.0 × 10-8, 

Supplementary Table 6). This region was suggestively associated with sleep apnea in a Korean population [91], 

however the lead signals appear to be independent (rs10097555 Korean p = 2.6 × 10-6, EA p = 0.91). NRG1 is 

associated with lung development and acute lung injury, and mediates inflammasome-induced alveolar cell 

permeability [87,92–95]. NRG1 promotes accumulation of HIF1A and has increased expression in vascular smooth 

muscle cells following exposure to intermittent hypoxia [96,97]. The lead SLC45A2 region variant rs28777 (average

SpO2 p = 8.08 × 10-10) has been associated with multiple traits and is in a splicing regulatory element with extreme

population differentiation [98]. An association in the ATP2B4 region with average SpO2 in HAs [11] has been 

extended to a second hypoxemia trait at the same variant (Per90 p = 3.31 × 10-10). This gene is the main cellular 

membrane calcium pump in erythrocytes and also regulates vascular tone [99,100].

Pathway analyses

Several gene pathways were identified in EA individuals using imputed gene expression in whole blood 

(Supplementary Table 9). KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY (retinoic acid-inducible

gene I-like) was the most commonly observed, occurring in the top 10 results for 4 of the 5 phenotypes. This 

pathway initiates the immune response to RNA virus infection [101], consistent with a role for inflammation at the 

NRG1 and IL18RAP loci. Steroid hormone biosynthesis (the most significantly associated pathway), PPAR 

signaling, and metabolism (via ‘starch and sucrose metabolism’) suggest the importance of biological pathways 

modulating energy homeostasis and balance and metabolic function [102]. In the gene-centric GIGSEA TFBS 
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analysis, V$PEA3_Q6 (ETV4) was the lead association for three phenotypes. ETV4 influences branching in the 

developing lung and regulates hypoxia-inducible factor signaling [103,104], a major mechanism influencing 

ventilatory control.

Transcription factor binding site enrichment

Several transcription factors were identified through interval enrichment of observed TFBS across the 

genome (Table 6). FOXP2 was consistently the most enriched transcription factor and is known to regulate gene 

expression in epithelial lung tissue and response to lung injury through an inflammatory mechanism [105,106]. 

FOXP2 is also expressed in brainstem respiratory areas including the pre-Bötzinger complex (which is essential 

for respiratory rhythmogenesis) and impacts airway morphology [107,108]. Two lysine demethylases (KDM4B and 

KDM6B) were also identified.  KDM6B (JMJD3) is required for a functional pre-Bötzinger complex [109,110] and 

reduced KDM6B protein expression was reported in hypoxic OSA patients [111]. Kdm6b also plays roles in 

immune function and lung development [112–114]. Drosophila Kdm4b knock-outs have increased sleep [115]. 

KDM4B (JMJD2B) and KDM6B are both members of the JmjC protein domain family and are regulated by 

HIF1A, require oxygen as a cofactor and act as oxygen sensors for chromatin in hypoxia [116,117]. EGR1 mediates 

hypoxia-induced pulmonary fibrosis [118]. TP63 is associated with cleft palate in Tp63 deficient mice, which is 

associated with an increased prevalence of OSA [119,120], suggesting that its relationship to OSA may be through 

pathways influencing craniofacial development. Among the leading 250-base pair sliding window results 

(Supplementary Table 13), 4:105708751-105709001 (Per90 HA p = 2.72 × 10-9) is of note due to regional 

associations with lung function and expression in human lung [121].

Strengths and weaknesses

This study is the first genome-wide analysis of objectively measured SDB traits using deep sequencing. 

Together with improved imputation quality, the TOPMed resource has enabled unprecedented genetic resolution. 

We examined clinically relevant phenotypes measured using rigorous methodology [5,7–10]. We analyzed data from

10 studies of individuals from four population groups that used different ascertainment strategies, which may 

potentially improve the generalization of our results. While this analysis is among the largest performed for SDB 

traits to date, our moderate sample size has lower power to detect weaker associations, and data were not 

available to replicate these first rare variant associations. While there are multiple lines of evidence in the 

literature to support our findings, additional experimental followup analyses are required.

Conclusion
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We have identified the first rare-variant and additional common-variant associations at genome-level 

significance with objectively measured SDB traits in humans. The results point to biologically relevant pathways 

for further study, including a novel X-linked association (ARCMX3), and a number of associations in genes that 

modulate lung development, inflammation, respiratory rhythmogenesis and HIF1A-mediated hypoxic-response 

pathways. These associations will motivate future sample collection and follow-up in cell-line and animal 

validation studies, with potential therapeutic benefit for sleep-disordered breathing and related comorbidities.
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Supplementary Data

Supplementary data include 5 figures and 13 tables.
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Figure Legends

Figure 1. Regional plot of the rs35447033 association with AHI in European-ancestry individuals. Joint 

WGS and imputed results are shown, using Build 38 coordinates.

Figure 2. Regional plot of the rs28777 association with Average SpO2 in European-ancestry individuals. 

Joint WGS and imputed results are shown, using Build 38 coordinates.
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Tables

Table 1. Sample description for WGS cohorts.

Population Cohort N Age Percent
Female

BMI Apnea
Hypopnea
Index 3%

AHI (Percent
< 5, 5 – 15, ≥

15)

Average
Desaturati

on

Average
SpO2

Minimum
SpO2

Percent Sleep
Under 90%

SpO2

African-American CFS* 505 38.65 (18.96) 56.4 32.44 (9.48) 6.85 (22.48) 43.4, 20.6, 36.0 3.62 (1.99) 94.49 (3.91) 84.76 (9.83) 4.79 (13.15)

CHS 151 75.39 (4.35) 60.3 29.02 (5.08) 9.60 (16.96) 28.5, 36.4, 35.1 2.70 (1.74) 94.82 (2.19) 85.74 (5.35) 3.39 (9.63)

JHS 575 63.47 (10.94) 64.9 31.8 (6.88) 10.69 (14.42) 24.7, 39.5, 35.8 3.54 (1.72) 94.77 (2.02) 84.30 (6.57) 2.97 (8.91)

MESA 486 68.81 (9.07) 53.7 30.23 (5.68) 12.67 (20.56) 22.4, 32.9, 44.7 3.42 (2.10) 94.46 (1.99) 83.32 (7.98) 3.89 (9.49)

East Asian-American MESA 229 67.89 (9.11) 49.8 24.28 (3.3) 14.96 (24.28) 21.8, 28.4, 49.8 3.72 (1.79) 94.92 (1.22) 83.23 (7.58) 2.25 (4.46)

European-American ARIC 1,028 62.28 (5.67) 53.1 28.72 (5.06) 8.64 (15.62) 34.6, 32.4, 33.0 2.35 (1.29) 94.57 (1.84) 85.95 (5.93) 2.92 (9.24)

CFS* 485 43.23 (19.49) 50.5 30.81 (8.83) 7.09 (21.90) 44.7, 19.4, 35.9 3.29 (1.86) 93.67 (3.59) 85.55 (9.33) 4.66 (11.87)

CHS 557 77.90 (4.34) 54.2 27.25 (4.44) 11.42 (15.54) 23.2, 38.1, 38.8 2.58 (1.34) 94.00 (2.00) 84.99 (5.67) 4.77 (12.28)

FHS* 478 60.09 (8.54) 49.8 28.4 (5.06) 8.10 (14.28) 35.1, 35.1, 29.7 2.35 (1.27) 94.68 (2.04) 85.78 (6.25) 2.96 (9.18)

MESA 698 68.53 (9.06) 53.2 27.91 (5.1) 12.18 (20.45) 21.6, 35.0, 43.4 3.11 (1.44) 93.96 (1.75) 83.49 (7.50) 4.27 (10.82)

Hispanic/Latino-
American

HCHS/SOL 2,339 46.27 (13.86) 60.5 30.23 (6.44) 2.03 (6.30) 68.9, 19.5, 11.6 N/A 96.42 (0.99) 87.04 (5.92) 0.88 (3.63)

MESA 456 68.49 (9.27) 53.3 30.08 (5.46) 16.31 (22.53) 17.1, 28.3, 54.6 3.62 (2.12) 94.33 (1.60) 81.59 (9.32) 3.80 (7.64)

Seven studies contributed 7,988 individuals with WGS in TOPMed Freeze 6a and objectively measured phenotypes (1,717 African-Americans; 
229 Asian-Americans; 3,246 European-Americans; 2,796 Hispanic/Latino-Americans). The overall sample had a mean age of 57.7 and was 56.1%
female. Values are displayed as mean (SD), except for the skewed Apnea Hypopnea Index, which is displayed as median (IQR). Sample size N 
reflects individuals with non-missing AHI and covariate values. *: Family cohort.
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Table 2. Sample description for imputed genotype cohorts.

Population Cohort N Age Percent
Female

BMI Apnea
Hypopnea
Index 3%

AHI (Percent <
5, 5 – 15, ≥ 15)

Average
Desaturation

Average
SpO2

Minimum
SpO2

Percent Sleep
Under 90%

SpO2

African-
American

CFS* 225 35.46 (20.32) 56.4 29.97 (10.09) 3.99 (10.55) 55.1 / 23.1 / 21.8 2.90 (1.09) 94.65 (4.01) 88.17 (9.6) 5.20 (16.01)

European-
American/
Australian

ARIC 631 62.74 (5.72) 49.4 29.15 (5.23) 9.15 (15.02) 29.3 / 37.9 / 32.8 2.50 (1.73) 94.32 (2.15) 85.17 (6.17) 4.12 (11.76)

CFS* 218 37.57 (18.66) 56.9 28.76 (8.11) 3.4 (10.59) 57.8 / 22.5 / 19.7 2.30 (1.11) 94.09 (3.35) 88.81 (7.8) 3.26 (12.79)

CHS 365 77.44 (4.65) 64.9 27.10 (4.41) 10.50 (15.14) 25.8 / 39.2 / 35.1 2.63 (1.57) 94.41 (1.91) 84.87 (5.96) 3.93 (11.89)

FHS* 192 57.45 (9.68) 51.0 28.87 (5.16) 7.30 (14.38) 38.0 / 31.8 / 30.2 2.42 (1.51) 94.73 (1.80) 85.76 (5.46) 2.82 (8.38)

MrOS 2,181 76.65 (5.60) 0.0 27.21 (3.75) 13.00 (18.00) 18.9 / 36.1 / 45.0 3.54 (1.48) 93.85 (1.73) 84.39 (5.88) 4.40 (9.95)

WASHS 1,508 52.29 (13.71) 40.9 31.84 (7.93) 7.24 (15.37) 40.1 / 31.1 / 28.8 3.56 (2.00) 94.56 (2.38) 84.61 (7.86) 5.44 (13.82)

Hispanic/
Latino-

American

HCHS/
SOL

7,155 46.10 (13.81) 57.8 29.68 (5.86) 2.00 (6.15) 69.1 / 19.3 / 11.6 N/A 96.46 (0.95) 87.06 (6.11) 0.83 (2.99)

Starr 782 52.34 (11.29) 71.9 32.15 (6.78) 10.35 (17.18) 31.5 / 31.5 / 37.1 N/A 94.65 (2.09) 85.78 (7.50) 2.83 (8.79)

Eight studies contributed 13,257 individuals with genomic data imputed with a TOPMed Freeze 5b reference panel and objectively measured 
phenotypes (225 African-Americans; 5,095 European-Americans; 7,937 Hispanic/Latino-Americans). ARIC, CFS, CHS, FHS, and HCHS/SOL 
imputed genomic data reflect individuals without available sequencing in TOPMed Freeze 6. The overall sample had a mean age of 53.7 and was 
46.9% female. Values are displayed as mean (SD), except for the skewed Apnea Hypopnea Index, which is displayed as median (IQR). Sample 
size N reflects individuals with non-missing AHI and covariate values. *: Family cohort.
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Table 3. Lead gene-based multiple population results.

Phenotype Sex Gene B38 Positions P Populations N Variants

Avg Desaturation All ARMCX3 X:101,623,082 – 101,625,765 3.48 × 10-8 AA, AsA, EA, HA 5,222 8, 5, 24, 9

All ARMCX3-AS1 X:101,623,082 – 101,625,153 3.49 × 10-8 AA, AsA, EA, HA 5,222 7, 5, 23, 8

Per90 All OR5K2 3:98,497,633 – 98,498,634 2.55 × 10-7 AA, AsA, EA, HA 7,986 4, 2, 1, 1

Per90 Females ZZEF1 17:4,004,409 – 4,144,018 4.22 × 10-7 AA, AsA, EA, HA 4,485 85, 16, 87, 131

Lead MMSKAT gene-based results meta-analyzed across populations within one order of magnitude of significance (p < 4.51 × 10-8) are shown. 
The Populations column indicates which populations had filtered polymorphic variants available for testing, with the number listed in the Variants 
column. ARMCX3-AS1 is a RNA gene that is anti-sense to the protein-coding ARMCX3 gene. Full results for genes with p < 0.01, including 
Ensembl-derived gene biotypes and descriptions, are provided in Supplementary Table 4.
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Table 4. Lead gene-based population-specific results.

Phenotype Model Gene B38 Positions N Variants Singletons P

Per90 HA LINC01277 6:142,985,371 – 143,010,415 2,803 2 0 5.02 × 10-8

OR5K2 3:98,497,633 – 98,498,634 2,803 1 0 2.74 × 10-7

AA Females S100A16* 1:153,607,528 – 153,616,353 1,009 1 1 2.07 × 10-7

CSMD2-AS1 1:33,867,977 – 33,885,456 1,009 1 1 2.07 × 10-7

EA Females MRPS33 7:141,006,422 – 141,014,911 1,702 9 8 1.22 × 10-9

LINC01811 3:34,170,921 – 34,558,474 1,702 6 5 9.71 × 10-8

NELFCD* 20:58,980,722 – 58,995,761 1,702 12 10 3.32 × 10-7

SLC22A8* 11:62,988,399 – 63,015,986 1,702 3 3 3.58 × 10-7

HA Females AL132709.1 14:101,077,452 – 101,077,578 1,660 2 0 1.41 × 10-7

EPHX4 1:92,029,443 – 92,063,474 1,660 12 10 3.48 × 10-7

HA Males C16orf90 16:3,493,483 – 3,496,479 1,143 6 3 1.36 × 10-8

TVP23B 17:18,781,270 – 18,806,714 1,143 4 4 2.53 × 10-7

IPCEF1 6:154,154,536 – 154,356,890 1,143 10 8 4.07 × 10-7

Lead MMSKAT gene-based population-specific associations within one order of magnitude of significance (p < 4.51 × 10-8) are shown. The 
Variants column indicates the number of filtered polymorphic variants with minor allele frequency < 5% available for testing, a portion of which 
were singletons. *: Druggable gene [56,57]. Full results for genes with p < 0.01, including descriptions, are provided in Supplementary Table 5.
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Table 5. Lead single-variant analysis results.

Region Phenotype Model SNP
WGS /

Imputed N
CAF

WGS Beta
(SE)

WGS P
Imputed Beta

(SE)
Imputed P

Combined
Beta (SE)

Combined
P

2q12.1: IL18RAP
Avg

desaturation
All rs77375846 C 4995 / 4838 0.028 – 0.129 -0.152 (0.049) 1.87 × 10-3 -0.264 (0.049) 5.97 × 10-8 -0.208 (0.035) 1.57 × 10-9

2q33.3: PPIAP68
Avg

desaturation
All rs60132122 T 5222 / 4838 0.308 – 0.637 0.062 (0.031) 0.043 0.195 (0.034) 6.26 × 10-9 0.122 (0.023) 6.49 × 10-8

11q12.2: MS4A15 Avg SpO2 All rs4939452 C 7929 / 13197 0.347 – 0.524 0.066 (0.023) 4.34 × 10-3 0.063 (0.014) 3.29 × 10-6 0.064 (0.012) 4.87 × 10-8

18q12.3:
LINC00907

Avg SpO2 All rs187860354 G 4500 / 7391 0.006 – 0.022 0.442 (0.146) 2.36 × 10-3 0.432 (0.097) 8.53 × 10-6 0.436 (0.081) 7.04 × 10-8

2q12.1: IL18RAP Min SpO2 All rs138895820 G 7705 / 13194 0.025 – 0.131 0.510 (0.184) 5.58 × 10-3 0.654 (0.128) 3.36 × 10-7 0.607 (0.105) 7.93 × 10-9

10p12.31: NEBL Min SpO2 Females rs11453507 CA 4450 / 6202 0.138 – 0.514 0.651 (0.140) 3.34 × 10-6 0.338 (0.102) 8.63 × 10-4 0.446 (0.082) 5.73 × 10-8

12q21.2:
LINC024064

Min SpO2 Females rs2176909 T 4450 / 6202 0.724 – 0.930 0.828 (0.157) 1.38 × 10-7 0.319 (0.116) 5.77 × 10-3 0.498 (0.093) 9.06 × 10-8

5p13.3: C5orf22 AHI Males rs10940956 A 3502 / 7043 0.470 – 0.759 0.930 (0.422) 2.74 × 10-2 1.430 (0.269) 1.09 × 10-7 1.285 (0.227) 1.48 × 10-8

9p22.1:
DENND4C

AHI AA rs111654000 A 1717 / 225 0.016 – 0.018
-11.240
(2.268)

7.18 × 10-7 -18.110 (6.724) 7.07 × 10-3 -11.942
(2.149)

2.74 × 10-8

1q31.2:
AL954650.1

AHI AA
chr1:191965014_G/

A A
1717 / 225 0.286 – 0.301 3.078 (0.641) 1.56 × 10-6 5.080 (1.759) 3.88 × 10-3 3.313 (0.602) 3.75 × 10-8

8p12:
AC068672.1,

NRG1
AHI EA rs35447033 T 3246 / 5095 0.060 – 0.094 2.247 (0.621) 2.95 × 10-4 2.453 (0.521) 2.54 × 10-6 2.368 (0.399) 3.02 × 10-9

5p13.2: SLC45A2 Avg SpO2 EA rs28777 A 3201 / 5024 0.885 – 0.969 -0.526 (0.133) 8.00 × 10-5 -0.454 (0.096) 2.23 × 10-6 -0.478 (0.078) 8.08 × 10-10

1q32.1: ATP2B4 Avg SpO2 HA rs116133558 T 2803 / 7956 0.006 – 0.014 0.371 (0.120) 2.08 × 10-3 0.294 (0.062) 2.15 × 10-6 0.310 (0.055) 1.88 × 10-8

1q23.3: intergenic
(RNU6-755P)

Min SpO2 HA rs140743827 A 2803, 7174 0.017 – 0.020 -1.502 (0.593) 1.13 × 10-2 -1.770 (0.367) 1.42 × 10-6 -1.696 (0.312) 5.51 × 10-8

1q32.1: ATP2B4 Per90 HA rs116133558 T 2803, 7956 0.006 – 0.014 -1.005 (0.450) 2.54 × 10-2 -1.218 (0.207) 4.15 × 10-9 -1.181 (0.188) 3.51 × 10-10

11p11.2:
intergenic

(AC104010.1)
Avg SpO2 HA males

chr11:44652095_T
C/T T

1143 / 3024 0.007 – 0.008 0.686 (0.248) 5.65 × 10-3 0.710 (0.154) 3.83 × 10-6 0.703 (0.131) 7.25 × 10-8

10q22.1:HK1 Min SpO2 EA males rs17476364 C 1523 / 3650 0.072 – 0.115 1.215 (0.392) 1.94 × 10-3 1.099 (0.235) 2.81 × 10-6 1.129 (0.201) 2.01 × 10-8

8q23.2: KCNV1 Min SpO2 EA males rs58365105 A 1523, 3650 0.007 – 0.026 -2.878 (0.864) 8.65 × 10-4 -2.406 (0.540) 8.36 × 10-6 -2.539 (0.458) 2.96 × 10-8

2q35:
AC019211.1

Per90 EA males
chr2:220369683_G/

A A
1540, 187 0.005 – 0.006 12.280 (2.431) 4.38 × 10-7 17.505 (7.989) 2.85 × 10-2 12.723 (2.326) 4.48 × 10-8
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Lead EMMAX single-variant associations within one order of magnitude of significance (combined p < 1.00 × 10-8) and with replication evidence 
(p < 0.05) are shown. Full results for all variants in each locus with p < 1.00 × 10-7, including additional associations with secondary models, and 
metadata and annotations, are provided in Supplementary Table 6.
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Table 6. Transcription factor binding site interval enrichment results.

Phenotype Transcription Factor # Observed Overlap # Expected Overlap -log10 (E-value)

AHI FOXP2 588 36.20 473.99

KDM6B 630 51.58 435.29

THAP1 505 31.89 402.07

KLF9 745 91.81 395.52

TP63 997 182.22 383.85

Average Desaturation FOXP2 493 22.32 460.00

THAP1 439 19.55 412.76

UBTF 489 28.20 407.50

TP63 788 109.36 382.89

KDM6B 482 30.98 380.39

Average SpO2 FOXP2 582 35.87 468.89

KDM6B 613 51.21 418.65

EGR1 664 66.76 404.83

UBTF 574 46.35 399.91

KDM4B 489 29.56 398.10

Min SpO2 FOXP2 561 35.57 445.57

THAP1 515 31.32 417.89

KDM6B 569 50.87 373.41

UBTF 536 45.99 360.56

EGR1 602 66.25 346.03

Per90 FOXP2 689 39.05 578.42

KDM6B 739 54.79 539.69

TP63 1199 193.28 515.44

THAP1 607 34.47 509.33

EGR1 786 72.09 507.27

250 base-pair sliding window coordinates with association p < 0.01 were queried for interval enrichment of ChIP-seq derived transcription factor 
binding sites using the ReMap annotation tool. ChIP-seq coordinates were required to have >50% overlap with a sliding window interval. ReMap-
derived expected overlaps are obtained from the equivalent number of similarly-sized random regions. E-value indicates the expected value, with a
higher log-transformed value indicating greater enrichment. Full results are provided in Supplementary Table 12.
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